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Personality traits such as impulsivity or sensitivity to rewards and punishments have been associated with risky driving behavior, but it
is still unclear how brain anatomy is related to these traits as a function of risky driving. In the present study, we explore the
neuroanatomical basis of risky driving behavior and how the level of risk-taking influences the relationship between the traits of
impulsivity and sensitivity to rewards and punishments and brain gray matter volume. One hundred forty-four participants with
different risk-taking tendencies assessed by real-life driving situations underwent MRI. Personality traits were assessed with self-
report measures. We observed that the total gray matter volume varied as a function of risky driving tendencies, with higher risk
individuals showing lower gray matter volumes. Similar results were found for volumes of brain areas involved in the reward and
cognitive control networks, such as the frontotemporal, parietal, limbic, and cerebellar cortices. We have also shown that sensitivity
to reward and punishment and impulsivity are differentially related to gray matter volumes as a function of risky driving
tendencies. Highly risky individuals show lower absolute correlations with gray matter volumes than less risk-prone individuals.
Taken together, our results show that risky drivers differ in the brain structure of the areas involved in reward processing, cognitive
control, and behavioral modulation, which may lead to dysfunctional decision-making and riskier driving behavior.

1. Introduction

Risky driving styles, characterized by driving over the speed
limit, not paying attention to traffic, driving under the influ-
ence of alcohol or drugs, or not wearing a seat belt or helmet,
are behaviors associated with a history of traffic offenses [1, 2]
and are, in part, responsible for traffic accident fatalities that
rank eighth among the causes of mortality worldwide [3, 4].
Certain personality traits, such as impulsivity and sensitivity
to rewards and punishments, have been linked to risky driving
behavior styles [5, 6]. It seems that the brain systems related to
these personality traits show a dysfunctional interaction when
making risky decisions [7]. However, there is still a knowledge
gap regarding the neuroanatomical bases of risky driving and
the relationships between brain anatomy and personality traits
such as sensitivity to reward and punishment or preference for

immediate versus delayed rewards. Our main aim was to
address this gap using a large sample of individuals with
different risk tendencies assessed using self-reported real-life
driving behaviors.

The brain networks supporting the processing of the sub-
jective value of rewards and punishments and those involved
in conflict monitoring in decision-making have been linked
to a risky behavior. These networks are located in brain
regions such as the striatum, the orbitofrontal cortex (OFC),
superior and posterior parietal cortex, the lateral prefrontal
cortex (LPFC), the medial temporal lobe, the insula, or the
anterior cingulate cortex (ACC) [8–14]. Only a few recent
studies have investigated the relationship between risky driv-
ing behavior and the volume of brain gray matter of these
structures. In a study with people with multiple sclerosis,
Dehning et al. [15] found that the size of the third ventricle,
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an indicator of thalamic atrophy, was significantly correlated
with traffic rule violations and predicted a significant portion
of the variance in traffic offenses. Kwon et al. [16] observed,
in a computerized driving task, that more risky adolescents
did not show differences in gray matter volume than less
risk-prone individuals. However, they observed differences
between these two groups in the integrity of the white matter
in frontal regions. Sakai et al. [17] found that older people with
lower executive function had a lower volume in the supple-
mentary motor area (SMA) and, more importantly, were
prone to risky driving. Dedovic et al. [18] found that men
who had driven under the influence of alcohol (without engag-
ing in other dangerous drinking patterns) showed a reduced
cortical thickness of the posterior cingulate cortex (PCC) com-
pared with drivers in the control group. Finally, Aydogan et al.
[19] observed that drivers who reported driving faster than the
allowable speed limit had lower GMV in the ventromedial and
dorsolateral prefrontal cortices, amygdala, and striatum. The
evidence gathered to date shows the need to study further
the neuroanatomical basis of risk-taking behavior in driving.

Sensitivity to reward (SR) and punishment (SP) reflect
individual differences in the behavioral activation system
(BAS) and the behavioral inhibition system (BIS), which con-
trol the approach and inhibitory responses to appetitive or
aversive stimuli [20]. Risky behavior has been linked to greater
sensitivity to rewards and less sensitivity to punishment [21].
[22]) found that drivers with high sensitivity to rewards and
minor sensitivity to punishment behaved in a riskier way while
driving and in health-related behaviors. However, other stud-
ies appear to indicate that sensitivity to punishment has little
influence on risky driving and that sensitivity to rewards is a
distal predictor of this behavior [5, 23, 24]. Therefore, the rela-
tionship between sensitivity to reward and punishment and
risky driving behavior is still unclear.

Furthermore, the relationships between SR and SP and
brain volume in risky driving contexts have not yet been stud-
ied, although some studies have explored the association
between brain volume and personality traits such as SP and
SR or impulsivity. Regarding SR, positive and negative correla-
tions have been found with the volume of the striatum
([25–28]) and negative correlations with the volumes of the
lateral and medial prefrontal and superior temporal cortices
[25, 27, 29]. On the other hand, SP has been positively corre-
lated with volumes of the amygdala and hippocampal forma-
tion and negatively with the insula and OFC volumes [25,
30–35]. Thus, the correlations between brain structure and
SR and SP could differ depending on the population under
study. In this regard, Parvaz et al. [36] found that the P300
(an event-related measure of reward sensitivity) was positively
related to the volume of the frontostriatal circuit in healthy
participants. However, in people addicted to cocaine, no rela-
tionship was observed between P300 and gray matter volume.
Therefore, it is critical to determine whether the relationships
between reward and punishment sensitivity and brain gray
matter volumes vary depending on whether or not people
exhibit risky driving behavior.

Another related and essential personality factor implica-
ted in risk behavior is impulsivity. This personality trait is a
multidimensional construct that includes the tendency to

choose risky options, the inability to assess the risk associated
with a decision, or the preference for immediate reinforcement
[37, 38]. The preference for immediate reward in delayed dis-
counting tasks (DDT) has been positively related to risk
behavior, such as financial [39] or risky sexual behaviors [40,
41]. In stark contrast, other studies have not observed signifi-
cant relationships between discounting rate and risk behavior
[42, 43]. Regarding risky driving behavior, some studies have
found a positive relationship between the value placed on
immediate rewards and self-reported risky driving [44, 45]
or errors while driving in a simulator [46]. It has also been
observed that drivers who use a mobile phone while driving
have a higher discounting rate than those who do not [47]
although this finding was not replicated in subsequent studies
[48]. Furthermore, in a recent study, Qu et al. [49] have
observed no relationship between the preference for immedi-
ate reinforcement and risky driving behavior. However, these
authors demonstrated that a higher discounting rate for large
rewards significantly predicted safer driving behaviors. There-
fore, the type of relationship between risky driving and a pref-
erence for immediate reinforcement seems questionable.

Regarding the brain correlates of cognitive impulsivity, the
neural networks involved in valuation (striatum, OFC, medial
prefrontal, lateral parietal, and posterior cingulate cortices),
conflict monitoring and cognitive control (ACC and LPFC),
and prospection (hippocampus and amygdala) have been
assumed to underlie the process of delay discounting [50,
51]. Some relationships between the preference for immediate
reinforcement and gray matter volumes of various brain areas
have been found at the neuroanatomical level. For instance,
the positive and negative correlations have been observed
between the gray matter volume and the discounting rate in
medial prefrontal regions, superior frontal gyrus, OFC, stria-
tum, and ACC ([52–61]). The preference for immediate rein-
forcement has also been negatively associated with volumes of
the lingual gyrus, LPFC, entorhinal cortex, and medial tempo-
ral gyrus [62, 63]. Likewise, the positive relationships have
been observed between volumes of the parahippocampal
gyrus, PCC, insula, and lateral occipital cortex and the dis-
counting rate [61, 64, 65]. Finally, regarding the total gray
matter volume, Owens et al. [63] have observed that a higher
discounting rate is significantly associated with a lower total
cortical, but not subcortical, gray matter. Despite previous evi-
dence, the associations between gray matter volume and delay
discounting seem inconclusive and vary depending on the
population under study. In this regard, Wang et al. [66] found
that while impulsivity was negatively related to the volumes of
frontal and limbic areas in healthy people, no such relation-
ship was found in obese individuals.

To the best of our knowledge, no research has yet been
done to examine the neuroanatomical correlates of delay dis-
counting in drivers. Therefore, it is necessary to carry out an
in-depth study of the associations between preference for
immediate reinforcement and cerebral gray matter volume,
which could be very helpful for determining whether these
associations vary depending on the extent to which drivers
are risk-prone. Thus, the main objective of this paper was to
study the neuroanatomical bases of risky driving behavior
and how the level of risk-taking influences the link between
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impulsivity and sensitivity to reward and punishment and the
volume of brain gray matter. We hypothesized that riskier
drivers would have a lower volume of brain gray matter than
less risky drivers, particularly in areas related to reward and
cognitive control processing and valuation. Furthermore,
according to previous literature [36, 66], we expect that the
relationship between personality traits and brain gray matter
volume depends on the level of risky driving.

2. Materials and Methods

2.1. Participants. The participants in this study were part of a
more extensive study aimed at revealing the brain basis of risk
behavior in traffic situations. We used structural MRI from
144 participants (50 women, 32.06 years old, range= [18,
68]). None of the participants reported a history of head injury
nor a history of neurological disorders. All participants signed
an informed consent form, were informed of their rights, and
were treated according to the Helsinki Declaration [67]. All
participants were paid for their participation in the study.
The Ethics Committee of Human Research of the University
of Granada approved this research (204/CEIH/2016). The par-
ticipants were then organized into three groups, according to
their risky driving behavior in real life.

2.2. Risk Classification. Each participant was asked to indicate
whether and howmany points they had lost in the Spanish fine
system due to traffic rule violations, whether they have
attended a rehabilitation course to recover these points, how
many fines they had received for violating traffic rules, and if
they usually exceed the speed limit by 20% or higher when driv-
ing. All these variables are binary and of different importance,
which precludes their use as numerical variables or continuous
variables. The non-risk (NR) group was composed of 28 partic-
ipants who had received up to two fines but had not lost points,
had not attended a rehabilitation course, and did not exceed the
speed limit by 20% when driving. The medium-risk (MR)
group was composed of 53 participants who had retained all
their points but had received more than two fines and usually
exceed the speed limit by more than 20%when driving. Finally,
the High-Risk (HR) group was composed of 63 participants
who had lost more than one point from their driver’s license
due to severe violations of traffic rules.

2.3. Instruments

2.3.1. Sensitivity to Punishment and Sensitivity to Reward
Questionnaire. The sensitivity to punishment and sensitivity
to reward questionnaire (SPSRQ-20; [68]) consists of 20
dichotomic items (Yes/No) divided into two subscales: the
sensitivity to reward (SR) and sensitivity to punishment (SP).
The SR measures the BAS, and the SP measures the BIS [69].

2.3.2. Monetary Choice Questionnaire. The Monetary-Choice
Questionnaire (MCQ; [70]) evaluates individual preferences
between smaller, immediate rewards (SIRs) and more signifi-
cant, delayed rewards (LDRs) that vary in their value and time
to be delivered. Participants are presented with a fixed set of 27
choices between SIRs and LDRs. For example, on the first trial,
the participants were asked, “Would you prefer 54 euros today,

or 55 euros in 117 days?” The trial order was arranged so that it
did not correlate with the immediate or delayed reward
amounts, their ratio, their difference, the delay to reward, or
the discounting rate corresponding to indifference between
the two rewards [71]. The preference for immediate rewards
is calculated by counting the number of choices of SIRs.

2.4. Procedure. The participants came to the research center
and, as a part of a broader project, signed the informed con-
sent form, completed the questionnaires, and underwent the
MRI scan. The order of the questionnaires and MRI scan-
ning were arranged according to the availability of MRI
and the participants’ schedules.

2.5. MRI and Data Analysis. The MRI scans were conducted
with a Siemens 3TTrio system equippedwith a 32-channel head
coil at the Mind, Brain, and Behavior Research Center of the
University of Granada. The participants were instructed not to
move during the scan. Head restraint and foam padding around
the head were used to limit head motion. A T1-weighted
MPRAGE scan was obtained with a TR (repetition time) of
1900ms, TE (echo time) of 2.52ms, and a flip angle of 9°. For
each volume, 176 slices of 1mm thickness were obtained, which
provide whole-brain coverage (voxel size=1×1×1mm;
FOV=256mm; 256×256 data acquisition matrix).

The MRI scans were submitted to CAT12 toolbox (http://
www.neuro.uni-jena.de/cat/) to obtain brain volumes, run-
ning under the umbrella of SPM12 (https://www.fil.ion.ucl.ac
.uk/spm/software/spm12/), using default parameters. In
essence, CAT12 corrects for bias inhomogeneity, segmented
into gray matter, white matter, and cerebrospinal fluid using
the AMAP approach, and the images were spatially normal-
ized using the diffeomorphic anatomical registration through
the exponentiated lie algebra (DARTEL) algorithm. Volumes
were then normalized to theMNI neurological space andmul-
tiplied by the Jacobian determinant to preserve volume. Gray
matter volumes were then smoothed using an 8mm FWHM
Gaussian kernel. This volumes were submitted to a voxel-
wise analysis, as described below. After that, the neuromor-
phometric anatomical areas were extracted to perform partial
correlation analysis (see below for further details).

1SPM 12 was used to perform the voxel-wise statistical
analyses. The general linear model was used, in which a single
factor (three levels) was manipulated between subjects. The
comparisons between the three groups were made while con-
trolling for age, gender, education level, and total intracranial
volume (TIV) (results are also provided controlling only for
age, gender, and educational level, for sensitivity analysis and
comparative purposes). FDR corrected the significance thresh-
old to a cluster q < 0:05; we used an extended cluster size of 240
voxels based on simulations done with the Rest-AlphaSim
(FWHM=8, mm=4, voxel threshold=0.001), 1000 iterations,
to further control for the multiple comparison problem. The
automated anatomic atlas (AAL) was used to label the signifi-
cant clusters of interest.

Our second analysis was aimed at uncovering the relation-
ships between SPSRQ and MCQ scores and the brain, using a
partial correlation approach. For this approach, we used the
anatomic parcellation provided by the computational anatomy
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toolbox (CAT12). This software provides a volumetric infor-
mation according to the neuromorphometric atlas. We
obtained the volumes of 116 structures (only regions with gray
matter were retained, so 26 of the 142 regions provided by the
neuromorphometric atlas were excluded), which were then
correlated using the partial correlation coefficients with the
SPSRQ and the MCQ variables. This analysis also controlled
for age, gender, education level, and TIV (data are also pro-
vided controlling only for age, gender, and education level,
for comparative purpose). The differences between correlation
coefficients were then obtained for the comparisons between
non-risk versus medium- and high-risk and medium- versus
high-risk groups. It is important to note that the size of the cor-
relation coefficient is dependent on the sample size used to
compute it. In line with a recent proposal regarding the signif-
icance threshold [72, 73], we adopted a p value < 0:005 to test
for the statistical significance of these 348 differences.

3. Results

Table 1 displays the means and standard deviations for age,
education level, TIV, total gray and white matter volumes,
the number of women in each group, punishment and reward
sensitivity, and the preference for an immediate reward. There
were differences in age between group MR and HR (p < 0:05)
and in the number of women (p < 0:05). No other differences
were observed. No differences in sensitivity to punishment,
sensitivity to reward, or preference for immediate reward were
observed between groups (min p = 0:11).

No differences in TIV were observed between the three
groups (p > 0:10). However, differences in total gray matter
volume were observed between the NR and HR groups
(p < 0:01), indicating larger volumes in the NR than the
HR group (Table 1). This indicates the general tendency
for risky individuals to have a lower total gray matter vol-
ume. No differences in white matter volumes were observed
between the three groups (all p > 0:22).

Table 2 displays the peak t-scores for the significant differ-
ences, corrected for multiple comparisons. The differences
were observed in the left superior parietal cortex for the con-
trast NR >MR. The differences were also observed in the right
parahippocampal gyrus, right cerebellum 6, and left caudate,
volumes for the contrastMR >HR. The differences in volumes
of the vermis, right middle frontal cortex, and left superior
parietal cortex were observed for the contrast NR >HR. Note,
however, that a larger set of differences were found significant
when no TIV controlling was used.

We then used the neuromorphometric atlas to uncover the
relationships between scores on the SPSRQ and the MCQ
questionnaires and brain parcels (Table 3, Figure 1). We
observed that for the NR-MR contrast, the differences between
correlations were significant for punishment sensitivity in the
right medial precentral cortex, left superior medial frontal cor-
tex, and right posterior insula, while for the immediate reward,
the differences were observed in bilateral nucleus accumbens
(nAcc), right amygdala, right lingual, right PCC, and left infe-
rior OFC. For the NR-HR contrast, the differences were
observed for the reward sensitivity in the left frontal opercu-
lum, left medial postcentral cortex, and left superior temporal

cortex (STC), while for the immediate reward, the differences
were observed in left nAcc and left inferior OFC. Finally, for
the MR-HR contrast, the differences were observed for pun-
ishment sensitivity in the bilateral medial precentral, reward
sensitivity in the left occipital fusiform, and immediate reward
in the left occipital pole and left PCC. Note that when no TIV
control was applied, fewer brain areas remained significant.

4. Discussion

In the present research, we studied the anatomical bases of
risky driving behavior and its relationships with reward
and punishment sensitivity and the tendency to delay
rewards. The main findings are that total gray matter volume
varies as a function of risk proneness, with lower brain gray
volumes related to higher risk tendencies. This finding
applies to both total gray matter volumes and volumes of
the frontotemporal, parietal, limbic, and cerebellar cortices
(the total number of areas varies according to TIV control).
The relationships between reward and punishment sensitiv-
ity and the ability to delay rewards and gray matter volumes
differ as a function of risk tendency. High-risk individuals
showed, in general, lower absolute correlations with gray
matter volumes than the less risk-prone individuals. We
have also shown that the level of risk is the main factor mod-
ulating the relationship between personality traits and brain
gray matter volume. When the TIV control was applied, the
relationship between preference for immediate reward and
gray matter volume was observed to differ between the NR
and MR groups in the nAcc, amygdala, lingual gyrus, infe-
rior OFC and PCC, between the NR and HR groups in the
left hemisphere structures (nAcc, inferior OFC), and
between the MR and HR group in the occipital pole and pos-
terior cingulate cortex. The relationships between sensitivity
to punishment and brain gray matter volume also differed
between the NR and MR groups in the right medial precen-
tral cortex, left superior medial frontal cortex and right pos-
terior insula, and between the MR and HR groups in the
bilateral medial precentral cortex. Finally, the partial correla-
tion between reward sensitivity and gray matter volume dif-
fered significantly between groups NR and HR in the left
frontal operculum, left medial postcentral and left STC,
and between groups MR and HR in the left occipital fusi-
form cortex. When no TIV control was applied, fewer brain
areas remained significant.

It is important to note that the use of two different con-
trol strategies, including or not the TIV as a covariate, has
been done for comparative and sensitivity analysis purposes.
The robustness of the data is confirmed by the fact that the
control, or not, of the TIV does not modify the type of struc-
ture in which differences are found, but rather increases or
decreases the significance of these differences. Regarding
the study of the anatomical bases of risky driving, both anal-
yses result in differences in GMV between the groups in the
same structures. When controlling for TIV, some differences
are no longer significant, but no new structures appear, nor
is the directionality of the differences reversed. Previous
studies confirm our results by finding that the different
TIV adjustment methods provide different results and these
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do not only eliminate the GMV differences between groups,
but rather make them smaller and in a fewer structures
[74–76]. Something similar occurs when using the partial cor-
relation coefficient to study the relationships between GMV
and personality traits as a function of risk level. When control-
ling for TIV, significant relationships appear that were not
previously significant and those that were already present
when TIV was not taken into account are maintained. Previ-
ous studies have also found differences in the statistical power
of the relationships between personality traits and GMV

depending on the control variables used [74, 77, 78]. The point
that when not controlling for TIV our results show a reduction
in the number of structures that are related to personality
traits may be due to the fact that these relationships appear
but cannot be observed because they are masked by a TIV that
is not being taken into account.

4.1. Risk-Proneness in Driving Depends on Differences in GMV.
Our results demonstrate that risky drivers have a lower total
gray matter volume than non-risky drivers. This negative

Table 1: Means and standard deviations for age, education level, number of women, total intracranial volume, total gray and white matter
volumes, punishment and reward sensitivity, and preference for immediate rewards in each group.

Group Age Education Gender TIV GMV WMV SP SR IR N

NR 30.8 (14.9) 3.5 (0.5) F = 9 1614.1 (134.7) 741.5 (66.5) 540.4 (62.4) 2.9 (2.3) 4.4 (2.2) 15.0 (5.0) 28

MR 25.6 (10.7) 3.6 (0.5) F = 30 1541.7 (139.6) 722.4 (73.3) 511.0 (56.1) 3.9 (2.9) 4.4 (2.6) 14.2 (4.5) 53

HR 38.1 (12.4) 3.3 (0.8) F = 11 1565.6 (116.8) 692.1 (60.3) 532.2 (52.8) 3.4 (2.7) 3.8 (2.8) 14.9 (5.5) 63

Note NR: non-risk; MR: medium-risk; HR: high-risk; TIV: total intracranial volume; GMV: gray matter volume, WMV: white matter volume; SP: sensitivity to
punishment, SR: sensitivity to reward; IR: immediate reward.

Table 2: Between-group comparisons in brain gray matter volume, adjusted for age, sex, and cultural level (left) and also by total
intracranial volume (right).

Label
Controlled by age, sex, education And TIV

Size t-peak X Y Z pFDR Size pFDR

NR > MR

Parietal_Sup_L 1138 4.48 -33 -41 63 0.001 793 0.001

MR > HR

ParaHippocampal_R 2355 4.72 47 5 -47 0.001 1250 0.001

Cerebellum_6_R 926 4.09 26 -48 -27 0.001 318 0.03

Caudate_L 660 4.01 -14 27 0 0.001 245 0.05

Putamen_R 430 3.9 35 2 0 0.01

SupraMarginal_R 337 3.64 59 -30 35 0.023

NR > HR

Cerebellum_6_R 2014 4.17 35 -71 -30 0.001

Cerebellum_9_L 412 3.72 15 -57 -56 0.005

Cerebellum_Crus2_l 819 4.15 -45 -62 -26 0.001

Vermis_1_2 1808 4.63 -15 -44 -23 0.001 527 0.004

Frontal_Inf_Orb_L 388 4.03 -53 42 -5 0.006

Frontal_Inf_Tri_R 502 4.35 41 17 17 0.002

Frontal_Med_Orb_L 364 3.49 15 5 -17 0.007

Frontal_Mid_L 1741 4.53 -50 8 39 0.001

Frontal_Mid_R 3940 4.97 27 29 41 0.001 335 0.014

Frontal_Sup_Medial_L 495 4.13 -5 56 32 0.002

Fusiform_R 512 3.82 45 0 -51 0.002

Heschl_R 368 4.17 63 -11 9 0.007

Insula_R 1170 4.74 36 -5 -2 0.001

Lingual_L 1087 4.71 -24 -90 -6 0.001

Parietal_Sup_L 3092 4.69 -35 -39 53 0.001 435 0.006

Temporal_Sup_R 1087 4.64 59 -27 30 0.001

Temporal_Sup_L 461 3.95 -41 14 -14 0.003

Temporal_Pole_Mid_R 2375 4.13 45 21 -5 0.001

Note:NR: non-risk; MR: medium-risk; HR: high-risk.
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relationship between brain total gray matter and risky behavior
has also been observed in other measures of risky behavior,
such as early use of addictive substances [79]. Regarding the
brain areas, before controlling the TIV we have observed that
the riskiest drivers have lower gray matter volume in the left
superior frontal cortex, medial frontal cortex, triangular infe-
rior frontal cortex, medial and inferior orbital frontal cortex,
superior temporal cortex, temporal pole, superior parietal
cortex, cerebellum, fusiform gyrus, insula, parahippocampus,
caudate and putamen. The superior parietal and medial frontal
cortices, cerebellum, parahippocampus, and caudate remained
significant after controlling the TIV.

Some of these regions, such as the OFC, the parahippo-
campus, the caudate, or the putamen, are part of the brain’s
socioemotional or reward system [50, 80–87]. This system is
involved in the sensitivity, detection, and processing of incen-
tive signals; the prospection and representation of reward
expectations based on previous experience; and in the search,
evaluation, and approach to reinforcers [11, 82–84, 87–89].
Thus, our results suggest an alteration in the detection, pro-
cessing, and valuation of rewards in the riskiest drivers, which
may involve maladaptive decision-making in traffic situations.

On the other hand, other regions in which we observe
lower gray matter volume in risky drivers, such as the superior,
medial, and inferior frontal cortex, the superior and medial
temporal cortex, the fusiform gyrus, the cerebellum, and the
superior parietal cortex, are part of the cognitive control net-
work [85, 86, 90–96]. This network is responsible for control-
ling the general implementation of tasks, particularly during
the decision-making phase in probabilistic or intertemporal
choice tasks [90, 92]. More specifically, this network is involved
in the identification of stimuli relevant for the task, inhibitory
and attentional control, working memory, conflict and error
monitoring, and self-regulation of behavior [85, 86, 90–94,
96, 97]. These executive functions related to cognitive control
have been associated with better execution of driving and less
risky behavior while driving [98–105]. Thus, consistent with
the previous literature, our results indicate an alteration in cog-
nitive control processes in risky drivers, resulting in risky driv-
ing decisions.

The reduced volume of brain structures in risky drivers
could alter the reward and cognitive control brain networks.
These networks act as a dual neurobiological system that
works interactively to modulate the decision-making process

Table 3: Between-groups contrast of the correlations between SPSRQ and MCQ scores and gray matter volume, after controlling for age,
sex, and cultural level (left) and also by total intracranial volume (right).

Variable
Controlling for age, sex, and cultural level And for TIV
Label r1 r2 z r1 r2 z

NR-MR

IR L accumbens -0.54∗ 0.18 -3.24 -0.57∗ 0.26∗ -3.73

IR R accumbens -0.48∗ 0.14 -2.73

IR R amygdala -0.25 0.39∗ -2.69

IR R lingual -0.34∗ 0.40∗ -3.18

IR L inferior frontal orbital -0.63∗ -0.04 -2.86 -0.68∗ 0.00 -3.40

IR R posterior cingulate -0.31∗ 0.36∗ -2.88

SP R medial precentral 0.32∗ -0.34∗ 2.80

SP L superior medial frontal -0.59∗ 0.02 -2.85

SP R posterior insula -0.5∗ 0.14 -2.83 -0.45∗ 0.26∗ -3.09

NR-HR

IR L accumbens -0.57∗ 0.04 -2.89

IR L inferior frontal orbital -0.63∗ -0.11 -2.65 -0.68∗ 0.01 -3.51

SR L frontal operculum -0.42∗ 0.17 -2.61

SR L medial postcentral 0.43∗ -0.2∗ 2.8 0.43∗ -0.22∗ 2.90

SR L superior temporal 0.50∗ -0.08 2.63

MR-HR

IR L occipital pole 0.23∗ -0.3∗ 2.86 0.35∗ -0.18 2.85

IR L posterior cingulate 0.25∗ -0.27∗ 2.76 0.42∗ -0.10 2.88

SP L medial precentral -0.38∗ 0.27∗ -3.53 -0.36∗ 0.30∗ -3.60

SP R medial precentral -0.34∗ 0.15 -2.62

SR L occipital fusiform 0.37∗ -0.13 2.71 0.38∗ -0.14 2.80

Note: NR: no-risk; MR: medium-risk; HR: high-risk; r1 is the relationship between the first term of the comparison and the volume of gray matter, r2 is the
relationship between the second term of the comparison and gray matter; SR: sensitivity to reward, SP: sensitivity to punishment, IR: immediate reward score.
∗These correlations were significant at an uncorrected p < 0:05. The differences between correlations were significant at p < 0:005.
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[106]. On the one hand, the socioemotional system processes
the reinforcers and biases decision-making based on assessing
and predicting possible rewards and punishments. On the
other hand, the cognitive control system is involved in the
selection of actions, conflict monitoring, impulse inhibition,
and regulation of the influence of the reward system on the
decision-making process [36, 50, 52, 84, 87, 107–110]. Gray
matter volume alterations in these areas have been described
in executive functioning alterations [111] and manifestations
of risk behavior in both self-reported and laboratory tasks
[106, 109, 112–114].

With regard to driving, Beeli et al. [115] observed that
transcranial magnetic stimulation of the LPFC, one of the

most critical areas in the cognitive control system, caused
drivers to behave in a less risky way (as measured by speed,
distance from another car, and speed violations) while driv-
ing in a simulator. In another study, Chein et al. [107] found
that adolescents presented more extensive activation of the
brain regions involved in reward and took more risks in a
driving game in the presence of peers. Moreover, compared
with adults, they showed less activation of the regions related
to cognitive control. However, adolescents with greater acti-
vation of the control network behaved more safely while
driving [116]. On the other hand, Aydogan et al. [19] have
found that people who reported higher risk behavior related
to alcohol, smoking, sex, or driving had a lower gray matter

NR

IR

IR

NR

MR

HR

SP

MR HR

Figure 1: An illustration of the correlations between the brain parcels (left accumbens, left inferior frontal orbital gyrus, and right posterior
insula) and preference for immediate rewards (IR) and sensitivity to punishment (SP) for each risk group.
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volume in areas such as the striatum, putamen, ventromedial,
and dorsolateral prefrontal cortex, insula, and cerebellum. In
another recent study, Yamamoto et al. [117] have evaluated,
using realistic driving situations, risky driving at intersections
with stop signs in a group of older adults without cognitive
impairment. The best predictors for classifying risky and
non-risky drivers were age and the gray matter volume of
areas related to executive functions, cognitive control, and
incentive processing in the frontal and parietal cortices. These
studies support our results regarding the negative relationship
between risky driving and gray matter volume of the areas
involved in the reward and cognitive control circuits.

The reduced volume of brain structures in risky drivers
could also be related to different functionality since any
alteration of gray matter volumes appears to influence func-
tional neural activity [118]. Aydogan et al. [19] compared
their results on brain structure and risk behavior with a
meta-analysis of functional magnetic resonance imaging
and risk behavior studies (https://neurosynth.org/). These
authors observed that many brain structures that were ana-
tomically associated with risk behavior were also function-
ally related to such behavior. On the other hand, a wide
variety of studies have observed differential brain activation
when performing various laboratory tasks depending on
the individuals’ level of risk proneness [9, 88, 119–121].
These results show that people who engage in risky behav-
iors, such as reckless driving, could use a different distribu-
tion of cognitive resources to non-risky people.

Thus, our results suggest that, in risky drivers, there is an
alteration at the level of brain structure in the neural circuits
involved in reward processing and cognitive control. Fur-
thermore, these alterations could reflect a distinctive brain
activation pattern, which could imply that these drivers
show maladaptive information processing and dysfunctional
decision making [21, 120].

4.2. Personality Factors and Risk Driving. Regarding the sensi-
tivity to rewards and punishments, our results are in line with
those obtained by Brown et al. [122]. These authors examined
the personality characteristics of three different forms of risky
driving: driving while impaired (alcohol-related traffic
offenses), speed (non-alcohol-related traffic offenses), and
mixed (alcohol-related and speed-related traffic offenses).
They found no differences in SPSRQ scores between any of
the groups and the control group (no traffic offenses), except
for the mixed group, which showed greater sensitivity to
rewards than the control group. In another study with repeat
offenders, Padilla et al. [5] have found that sensitivity to
rewards, but not sensitivity to punishment, acted as a distal
predictor of recidivism. In reference to other risk behavior
measures, Navas et al. [123] found that, although obese people
made riskier choices, there were no differences between them
and the control group in terms of SPSRQ scores.

Regarding impulsivity, our results are consistent with
those obtained by Qu et al. [49], who found no significant rela-
tionships between the preference for immediate reinforce-
ments and risky driving behavior. Hlavatá et al. [124]
investigated the relationship between impulsivity and impulse
control disorder in a group of patients with Parkinson’s dis-

ease. They found that, although the experimental group dif-
fered from the control group in self-reported impulsivity and
risk behavior, the groups did not differ in DDT scores. In
another study with Parkinson’s disease patients, no relation-
ships were observed between performance on various tasks
that measure risk behavior (BART; IGT) and DDT [125].

However, many studies have found relationships between
personality traits and risk behavior [21, 22, 39, 46]. It seems
that the association between risk behavior and certain person-
ality factors, such as sensitivity to rewards and punishments or
cognitive impulsivity, may depend on the dimension of risk
evaluated and the population under study.

In this vein, it is essential to note that most studies that
have found relationships between risky driving and SPSRQ
or delay discounting scores evaluate driving risk through
self-report measures [22, 44, 45]. We have used a more eco-
logical measure to determine individual risk proneness
(points lost from the driver’s license, attendance to recovery
courses, fines for traffic violations, and driving over the
speed limit), which can influence how risky driving relates
to the different personality measures.

4.3. Risk as a Modulator of the Relationships between
Personality Factors and Brain Gray Matter. Our results show
that the relationship between sensitivity to reward and pun-
ishment and impulsivity and brain gray matter are different
for different levels or risky driving. In the absence of risk,
these personality factors are positively or negatively related
to the volume of brain areas involved in cognitive control
and incentive processing. However, for medium and high-
risk drivers, the association between gray matter volume
and impulsivity and reward or punishment sensitivity disap-
pears or is reversed.

Differences in the association between gray matter vol-
ume and personality variables were found in the absence of
significant group differences in the SPSRQ and MCQ scores.
Therefore, it seems that these significant differences between
the correlation coefficients of the groups genuinely indicate
how the brain gray matter volume of the areas involved in
decision-making-related vary as a function of the risk prone-
ness of the drivers. This could mean that risky drivers pro-
cess information differently to non-risky drivers. This
notion is in line with the results reported by Delgado-Rico
et al. [126], who found no differences in a risky decision-
making task between obese people and healthy controls.
However, during the execution of the task, they observed
significant differences between the groups in terms of brain
activation in the insula and midbrain.

We observed, after controlling also the TIV, a negative
relationship between preference for an immediate reward
and cerebral gray matter volumes of the nAcc, amygdala,
OFC, PCC, and lingual gyrus, but a positive relationship
between this preference and occipital cortex volume in less
risky drivers. However, this relationship either disappears or
is reversed in the riskiest driver groups. Previous studies have
shown that these brain areas are included within the neural
networks associated with the delay discounting process. [50,
51]. The nAcc is part of the ventral striatum, which is involved
in the sensory processing and valuation of rewards and the
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anticipation and learning of reinforcement [81, 84, 89, 127].
Rats with lesions in this area were found to make fewer good
choices and showed a decrease in gain rates on delay discount-
ing tasks [128]. The OFC integrates the information from the
limbic areas to determine the value of rewards and to control
the decision-making process [85, 87, 129]. Several studies have
linked the gray matter volume of the OFC with cognitive
impulsivity or sensitivity to immediate reinforcements ([54,
64]; Li et al., 2019; [65, 130]). The PCC, which is connected
to the OFC and is part of the DMN, is also involved in the sub-
jective value of rewards and is responsible for responding to
environmental variations that require behavioral change [50,
131–133]. The structure and activation of the PCC have been
related to the decision-making process in delay discounting
tasks [51, 59, 134, 135]. Furthermore, Dedovic et al. [18] have
found a reduced cortical thickness in this area inmen who had
driven under the influence of alcohol. Regarding the occipital
cortex, structure and functional connectivity data have related
this area to delay discounting rates [61, 65].

Our results agree with those observed on the neural net-
works involved in delay-discounting and suggest that the
trait-structure association could be altered in risky drivers.
Numerous studies have concluded that, in pathological gam-
blers and patients with other psychiatric disorders, there is
an alteration in the processing and decision-making related
to the delay discounting process, as reflected in activation
patterns and differential brain structure, when compared
with healthy controls (for a review, see Noda et al. [136].
More specifically, Hobkirk et al. [137] found that, in cocaine
users, the delay discounting rate was not related to resting-
state functional connectivity between the reinforcement
and attentional salience networks, a correlation that was sig-
nificant in the control group. On the other hand, Wang et al.
[66] observed that impulsivity was negatively related to the
gray matter volume of areas responsible for cognitive control
and incentive processing in healthy people. However, similar
to our results, this relationship disappeared in obese people,
and this occurred in the absence of significant differences
between groups on the impulsivity measure. In a similar vein,
Freinhofer et al. [55] examined the relationship between DDT
performance and brain gray matter volume in a group of
patients addicted to gambling and a control group. These
authors observed a negative correlation between gray matter
volume of the medial OFC and the choice of immediate
reinforcement in the control group, a relationship that disap-
peared in the group of patients addicted to gambling. Further-
more, they found no associations between the performance on
a risky decision-making task and discounting delay scores in
the whole sample. Therefore, our results support the idea that
there is an alteration in the relationship between delay dis-
counting and brain gray matter in various manifestations of
risky behavior, such as risky driving.

Regarding the relationship between reward sensitivity and
brain gray matter, we observed, after controlling also the TIV,
that the former is positively related to the volume of the STC,
occipital fusiform gyrus, and medial postcentral gyrus, but
negatively related to the left frontal operculum, in less risky
drivers. However, this relationship was almost non-existent
in the riskiest driver groups in all comparisons. Similarly, in

less risky drivers, sensitivity to punishment was negatively
related to the gray matter volumes of the insula, the superior
medial frontal cortex, and the medial precentral gyrus. Again,
these relationships were lost or reversed in medium or high-
risk level drivers.

The STC is involved in controlling the decision-making
process by integrating the results of previous actions, particu-
larly when these entail rewards [138]. The functional connec-
tivity of this area, such as the nAcc, has been specifically
related to sensitivity to music reinforcement [139]. Other
authors find that the reward sensitivity is negatively related to
the gray matter volume of the STC and, therefore, with poorer
cognitive control [25]. The pre- and postcentral gyrus and the
fusiform gyrus have been related to the behavioral activation
and inhibition systems and have been implicated in the
responses to reinforcing and aversive stimuli [31, 140–145].
More specifically, Sakai et al. [17] show that, in older people,
the volume of the SMA is a good predictor of individual differ-
ences in executive functions and these act as a risk factor for
traffic accidents. The insula and the superior frontal cortex
are part of the cognitive control network necessary for driving
[146]. These areas are responsible for the identification of the
relevant stimuli, the integration of interoceptive stimuli, the
prediction of the error to obtain reinforcement or avoid dam-
age, the inhibition of responses, and the behavioral regulation
[93, 94, 109, 110, 147]. Von Siebenthal et al. [35] found that
the activation of the insula during the decision phase of a rou-
lette task was negatively related to punishment sensitivity,
regardless of the value of the outcome. These authors explain
the negative correlation between insula volume and sensitivity
to punishment by relating sensitivity to punishment with pessi-
mism and with the certainty of obtaining negative results. Sen-
sitivity to punishment has also been negatively related to the
activation of the superior frontal cortex in people with the bor-
derline personality disorder and healthy controls [148].

Our results agree with the previous evidence on the neu-
ral networks involved in reward and punishment sensitivity
and suggest that the trait-structure association could be
altered in risky drivers. Previous studies on other manifesta-
tions of risk behavior support this idea. Parvaz et al. [36]
found that the P300 potential, used as a measure of sensitiv-
ity to reinforcement, was positively related to volumes of
prefrontal regions involved in the brain’s reward system in
healthy controls. However, no such relationship was found
in people addicted to cocaine. In another study, Moreno-
López et al. [149] observed a negative correlation between
the volume of the somatosensory cortex and sensitivity to
reinforcement in healthy controls. However, this relation-
ship disappeared for obese participants. Furthermore, they
also found no differences between the groups in terms of
the SPSRQ scores.

Taken together, our results show that the differences
observed in the relationships between sensitivity to reward
and punishment and delay of reward and brain gray matter
volumes, as a function of risk level, could reflect a structural
alteration and a change in the neural mechanism underlying
these personality traits [66]. In other words, in risky drivers,
it seems that the function of brain regions involved in reward
and punishment sensitivity and impulsivity is masked by the
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specific mechanisms involved in risky behavior, which has
been demonstrated in functional connectivity studies [21].
Our results support this idea, since the gray matter volumes
of many of these brain regions, such as the striatum, OFC,
STC, fusiform gyrus, lingual gyrus, and insula, are lower in
riskier drivers.

4.4. Conclusions.Our results show that drivers with a high-risk
proneness in traffic situations have a lower total gray matter
volume. We have also found that risky drivers have lower gray
matter volume in the brain structures responsible for cognitive
control and incentive processing. On the other hand, we found
that it is the level of risk that determines how these areas are
related to personality factors such as impulsivity and sensitiv-
ity to reward and punishment. This suggests that, in risky
drivers, there is an alteration in the brain structure of the areas
involved in reward processing, cognitive control, and
behavioral modulation, which could indicate dysfunctional
decision-making and riskier driving behavior.
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