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Abstract—Vector Symbolic Architectures (VSA) can be used
to encode complex objects, such as services and sensors, as
hypervectors. Such hypervectors can be used to perform efficient
distributed service discovery and workflow orchestration in
communications constrained environments typical of the Internet
of Things (IoT). In these environments, energy efficiency is of
great importance. However, most hypervector representations
use dense i.i.d element values and performing energy efficient
hyperdimensional computing operations on such dense vectors
is challenging. More recently, a sparse binary VSA scheme has
been proposed based on a slot encoding having M slots with
B bit positions per slot, in which only one bit per slot can
be set. This paper shows for the first time that such sparse
encoded hypervectors can be mapped into energy-efficient time-
to-spike Spiking Neural Network (SNN) circuits, such that all the
required VSA operations can be performed. Example VSA SNN
circuits have been implemented in the Brian 2 SNN simulator,
showing that all VSA binding, bundling, unbinding, and clean-
up memory operations execute correctly. Based on these circuit
implementations, estimates of the energy and processing time
required to perform the different VSA operations on typical SNN
neuromorphic devices are estimated. Recommendations for the
design of future SNN neuromorphic processor hardware that can
more efficiently perform VSA processing are also made.

Index Terms—Vector Symbolic Architecture, Hypervectors,
Spiking Neural Networks, Neuromorphic Processing

I. INTRODUCTION

Vector Symbolic Architectures (VSAs) are a family of bio-
inspired methods for representing and manipulating concepts
and their meanings using fixed-size vector representations in a
high-dimensional vector space as described by [1]. Eliasmith
has shown how these vector representations can be used to
perform ‘brain like’ neuromorphic cognitive processing [2]
and coined the phrase ‘semantic pointer’ for such a vector
since it acts as both a ‘semantic’ description of the concept
and a ‘pointer’ to the concept. As such, they are said to be
semantically self-describing. VSAs are capable of supporting
a large range of cognitive tasks such as: Semantic composition
and matching; Representing meaning and order, [3]; Analogi-
cal mapping [4]; and Logical reasoning, [3]. Consequentially
they have been used in natural language processing, [3],
and cognitive modelling [2]. VSAs use vectors of very high
dimensionality (D), i.e., hypervectors (HVs). For example,
Plate’s Holographic Reduced Representations (HRR) [5] use
real-number vectors typically having (512 < D < 2048).
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Whereas Kanerva’s Binary Spatter Codes (BSC) [6] are bit-
string HVs, typically having D = 10,000. A hierarchical
BSC binding and bundling scheme was presented in [7]-[9],
which showed how sensor and service descriptions could be
represented as HVs that, in turn, can be bound and bundled
into higher-level HVs that represent sensor-service workflows.
Using these workflow HV representations, the possibility to
perform efficient distributed service discovery and workflow
orchestration in communications and energy-constrained en-
vironments that are typical of the Internet of Things (IoT)
has been demonstrated [7]-[12]. In such environments, per-
forming the VSA operations in an energy-efficient manner
is essential and in [11] it was demonstrated that some, (but
not all) of the required VSA operations can be performed
on BSC HVs using ultra-low energy-efficient Phase Change
Memory Devices (PCM) [13]. The motivation for this paper
was to investigate the possibility of performing all of the
required VSA operations using energy-efficient devices, SNN
neuromorphic processing devices.

Eliasmith has demonstrated how spike-rate encoded SNN
circuits can implement convolution/deconvolution in an HRR
based VSA for cognitive processing [2]. Whilst this is an
elegant solution, it requires large numbers of spikes to be
processed, and as a result, this is not an energy-efficient mech-
anism. Similarly, although BSC operators are much simpler,
implementation using SNNss is not energy efficient due to their
very high dimensionality requiring many spikes per operation.
This paper uses the sparse hypervector (SHV) encoding model
proposed by Laiho [14] to address this challenge. The model
uses a slot encoding mechanism with M slots and B bits per
slot, of which only one bit is set per slot. A recent paper, [15],
compares various alternative SHV models and concludes that
slot encoding has the desired properties for VSA manipula-
tions, outperforming the other methods evaluated. The main
contribution of this paper is to show how the model proposed
in [14] can be mapped onto an SNN circuit using M neurons
and where the corresponding bit positions represent a time-to-
spike encoding rather than the spike rate encoding used by [2].
The next section gives a brief overview of the mathematical
properties of VSA operations and shows how complex object
representations can be built and queried using VSA.



II. VSA BINDING AND BUNDLING OVERVIEW

Unlike classical computing, which operates on bits through
logical operations and the four arithmetic operations of ad-
dition, subtraction, multiplication and division, VSAs deal
with HVs through three operations, bundling (a superpo-
sition operator denoted °‘+’), binding and unbinding (per-
mutation/multiplication operators denoted ‘®’ and ‘ Q °
respectively) and a HV normalisation operator. VSA ‘con-
cept/compound’ vectors built using these operations can then
be compared for similarity and have their sub-vector contents
probed using vector comparison operators such as cosine
similarity and Hamming Distance/Similarity.

Binding permutes HVs to a different part of the HV space
making them orthogonal to all other vectors with high proba-
bility so that, if ¥ = RO A and W = R©® B then R, A and
B will have no similarity to V' or W. However, comparing
V with W will produce the same match value as comparing
A with B because binding preserves distance within the
hyperspace [16, page 147]. Cyclic-shift binding, denoted ‘p’
is a unary version of binding/unbinding whereby instead of a
multiplicative permutation between role and filler HVs, a HV
is shifted right (binding) or left (unbinding) to produce an
output that is orthogonal to its input HV. Binding/unbinding
and cyclic-shift are associative, commutative and distribute
over bundling. Binding and unbinding are also invertible for
many VSAs, including BSCs and Laiho’s SHVs.

Bundling combines groups of role-filler pairs into a single
same sized compound HV that bears similarity to each of its
role-filler constituents. It represents the group of sub-HVs as a
whole, analogous to a set or data record, while simultaneously
storing each role-filler within its HV elements. Consider the
bundled set of role-filler pairs in Eq. 1

Z,=V,0A,+W,0B,+X,0C, (1)

To recover the sub-HVs from Z,, it must be unbound with the
appropriate role HV, for example to extract A, perform:

V.eZ,=A,+V.QW, 0 B, + VX, 0 C, 2)
= A, + noise 3)

By designating the role HVs in Eq. 1 as ‘position” HVs it is
easy to see that Eq. 1 can be used to represent sequences. An
alternate approach for the creation of sequences is to combine
bundling with the cyclic-shift operator, for example

Z, = p'(A) + p*(B,) + p*(C,) 4)

The exponentiation operator applied to p indicates the number
and direction of the cyclic-shift steps. Each bundled sub-
HV can be retrieved in order by applying p in the opposite
direction.

A, ~p N(Z,) = A, + ' (B) + p*(C) )

In [7], [8], [12] an alternate binding/bundling scheme is de-
scribed that employs both permutation and cyclic-shift binding
to enable the creation of practically unlimited hierarchically

nested sequences overcoming the limitations that occur when
using Eq. 1 or Eq. 4 for hierarchical encoding.

Bundled VSA HVs preserve vector dimension regardless
of the number of combined sub-attribute HVs. However, the
dimensionality in use limits the ability to decode sub-HVs
within a bundled vector. In the Laiho model, cyclic-shift bind-
ing is achieved by a simple right-cyclic-shift of the SHV slot
positions, and cyclic-shift unbinding is a simple left-cyclic-
shift of the slots. Role-filler binding is achieved by adding
the bit positions of the corresponding slots in the role SHV
(e.g., bit position b;) and filler SHV (e.g., bit position b,) and
then computing the sum of the two bit positions modulus the
number of possible bit positions B (i.e., b, = (b; + by)mod B).
The bit at this position (b,) is then set in the slot. Unbinding
is a modulus subtraction operation (i.e., b; = (b, — b,)mod B).
The SHV bundling operation is performed by slotwise addition
operation by counting the number of bits that occur in the
same position within each slot from all of the bundled SHVs.
Sparsity is preserved by computing for each slot the bit posi-
tion corresponding to the maximum number of co-occurring
bits (i.e., the argmax) and setting the bit at this position in
the final bundled SHV. If there are multiple bit positions with
the same number of co-occurring bits, the bit at one of these
positions is selected randomly or by a well-defined algorithm
(e.g., lowest bit index). Therefore, the resulting bundled SHV
has the same sparse structure as the component SHVs of which
it is composed. It can be shown that for M slots and B bit
positions per slot, to a first approximation, D = M log, B,
where D is the dimension of the equivalent dense HV.

III. MAPPING SPARSE BINARY VSA OPERATORS ONTO SNN
CIRCUITS

Mapping the sparse slot encoding vector model into an SNN
representation is performed by treating each slot as a neuron
and the time-to-spike as the bit position. In the following
sections, a symbolic representation of an SNN circuit is
used, and this is illustrated in Figure 1(a). In the circuit
representation, neurons are shown as triangles, each with an
input dendrite and an output axon. The axon of any neuron
can connect to the dendrite of one or more other neurons
via synaptic connections. The synaptic connection between
an axon and a dendrite can introduce a time delay to the
incoming spike before it stimulates the neuron associated with
the dendrite to add or subtract from the neuron voltage.

How the neuron responds to the stimulus voltage depends on
the neuron model. Sections III-A and III-B describe how SNN
circuits can perform all of the required VSA operations using
relatively simple neuron models. Section IV demonstrates
results from simulations of the different circuits using the
Brian 2 SNN simulation tool [17], therefore this paper uses
Brian 2 terminology to describe the neuron model behaviour.
All the neuron models in the following sections are defined
by systems of differential equations controlled by user-defined
parameters. Each neuron model also defines one or more spike
threshold voltage levels that result in the neuron producing one
or more output spikes on its axon whenever a spike voltage
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Fig. 1. Spiking Neural Network Model showing: (a) the model structure;

different action potential effects (b) to (e)

threshold is crossed. The Brian 2 neurons also allow the
user to specify refractory properties. After the neuron fires a
spike, it becomes refractory for a specific duration, and further
spiking is inhibited during the refractory period. Figure 1 (b)
- (e) shows several simple example neuron behaviours that are
employed in the VSA circuit models and simulation results
described in the remainder of this section and Section IV. Each
neuron model shows an input spike and the resulting changes
in neuron potential and the resulting output spike sequence.

A. Cyclic Shift Binding and Bundling Circuit

This section describes how the Laiho model can be used to
implement cyclic-shift binding and bundling. Example results
are presented in Section IV, and the reader should refer to these
results to aid the understanding of the circuit descriptions.

1) Cyclic-Shift Binding and Bundling Circuit: Figure 2
shows the cyclic shift binding and bundling circuit. The circuit
comprises three main components: SHV Generation, Right
Cyclic Shift Binding and Bundling and a final argmax com-
putation from which the encoded bundled SHYV is output. The
circuits are described using neuron groups. In the following
circuit descriptions, the labelling of the different neuron groups
corresponds to the naming convention used in the Brian 2
simulations presented in Section IV.

a) Sparse Hypervector Generation: SHV generation
comprises two neuron groups, P and Gl1. Each of the Gl
neurons corresponds to one slot in the Laiho model, so there
are M G1 neurons. There is one P neuron for each vector in
the SHV library, and so there are L P-neurons. The P-neuron
axons are connected in a matrix structure to the G1 dendrites
via synapses as shown in Figure 2 and so there are M * L
synaptic connections. The firing of a P-neuron is the trigger for
generating a single corresponding SHV. Each P neuron axon
connects to all G1 neuron dendrites through the corresponding
synaptic connections. Each synaptic connection introduces a
delay with a value between 0 and BA seconds, where A is the
spike-time-delay between spikes corresponding to consecutive
bit positions in that neuron representing the slot.

After the delay, the corresponding neuron is stimulated, and
its neuron voltage is increased by V. All the G1 neurons have
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Fig. 2. Cyclic shift binding and bundling circuit

a threshold voltage of V; (V; < V). The reset condition for
the G1 neuron model is similar to that shown in Figure 1
(b), i.e., the neuron has an exponential decay with a time
constant 7 seconds, chosen such that only a single spike is
generated when a stimulus of V| is received in any A time
period. Therefore, the firing of the P1 neuron causes all Gl
neurons to fire, each with a time-to spike delay determined by
the corresponding synaptic delay. The spike firing pattern of
the G1 neurons represents the required SHV encoding with
one spike per neuron such that the time to spike represents
the bit position in the Laiho model.

b) Right Cyclic Shift Binding and Bundling: Right Cyclic
Shift binding of the spike encoded SHV is performed by
connecting the output axon of each G1 neuron to the dendrite
of the next neighbouring neuron in the group via further
synaptic connections. As shown, the last neuron in the group
has a feedback connection to the first neuron. The synaptic
delay on these connections is BA — ¢ seconds, where 6 is the
minimum neuron processing delay between a stimulus event on
the dendrite and the generated output spike. This processing
time also determines the maximum spike frequency of the
neuron. Time BA is the cycle time between each binding and
bundling operation. At the end of the first cycle, the feedback
ensures that the encoded SHV has been right-cyclic shifted and
adds its stimulus of ¥ volts to the G1 neuron group. A second
P neuron fires after BA seconds and after the corresponding
synaptic delays, V; volts are added to the corresponding Gl
neuron voltages. If the two stimulus events occur more than A
seconds apart, then the neuron decay constant is such that two
spikes will be generated in the cycle, and these, in turn, will
be fed back with the BA — 6 seconds time delay for the next
cycle. When a third P neuron now fires at the beginning of
the next cycle, another SHV is generated. If none of the three
stimulus events occurs within the same A seconds period, then
three spikes will be generated in that cycle. This process can
be repeated up to the maximum binding capacity of an SHV
with M slots and B bits per slot.

If stimulus events on the dendrite occur in the same A
seconds period, corresponding to two bits in the same position,
then the neuron voltage will be increased by V volts for each



stimulus in that time window. This voltage increase results in
the neuron generating a short burst of spikes at a frequency of
1/6 Hz (i.e., the maximum spike frequency as shown in Figure
1 (c), where the number of spikes is proportional to the size
of the stimulus event. These spikes are then fed back to the
next neuron resulting in a greater stimulus for that neuron in
the next cycle. Section IV-A1l provides simulation examples
that illustrate these activities.

c) Argmax Computations: The argmax computation is
achieved using the two neuron groups, G2 and G3, as shown
in Figure 2. The objective of the computation is to produce,
after N bundling cycles, a single output spike from each of
the G3 neurons where the spike from each G3 neuron occurs
in the A second time period where the most spikes from
all of the cyclically shifted SHVs occur. Both G2 and G3
have the same number of neurons (M) as the G1 group. The
G2 neurons receive the output spikes from the G1 neurons
in each cycle; however, the refractory properties of the G2
neurons are used to prevent any neuron firing for the first
N —1 cycles. In the Nth cycle, the G1 neurons output all of
the M = N = (N —1)/2 spikes that have been generated from
bundling the N SHVs. The G2 neurons now process these
spikes. The G2 neurons use a varying threshold to identify
the time slot where the maximum number of spikes occur.
When the first stimulus occurs, the corresponding G2 neuron
fires and its neuron voltage is reset to ;). The neuron voltage
threshold V; is then set to the measured neuron voltage at the
time of the spike. This mechanism ensures that this will be
the only spike unless a larger stimulus occurs within the BA
slot time. If a larger stimulus occurs, then the G2 neuron will
spike again, and the threshold will be increased such that no
further spikes will occur without an even larger stimulus. The
G3 neuron layer must select the last spike produced from the
corresponding G2 neurons, and this is achieved using a neuron
model with a linear decay and a time constant of (V| — V) BA
seconds. At the beginning of each cycle, the neuron voltage is
set to V] volts and a low threshold of V;,. On any stimulus, the
neuron voltage is reset to ¥ so that, after the last spike in the
Nth cycle, it will decay to spike at the corresponding time in
the next cycle period. Section IV-A1 also provides simulation
examples that illustrate these activities.

2) Cyclic Shift Unbinding and Clean-Up Memory Circuit:
The corresponding Sparse Cyclic Shift unbinding and clean-up
memory circuit is shown in Figure 3. It comprises a left-cyclic-
shift operation followed by a parallel clean-up memory process
that generates a spike corresponding to the best matching
library SHV. The input to the circuit is the sparse bundled SHV
generated by the binding and bundling circuit. The left cyclic
shift operation is performed by a single group of M neurons
(G4) with axon connections which produce a left cyclic shift
of the received SHV with a cycle time of BA seconds. After
each cycle, the resulting SHV is a noisy representation of the
corresponding bundled SHV. A subset of the bits will still
match each of the original SHVs bundled, starting with the
last SHV to be bound and unbinding in the reverse order to
the bundling.
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Fig. 3. Cyclic shift unbinding and clean-up memory circuit

The clean-up memory circuit comprises M input neurons
(G4) and L output neurons (GS5). The circuit is required to
mirror the action of the SHV generation circuit such that when
a noisy version of the SHV input from the G4 neurons matches
the SHV that would be generated when the n™ P-neuron (P,)
spikes, the corresponding n™ G4 neuron (G4,) in the clean-
up memory is the only neuron that is sufficiently stimulated to
spike. If a clean version of the corresponding SHYV is required,
the output from the L G5 neurons would then feed into a sparse
SHV generation circuit replacing the P-neurons.

To achieve this objective, the axons of each G4 neuron
connect to all L dendrites of the G5 neurons via synaptic
connections. The synaptic delays are now calculated such
that if the noisy unbound SHV is to match, the additional
synaptic time delays will ensure that when m out of the M
bits match, the corresponding G5 neuron will be stimulated
with a voltage of mV; volts in the last A second time slot
of the current unbinding cycle. Expressing the time delays in
the synaptic connections of the SHV generation as an M * L
matrix (P_matrix), the corresponding time delays of the clean-
up memory M x L matrix would be the transpose of the
(P_matrix—BA). The threshold V; of the G5 neurons is chosen
to ensure that only those neurons that match above the noise
threshold generate a spike. So if N SHVs are bundled in the
order P, to P; the unbound output sequence will be in the
reverse order G5; to G5, as shown in Figure 3. An important
feature of this clean-up memory circuit is that matching against
all L library SHVs is performed in parallel but requires L
synaptic connections on a single dendrite. Simulation results
for the cyclic shift circuits are presented in Section IV-Al.

B. Role-Filler Binding and Bundling

In this section, SNN circuits for role-filler binding and
bundling are presented. Role-filler binding requires a circuit
that can perform a modulus addition between the times of
arrival of two input spikes and produce a single output spike
at that position, see Figure 4(a). The neuron model for this,
shown in Figure 4(b), uses a linearly increasing neuron voltage
that is then held constant on the arrival of the first spike and
then linearly decays on the arrival of the second spike. The
neuron has two spike thresholds, voltages V;, and V; and the
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time constant of the linear increase or decrease is (V,—V};)/ BA.
If the neuron voltage falls below the lower threshold V),
the neuron fires and the neuron voltage reverts to the linear
increase. If the upper threshold is exceeded, the neuron fires
and the neuron voltage is reset to V. If two spike times (e.g.,
t1,t,) sum to less than BA the lower threshold is crossed at
time #; +1, and the neuron fires and the neuron voltage reverts
to a linear increase which reaches the upper threshold at time
BA + t; + t,. This behaviour is equivalent to the required
modulus addition in the next cycle. If the two spike times
(e.g., t3,14) sum to more than BA, then the lower threshold is
reached at time BA + t5 + t, which is the required modulus
addition in the next cycle time window and the neuron fires.
The neuron voltage then reverts to a linear increase, but this
gets reset at time 2BA and the process can repeat.

Role filler unbinding requires a circuit that can perform a
modulus subtraction between the arrival times of two input
spikes and produce a single output spike at that position. This
is illustrated in Figure 4(c) and (d). To perform this operation,
the neuron model is similar to the modulus addition, but
now the neuron model produces a linearly increasing neuron
voltage that is then held constant on the arrival of the first
spike and then continues to linearly increase on the arrival of
the second spike. In this case, the output spikes will always
occur in the second cycle time window at BA + ¢, —t, and
BA + t; — t, which are the required times for the modulus
subtraction.

1) Role-Filler Binding and Bundling Circuit: Figure 5
shows the role-filler binding and bundling circuit. The model
uses the same SHV generation circuit as the cyclic shift
binding and bundling circuit. However, now the role and
filler SHVs are generated concurrently with each pair being
generated after a time delay of 2BA seconds. There is also
an additional connection from all P-neurons to all G1 neu-
rons with zero time delay on the synaptic connections. This
connection generates a reset spike that initialises the neuron
voltage to V}, at the start of each cycle. In this circuit, the
G1 neurons perform the role filler binding operation using the
modulus addition neuron model described above.

The bundling operation is now performed by an additional
neuron group G2. These neurons have recurrent connections
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that feedback the output spike to the same neuron with a
delay of (2BA — §) seconds to coincide with the arrival of
the next bound SHV from the Gl layer. The G2 neuron
model is identical to the G1 neurons in the cyclic-shift-
binding and bundling circuit, resulting in an output SHV with
approximately N(N — 1)/2 spikes per neuron after N cycles.
The argmax layer is also identical to that used for the cyclic-
shift and is performed by the G3 and G4 neuron layers. At
the end of N bundling cycles, the required role-filler bound
and bundled SHV will be the SHV encoded by the M output
spikes from the G4 neuron group.

2) Role-Filler Unbinding and Clean-Up Memory Circuit:
Role-filler unbinding is the process of concurrently processing
the bundled SHV with either a role SHV to obtain the noisy
corresponding filler SHV or with the filler SHV to obtain
the corresponding role SHV. The resulting noisy SHV is then
processed by the clean-up memory to obtain an index to the
corresponding clean SHV, which can then be recovered. The
circuit shown in Figure 6 is used to achieve this. Here the
bundled SHV is added to the sparse SHV library using the
time delays for each neuron for the bound SHV encoding.

To obtain a filler SHV from the bound SHYV, the P-neuron
corresponding to role SHV is fired concurrently with the P
neuron corresponding to the bundled SHV. The two SHVs then
stimulate the G4 neurons that perform the modulus subtraction
operation, and the noisy resulting encoded SHV is injected
into the clean-up memory. The clean-up memory performs
precisely the same operation as the cyclic shift circuits and the
G6 neuron corresponding to the bound filler SHV fires. The
process takes BA seconds when the next unbinding operation
can be performed.

IV. RESULTS USING BRIAN 2 SIMULATIONS

All of the results in this section have been generated using
the Brian 2 simulator for spiking neural networks. Example
results are described, and links to a Github repository con-
taining commented python code for each model are provided.
The results presented for the different circuits are intended to
illustrate how the circuits perform and so circuit parameters
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have been chosen to make the results easier to interpret.
Therefore the following circuits use M =100, B=100 and
L = 1000 and the number of bundled vectors is limited to
N=5. The Brian 2 simulations use the default timings with a
maximum spike frequency of 10KHz. Hence 6 is 0.1ms. The
time period for each bit position A is chosen to be 1ms. In
the neuron models used, stimulus voltages in the range of 1
to 2 volts were used to make the simulation output easy to
interpret. The reader is encouraged to use the Brian 2 models
to explore the circuit performance for different values of the
parameters which conform to the empirical outcomes obtained
in the jupyter sample code when bundling larger numbers of
SHVs. In the following section, the results from the cyclic-
shift circuits are presented.

A. Cyclic Shift Results

1) Cyclic Shift Results: The cyclic shift circuit described
in Section III-Al is implemented in the Brian 2 neuromor-
phic simulator as two separate networks. The first network
(netl) implements the SHV generation and the cyclic shift
binding and bundling, see Figure 2. The second network (net2)
implements the unbinding and clean-up memory circuit, see
Figure 3. The corresponding Brian 2 model can be found at
Compliant-Cyclic-Shift-net2 (https:/github.com/vsapy/DTIN07).

a) Binding and Bundling Results: Figures 7 and 8 show
the output from net/ at various monitoring points in the circuit.
In Figure 7(a), the input P neurons generate a sequence of
pulses with a 100ms separation, where the y-axis is the neuron-
id of the P neuron group. The first spike at time zero is
generated for the fourth P-neuron (P;; = 4) and stimulates the
corresponding G1 neurons after the appropriate time delays.
The resulting SHV encoding can be seen in the first 100ms
of Figure 7(b), which also shows the spikes for all 100 Gl
neurons over five bundling cycles. In each cycle, the spikes
are right cyclically shifted with a delay of 99.9 ms and so
when the next P neuron fires (P,; = 3) at time 100ms, the
stimulus of the corresponding G1 neurons will be from both
spike events. This is shown in the time period 100ms — 200ms
in Figure 7(b). The process then continues until all spikes
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Fig. 7. Output from various monitoring points of the cyclic shift binding and
bundling circuit. (a) Input spikes from the P1 neurons; (b) Output spikes from
all G1 neurons; (¢ )Neuron voltage from neuron 16; (d) Output spikes from
neuron 16

have been bundled, resulting in the now densely encoded SHV
between 400ms and 500ms. Figure 8(a) and (b) illustrates
what happens for a single G1 neuron (G1,¢). If the bundled
vectors do not have spikes that occur in the 1ms time period,
then each neuron stimulus is 1.25 volts. The neuron has a
maximum spike frequency of 1KHz and each neuron only has
time to generate one spike while the voltage is above the spike
threshold. When the neuron stimulus from two or more spikes
occurs in the same lms time period, as in the time period
between 400 and 500ms, the neuron stimulus is doubled and
two spikes are generated while the threshold is exceeded. This
still results in 5 spikes being generated in this cycle.

The G1 neuron spikes are forwarded to the corresponding
G2 neuron and the resulting G2 neuron voltage is as shown
in Figure 8(d). The initial stimulus at 455ms exceeds the
initial voltage threshold shown in Figure 8(e) and the neuron
spikes, as shown in Figure 8(f). The spike threshold voltage
is increased to this neuron voltage, preventing any later single
spike stimulus from generating a spike. However, in this case,
the neuron voltage resulting from the spike burst stimulus at
462ms is greater than this threshold and the neuron fires at
this time as well. The spike threshold is increased again, so
only a longer spike burst stimulus (i.e., greater argmax) would
generate a later spike.

To output only the last spike to occur in the cycle, the G3
neuron group uses a linear decay as shown in Figure 8(g). Each
time a spike is received from the G2 neuron, the G3 neuron
voltage is reset and so from the time of the last spike in the
cycle, the voltage decays to create a single spike in the next
cycle, which in this case is the 500ms to 600ms time window
as shown in Figure 8(h). The output from the net! circuit is the
required sparse SHV encoding shown in 9(a) using a start time
of zero to show the encoded spike time delays for the bundled
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bundling circuit for a single neuron. (a) Input spikes from the P1 neurons; (b)
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Fig. 9. Output from various monitoring points of the cyclic shift unbinding
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SHV. Since the argmax operation chooses the first spike to
occur where there is no later greater number of co-occurring
spikes, the resulting bundled SHV is largely compressed in
time except for neurons where there are co-occurring spikes.
b) Unbinding and Clean-Up Memory Results: The net2
simulation implements the unbinding and clean-up circuit
shown in Figure 3. The input to the circuit is the bundled
encoded SHV shown in Figure 9(a). The effect of the left
cyclic shift unbinding operation performed by the G4 neuron
layer is shown in Figure 9(b) over a 500 ms period where
each spike is shifted down by one neuron position in each
cycle. Each of these SHVs is passed into the clean-up memory
and the resulting neuron voltage in the G5 neuron layer is
shown in Figure 9(c). The different colours identify the L
different neurons in the SHV library. To illustrate how the
circuit performs, the stimulus voltage from a single spike, V},
has been set to 1 volt so that the measured voltage in volts
corresponds to the number of co-occurring spikes.
In this example, random time delays are used to generate

the library SHVs and so the neuron voltage from any non-
matching SHV arriving at any 1ms time window will be ran-
dom. The expected number of matching bits can be determined
empirically using the slot encoding model directly (see the
conventional python calculation at the start of each jupyter
notebook in the GitHub library). In this case, the predicted
number of matches for each of the 5 SHVs when unbound
and compared to the clean SHV was 24,22,22.23.18 bits,
respectively which match exactly the measured voltages from
the clean-up memory circuit as shown in Figure 9(c).

To determine an appropriate spike threshold for the G5
neurons, a noise threshold V, of 4 s.d above the expected noise
is used, and so V,, = Svolts in this case. The lower threshold
for the co-occurring spikes to be detected (V,) is set at 4 s.d
below the expected mean and so V, = 5.39 volts. Provided
V, < V,, the spike threshold can be set at between V, and V.
Otherwise, successful unbinding of all N SHVs is not possible
with the required error rate. In this case, the threshold voltage
was set at 5.39 volts and the threshold equation only allows
spikes in a Sms time period around the expected time of the
stimulus event. In Figure 9(d), the resultant firing of the G5
neurons is shown. As the bundled SHV unbinds, the neuron
firing order is the reverse of the bundling order because the
clean-up memory mirrors the SHV generation memory.

B. Role-Filler Circuit Results

Due to this paper’s page limit requirements and be-
cause an explanation of the role-filler results would essen-
tially be a repeat of the cyclic-shift results walkthrough,
the reader is encouraged to run the jupyter notebook
versions of the code available at Compliant-Role-Filler-
net2 (https://github.com/vsapy/DTIN0O7) in order to inspect the role-
filler circuit results.

V. DISCUSSION
A. Estimated Energy Efficiency of the SNN Circuits

The results from the Brian 2 simulations have demonstrated
that it is possible to implement VSA operations using energy-
efficient SNN processing devices. The clean-up memory cir-
cuits can efficiently perform the SHV comparison operations
as a parallel operation, where the number of comparisons is
only limited by the number of synaptic connections that a
neuron can support.

The amount of energy consumed by a neuromorphic pro-
cessing device is a function of the number of spikes re-
quired to perform the computation; therefore, the time-to-
spike implementation of the Laiho model [14] offers sig-
nificant energy savings over SNN implementations that use
conventional dense VSA models including Eliasmith’s spike-
frequency model.

As a guide, the TrueNorth experimental SNN processor con-
sumes an estimated 45pJ per spike [18]. Thus, as an example,
using a cyclic-shift unbinding circuit using M = 1000 neurons
and B = 1024, for each unbinding operation, the energy cost is
in the region of 45nJ and would take BA seconds to complete.
Similar estimates can be made for the binding and bundling



circuits. In contrast, estimates for a CMOS cyclic-shift circuit
are typically in the region of 100pJ per bit, [19]. Thus, the
cyclic shift operation on a equivalent D = 10000 bit BSC
HV (.e., D = M log, B) would require in the region of 1 pJ.
Hence, the SNN process would potentially be approximately
20x more energy efficient. However, there is a clear trade-off
between energy efficiency gain and processing time latency.

In the case of the clean-up memory circuit, the cost of
performing the matching operations will depend on the cost of
the synaptic delays rather than simply the number of spikes.
Current SNN devices such as TrueNorth do not support time
delays on each synaptic connection and so the energy cost
of performing the clean-up memory operations will therefore
depend on the efficiency with which future SNN neuromorphic
devices can perform the required time delay synaptic process-
ing. In terms of baseline comparison, an experimental Phase
Change Memory (PCM) device has demonstrated the capabil-
ity to perform a 300 vector clean-up memory for 10,000-bit
HVs using just 9.44 nJ per query. An improvement in the total
energy efficiency of x 117.5 compared to the equivalent CMOS
implementation, [13]. These figures give some indication of
the energy efficiencies that would be required for synaptic time
delay processing for an SNN processor that could perform an
equivalent SHV clean-up memory. However, this requirement
would need to be balanced against the fact that the SNN
processor could also perform all the other required VSA SHV
operations.

VI. CONCLUSION

This paper has demonstrated that by using sparse encoded
hypervectors, all VSA hyperdimensional computing operations
can be performed using time-to-spike SNN circuits. Energy
estimates are provided for performing typical VSA functions
on neuromorphic processing devices, and energy efficiencies
of x20 are estimated compared to performing the same opera-
tions using standard CMOS operation on 10,000 bit BSC HVs.
Further energy savings can be made by reducing the number
of neurons, but this is at the cost of extending the required
processing time for each VSA operation. Recommendations
for future SNN neuromorphic processor design to support the
required synaptic time delays have been made.

Current work is focused on simplifying the binding and
bundling circuits to minimise further the number of spikes
required to perform these operations. Extending the VSA
circuits to perform hierarchical binding and bundling, which
requires cyclic-shift and role-filler operations to be combined
into a single circuit, is also being investigated. Future work
will investigate how SNN circuits can be developed to process
semantic SHVs, using VSA to perform analogical mapping and
abductive reasoning as a novel form of cognitive processing.
The full capabilities that can be enabled by VSA operations
in SNN circuits are still to be explored, however, this paper
shows that hyperdimensional computing using time-to-spike
SNN neuromorphic circuits offer the potential to develop a
new generation of energy-efficient artificial intelligence capa-
bilities.
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