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List of Definitions

Cleaning behaviour — The act of a cleaner interacting with a client.

Mutualism — Mutually beneficial relationships (symbiosis) in which both partners gain some
benefit from the interaction.

Cleaning stations - Localities on the reef in which cleaners carry out their cleaning service.

Third-party species - Other organisms not taking part in a mutualistic relationship but
present to the interaction.

Microbiota — The collective term given to the microscopic biota inhabiting a space.
Microbial mutualisms — Mutually beneficial relationships between microbial organisms.

Photogrammetry - Using photography to obtain information about physical objects and the
environment.

Structure-from-motion — The process of estimating the three-dimensional structure of a
scene from two-dimensional images.

Rugosity — Measure of variations of amplitude in the height of a surface.

Chain and tape rugosity — A measurement derived from an in-situ method of evaluating
terrain heterogeneity (rugosity).

Vector dispersion — A measure of uniformity of a surface by estimating the vector variance
for all normal vectors of individual planar surfaces.

Fractal dimension — A complexity metric to assess surface complexity by the irregularity (or
regularity) of geometries at different scales.

Coral heads — A protrusion of coralline material on a coral reef.

Fringing reef — A coral reef which fringes the shoreline. One of three main types of coral
reefs (atoll, barrier and fringing).

Refuge size category — A measure of the size of refugia available for marine organisms.
See Gratwicke and Speight (2004) for more detail.

Coral bleaching event — When the water temperature rises significantly causing corals to
expel their symbiotic zooxanthellae leaving the corals to turn white i.e. bleaching.

Degraded reef — A coral reef which has undergone significant degradation (through
bleaching or pollution for example) and has undergone a range shift and is no longer
dominated by live corals.

Coral ecosphere — the “near-coral” seawater environment, distinct from the surrounding
seawater.

Benthic-pelagic coupling — The exchange of energy, mass or nutrients between benthic
and pelagic habitats.
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Thesis Summary

Far from being specialised occurrences, symbiotic relationships including mutualisms,
are ubiquitous. The coral reef ecosystem is the product of a mutualistic symbiosis between
corals and their endosymbiotic zooxanthellae. The coral polyp creates a sheltered space for
the zooxanthellae, while the zooxanthellae provide nutrients to the host through
photosynthetic activity. This mutualism has allowed a diverse range of coral animals to evolve
and together multiple species of corals create a highly complex 3-dimensional habitat. The
plethora of available habitat space has facilitated the evolution of multiple species and, as
such, coral reefs are one of the most biodiverse habitats on Earth. In addition, the diversity on
coral reefs has facilitated the evolution of a multitude of behavioural niches. Cleaner fish
mutualisms are perhaps one of the best-studied interactions on coral reefs. However, the role
that the coral habitat plays in facilitating the cleaner-client mutualism is often overlooked and
how specific habitat traits affect cleaning behaviour is unknown. This thesis firstly, quantifies
the structural components of the cleaner fish’s (Elacatinus evelynae) coral habitat and
demonstrates that cleaners more frequently inhabit tall corals and that structural complexity
increases cleaning interactions (Chapter 2).

Unfortunately, due to anthropogenic global change, coral habitat is threatened and
corals are disappearing. It is therefore timely that we discover what important attributes corals
may contribute to marine inhabitants. Further to this, since the extent of the loss is so vast,
multiple studies have sought to artificially replicate coral structure. Although artificial reefs are
being widely deployed it is not fully understood how fish respond to these artificial structures
at an individual level. Thus, this thesis investigates the behavioural interactions of fish species
with novel artificial structures, finding that damselfish associate with artificial structures more
than natural corals, potentially due to the increased space available for algae farming
(Chapter 3). In addition to the structural element, corals harbour microbial communities that
are also threatened by global change. Commensal microbial communities are integral to host
health, yet there is little known about these communities in wildlife populations. Fish harbour
a diverse microbiota on their skin, and this mucosal layer is in constant contact with organisms
in the marine environment; as such it is possible that microbes may be shared between closely
interacting individuals. This is particularly relevant to the sharknose goby (E. evelynae), which
spends the majority of its time in direct contact with the coral cleaner station. Therefore, the
microbial communities of the sharknose goby and its habitat were characterized and

intriguingly, cleaners share bacterial genera with Palythoa caribaeorum, a common but toxic



benthic constituent of cleaner fish stations (Chapter 4). Finally, to further knowledge of
microbial communities of the sharknose goby, the gut and skin communities are described
and using microbial gene predictions several genes associated with toxicity in other fish
species are identified (Chapter 5).

In summary, this thesis investigates a range of species interactions at multiple scales,
from fish and coral habitat interactions to the association of fish with coral bacteria. This thesis
furthers our knowledge of how individual fish respond to artificial reefs and demonstrates key

aspects of E. evelynae ecology.



Chapter 1

General introduction

Mutualisms and species interactions

Organisms tend to live in complex interconnected relationships (McFall-Ngai et al.
2013; Bronstein 2015). Mutually beneficial relationships — mutualisms (relationships between
two or more organisms in which all parties benefit from the interaction) - enable organisms to
exist in a range of oligotrophic environments such as deserts, tundra or tropical waters and
exist in every kingdom (Alexander et al. 1978; Bordeleau and Prévost 1994; Dillon and
Charnley 2002; Friesen 2012; Roth 2014). For example, the nutritional mutualism that exists
between a cnidarian polyp and its zooxanthellae represents the fundamental origin of the coral
animal and has allowed coral reefs to evolve in oligotrophic waters (Roth 2014; Bronstein
2015). The coral polyp cannot survive without its symbiotic photosynthesising zooxanthellae,
which provide up to 90% of the coral’s energy (lluz and Dubinsky 2015). In turn, these polyps
grow into huge colonies forming complex structures, which provide further habitat space for a
diversity of marine species (Reaka-Kudla 1997). Many other organisms live in close proximity,
even direct contact, with corals which can confer a range of benefits to their coral hosts
including nutrient provision (e.g. ammonium, nitrogen and phosphorus, Hasegawa et al.
1982), sediment removal to prevent smothering (Stewart et al. 2006) and enhancement of
growth (Holbrook et al. 2008). Branching corals (Pocillopora genera) which host damselfish,
for example, grow significantly more than non-hosting corals, and the bigger the damselfish,
the greater the hosting coral growth rate (Holbrook et al. 2008).

One of the most well-studied mutualisms on coral reefs is that of the cleaner fish.
These brightly coloured fish are highly conspicuous on coral reefs and their mutualistic
cleaning behaviour has been studied extensively (e.g. Limbaugh 1961; Cheney et al. 2009;
Vaughan et al. 2017; Dunkley et al. 2020; Caves 2021). Cleaners remove parasites from the
body of visiting client fish (Arnal and C6té 2000) at such a high rate that they lower parasite
numbers on reefs (Grutter et al. 2018). This behaviour lessens the adverse effects of infections
in clients whilst in return provides nutrition to the cleaners (Soares et al. 2011; Oliva-Teles
2012; de Jesus et al. 2018).



Coral reef habitats

Under suitable environmental conditions, corals are able to grow prolifically, forming
massive aggregations (Knowlton et al. 2010; Swart 2013) which create highly productive
ecosystems (Reaka-Kudla 1997). Numerous coral species growing in close proximity create
a plethora of 3-dimensional habitat spaces, which are essential for the survival of reef-
inhabiting species, thus creating biodiversity hotspots (Kostylev et al. 2005; Graham and Nash
2013). Despite providing a habitat for 25% of marine fish, globally, coral reefs cover as little
as 0.2% of oceanic area, primarily existing in the warm shallow waters of the tropics (Reaka-
Kudla 1997). Anthropogenic climate change, industrialisation such as urbanisation of
coastlines, pollution and overfishing, have led to reductions in the ecological margins in which
these coral species thrive (Carpenter et al. 2008; Foley et al. 2010; Anthony et al. 2015).
Corals are experiencing increased frequencies of epidemics, even pandemics (Li and
Reidenbach 2014). Bleaching events, which cause corals to lose their photosymbiotic algae
and eventual colony mortality, are predicted to become an annual phenomenon (Maynard et
al. 2015; Putnam et al. 2017). An estimated 27% of global coral cover has been lost since the
mid 1980’s (Sutherland et al. 2004) and in the Caribbean, mass coral mortality events over
the last 30 years have significantly reduced live coral cover by approximately 80% (Gardner
et al. 2003).

Microbial mutualists

The advent of Next Generation Sequencing has provided great insights into microbial
mutualisms and uncovered interconnectivities between a variety of microbes (including
bacteria, archaea, fungi) and their multicellular eukaryotic hosts (Vanwonterghem and
Webster 2020). All animals have evolved both from, and in the presence of, a plethora of
microorganisms (McFall-Ngai 2013) and consequently are colonised both externally (skin,
scales, fur etc) and internally (digestive system, reproductive system, mucosal layers) by
communities of them. Although more and more evidence is demonstrating the importance of
the many groups of microorganisms, the focus here in this thesis is on the interactions
between one group of microorganisms (bacteria) and animal hosts. In their animal hosts,
bacteria facilitate and control many host functions ranging from nutrient acquisition, immunity,
fighting parasitic infections, and even behaviour (Gémez and Balcazar 2007; Hayes et al.
2010; Chung et al. 2012; Ezenwa et al. 2012; Tarnecki et al. 2017). These microbes are
acquired over time, throughout an individual’s lifespan from external and internal sources,
including vertical transfer from parents to offspring, although transmission routes are not yet
fully understood (Browne et al. 2017; Quigley et al. 2019). Microbes can also be shared

between individuals occupying the same habitat (Burns et al. 2017; Vanwonterghem and



Webster 2020), for example, humans and their pets (Song et al. 2013), baboons and their
social partners (Tung et al. 2015) and anemone fish and their anemones (Pratte et al. 2018).
Thus, mutualisms exist at different spatial scales from conspicuous relationships between

coral reef fishes, to microbes inhabiting the mucosal layers of their hosts.

Broad objectives of the thesis:

The mutualistic, dedicated cleaner fish, the sharknose goby (Elacatinus evelynae)
(Fig.1.1) uses coral habitat to advertise its cleaning behaviour at locations termed cleaning
stations (Vaughan et al. 2017) and is therefore dependent on the coral habitat for its nutrition.
Understanding the relationship this species has with the structural elements of the coral
habitat can further our understanding of the importance of reef structure in the broader context
of coral reef ecology. Further, knowing what geometric aspects of the habitat are useful to
coral reef fish can help inform artificial reef design (Belhassen et al. 2017). Given that reefs
are threatened, exploration of the interactions of coral reef fish with their habitat, including
artificial structures will be key to conservation efforts (Paxton et al. 2020b). To investigate the
importance of coral structure for coral reef fish, this thesis first investigates the relationship
between cleaners (including cleaning behaviour) and the structural elements of their natural
coral cleaning stations. Secondly, using artificial reef structures and behavioural observations,
the interaction of coral reef fish with natural corals versus artificial structures are explored to

provide insights for future conservation efforts using artificial reefs.



Figure 1.1: Sharknose goby cleaner fish (Elacatinus evelynae) on their ‘ cleaner station’: here
a brain coral (Faviidae spp.) cleaner station on Booby Reef Man O’War Bay, Tobago.
Sharknose goby cleaner fish will wait at their stations in direct contact with the station awaiting

the arrival of clients, other reef organisms, which visit to be cleaned.

Corals and their associated fish inhabitants harbour their own microbial communities,
but the microbiota of many corals and coral reef fish are still undefined (Chiarello et al. 2020;
Vanwonterghem and Webster 2020), and given that it is widely accepted that microbes play
an important role in host health (Egerton et al. 2018; Gomez and Primm 2021) this thesis also
investigates the microbial communities of the cleaner. Cleaner fish gut and skin microbiota
are characterized here and using functional analysis, the inferred gene functions of the
microbial communities are explored. To further our understanding of cleaners’ connectivity to
their habitat, this thesis also investigates the bacterial communities of the cleaners’ coral

habitat, specifically the constituents of the cleaner station.



Coral reef habitat structural complexity, digital corals and artificial reefs
(Chapters 2 and 3)

Corals are divided broadly into soft corals (Alcyonacea) such as sea fans (Gorgonians)
and hard corals (Scleractinia) (Won et al. 2001). Scleractinians are the most important group
of reef building species and, as such, described as principal ecosystem engineers (Feary et
al. 2007; Harper 2008; Weil and Vargas 2010; Wild et al. 2011; Wallace et al. 2017).
Scleractinians grow by depositing calcareous material creating hard exoskeletons which form
the rocky framework of the reef (Chamberland et al. 2017). The structural complexity of corals
is linked to species diversity and abundance (Gratwicke and Speight 2005; Graham and Nash
2013; Gonzalez-Rivero et al. 2017; Sanchez-Caballero et al. 2017). Consequently, coral reefs
and their associated fauna are of significant socio-economic value for food, coastal protection,
and tourism (Moberg and Ronnback 2003), with an estimated value of over USA$375 billion
per annum (Pandolfi 2005).

Structural complexity has previously been monitored using 2-dimensional tools to
study species assemblages in association with the shape of reefs (Gratwicke and Speight
2005). Previously, collecting 3-dimensional (3D) data in the field was, at best, time consuming
and frequently unfeasible (Goatley and Bellwood 2011; Dustan et al. 2013). Thus, methods
such as Habitat Assessment Scores (HAS), a visual score of structural variables (Gratwicke
and Speight 2005), and chain-and-tape rugosity (a measure of small-scale variations of
amplitude in the height of a surface measured, by laying a chain or tape over the reef
topography) are frequently used to capture structural complexity (Luckhurst and Luckhurst
1978). These simplistic, methods have revealed positive correlations between habitat
complexity and fish assemblages where diversity increases with increasing structural
complexity (Gratwicke and Speight 2005). However, simplistic methods are not suitable for
addressing finer-scale ecological questions (McCormick 1994; Harborne et al. 2012), such as
relationships between corals small-scale crevices which provide space for nesting, foraging
and spawning (Robertson and Sheldon 1979) at a reef-wide scale. The development of 3D
digitalised models offers a means of measuring habitat complexity at a fine scale over a large
area with far less investment in time (Storlazzi et al. 2016; Young et al. 2017). In addition,
advances in computer vision and specialist 3D software have led to the development of the
Structure-from-Motion (SfM) technique (photogrammetry), whereby video footage collected in
the field can be used to render (create) 3D digital reconstructions of corals, here-on referred
to as ‘digital corals’. These digital corals can then be used to derive structural complexity
metrics such as rugosity (small-scale variations of amplitude in the height of a surface) , vector

dispersion and fractal dimension(complexity measures — uniformity in angles of a surface) at



a far finer scale with a marked reduction in in situ dive time requirements (Raoult et al. 2017;
Young et al. 2017).

Due to anthropogenic stressors, coral structural complexity is being lost, and thus the
habitat space for associated marine fauna including fishes and benthic organisms (Moberg
and Folke 1999; Magel et al. 2019; Seraphim et al. 2020). Replacing natural complexity
through artificial reefs may mitigate some of the habitat loss. Furthermore, incorporating
artificial structures that replicate natural structural complexity into marine infrastructure may
offset some of the damage caused by coastal urbanisation (Morris et al. 2018). Such eco-
engineering projects to replace lost corals are gaining in popularity (Dafforn et al. 2015; Riera
et al. 2018), and the ability to accurately replicate coral structure through 3D modelling led to
the proposal of 3D printing corals (Ruhl and Dixson 2019). Despite increased deployment and
use of artificial reefs in conservation, many ecological functions of these structures remain
unknown (Spieler et al. 2001; Paxton et al. 2020b; Paxton et al. 2020a; Seraphim et al. 2020).
Expansion of marine infrastructure is inevitable due to increasing coastal populations and an
increasing pressure on marine systems to provide food resources (Hinrichsen 1999; Bulleri
and Chapman 2010; Hernandez-Delgado 2015; Morris et al. 2018). If marine infrastructure is
to be tailored to meet human demands whilst also providing habitat space for wildlife, much
more research needs to be done to understand what key features of the habitat are important
to marine life (Brochier et al. 2021). Research on the impacts of artificial reefs have largely
focused on their effects on species assemblages with little focus on ecological processes
(Chapman and Underwood 2011).

Importance of microbial mutualisms in coral reef fish (Chapters 4 and 5)

The field of teleost microbiota is expanding, particularly bacterial microbiota (Llewellyn
et al. 2014; Soares et al. 2018) and in addition to the gut community, understanding the
microbial communities of other organs such as the skin and gills, and what drives their
composition, can provide useful insights into the functioning of an organ which is a primary
barrier against pathogens (Pérez et al. 2010; Legrand et al. 2017; Legrand et al. 2019). This
is particularly relevant for marine organisms such as fish which share the ocean with a huge
array of microorganisms with which they are in direct and constant contact (Eakins and
Sharman 2010; Apprill 2017). The composition of fish skin microbiota, although less studied
than the gut microbiota, is known to be species-specific (Larsen et al. 2013), exhibits
differences based on host location (Wilson, 2008) and can be altered by parasitic infection
(Zhang et al. 2018), as well as an array of environmental factors including exposure to light
(Ellison et al. 2021), water pH (Sylvain et al. 2016) and environmental physiochemistry and

bacterioplankton community structure (Sylvain et al. 2020).



Wild animals offer an opportunity to examine natural host functions such as microbial
communities, immunology and behaviours, in an interplay with the natural environment
(Pascoe et al. 2017). On coral reefs, cleaner fish maintain a mutualistic relationship with many
different species of clients (Elacatinus evelynae; Dunkley et al. 2019), removing parasites in
addition to mucus and diseased skin (fish and shrimp species; Cote 2000; Vaughan et al.
2017). During these cleaning interactions the cleaner is in direct contact with potentially
diseased or parasitised individuals (multiple species Soares et al. 2018; (Elacatinus prochilos)
Xavier et al. 2019). Previously, cleaning behaviour has been overlooked as a mechanism for
parasitic and microbial transfer and reports of cleaner fish harbouring parasites themselves
are rare ((Labroides dimidiatus) Jones et al. 2004; Narvaez et al. 2021). However, a new
appreciation of cleaners as potential vectors of disease has shown that some species of
cleaners such as Indo-Pacific cleaner wrasse (Labroides dimidiatus), are themselves
parasitised (Narvaez et al. 2021) and others (broadstripe cleaning goby, Elacatinus prochilos)
may potentially harbour greater abundances of potential pathogenic bacteria (Xavier et al.
2019).

Specific objectives:

Mutualistic relationships span life at all spatial scales from microbes to reefs (McFall-
Ngai et al. 2013; Bronstein 2015). Using a multidisciplinary approach, this thesis investigates
mutualistic relationships on coral reefs at these different spatial scales. The cleaning
behaviour of the sharknose cleaner fish E. evelynae, its relationship with the habitat and its
microbiota are explored in this thesis. As such there is a certain degree of overlap of
information regarding E. evelynae ecology throughout the thesis. Each chapter is therefore
self-contained.

Within this thesis | aim to:

i) Quantify coral habitat metrics of the sharknose goby (E. evelynae) cleaner station
using photogrammetry and test whether these attributes affect cleaning behaviour
(Chapter 2).

ii) Investigate the local behaviour of coral reef fish around newly deployed artificial
structures (fish hives, novel structures, designed and constructed for this thesis)
compared to established natural corals to further our understanding of species
interactions with their habitat (Chapter 3).

iii) Using metataxonomics, characterize the microbial communities of the sharknose
goby (E. evelynae) skin microbiota and compare these to those of the common
benthic constituents of the cleaner station (including corals, sea water and other

benthic organisms associated with the station such as zoanthids) (Chapter 4).



iv) Using metataxonomics, characterize and compare the bacterial communities of
sharknose goby (E. evelynae) gut and skin microbiota and infer the functions

associated with these communities (Chapter 5).
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Chapter 2

Microhabitats of sharknose goby
(Elacatinus evelynae) cleaning stations
and their links with cleaning behaviour

Abstract

Coral reefs are renowned for the complexity of their habitat structures and their ability
to host more species per unit area than any another marine system. Dedicated cleaner fish,
which acquire all their food resources through client interactions, rely on both the habitat
structures (by using topological cleaning stations) and the wide diversity of fish species
available on coral reefs, to survive. As a result of natural and anthropogenic threats, coral reef
habitat structures and their complexity are being lost, yet despite this threat it is unclear how
important reef geometry is to key ecological interactions, like cleaning. Using an established
Caribbean reef study site, three-dimensional constructions of discrete coral heads were used
to investigate how fine-scale structural complexity traits (structural complexity - measured by
rugosity and vector dispersion - height, volume, surface area, percentage live coral cover and
refuge availability) relate to cleaner occupancy, abundance and their cleaning interactions with
clients. Coral height was a particularly important trait for cleaning, correlating with both the
occurrence of cleaning stations on a reef, and with increased cleaning durations and reduced
cleaning frequencies/rates. Cleaning stations were also more structurally complex than non-
cleaning coral heads, and the increased availability of uneven surfaces (creating cracks and
crevices) and refuge availability linked with increased cleaning durations/rates. By
understanding habitat features important to cleaner fish on a typical Caribbean fringing reef,
we can gain a better understanding of how important reef geometry might be for governing

the occurrence and dynamics of such mutualisms.

Introduction

Coral reefs are renowned for their complex physical three-dimensional structure
(termed ‘structural complexity’; Graham and Nash 2013). Scleractinia stony corals, which
produce hard exoskeletons, are ecosystem engineers and are largely responsible for the

structural complexity of coral reefs (Jones et al. 1994; Wild et al. 2011). Corals’ high structural
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complexity provides a plethora of different microhabitats (as the different structures interlock,
they create space) (Crowder and Cooper 1982), ultimately creating one of the most diverse
and abundant habitats in the world (on par with rainforests; Reaka-Kudla 1997). Within a reef
environment, different microhabitats influence the spatial distribution of species (Stegastes
planifrons Tolimieri 1995) since many species show specific microhabitat preferences (review
of multiple species see Booth and Wellington 1998; Elacatinus lori Majoris et al. 2018a), exhibit
high site fidelity (Pomacentrus moluccensi Streit and Bellwood 2018) and form close
associations with certain microhabitat types (Pomacentrus moluccensi Bostrém-Einarsson et
al. 2018). However, finer scale variations in individual coral morphology (e.g. height and
substrate heterogeneity) may also promote differences in fish species spatial distributions as
a result of altered microhabitat — a concept which so far has received little attention. Since
coral structural complexity is under threat from anthropogenic climate change and
industrialism (Munday 2004), it is vital to determine the importance of small-scale variation in
coral morphology for reef species. It is particularly important to determine species interactions
in Caribbean reefs (as opposed to Pacific reefs) were a higher proportion of reefs are on a
trajectory to collapse from various anthropogenic factors (Bellwood et al 2004).

Structural complexity can influence the outcomes of ecological interactions (Grabowski
and Powers 2004; Vergés et al. 2011) (e.g. predation: Crowder and Cooper 1982; Grabowski
and Powers 2004; competition: Petren and Case 1998), and herbivory: Vergés et al. 2011),
with the magnitude of the effect potentially varying with the degree of complexity (Grabowski
and Powers 2004). This is intriguing and may help further knowledge on the dynamic nature
of a classic mutualistic relationship; cleaner-client interactions, which are ubiquitous on coral
reefs (White et al. 2007). Cleaning involves a cleaner removing parasites and debris from the
body of another species, termed a client (Feder 1966). Dedicated cleaner fish (formerly termed
obligate; Vaughan et al. 2017) gain all their nutrition from client derived material, associate
strongly with cleaning stations. Cleaners wait at their cleaning stations for clients to visit them,
and it has been shown that associating with a cleaning station, rather than wandering across
a reef, promotes increased cleaning interactions (Oates et al. 2010; Dunkley et al. 2018).
However, despite a wealth of knowledge on the ecology of cleaner-client interactions,
microhabitat characteristics of cleaning stations are poorly defined. Stations can be cryptic
and have been referred to as ‘particular ecological situations’ (Limbaugh 1961; Youngbluth
1968), which may include corals, anemones or sponges, collection of rocks, and or
depressions in the benthos (Limbaugh 1961; Losey 1974; Johnson and Ruben 1988; Sazima
et al. 1999; Cheney and C6té 2001; Huebner and Chadwick 2012). Since substrate type can
influence the frequency and duration of cleaning interactions (e.g. coral versus sponge;
Whiteman and Cété 2002), in addition to the fine-scale distribution, movement, density and

diversity of potential clients (Ferreira et al. 2001; Graham and Nash 2013; Ferrari et al. 2018),
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localised variation in coral morphology may also be expected to influence localised variations
in cleaning dynamics.

Traditional methods for quantifying structural complexity, like the chain/tape transect
method and Habitat Assessment Scores (Gratwicke and Speight 2005; Wilson et al. 2007) are
now being replaced by digital three-dimensional modelling. Such modelling allows for the in
silico quantification of habitat complexity traits (e.g. substrate heterogeneity, measured as
rugosity and vector dispersion; (Storlazzi et al. 2016; Gonzalez-Rivero et al. 2017; Young et
al. 2017); volume and surface area (Ferrari et al. 2017; Raoult et al. 2017); coral cover;
(Gonzalez-Rivero et al. 2017), and coral growth; (Lange and Perry 2020), which provides finer
scale measurements for addressing ecological questions (Storlazzi et al. 2016). Indeed, these
techniques have already advanced our understanding of the relationships between varying
structural complexity traits and reef fish assemblages (Price et al. 2019), and identified
microhabitat types that promote invasive lionfish (Pterois volitans) aggregations in the
Caribbean (Hunt et al. 2019). The high resolution of such techniques facilitates quantification
of finer scale variations in coral morphology within a reef environment.

Here, how different coral morphologies promote variation in the occupancy and
cleaning patterns of the predominant dedicated Caribbean cleaner, the sharknose goby
(Elacatinus evelynae) were investigated. Using a structure-from-motion approach (Reichert et
al. 2016; Ferrari et al. 2017; Young et al. 2017), three-dimensional models of discrete Faviidae
coral heads on a reef in Tobago were constructed and microhabitat traits (e.g. rugosity, height
and volume) were quantified. It was then determined whether these traits distinguished coral
heads (individual discrete coral colonies) utilised as cleaning stations versus those that have
never been observed as cleaning stations across 8 years of long-term study (see Dunkley et
al. 2019). Subsequently, for cleaning station coral heads, the hypotheses that microhabitat
features link to cleaner occupancy distributions and cleaning behaviours (in terms of
frequencies, durations and rates) were tested. Together, this study aimed to quantify which

microhabitat features define a cleaning station.

Materials and methods

Study site, occupancy, and behavioural observations

The study was conducted on Booby Reef in Man O’ War Bay, Tobago (11°19.344'N,
060°33.484'W). The site constitutes a fringing reef dominated by non-branching brain coral
species (Faviidae), areas of patchy sand, remnants of dead elkhorn (Acropora palmata) and
staghorn (Acropora cervicornis) corals. For this study, sharknose goby (Elacatinus evelynae)
cleaning stations were defined as specific localities on the reef used by cleaners for performing

their cleaning activities: all cleaning stations were based upon Faviidae coral heads. Corals
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were not identified to a species level due to the difficulties associated with visual species-level
identification (Todd 2008; Forsman et al. 2009). Within a 70 m by 60 m section of the reef,
known cleaning station coral heads (from 8 years of long-term study; (Dunkley et al. 2019a),
n = 55 cleaning stations) were marked, along with an additional 12 control Faviidae corals.
These control corals have never been observed to be occupied by cleaners across eight years
of fieldwork at this site (long-term study detailed in Dunkley et al. 2019a).

Cleaner abundance at cleaning stations was quantified using presence/absence
surveys (n = 1549 surveys, mean = S.E. surveys per cleaning station = 28.16 + 1.34, S.E.)
over a 6-week period in May to July 2016 by daily snorkelling between the hours of 0830 and
1730 hrs. For each survey, trained observers (n = 6) searched for cleaners at a marked coral
head, and in the close vicinity (~ 2 m® area), for up to 2 minutes — individual cleaners show
strong site fidelity to their cleaning stations (Whiteman and Cété 2002; Harding et al. 2003). A
cleaner occupancy value was subsequently assigned to each cleaning station, where cleaner
occupancy was defined as the proportion of observations where one or more cleaners were
present at the station (range: 0 — 1).

Between presence/absence surveys, data were also collected on the cleaners’
cleaning behaviour using 10-minute focal observations (n = 223 observations, mean number
observations per cleaning station across 34 cleaning stations £ S.E. = 6.56 + 0.52, range: 3 —
13 observations per station). For each observation, stations were randomly sampled
throughout the day and one cleaner was randomly selected from their coral head, and the
duration and frequency of cleaning interactions with clients was recorded. Cleaning
frequencies, durations and cleaning rate were thus used as a measure of cleaning behaviour.
The frequencies and durations represent the total effort in cleaning whilst rates represent this
effort per cleaning time (i.e. total cleaning frequency/total cleaning duration). Although clients
tolerate closer human approaches when being cleaned (Giglio et al. 2020), snorkelers

maintained a 1 m distance from the cleaners during observations.

Three-dimensional digital coral data collection

To create three-dimensional models of the cleaning stations (n = 55) and control corals
(n = 12), video footage was collected with underwater cameras (Olympus GT-4) mounted on
monopods, using 1080p resolution and medium sharpness. The physical boundaries of a
station were defined as discrete coral head(s) that were not connected to other reef sections
(Fig. 2.1). Filming occurred under ambient light, whilst snorkelling at depths of 1 — 3 m. At
each cleaner station, a cube (6.4 cm®) was placed adjacent to the coral to serve as a scale.
The filming process (adapted from Gutierrez-Heredia et al. 2016) was carried out by swimming
slowly, in a spiral motion, starting from the top of the coral and moving down towards the base

at the seabed whilst changing the camera angle from (i) top-down (parallel to the seabed), (ii)
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at 45° to the coral and seabed, and (iii) planar to the coral. To capture fine-scale spatial
features of the coral the filming procedure was repeated for each coral head (station and
controls) at two different distances: firstly, with the whole coral in full frame, and then,
secondly, moving closer (~ 50 cm from the coral). This videoing process was repeated three
times for each coral to obtain clear, un-obstructed frames in 360°, thus accounting for error in
videos from obstruction from floating debris and marine life. The duration of each video
correlated with the size of the coral head: larger corals were filmed for longer. This created
more images for model reconstruction to ensure quality was not lost as a result of increased
coral size. Together, our video recording and processing methods created a standardized
approach (e.g. across different coral head sizes and light conditions (Raoult et al. 2017). Video
footage was converted to still images using QuickTime™ Player 7.6.6 at an extraction rate of
three images per second, resulting in 100 — 500 images per station with a resolution of
1920x1080p. Image sequences were then imported into PhotoScan Standard (Agisoft 2021).
Coral models were rendered following the standard workflow sequence in PhotoScan:
alignment, dense point cloud generation, mesh building and texture building. Each step was
set to medium quality except in the mesh building step where ‘meshes maximum face count’
was adjusted to 3,000,000 (previously shown to render high resolution models by Young et
al. 2017). Final models were compared to still images of corals taken with an Olympus GT-4

camera at four different angles to control for geometric distortion.
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Figure 2.1: 3D digital workflow to show quantification of a control and sharknose goby
(Elacatinus evelynae) cleaning station coral microhabitat traits on Booby Reef, Man O’ War
Bay, Tobago. Workflow: (1) In vivo filming , (2), assembled into mesh chunks in PhotoScan
Standard using default settings (3) 3D model creation in Rhinoceros 3D (see:

https://youtu.be/Hy1e0D4USdU), and (4) trim to cleaning station only, here a discrete coral

head (one individual colony) by excluding the surrounding reef.

Quantifying habitat traits of digital corals

For each coral head (cleaning stations and control coral), the following metrics were
quantified: height (cm), volume (cm?®), surface area (cm?), linear rugosity (surface
roughness/heterogeneity), vector dispersion (another measure of structural complexity;
(Young et al. 2017), percentage live coral cover and refuge size category (the approximate
measure of the size of spaces available for marine organisms to use as refugia) following
Gratwick and Speight (2005). All in silico measurements were recorded using Rhinoceros 3D
(Robert McNeel & Associates). Coral dimensions (height, width and depth) were obtained from
three-dimensional models using the ‘Line’ function: to generate distance measures straight
lines were drawn (i) down through the centre of the highest point of the coral, (ii) across the
diameter of the coral, (iii) at the widest point and (iv) at the narrowest point (using ‘DimAligned’
function). These measurements were subsequently used to calculate the volume and surface
area for each coral, under the assumption that corals represent an elliptical shape (Adam
2011). Structural complexity was measured with two metrics: linear rugosity and vector
dispersion. Linear rugosity chains (2 cm chain link length) were created with a mesh grid with
10 cm spacing using a custom Python script (https://github.com/gracecalvertyoung/Rhino-
Python-3D-Coral-Reefs). Using a consistent spacing allowed a standardisation of the number
of chains, as all corals were different sizes. Vector dispersion was calculated at a 1 cm
resolution following Young et al. (2017). Finally, percentage live cover and refuge size was
quantified in situ during video collection using the habitat assessment score (defined in
Gratwicke and Speight 2005). For each model, habitat that did not constitute the station (sandy
seabed, adjacent rocky outcrops etc) were excluded using a circumference of 10 cm from the

base of the coral (Fig 2.1, steps 3 and 4).

Data analysis

Data were analysed in R version 3.4.3 (Team 2013) using Generalized Linear Models
(GLMs), Generalised Linear Mixed Models (GLMM, using ‘Ime4’; Bates et al. 2015) and
generalized additive models for location, scale and shape (GAMLSS, package “gamiss”; Rigby

and Stasinopoulos 2005). Model assumptions and fits were assessed using residual plots (as

16



specified by Bolker et al. 2009) and all continuous predictors were scaled and centred around
zero to facilitate model convergence. Best fitting model selection was based on Akaike
Information Criterion (AIC) using a backward elimination approach (with delta < 2). The
significance of fixed effects was assessed using likelihood ratio tests comparing models with
and without the main effect. The presence of potential influential points on model outcomes
were checked for (using Cook’s D and leverage), and sensitivity analyses were carried out on
identified points (Chatterjee and Hadi 2009): the robustness of results was assessed when
identified outlier values were temporarily excluded from models. Significant effects that were
sensitive to the presence of influential points are stated in the results.

To determine whether cleaning station corals (n = 55) versus control corals (n = 12)
differed in their microhabitat traits; rugosity, vector dispersion, height, percentage live cover
and refuge size category were specified as fixed effects in a binomial logistic GLM (with a
probit link). Due to collinearity (identified by Variance Inflation Factor values > 3) between
height, volume and surface area, surface area to volume ratio was specified as a main effect
(replacing volume and surface area, height still included): this removed any issue with
collinearity between variables. It was not suitable to remove any one of these variables from
all models or carry out a PCA, as the effects of all traits are of interest.

To determine whether microhabitat traits link with cleaner occupancy (range: 0 — 1)
and abundance (range: 0 — 9 gobies per presence/absence survey), and cleaning behaviours
(frequency, duration and rate), only data from cleaning stations (n = 55) were used: this
removed false zeros from control corals. Due to further issues with collinearity between height
and surface area to volume ratio, sequential regression was first carried out using these two
variables. This method involves regressing the less important variable (in this case specified
as surface area to volume ratio) against the other (height) and replacing the less important
variable with the residuals from the regression — this disentangles unique from shared
contributions from the two variables (Graham 2003). Following sequential analysis there was
no significant correlation between the variable ‘height’ and the sequential model residuals.
This residual variable was independently calculated for and specified as, a main effect in all
further models.

To test for a link between microhabitat traits and occupancy (one value per station);
rugosity, vector dispersion, height, surface area to volume ratio residuals, percentage live
cover and refuge size category were specified as fixed effects in a Gaussian GLM (with identity
link). Prior to analysis, occupancy values were logit transformed since other methods for
analysing proportion data (e.g., binomial and beta models) produced poor fitting and
overdispersed models (assessed using residual plots). To test for a link between microhabitat
traits and cleaner abundance, the same microhabitat traits (including surface area to volume

residuals) were specified as fixed effects in a negative binomial GLM. The negative binomial

17



family replaced an overdispersed Poisson model. For this GLM, multiple cleaner abundance
counts were aggregated to total amounts per station (following Kratschmer et al. 2018), and
an offset was specified, with a log transformation, which accounted for the number of
presence/absence surveys per station.

To determine whether microhabitat traits link with cleaning behaviour (frequency,
duration and rate) one GAMLSS (for frequency, replacing an overdispersed GLMM) and two
GLMMs were specified all with the following fixed effects: rugosity, vector dispersion, height,
surface area to volume ratio residuals, percentage live cover and refuge size. Since more than
one observer collected behavioural data (n = 6), “Observer ID” was included as a random
effect in all three models. Data were used on stations (n = 34) for which multiple observations
(min n = 3) were carried out. For cleaning frequencies, all observation data were included (n
= 223, contained zeros) whilst for rate and duration, only data containing observations where
cleaning events occurred, were included in analyses (n = 132 observation, contained no
zeros). Cleaning frequency (modelled using beta-binomial GAMLSS, replacing an
overdispersed binomial GLMM) and rate (modelled using an inverse Gaussian family with an
inverse link) represent the summed interaction frequency/duration for each cleaning
interaction within each observation (single value per observation), whilst cleaning duration
data (modelled using Gamma family and log link) represented each single individual cleaning
event and its respective interaction length (multiple values per observation). Thus, for duration,
ObservationID (a unique value assigned to each observation) was also specified as a random
effect. The total time for each focal observation accounted for the amount of time a cleaner
was out of view and thus varied across observations: for cleaning frequency and rate , values
were therefore weighted by observation length. This correction was not necessary for cleaning
duration models since their values were independent from observation length. Prior to
analysis, cleaning rate values (range: 0.03 — 1.00) were rescaled from one to ten using the
“scales” package (Wickham 2018): this method does not remove the variability between
values, but simply transforms data to aid model fit. Finally, to determine whether significant
relationships between microhabitat traits and cleaning behaviours were mediated and/or
moderated by occupancy/abundance values, station occupancy and cleaner abundance
(number of cleaners on the station for each observation) were added to all three final models
as individual and interaction terms (occupancy/abundance separately interacted with trait
terms). Across some studies of Caribbean cleaning interactions, cleaning patterns have been
shown to vary with time of day (C6té and Molloy 2003; Sikkel et al. 2004; Sikkel et al. 2005).
However, across 8 years of long-term data collected from the same study reef (including data
used in this study), (Dunkley et al. 2020) consistently found no effect of time of day on cleaning

frequencies and durations (as also shown by (Grutter et al. 2002; Whiteman and Cété 2002).
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To avoid overfitting our already complex models, time of day in was not included in behavioural

analyses.

Results

Do cleaning stations show specific microhabitat traits?

Cleaning stations (n = 55) were significantly taller than control corals (n = 12) and had
more structurally complex surfaces (Fig. 2.2, GLM, moeR? = 39.0%, height: B = 1.00, ¥* =
11.00, p < 0.001, vector dispersion (uniformity in angles of a surface; Young et al. 2017): g =
0.54, y“1=4.13, p = 0.042). Cleaning stations also had lower surface area to volume ratios
compared to control corals (GLM, B = -0.62, y21 = 6.27, p = 0.012) although this result became
non-significant when an influential point (relating to a control coral) was temporarily removed
(p > 0.20). There were no other significant differences between stations and control coral
habitat traits (GLM, p > 0.05).

’ Microhabitat Trait

Increasing Vector Dispersion Increasing Height (m)

0.15 0.20 0.25 0.2 0.4 0.6 0.8

Coral Type

Figure 2.2: Microhabitat traits of sharknose goby (Elacatinus evelynae) cleaning stations. The
outer shapes of the violin plot represent the range of vector dispersions (complexity measure
— uniformity in angles of a surface; Young et al. 2017) and heights (m) across cleaning and
control corals, while shape thickness shows how frequently these data values occurred. Point

and lines show mean + 95% CI.

Do microhabitat traits link with cleaner occupancy patterns?
Generally, cleaning station microhabitat traits did not predict how frequently cleaning
stations were occupied (mean + S.E. occupancy across stations = 0.56 + 0.04, GLM, all

predictors p > 0.05). However, cleaner occupancy tended to increase with the complexity of
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the coral surface (GLM modelR? = 6.1%, vector dispersion: p = 0.44, F1 s3=3.42, p = 0.070, p =
0.033 when one influential point (station) removed: influential station vector dispersion value
= 0.27, mean = S.E. dispersion value across stations = 0.17 £ 0.004, influential station
occupancy = 0.55). Microhabitat traits did not significantly predict the variable abundance of
cleaners on stations (GLM, all traits p > 0.05, up to nine cleaners occupied an individual station
across time, mean cleaner abundance across presence/absence surveys + S.E. = 0.97 *
0.03).

Do microhabitat traits link with cleaning behaviour?

Out of 223 observations across 34 cleaning stations, cleaning was observed 308 times
across 132 observations. Cleaning occurred less frequently, and bouts were longer, at taller
cleaning stations (Fig 2.3 (A), cleaning frequency: GAMLSS, modeiR? = 5.8%, 1?1 = 5.46, p =
0.019, Fig 2.3 (B) cleaning duration: GLMM, modelR? = 22.9%, ¥21 = 4.58, p = 0.032). Cleaning
durations also increased with refuge size category (Fig 2.3 (B): GLMM, %21 =4.10, p = 0.043,
p = 0.053 when one influential cleaning event removed). Cleaning rates, which averaged 0.26
cleaning events per second (£ 0.02, S.E.), were lower at taller cleaning stations but increased
with structural complexity (Fig 2.3 (C), GLMM, modelR? = 24.4%, height = % = 5.97, p = 0.015,
vector dispersion = 6.71, p = 0.010). Links between cleaning behaviours and microhabitat
traits were not mediated/moderated by cleaner presence: generally, cleaning behaviours were
not predicted by cleaning station occupancy or the abundance of cleaners, although cleaning
frequencies tended to negatively link with occupancy (GAMLSS, B = -0.17, y% = 3.45, p =
0.063, height remained significant when occupancy and cleaner abundance main effects

included in model).
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Figure 2.3: Sharknose goby (Elacatinus evelynae) cleaning station microhabitat traits that
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rates. Lines are based on model coefficients (GAMLSS or GLMM) while points represent raw
or mean averaged data. Cleaning event values were rescaled from one to 10 to aid model fit.
Log transformations were performed for figure clarity. Height, refuge size and vector
dispersion are illustrated on a three-dimensional model of one cleaning station from Booby
Reef, Man O’ War Bay, Tobago.

Discussion

Here, for the first time, the cleaning stations of a predominant Caribbean cleaner, the
sharknose goby (Elacatinus evelynae), are distinguished from non-station corals by habitat
metrics including increased height and structural complexity (vector dispersion). Although
microhabitat trait variation predicted the occurrence of cleaning stations, they did not predict
cleaner occupancy nor abundance patterns of occupied cleaning stations. Variations in coral
morphology, however, in terms of height, vector dispersion and refuge size did promote
variations in cleaning frequencies, durations and rates. Cleaning events were longer but
occurred at a lower frequency and rate at taller corals. Events were also longer when refuge
sizes were larger, whilst rates increased with structural complexity (vector dispersion).
Together, this study highlights the importance of variation in coral morphology for local cleaner
distribution and thus its potential role in moderating the dynamics of cleaning interactions on
a larger scale.

Cleaning gobies show strong site fidelity to their cleaning stations (Whiteman and Coté
2002; Harding et al. 2003), are assumed to have short lifespans (mean age documented < 50
days in White et al. 2007) and remain in direct contact with their coral (apart from when
cleaning, and the occasional competition-induced move to adjacent coral (Whiteman and Coté
2002; Coté and Soares 2011). Adult distribution patterns of cleaners may thus be, in-part,
governed by their larval post-settlement success/settlement site. Elacatinus gobies form
monogamous pairs (Harding et al. 2003), regularly spawn (E. evelynae spawning interval: 9 —
20 days) and produce large clutch sizes (E. evelynae: 200 — 250 eggs clutch™, 10 — 50%
survival to settlement). Importantly, these larvae have lengthy pelagic larval periods (E.
evelynae: settle 30 — 40 days post hatching; (Colin 1975; Olivotto et al. 2005; Majoris et al.
2018b) and for a closely related species (E. lori), larvae have been documented to travel ~ 2
km from their parent site (D’Aloia et al. 2015). Taller corals which stand above others, may
thus ‘catch’ pre-settlement larvae, whilst increased surface complexity can reduce larvae/adult
predation risk (Beukers and Jones 1998; Almany 2004) and alter larval density-dependent
mortality once settled (Johnson 2007), together promoting the formation of cleaning stations.
However, if these results were simply down to random larvae settlement patterns mediated by

their post-settlement survival success, it would also be expected that coral heads with larger

22



surface areas also function as cleaning stations (similar to Losey 1974), which was not the
case (non-station corals were consistently observed to be unoccupied across 8 years of long-
term study; Dunkley et al. 2019a). In addition, although gobies do generally stay affiliated with
their coral heads, some localised movements by adults are observed between neighbouring
heads (up to ~ 5 m distance; Dunkley et al. 2019b). Thus, by flexibly moving between corals,
adult cleaners may more efficiently increase their fitness by benefitting from differential
resources from different coral heads. Choice experiments would help decipher the absolute
habitat preferences for this species.

Settlement of coral reef fish in their habitat is complicated, and it is very unlikely that
finer scale settlement patterns within an environment are a matter of chance (Victor 1986).
Many coral reef fish larvae rely on a combination of cues to control their settlement site
selection, including visual, olfactory and acoustic stimuli (Montgomery et al. 2001; Lecchini et
al. 2005). It is not clear, however, how sensitive such cues are to finer scale variations (i.e.
between corals of the same family as investigated here). Some fish also base settlement cues
on the presence of conspecifics and not on the coral’s characteristics, since the presence of
conspecifics could be an indicator of habitat quality (Ohman et al. 1998; Lecchini et al. 2005)
as occurs with E. prochilos (see Whiteman and Coé6té 2004). However, since density
dependence can influence settlement mortality (Johnson 2007), in the current study, it would
perhaps be expected that occupancy/abundance patterns may correlate with microhabitat
traits, which was not observed (in parallel with (Wilson and Osenberg 2002), assuming corals
are at full carrying capacity, with coral heads assumed to be saturated at very low densities
(maximum n = 23 per coral) (Cote and Whiteman 2004). Additionally, the number of cleaners
were not found to affect cleaning in an 8-year study on Booby Reef (Dunkley et al. 2020), thus
number of cleaners per station may not play a role in confering cleaner goby fitness. However
the number of cleaners observed at a station over the 8-year study did not excede 9 per station
(Dunkley et al. 2020), higher densities on other reefs therefore may affect cleaning, however
this is not known.

Taller corals also played an important role in influencing the dynamics of cleaning
interactions. Investments in cleaning interactions are governed by risk: clients give up foraging
time (Grutter et al. 2002) and may be more vulnerable to predators during cleaning (although
both cleaners and clients are thought to be afforded protection to some extent as predators
visit stations to be cleaned rather than for nutritional needs (Cheney et al. 2008; Soares et al.
2012). Cleaning at a taller coral may provide both cleaners and clients with a visual advantage
by creating a greater field of view, lowering predation risk (Nemeth 1998) and facilitating longer
cleaning events. Indeed, for a common client of cleaning gobies, Stegastes partitus (see
Dunkley et al. 2019b), a limited field of view around their territorial site altered their risk-taking

behaviour (Rilov et al. 2007). Further exploration of this idea will rely on knowledge of the
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visual acuity of cleaner fish and their clients, which is currently unknown (although is likely to
correlate with eye size; (Caves et al. 2017). The assumption that station habitat traits that
reduce risk to predation and are beneficial for cleaning patterns, can also be supported by our
result that longer cleaning bouts were observed at stations with increase refuge size, and that
cleaning rates were higher with increased complexity (creating crevices and cracks). Similar
to cleaner wrasse (species unknown; Ferrari et al. 2018), here cleaning gobies were
associated with cleaning stations that showed an increased variation in slopes. The availability
of refuges and fine-scale variations in structural complexity (1 cm vector dispersion) may
provide a ‘safety net’ for small bodied cleaners (max 4.5 cm fork length; Cheney and Coété
2003) minimising their risk to threats by reducing access/mobility options for larger predators.
Indeed, Ferrari et al. (2018) hypothesized that a strong association with sponges by the
sponge-dwelling facultative-cleaning ecotype of sharknose gobies could be explained by the
shelter these benthic organisms provide. However, if taller corals are more preferable
resources (compared to other coral geometries), and habitat space is limited, only gobies
expressing beneficial and competitive phenotypes may be expected to dominate such
environments, with variation in phenotypes also leading to variations in cleaning behaviour
(Dunkley et al. 2019a). Correlating the occurrence of different cleaner behavioural phenotypes
(e.g. personality traits) with station microhabitat traits, and their spatial locations may thus be
beneficial for future study.

Cleaning patterns can also be goverened by the feedback behaviours of their clients
(Dunkley et al. 2019a), and clients may use the “landmark feature” of cleaning stations to
locate cleaners (Losey 1974; Kulbicki and Arnal 1999) with taller or larger features being
easier for clients to locate (Braithwaite and de Perera 2006). In turn, clients may then learn to
associate these specific features (e.g. “large spherical corals”) with the cleaners (Losey 1974).
Indeed, in sparser, heterogeneous environments, organisms tend to aggregate around habitat
structures (Garcia-Charton and Pérez-Ruzafa 2001) and thus taller stations may promote
enhanced client numbers/diversity visiting the location — creating foraging choice options for
the cleaner. Higher energy gains can be obtained through consuming higher quality foods,
feeding for longer and increasing diet breadth (Toscano et al. 2016). Since different clients
host species-specific parasite assemblages (Grutter 1994), cleaners could maximise their
energy loss versus gains by selectively cleaning different client types to optimize their
nutrition/energy through fewer interactions. Some client types will be restricted in their spatial
distribution on the reef by the microhabitat features (Tolimieri 1995) and their reef-use
behaviour (e.g. territorial species) however. Taller stations may thus also allow a greater range
of ‘favourable client types’, hosting higher parasite burdens/diversity (e.g. predators, larger
body sizes; (Poulin and Rohde 1997) to access the cleaner. Incorporation of client functional

traits, abundance, diversity, and behaviour data should thus be considered in future studies.

24



To conclude, the high structural complexity of coral reefs, which is a defining and vital
component of a healthy environment, is under threat from a suite of natural and anthropogenic
disturbances (Magel et al. 2019). These results demonstrate that the prevalence and
dynamics of cleaning interactions on a local scale, which are also thought to be a vital
component of a healthy reef (Clague et al. 2011; Waldie et al. 2011; Demairé et al. 2020), may
be vulnerable to even fine-scale changes in microhabitat structure, especially with regards to
coral height. Through their large number of interactions with a diversity of client species,
cleaning interactions can also drive patterns of fish diversity themselves (Bronstein 2015),
playing an important role in the ecological community structure (Floeter et al. 2007; Quimbayo
and Zapata 2018). Changes in the dynamics of cleaning interactions could thus imply
significant consequences for the associated reef fish community. It is important to note
however, that like all mutualisms, cleaning interactions are highly context dependent:
interaction outcomes vary temporally (Cété and Molloy 2003; Sikkel et al. 2004; Sikkel et al.
2005; Dunkley et al. 2019b; Dunkley et al. 2020) and spatially (Cote 2000; Sikkel et al. 2000;
Dunkley et al. 2020; Romain et al. 2020). Whilst microhabitat traits play a role in governing
local interaction patterns, additional interlinked contextual factors can influence interaction
outcomes (e.g. client identity and abundance; Dunkley et al. 2020). It is therefore difficult to
determine at this stage, what our findings mean under wide-scale ecosystem degradation
scenarios. Compared to the Indo-Pacific, Caribbean reef communities naturally exhibit lower
species diversity meaning they are already less resilient to decline and degradation (Bellwood
et al. 2004). It is therefore vital that we gain further knowledge of the finer scale habitat
requirements of such keystone species in the Caribbean to determine how habitat

losses/changes to the reef geometry may both directly and indirectly impact reef communities.
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Chapter 3

Behavioural interactions of reef fish in
response to artificial reef structures, Fish
Hives

Abstract

The structural complexity of corals creates a diversity of habitats which host a plethora
of marine life. Due to numerous anthropogenic and natural threats, coral reefs are being
degraded and this structure lost. Global conservation efforts to mitigate against habitat loss
have focused on replacing or enhancing corals using artificial reefs. Despite being widely
deployed, few studies have assessed how fish species interact with these artificial structures.
Here, novel artificial reef structures were created and deployed, termed ‘fish hives’, designed
to be replicated by local community or conservation groups with minimal resources and
specialised equipment, and ideal for studying fish behaviour. Given the scope of reef
degradation and the need to facilitate coral reef conservation in a range of ecological contexts,
hives were tested at two sites with different ecologies (an existing reef and a sandy area in
close reef proximity). The fish hives were seeded with the critically endangered Elkhorn coral
(Acropora palmata) and the behaviour of reef fish at fish hives and control corals was recorded
using point observations from video footage over a 16-month period. Fish hives harboured a
similar community of reef fish to corals, provided a successful nursery site for elkhorn coral, a
settlement site for benthic organisms, and suitable habitat for residential damselfish. Indeed,
algae farming damselfish associated and exhibited territorial behaviour significantly more at
hives than natural brain corals. While it remains to be seen whether fish hives can provide reef
habitats in the longer term, they do offer insight into the importance of damselfish territorial

and farming behaviour on artificial reef succession.
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Introduction

Habitat structural complexity drives the high levels of biodiversity on coral reefs
(Graham and Nash 2013). Along with benthic live cover and coral species diversity, the variety
of different shaped structures plays a key role in determining local fish abundance and
diversity by providing habitat space (Gratwicke and Speight 2005; Kostylev et al. 2005;
Harborne et al. 2012; Gonzalez-Rivero et al. 2017). The calcium depositing corals, which
create these essential structures, are threatened by a range of anthropogenic driven stressors
(Bozec et al. 2013; Kennedy et al. 2013). These range from direct habitat loss due to
industrialisation, to the indirect consequences of global anthropogenic change (ocean
acidification, warming sea water, altered currents, infectious disease and invasive species etc;
Foster et al. 1994; Pratt 1994; van Hooidonk et al. 2014; Li and Reidenbach 2014, Sigl and
Laforsch 2016; Williams et al. 2019a). The extent to which these stressors alter coral structure
affects the severity of damage and recovery potential of the reef ecosystem (Graham 2014;
Rogers et al. 2014; Magel et al. 2019). Often coral skeletons persist after sustaining damage
from phenomena, such as a coral bleaching event, keeping the structural element intact for 3-
10 years (Pratchett et al. 2009). If corals do not recover and habitat loss occurs, fish
communities diminish (Garpe et al. 2006; Graham et al. 2006). Modelling surface water
heating and water flow patterns in the Caribbean suggests large-scale coral bleaching events
and die offs will increase in the near future (Li and Reidenbach 2014) with coral adaptations
to increase bleaching thresholds only delaying simulations by ~10 years (Logan et al. 2014).
Thus, one objective of coral reef management is maintenance or enhancement of this
structural complexity (Graham and Nash 2013). A promising and increasingly popular
mitigation approach is the introduction of artificial structural modules, which replicate natural
coral structures and create artificial habitat space (Paxton et al. 2020b). These structures also
provide space for coral nurseries and natural coral settlement (Fitzhardinge and Bailey-Brock
1989).

Artificial reefs, used for centuries to enhance fisheries (Stone et al. 1991; Castelld Y
Tickell et al. 2019), have more recently been used as a conservation tool (Seaman 2007;
Paxton et al. 2020b). The array of substrates used ranges from waste materials (Barnabé et
al. 2000), including shipwrecks (Simon et al. 2013) to purpose-built structures (Komyakova et
al. 2019). Recently, eco-engineered artificial structures have been designed to replicate coral
structural complexity (Chapman and Underwood 2011; Dafforn et al. 2015; Morris et al. 2018;
Komyakova et al. 2019). A range of designs and materials have been used to emulate
naturally occurring structures (wire, steel, rope, stone gravel etc. Baine 2001; Komyakova et
al. 2019), with concrete structures being the most popular and effective (Spieler et al. 2001;

Komyakova et al. 2019), to provide services such as coral nursery space, habitat provision for
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marine life and alternative dive sites to reduce pressures on natural reefs (Schaffer and Lawley
2012; Becker et al. 2018; Paxton et al. 2020b).

Artificial reef efficacy is varied: some harbour fish assemblages similar to those on
natural reefs (Granneman and Steele 2015), others show higher or lower species abundance
and diversity (Carr and Hixon 1997), or they may favour particular species (Fowler and Booth
2012). Other artificial structures, particularly marine infrastructure (e.g. harbours, causeways,
dikes, piers and breakwaters) not built specifically for conservation, can have negative effects,
for example by increasing available habitat for invasive non-native fish (Airoldi et al. 2015;
Hunt et al. 2019) and benthic colonisers (Tanasovici et al. 2020), which can increase biotic
homogenisation (Dafforn et al. 2015). Thus, it seems that artificial reef efficacy is largely
context dependent (Paxton et al. 2020b) and there is a lack of knowledge about their specific
ecological functions (Spieler et al. 2001) and how they affect fish species assemblages
(Seraphim et al. 2020).

Despite widespread use and in addition to the ecological unknowns, there are socio-
economic concerns surrounding artificial reefs, ranging from cost of building and deploying to
aesthetics. Artificial reefs often require expensive moulds, building expertise and sophisticated
equipment for deployment due to their weight. The varied outcome of artificial reefs could also
be a function of experimental design, including monitoring procedures, as the goals and
specific objectives of many reef projects are not clear (Edwards and Gomez 2007; Becker et
al. 2018). Fish assemblages undergo long periods of stochasticity prior to reaching stable
communities after artificial deployment (Coll et al. 1998; Relini et al. 2002) therefore the
duration of programmes likely affects the perceived success of artificial reef projects (Becker
et al. 2017). Previously reef restoration research predominantly focused on the success of
coral growth (Young et al. 2012; Schopmeyer and Lirman 2015; Seraphim et al. 2020),
community assemblages (Opel et al. 2017; Higgins et al. 2019) or recruitment (Kawasaki et
al. 2003) whereas studies on behavioural responses of marine fish to artificial structures are
limited. For example Jamieson et al. (2006) observed differences in behavioural responses
(exploring, feeding and “indifference”, defined as no interaction with the baited lander used in
the experiment) of Coryphaenoides armatus to different baited lander structures. This is an
oversight, as how species interact with their habitat can influence behaviour and therefore
outcomes of community dynamics and ecological interactions (Almany 2004). For example,
foraging rates and cleaning behaviour of fish are tightly linked with their habitat (Grabowski
and Powers 2004; Vergeés et al. 2011; Whittey et al. 2021). Thus, as fish respond differently
to a variety of structures, which structure is used for monitoring fish may affect their behaviour
and yield inconsistent results, such as underestimating population sizes (Jamieson et al.

2006). Increasing structural complexity from an artificial reef, for example, disrupted the visual
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field of Stegastes partitus, which was thought to compromise feeding and mating behaviour
(Rilov et al. 2007).

How fish interact with their habitat can affect fish behaviour, which in turn can affect
ecological functioning of coral reefs (O’Brien et al. 2018; Mitchell and Harborne 2020). Thus,
facilitating or ensuring that fish behaviour on natural reefs in replicated on artificial reefs will
allow fish to carry out their trophic interactions within their ecological niche. On natural reefs,
herbivorous grazing behaviour is an important ecological process as it prevents overgrowth
from dominant algal species, which outcompete other species for space (Edwards and Gomez
2010). Smaller corals, including coral cuttings used in restoration projects are particularly
vulnerable to algae overgrowth (Ferrari et al. 2012). Many coral transplantations and
restoration projects require dive teams to clean corals of algae (Frias-Torres and van de Geer
2015). Fish species that farm algae, such as damselfish, promote the growth of algae by
pecking away other settling competitors (Kaufman 1977; White and O’Donnell 2010). Farming
damselfish are often the first to colonise restored reefs (Schopmeyer and Lirman 2015) and
present a potential threat in reef rehabilitation due to their negative impacts on immature corals
(Frias-Torres and van de Geer 2015). Damselfish, however, can also exclude corallivores from
their territory preventing coral predation and increasing growth and diversity (Gochfeld 2009;
White and O’Donnell 2010).

How species interact directly with artificial structures may help us understand the
disparity in reported fish community assemblages at artificial reef structures. Given that
artificial reefs are widespread in the ocean (an estimated 300,000 km? of the ocean has been
altered by human structures; Halpern et al. 2008), it is now timely to move beyond
comparisons with natural reefs, to consider artificial reefs in their own right and consider
species interactions with artificial structures (Castelld et al. 2019), including specific
behavioural observations. Here, a new affordable, hollow structure — called a ‘fish hive’ — was
designed and built by hand (by the thesis author) from a blend of concrete and vermiculite (a
light mineral) to artificially replicate dome-shaped brain corals. The blend of concrete
containing vermiculite results in a lighter mix than traditional concrete mix. These lighter
structures were manoeuvrable without the use of heavy machinery. Fish hives were deployed
in two different environmental contexts: a reef with live coral, and a sandy area adjacent to an
existing reef. Firstly, whether fish hives were an appropriate substrate for seeding and growing
coral was determined; and secondly, how the fish community and fish behaviour around fish
hives changed over time was studied. The behaviour of damselfish spp. was of primary focus

as they are often initial colonisers of artificial reefs.
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Materials and methods

Description of study sites

Two fringing reefs were used for the current study, Booby Reef and Pirates Reef in
Man O’ War Bay, Tobago (11°19.344'N, 060°33.484'W; Fig. 3.1), which have been used as a
long-term monitoring site for >10 years (2010-2020) (Dunkley et al. 2018; Dunkley et al.
2019a; Dunkley et al. 2019b; Dunkley et al. 2020; Whittey et al. 2021). Booby Reef is
dominated by non-branching brain coral species (Faviidae), areas of patchy sand, remnants
of dead elkhorn (Acropora palmata) and staghorn (A. cervicornis) corals (Ramsaroop 1991)
thus representing a relatively degraded reef. Pirates Reef is primarily composed of rocky
sandy substrate, the encrusting zoanthid (Palythoa caribaeorum) and living hard coral
(Siderastrea spp. and Montastraea spp.). All work was carried out in collaboration with local
NGO Environmental Research Institute Charlotteville under permit numbers #001/2016 and
#002/2020 issued by the Tobago House of Assembly. Both sites are easily accessible by small
vessels and are therefore well suited for the deployment of artificial structures, and easy

access facilitates long-term monitoring.
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Figure 3.1: Location of sites of artificial reef structure (fish hive) deployment (black dots):

Lovers Bay (Booby Reef) and Pirates Bay (Pirates Reef) in Man O’'War Bay, Northeast
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Tobago; Caribbean (A), Tobago (B) and local scale showing the extent of fish hive deployment

and satellite image of Charlotteville town (C).

Fish Hive design, construction, and deployment

An artificial reef structure, hereafter termed ‘fish hive’ (Fig. 3.2), was designed to mimic
the height and shape of existing brain corals (Faviidae spp.) on Booby Reef (Whittey et al.
2021). Fish hives were designed to be affordable and used as many reusable materials as
possible (costs approx. £120 per unit). Each fish hive was approximately 100 cm in height and
80-100 cm diameter, conical-spherical in shape with a flat base, large top hole (diameter ~20
cm) and 9-12 smaller (diameter ~10 cm) holes arranged around the hive allowing fish to use
the structure for shelter, an important feature of man-made reefs (Frazer and Lindberg 1994;
Hackradt et al. 2011). A mixture of Portland cement, vermiculite, coarse sand and gravel at a
ratio of 1:1:2:1 was mixed by hand and layered over an inflatable rubber sphere (60-80 cm
diameter — which was deflated and re-used after construction) on to which a template was
drawn so that 15 cm long segments of bamboo (9-12 per hive) could be added to create the
hive entrances. Once a base of sufficient thickness (15 cm in height and 15 cm thickness) was
reached, a 5 cm wire mesh was placed around the circumference of the structure onto which
a complete concrete layer was added of 10 cm thickness. To facilitate curing and prevent
slumping a ‘skirt’ of aluminium mesh covered in clingfilm was attached to the base of each
hive and removed (and reused) within 24 h of curing. During curing for a minimum of 48 h in

the sun, hives were kept moist by spraying periodically with fresh water.
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Figure 3.2: A newly deployed artificial reef structure (fish hive) seeded with five Elkhorn coral
(Acropora palmata) cuttings. Hive is located at Lovers Bay (Booby Reef) in Man O’'War Bay,
Northeast Tobago; The bamboo segments used to create holes are left in the structures. Lego

cube on far right for scale is 5 cm®.

In June 2019, a total of 12 fish hives were deployed, six placed at Booby Reef and six
at Pirates Reef (Fig. 3.1), two at the latter site were subsequently lost due to sedimentation
after 8 months, and so only four hives from Pirates were included in the analysis (total: n =
10). The hives on Booby Reef were placed (on the north side of our long-term study site), up
to 5 m away from a brain coral at ~1 m depth. At Pirates Reef, all hives were placed
approximately 30 m away from existing corals in a sandy area at approximately 3-5 m depth
(Fig. 3.2). Cuttings of elkhorn coral (Acropora palmata), approximately 5 cm in height (surface
area 1200 cm®), were taken from adjacent alive, healthy corals and attached to each hive (5

per hive). Two hives at Pirates were not seeded with Elkhorn as controls.

Monitoring fish hives and control corals
During 2019-2020, video footage and still photographs of all fish hives (including those
seeded and not seeded) and controls were collected by a snorkeler or scuba diver using

GoPro cameras (GoPro, Inc., San Mateo, CA, USA) at five time points 1-5 months apart over
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16 months: 29 August 2019, 8 January 2020, 8 February 2020, 10 June 2020 and 11 October
2020 (scheduled sampling events at three-month intervals were disrupted by weather and
local lockdowns due to the SARS-cov-2 pandemic). At each sampling event, photographs with
a scale bar were taken from directly above each hive to monitor coral growth and mortality.
Length, width, and surface area of seeded corals on the hives were measured using Image J
software (Schneider et al. 2012) and settlement by other benthic organisms were recorded
and identified to family level using the reef guide website

(https.//reefquide.org/carib/index1.html) and the Reef Fish Identification for Florida, Caribbean

and Bahamas (Humman and DelLoach 2003). Brain corals (n = 6) in the vicinity of hives on
Booby Reef served as controls, with 2 - 4 used at any given sampling event (n = 2 - 4).

Video footage was recorded using GoPro cameras positioned approximately 1.5 m in
front of each fish hive/control coral facing offshore and left to record for ~ 20 minutes. The first
minute of the video was not analysed to allow for any disturbance created by the diver to
settle. Due to obstructions to the camera view (e.g., poor visibility) observations ranged from
19.3 to 22.6 minutes (mean observation duration 20.04 + 0.38, S.E.). From each video fish
species and phase were recorded where possible, otherwise fish were identified to family
level. Due to cryptic morphologies, five species of damselfish (Stegastes adustus, S.
diencaeus, S. leucostictus, S. planifrons and S. variabilis) were combined together as ‘Dark
Damsels’ (Stegastes spp.) and referred to hereafter collectively as damselfish. For all fish
within two body lengths of each hive/control coral, the duration per unit time (seconds) of three
behaviours was recorded: (1) Associating - the fish associates with the structure by swimming
in and/or around it (within two fish lengths); (2) Pecking - the fish pecks the structures; (3)
Territorial - the fish exhibits defensive behaviour of the structure. Duration of behaviour was
weighted by observation duration during statistical analysis using the ‘cbind’ function to create
a proportion of duration weighted by observation length account for uneven timings of video
recording. The frequency of the behaviours was recorded as a per observation value.

Fish count data was recorded using a MaxN approach, where the maximum number
of individual fish of a particular species occurring in a single video frame were recorded (Ellis
and DeMartini 1995; Campbell et al. 2015) for all fish within two body lengths of the
hives/control coral. Abundance, richness and Shannon and Simpson Diversity Indices using

the R package ‘vegan’ (Dixon 2003) were calculated based on MaxN data.

Statistical analysis

Data were analysed in R version 1.4.1103 (R Core Team 2017) using General
Generalized Linear Mixed Models (GLMMs). Model assumptions and fits were assessed using
residual plots (as specified by Bolker et al. 2009) and, when needed, continuous predictors

were log transformed to facilitate model convergence. In addition, where suitable, the
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presence of potential influential points on model outcomes were checked for using Cook’s D
and leverage, and sensitivity analyses were carried out on identified points (Chatterjee and
Hadi 2009): the robustness of results was assessed when identified outlier values were
temporarily excluded from models. Significant effects that were sensitive to the presence of
influential points are stated in the results. Type 2 ANOVA was used to test for significance of
terms in GLMMs and Tukey’s post-hoc method was used to run pairwise tests to decipher
significance of interacting terms (from the GLMMs) using the ‘emmeans’ function (Russell
2019).

Reef fish community at hives and corals over time

To determine whether fish abundance, richness and diversity differed between corals
and hives over the sampling period separate GLMMs with a Gamma family link were run
including site and individual structure ID as random terms and the following fixed terms:
structure type and months since deployment. Using separate GLMMs with a Gamma family
link, abundance, richness and Shannon and Simpsons diversity indices were included as
response variables to assess difference in fish communities at hives over the 16-month
monitoring period in relation to the differences in coral growth at the hives. Given the apparent
high abundance and widespread presence of dark damsels at sites (at hives and corals), both
Simpsons and Shannon diversity were included to ensure high abundance of damsels did not
overshadow the biodiversity results. Simpson diversity measure gives more weighting to a
common or dominant species and was there for used in addition to Shannon. Included in the
models were: months since deployment, coral growth, number of corals alive and the
interaction between coral growth (measured as increased surface area cm®)and months since
deployment as dependent terms, and site (reef location) and hive ID were included as random
terms to account for location differences. Coral growth was recorded as total surface area and
rescaled before including in GLMM using the scales package in R to aid model convergence.
Finally, to test between seeded coral growth on hives between sites, coral growth was included
with site as fixed term and month of sampling and hive ID included as random terms in a
GLMM with a Poisson family link.

Behaviour of reef fish at hives and corals over time

The time each fish species spent exhibiting each behaviour (associating, pecking and
territorial) was weighted by observation time using the ‘cbind’ function, creating a proportional
value. The frequency of the three behaviours was calculated per observation and separate
GLMMs were used to test associations between behaviours and structures over time. One
taxon, damselfish (Stegastes spp.) was highly dominant and therefore, damselfish activity was

included in a separate GLMM which included site and individual structure ID as random terms
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and the following fixed terms: structure type and months since deployment. All other fish
species were recorded in a separate GLMM with the same terms, apart from territorial
behaviour as there were no observed territorial displays by non-damselfish around control
corals. Therefore, the model was as follows: site and individual structure ID as random terms

and months since deployment as a fixed term.

Results

Benthic settlement on fish hives and Elkhorn (Acropora palmata) coral growth

All hives at both Booby Reef and Pirates Reef were colonised naturally by brown algae
(Phaeophyta spp.) and coralline algae (Rhodophyta spp.) within two months of deployment
(Fig.3.3). In addition, at 16 months the hives at Pirates Reef were colonised by fire coral
(Capitata spp.) and tube sponges (Agelas widenmyeri). After 16 months, 58% of seeded
corals had survived, with 76% of coral mortalities occurring within the first 6 months (Fig. 3.4).
Collective coral surface area on hives increased over ten-fold during the sampling period, from
an average of 387.9 cm® (124 cm® S.E.) per hive at two months post deployment, to 4,709.6
cm?® (£ 4,015.1 cm® S.E.) per hive 16-month post deployment (Fig. 3.4). The growth of seeded
Elkhorn corals varied significantly at each individual hive (GLMM: ¢57.64, p < 0.001).

Photograph Species Site Settlement

Pirates
Reef

Tube Sponge Pirates Natural
Agelas widenmyeri

Fire Coral Pirates Natural
Capitata spp.
Coralline Algae Pirates and Natural
Rhodophyta spp. Booby
Elkhorn Coral Pirates and Seeded
Acropora palmata Booby
Brown Algae Pirates and Natural
Phaeophyta spp. Booby

Figure 3.3: Species of benthic organism that settled on artificial reef structures (fish hives) at
Pirates Reef and Booby Reef, Man O’War Bay Tobago during a 16-month post deployment.

Photographs from https://reefquide.org/carib/index1.html, common name and species names,

site that species in tables were observed at, mechanism of species settlement (natural —
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naturally occurring settlement with no experimental intervention, seeded — cuttings added by

researchers).
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Figure 3.4: Growth and survival of seeded Elkhorn corals (Acropora palmata) over a 16-month

monitoring period (see: https://youtu.be/pVo pPHKJa4) in Man O’'War Bay, Tobago. Corals

were measured as combined total surface area of all cuttings on each artificial reef structure
(fish hive) giving one value per hive for coral growth. All EIkhorn coral cuttings at initial seeding
were approximately 5 cm in length, 1200 cm? total surface area. Top: number of corals per
hive that were alive at sampling points over 16-month period, Bottom: growth of Elkhorn corals

as measured by surface area.

Reef fish community at hives and control corals over time

A total of 40 species of reef fish were found in the vicinity of the hives (Supplementary
Materials Table 1) and 28 species at corals. Fish abundance and richness at corals and hives
did not significantly differ from each other, but did increase (see 3 for direction of association)
at both over time (GLMM: Abundance: = 0.0017, x21 = 7.443, p < 0.01, richness: 3 = 0.002,
x21=3.512, p < 0.05). Fish diversity measures (Shannon and Simpson) did not differ between
hives and corals, nor over time. Coral growth at hives was not significant as an individual term

for any reef fish community measures. However, the interaction of time and coral growth was
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significant to fish richness (GLMM: 421 = 12.843, p < 0.05) and Simpson diversity (GLMM:
21 = 10.260, p < 0.05), with richness and Simpson diversity increasing over time as coral
size increased. Tukey tests of predicted marginal means from the GLMMs comparing coral
growth at each time point only predicted the 8 month vs 12 month to be significant for richness
(Tukey: B = 0.2557, p < 0.05) and no comparisons were significant for Simpsons diversity.
Thus, the minor spike of increase in richness and Simpsons Diversity observed at the 8"
month was likely a reflection of reef stochasticity rather than associated with coral growth and

are therefore not discussed further.

Behaviour of damselfish at hives and corals measured by duration and frequency over
time

Damselfish were responsible for 52% of all 4029 fish interactions with hives and 34%
of 563 interactions with corals. They spent significantly longer associating with hives than
corals (GLMM: B = -0.224, ¥%1 = 4.799, p < 0.05; Fig. 4) and at a greater frequency (GLMM: B
=0.762, 21 = 3.758, p = 0.052). Territorial behaviour by damsels was also significantly more
frequent at hives than corals (GLMM: B= 0.678, x* = 12.067, p < 0.001). Damselfish pecked
at hives at a significantly higher frequency than corals (GLMM: B = 1.430, y21 = 11.329, p <
0.001), a trend which significantly increased over time (GLMM: B = 0.069, 21 = 39.275, p <
0.001). The duration of damselfish pecking and territorial displays did not differ between

control corals and hives, and were not affected by time.

Behaviour of other reef fish at hives and corals measured by duration and frequency
over time

A total of 4612 fish behavioural interactions (associating, pecking or territorial
behaviour) were observed at the hives and control corals (4049 interactions at hives (n = 10)
and 563 interactions at the control corals (n = 6)). At hives and corals, the mean number of
interactions per observation was 69.9 (+ 53.1, S.E.), ranging from 2 to 336. At each hive, there
was an average of 81 + 56.1(S.E.) interactions (range 2-336), and at corals 35.5 + 15.4(S.E.)
(range 10-59). The time spent associating with structures was significantly greater at hives
than corals (GLMM: B =-0.581, y21= 12.652, p < 0.001) and did not change over the sampling
period. Time spent pecking did not differ between hives and corals and was not affected by
time since deployment. There was no difference in frequency of fish associating and pecking
with the hives and corals, but the frequency of both associating and pecking decreased over
the sampling period (Associating: GLMM: B = -0.0411, ¥°1 = 65.195, p < 0.001, Pecking:
GLMM: B =-0.110, %21 = 69.6366, p < 0.001).
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Territorial activity (duration and frequency) did not differ over time at hives and there
were no observed territorial displays by non-damselfish species around control corals. There
was a total of 50 territorial records at hives by non-damsels, only four of these were recorded
at Booby Reef all by Sergeant Major (Abudefduf saxatilis). The other 46 territorial events were
recorded at Pirates hives were by the following species: Sergeant Major (A. saxatilis) (n = 34
instances at 5 hives), smallmouth grunt (Brachygenys chrysargyreum) (n = 5 instances at one
hive during one observation) and Brown Chromis (Chromis multilineata) (n = 7 instances at

one hive during one observation).

Hive Control Corals

Behaviour

E4 Associate
Pecking
E4 Territorial

I

Duration of behaviours in seconds (s)

Tl AN

2 7 8 12 16 2 7 8 12 16
Months

Figure 3.5: Duration of fish behaviour (in seconds) at corals (control corals) and artificial reef
structures (fish hives) over a 16-month monitoring period. Three behaviours were monitored
associating with the structures (within 2 fish lengths), pecking the structures (including the
seeded corals on hives) and displaying territorial behaviour. Legend shows three behaviours:

Blue - “Associate”, yellow - “Pecking” and red - “Territorial”.

Discussion

Here, fish hives, produced and deployed at low cost, proved to be effective artificial
reef structures. They provide a nursery site for seeded Elkhorn corals and a natural settlement
site for benthic settlers in different environmental contexts (demonstrated here by using two
sites: Booby Reef a natural reef and a sandy area devoid of corals adjacent to Pirates Reef).
Fish assemblages did not differ between hives and corals, and overall there was more

damselfish activity at hives than corals. The time fish spent around the substrates did not
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change over time and damselfish associated and displayed territorial behaviour around hives
significantly more than natural corals.

Damselfish are commonly the first fish to colonise new reef habitat (Schopmeyer and
Lirman 2015) and typically occupy the same territory over time (Itzkowitz et al. 1995) thus
provide an ideal system for observing behavioural interactions with artificial reefs over time.
Here, damselfish successfully established territories around hives within two months of
deployment and showed relatively consistent behaviour at hives over the duration of the 16-
month study. Damselfish spent longer associating with hives compared to corals, defended
hives at a higher frequency and over time, the frequency at which damselfish pecked at the
hives increased. Given that damselfish are ubiquitous on Caribbean reefs (Lieske and Myers
2001), it is likely that many hives were placed within, or near to damselfish territory, potentially
aiding damselfish colonisation. The locations in which the hives were placed were not
surveyed for damselfish territories prior to hive deployment. The footprint of an individual hive
is 0.79 m?and the addition of a hive to an area increases the available outer surface area to
3.14 m?. Given that almost the entire surface of the hives became covered in brown algae
(Phaeophyta spp.) (Fig. 3), it is likely that damselfish favoured hives over live corals due to
the increased area available for algal farming.

Reports of damselfish behaviour in terms of coral rehabilitation projects are conflicting
(Seraphim et al. 2020) and their effects on reef rehabilitation are largely context dependent
(Ladd et al. 2018). Damselfish territorial behaviour often deters corallivores from nurseries
(Gochfeld 2009; White and O’Donnell 2010), which can aid coral growth (Glynn and Colgan
1988) and recruitment (Gleason 1996) and the size of damsels can directly enhance coral
growth (Holbrook et al. 2008). But damselfish will themselves remove coral settlers whilst
farming their algae patches (Ogden and Lobel 1978; Arnold et al. 2010) and can reduce coral
growth rates of existing colonies (Schopmeyer and Lirman 2015). By pecking existing corals,
damselfish can cause bite-lesions on corals, which promote further brown algae growth and
can lead to corals being outcompeted (White and O’Donnell 2010; Hata et al. 2020).
Damselfish removal prior to coral rehabilitation has been proposed as a means for overcoming
their negative impact (Williams et al. 2019b); however at hives established here, seeded corals
successfully established and grew. On the hive algal lawns though, at least at Booby, during
this study there was no evidence of natural coral colonisation, potentially due to high
populations of damselfish, since at Pirates, hives were newly colonised by fire coral and
sponges and there were fewer farming damselfish compared to Booby. Addition of a large
surface area colonised with brown algae, may have ‘diluted’ damselfish pecking activity,
drawing them away from the seeded and colonizing corals and allowing all corals to grow. The
addition of space for algal lawns may mitigate the need for damselfish removal when planning

coral nurseries and should be further tested.
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Corals successfully colonise many materials artificially deployed in the sea, including
rock (Blakeway et al. 2013), seawalls (Tan et al. 2012), marble tiles (Bramanti et al. 2007),
and it is well established that corals can settle on concrete structures (Coles 1984), which is
commonly used in artificial reef construction (Baine 2001; Komyakova et al. 2013; Plumlee et
al. 2020). Recruitment of organisms is crucial for ensuring longevity in success of artificial
reefs (Mumby and Steneck 2008). Thus, it is useful to know that concrete containing
vermiculite used for our hives is a viable substrate for naturally occurring marine species to
colonise (brown algae Phaeophyta spp., coralline algae Rhodophyta spp., Fire coral Capitata
spp. and tube sponges Agela widenmyeri) in addition to supporting growth of seeded Elkhorn
corals. Coralline algae (as opposed to brown algae see Fig. 3.3) has been demonstrated as
an essential precursor for natural coral settlement (Harrington et al. 2004; Ritson-Williams et
al. 2010; Jorissen et al. 2021), this natural settlement of coralline algae at hives could therefore
facilitate natural coral settlement in the future. Fish associating with the hives also came into
close contact with the hives and a few species, (primarily surgeonfish) were seen displaying
scraping behaviour demonstrating that the composition of concrete did not deter reef fish.

The territorial behaviour of some damselfish species effectively deters other reef fish
from their territories through aggressive displays, biting and chasing (Bay et al. 2001). While
damselfish territorial behaviour did not increase over time, pecking frequency did.
Simultaneously, the frequency at which other non-territorial reef fish associated and pecked
hives decreased over the 16-month study period, perhaps indicating the established
dominance of the dark damselfish territory over time. At Booby Reef, damselfish may have
successfully created a homogenous algal lawn on the hives over this time, which became less
attractive to other reef fish. Likewise, at Pirates the coverage of sponge and fire coral may
have been less attractive to grazing herbivorous species.

Many artificial reef designs have not incorporated the requirements of reef inhabitants
(Baine 2001), however the shape of the coral habitat can affect specific ecological interactions
(Whittey et al. 2021) and how fish use the habitat (Rilov et al. 2007). Laboratory studies testing
coral-associated damselfish showed no discrimination in behaviour towards coral skeletons
and 3D printed coral replicates (Ruhl and Dixson 2019) demonstrating that such structures
can be effectively replicated artificially. The relationship between marine species and reef
complexity is rarely a simple linear trend where increasing complexity results in an increased
fish abundance (Bozec et al. 2013; Gonzalez-Rivero et al. 2017). The bicolor damselfish
Stegastes partitus for example prefer less complex areas for foraging as it enables them to
survey their surroundings for threats (Rilov et al. 2007). Thus, assessing the ecological
requirements for specific species and species interactions is imperative for artificial reef design

(Ladd et al. 2019) to facilitate restoration in several environmental contexts.
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It is difficult to disentangle whether artificial reefs are actively promoting fish
recruitment and enhancing fisheries as opposed to redistributing fish away from natural reefs
(Carr and Hixon 1997). Here fish abundance at both fish hives and control corals increased
during the sampling period, though in this short-term study, this trend probably reflects the
natural variation in fish diversity and abundance at the reef (previously documented by
(Dunkley et al. 2019a). As fish abundance was similar between hives and corals, this does
indicate that addition of hives is not causing redistribution of reef fish within the reef. The data
collection for this study was conducted during the COVID-19 pandemic and changes to local
fishing activities around our study site are unknown. The study site Booby Reef is a popular
destination for tourism and there was a significant decrease in tourism throughout the
Caribbean (Sheller 2020). The observed increase in abundance therefore could reflect
reduced anthropogenic pressure. Conversely, fishing activity might have increased during this
period (Higgs 2021) including illegal, unreported, and unregulated fishing (Bennett et al. 2020).
The COVID-19 pandemic also caused several study limitations including the sporadic video
data collection time points and a lack of field data collection by our research team. In addition,
two of our hives were lost due to sedimentation, indicating that these hives are only suitable
for deployment in areas where there is less sand movement. However, this was probably a
flaw in the selection of the deployment site rather than the design of the hive itself. Also, it is
unknown how they would tolerate poor weather conditions.

Reefs provide an array of ecosystem services (Woodhead et al. 2019), and loss of
coral habitat and restoration will require a range of rehabilitation efforts (Moberg and
Ronnback 2003), which include all aspects of reef functions, such as providing structure and
live polyps for corallivores (Cox 1994; Cole et al. 2008). The damage to reefs ranges from
total destruction creating a rubble-like wasteland to a phase shift of a sponge dominated reef
(Rasser and Riegl 2002; Norstrdom et al. 2009; Dudgeon et al. 2010; Fung et al. 2011). Thus,
restoration projects must span the need of these different environmental scenarios. Fish hives
were tested in two different habitats, one relatively stable reef and another sandy area where
there is no natural living coral. At both sites, hives attracted fish that interacted with hives and
provided settlement sites for benthic organisms. Further, this study showed that relatively
large (100 cm height, approximately the height of natural structures at the sites; Whittey et. al.
2021) artificial reef modules can successfully be created affordably without the use of specially
made moulds, and using vermiculite made the structures lighter, which could therefore be
deployed without heavy machinery. In addition, Elkhorn corals can successfully establish in
the presence of farming damselfish when there is also additional habitat space provided. After
16 months of deployment, fish behaviour was relatively consistent at fish hives as with coral,
but further monitoring is required as corals continue to grow and as natural settlement occurs.

Indeed, future research of artificial reefs needs to include longer-term, multi-year studies
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(Baine 2001). Hives provided habitat. Without intervention, coral reefs could take decades to
re-establish (Williams et al. 2019a) and effectively harnessing ecological functions can
facilitate reef rehabilitation (Ladd et al. 2018).
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Chapter 4

Microbiota sharing between sharknose
cleaner fish and their cleaner station

Abstract

Animals support beneficial microbial communities that play important roles in host
functions. Fish skin contains a mucosal microbiota that is typically dominated by
Proteobacteria along with other bacterial constituents, presumably from the surrounding
water. The extent to which commensal bacteria are acquired from the environment, however,
is poorly understood. The sharknose goby cleaner fish (Elacatinus evelynae) occupy specific
corals on reefs where they advertise their cleaning behaviour. When these gobies are not
cleaning they spend the maijority of their time in direct physical contact (fish are resting on the
coral so that fish skin is in direct contact with coral mucus and polyp tentacles) with their
cleaning stations. These station substrates are often living corals or zoanthids, and each
harbour their own microbiota. We predicted that there would be significant sharing of microbial
communities between cleaner fish and their cleaning stations. To test this, we sampled
cleaners (skin mucous), different cleaner station substrates and water samples from three
different reefs in Tobago and sequenced their microbial communities. We found that alpha
diversity of fish microbiota and all benthic organism microbiota where significantly distinct from
one another and the surrounding sea water, suggesting high interspecies specificity of
microbial communities. Despite this high specificity, however, cleaner fish shared 34 bacterial
genera with one benthic organism, often found on cleaner stations, the yellow encrusting
zoanthid (Palythoa caribaeorum). Given the high specificity between fish and benthic
communities, the shared bacterial genera E. evelynae and P. caribaeorum are unlikely to be

random and these microbes may offer unknown benefits to either organism.
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Introduction

Corals create habitat for a diversity of marine life (Graham and Nash 2013) and for
many reef mutualists, such as cleaners, the habitat can facilitate their cleaning behaviour
(Huebner and Chadwick 2012; Whittey et al. 2021). Cleaners play an important role on the
reef by removing parasites from the bodies of visiting reef fish known as clients (Cote 2000).
Not only do corals provide shelter to these important mutualistic species, but specific structural
features enhance cleaning behaviour through facilitating advertising and assisting clients
spatial mapping to navigate to cleaner stations (Kulbicki and Arnal 1999; Braithwaite and de
Perera 2006; Whittey et al. 2021). The benefits of the habitat may even extend beyond
structural attributes. It is well known, for example, that an animal’s bacterial community
provides many benefits to immunity, metabolism and health (Bergman 1990; Hooper et al.
2012; Bengmark 2013; Bourne et al. 2016) and the coral habitat may be a living source of
these microbes (Vanwonterghem and Webster 2020).

While establishment and functions of human microbial communities have been studied
extensively (Eggesbg et al. 2011; Li et al. 2016), less well studied are the microbiota of wildlife
(Pascoe et al. 2017), particularly those of corals and coral reef fish (Chiarello et al. 2020).
Despite the paucity of studies, it is still well accepted that fish microbial communities, in
particular their mucosal communities, are essential for host functioning (Gomez et al. 2008;
Salinas et al. 2011; Xu et al. 2013) and that they are impacted by host diet, phylogeny,
circadian rhythms and the environment (Miyake et al. 2015; Pollock et al. 2018; Le and Wang
2020; Ellison et al. 2021). For reef fish, the latter constitutes reef substrates, such as corals
and the surrounding water. Corals depend on their symbiotic zooxanthellae for energy
production (Titlyanov and Titlyanova 2020), but also rely on microbes for nutrient acquisition
to survive in oligotrophic waters (Cardini et al. 2014; Radecker et al. 2015; Peixoto et al. 2017)
and the coral microbiota is important for maintaining health (reproductive capacity, disease
resistance etc.) (Rosenberg et al. 2007; Bourne et al. 2016; Vanwonterghem and Webster
2020). Corals harbour unique microbial communities distinct from the surrounding seawater
(Weber et al. 2019; Chiarello et al. 2020), and distinct microbial communities are also found
in the mucous, tissue, skeleton and gastric cavity of corals (Pollock et al. 2018; Wada et al.
2019). Additionally, the water in the immediate surroundings of the coral, harbours its own
unique microbial community. This space directly surrounding the corals is named the coral
‘ecosphere’ (Weber et al. 2019) and the release of organic matter from coral mucous can
increase bacterial production by 50 times in this ecosphere zone (Silveira et al. 2017).

Therefore, corals and coral reef inhabitants are in direct contact with an ever-changing
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external environment, the sea, which hosts a diverse microbial community (Hernandez-
Agreda et al. 2018).

The outer mucosal layers for both corals and fish are the interface zones between
substrates and the surrounding aqueous environment, which facilitates exchange of microbes
between habitat and animal mucosal layer(Gomez 2021). In addition to free-living organisms
in the water, coral reef fish are exposed to a range of benthic organisms which each harbour
unique (Chiarello et al. 2020) and dynamic microbial communities (Van Oppen and Blackall
2019). Animals inhabiting corals are strongly interlinked through exchange of energy via
benthic-pelagic coupling which suggests that microbial communities could also be shared
(Vanwonterghem and Webster 2020; Bourne and Webster 2013), however this is not well
understood.

Despite the depth of knowledge on the importance of the microbiota, how and from
where hosts acquire their microbial counterparts is not clear, particularly in wildlife contexts.
However, it is assumed that microbes are likely acquired, by some mechanism, from the
immediate surrounding of the host (Browne et al. 2017). Multiple factors such as host diet,
genetics, behaviour and the environment will affect which microbes the hosts are exposed to
and which are able to successfully colonise the host (Tung et al. 2015; Browne et al. 2017;
Sylvain et al. 2020). In laboratory settings, individuals closely associated with each other share
commensal microbes, for example, zebra fish, Danio rerio, shared microbial communities with
each other when introduced to the same tanks (Burns et al. 2017). Microbiota sharing between
individuals has also been documented in a few terrestrial species. The microbial composition
driven by social contact between conspecifics (Baboons, Papio spp. see Tung et al 2015).
Microbe sharing even occurs between different species, for example humans cohabiting with
pets (Song et al. 2012) and anemone fish altering the community of their anemone hosts
(Pratte et al. 2018). Commensal bacteria likely follow the same routes of transmission as those
for pathogenic bacteria and ‘infect’ individuals during direct contact although much about
microbial transmission is not known (Browne et al. 2017). Thus, interspecies microbe sharing
should be a widespread phenomenon. Further, given that individuals harbour highly specific
and unique microbial communities (Chiarello et al. 2020), this also suggests that hosts are
somehow able to regulate their microbiota.

Cleaner fish, such as the sharknose goby (Elacatinus evelynae), occupy stations and
exhibit strong site fidelity (Waldie et al. 2011). Sharknose gobies remain in direct contact with
their habitat while they wait for visits from client fish (Bshary and Schaffer 2002; Dunkley et al.
2018). Stations usually consist of coral (which itself is often a matrix of healthy and diseased
coral), along with zoanthids and algae (Whittey et al. 2021). These gobies are theoretically
exposed to a diversity of microbial communities from these different habitat substrates, as well

as the surrounding seawater, and the microbial community of their clients (Pereira et al. in
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press). These cleaners therefore offer an interesting system for exploring the extent to which
the diversity and composition of bacterial communities are shared. Given that cleaners are in
constant contact with their habitat, it is hypothesised that a level of microbe sharing will exist
between cleaners and cleaner station. Here, the skin microbiota of the sharknose goby cleaner
fish is characterised using metataxonomics and lllumina technology as well as the benthic
organisms forming the immediate substrate of the cleaner station, including coral, zoanthid
and algae, as well as the coral ‘ecosphere’. Using co-occurrence network analysis, which

bacterial genera are shared between cleaners and their cleaner stations is explored.

Materials and Methods

Sampling the microbial community of cleaner fish and their associated habitats

All sampling was carried out at Man O’ War Bay, Tobago (11°19.344'N, 060°33.484"'W)
during May-June 2019. Microbial community samples associated with the mucosal surface of
the dedicated Caribbean cleaner fish the sharknose goby, Elacatinus evelynae, (n = 33) were
taken from three different coral reefs (Booby n = 15, Turpin’s n = 10 and Pirates Reef n = 8),
all within 1.5 km of each other in the Man O’ War Bay but representing non-contiguous reefs.
At each reef individual gobies were captured from discrete ‘cleaning stations’; defined as a
location that the cleaner is tightly associated with, shows site fidelity to, and typically consists
of coral (Whiteman and Cote, 2002). Each station was labelled and the sharknose goby
occupancy monitored for a minimum of 3 consecutive days prior to fish collection. Occupancy
monitoring occurred between 8:30 am and 5:30 pm by random swim surveys, which involved
two observers snorkelling over the study site and searching for cleaners at the given station
and immediate vicinity (~ 2 m®area), spending up to 2 minutes at each station searching for a
cleaner. In addition, 8 control corals, were identified as not being occupied by cleaners, using
the methods above.

Fish were live-captured, using a hand net and transferred into a container of fresh
seawater, and then transferred to the field laboratory. Here, each fish within 3 minutes of its
capture, was placed on a sterile glass petri dish and swabbed over the entire length of the
body on both sides using an individually packaged sterile cotton swab (Tubed Sterile
Dryswab™ Tip, company, country). Cleaner gobies were returned to their original point of
capture within 10 minutes. Each sample swab was placed in a sterile 1.5 ml Eppendorf tube
with molecular biology grade ethanol (99.9%) and stored at 4 °C for subsequent sequencing.

To assess the extent of microbial community sharing between cleaners and their
cleaning stations, we collected samples of the associated cleaning station reef substrates.

Each cleaning station in this study consisted predominantly of brain coral (Faviidae spp.), with
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a mix of healthy and diseased coral, zoanthids and algae. At each cleaning station, a swab
was taken by inverting a tube underwater before opening and held vertically to retain an air
bubble during swabbing. A swab was taken from each substrate to capture the station
microbial diversity (see Table 1, Appendix 1 for full details of samples taken at each station).
For each brain coral investigated, samples of healthy coral (n = 31), diseased areas (coral that
exhibited bleaching, or discolouration suggesting the beginning of bleaching n =10), yellow
encrusting zoanthid, Palythoa caribaecorum (n = 7), green mat zoanthid, Zoanthus pulchellus
(n =27), and algae (n = 31) were included. In addition, we sampled the microbial community
of 8 control brain corals and the associated benthic organisms. This included a single swab of
healthy tissue, and diseased coral (n = 7), P. caribaecorum (n = 1), Z. pulchellus, (n = 6), and
algae (n = 8). See Tables 1 and 2 (and Appendix 1) for full details of samples taken from each
control.

For all corals (station and non-stations; n = 39), the ecosphere was sampled by
collecting one litre of seawater within 15 cm of the coral. In addition, as a seawater control
four one litre seawater samples were taken in randomly selected locations from each of the
three reef locations (Booby, Turpin’s and Pirates Reef), which were subsequently pooled
giving one sample per reef. All reef water samples were collected by inverting water bottles in
the middle of the water column whilst swimming parallel to the shore. Negative controls
consisted of one litre of bottled water from the commercial drinking water bottles used during
sampling, one swab exposed to the air during processing in the field, and one swab exposed
to seawater. All water samples were filtered through 250 ml Analytical test Filter Funnels.
Once filtered the filter from the funnel was collected using sterile tweezers and placed into a
sterile 28 g aluminium tin. To ensure samples were kept sterile, filters were not cut up and
stored in Eppendorfs as this would have required further handing in the field.

All samples were collected between 8 am — 12 am during 29 May — 21June 2019. All
animal capture and sampling was carried out under licence number #001/2016, from the
Tobago House Assembly, Department of Natural Resources and the Environment, and

approved by Cardiff University’s animal ethical committee.

DNA extraction

Ethanol was evaporated off from the swab samples (n =177, see Supplementary Table
2 and 3) under aseptic laboratory conditions in a heated block at 42°C for 6-12 h contained
within a laminar-air flow cabinet. DNA was extracted from 31 fish skin swabs, 31 coral mucus
swabs, 10 diseased patches on corals, 27 green zoanthids, 7 yellow zoanthids, and 31 algae-
covered dead coral using DNeasy® PowerSoil® Kits (QIAGEN®, Milan, Italy) according to the

manufacturer’s instructions as recommended by Rosado et al. (2019).
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Water filters (n = 40) were removed from their aluminium tins under aseptic conditions,
folded 4 times and cut 5 times allowing them to be placed straight into Lysing Matrix E Tubes
(MP Biomedicals) from the FastDNA® Spin kit for Soil (MP Biomedicals), which was used for
DNA extractions. Multiple filters containing sea water samples from each site (Booby Reef: n
=7, Pirates Reef: n = 5 and Turpin’s Reef: n = 4) were pooled into one water filter sample per
site.

Different kits were used for water samples and mucosal substrates (benthic
organisms) due to the different nature of the samples. Genetic material from water samples
are harder to capture due to degradation in the water, filters were used to capture free DNA
and optimally represent the diversity present. FastDNA® Spin kit for Soil (MP Biomedicals)
can be used to capture genetic material from environmental samples efficiently (Eichmiller et
al. 2016). DNeasy® PowerSoil® Kits can be used with minimal material to account for

inhibitors present in the samples (Rosado et al. 2019)

16S rRNA gene sequencing of microbial communities

A total 245 samples were sequenced, including 4 ‘blank’ samples free of sample
material as negative controls. DNA concentration was measured using a Qubit 4.0 fluorometer
(Thermo Fisher Scientific Inc.). Using 16S rRNA gene primers F515/R806 (forward: 5
GTGCCAGCMGCCGCGGTAA 3, reverse: 5 GGACTACHVGGGTWTCTAAT 3’; (Caporaso
et al. 2011) with lllumina adaptors, each DNA sample was amplified for the V4 region of the
16S rRNA gene (~250 bp). These F515/R806 primers have been used previously to
characterize bacterial communities in coral reef fish (Parris et al. 2016; Chiarello et al. 2018)
including in a closely related species of cleaner fish (Elacatinus prochilos, see Xavier et al.
2019). Samples were prepared on plates, randomly assigning samples to plates.

To create the library, samples where multiplexed using the dual-indexing sequencing
strategy of Kozich et al. (2013) and PCR was performed: 95 °C for 2 min (1 cycle), 95 °C for
20 s, 55 °C for 156 s, 72 °C for 5 min (30 cycles), and 72 °C for 10 min (1 cycle). The PCR
products were visualised using an E-Gel with SYBR safe DNA Gel Stain 2% (Life
Technologies). The library was normalised using SequalPrep Normalisation Plate Kit (Life
Technologies) following the manufacture’s protocol for sequential elution. The concentration
of pooled samples in the library was determined using Kapa Biosystems Library Quantification
kit for lllumina® platform. The Agilent Bioanalyzer High Sensitivity DNA analysis kit (Agilent®)
was used to determine the sizes of the amplicons and the final library was normalised to equal
molar concentrations. Sequencing was performed in a single run on the lllumina® MiSeq
platform, using a MiSeq Reagent Kit V2 500 cycles (lllumina® MS 102-2003) targeting a depth
of 46,000 to 51,000 reads per sample. Two positive controls (ZymoBIOMICS™ Microbial
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Community Standard) and four negative controls (nuclease free water) were processed

through the entire DNA extraction and PCR amplification stages alongside the test samples.

Bioinformatic pipeline processing 16S rRNA gene data

Raw FASTAQ files were analysed using QIIME2 (release 2020.2). Reads were denoised
trimmed to 230 ensuring a minimum quality score of 25. A frequency table of Amplicon
Sequence Variants (ASVs) was built using Dada2 (Callahan et al., 2016). Taxonomy was
assigned using the SILVA 132 database (https://www.arb-silva.de/download/archive/ giime;
Silva_132) using a 99% similarity threshold. The resulting representative sequences were used
to create a phylogenetic tree using SEPP (Mirarab et al. 2012) for downstream phylogenetic
analyses. Processing of samples was carried out in RStudio 1.3.1056 (R Core Team 2018) using
the phyloseq package (McMurdie and Holmes, 2013). Using phyloseq, samples with fewer than
5000 reads were filtered and removed (two skin samples and five gut samples). Mock microbial
libraries were also removed and non-bacterial reads were filtered out by keeping all ‘bacteria’
(Kingdom level) and removing ‘mitochondria’ (Family level) and ‘Chloroplasts’ (Class level).
Singletons were removed, and samples were rarefied to 90% of the minimum sequence depth
based on rarefaction curves leaving a minimum of 5396 reads per sample. The most abundant

ASVs were plotted by selecting sequences which represented >1% of all sequences.

Statistical analysis

All statistical analysis was carried out in RStudio version 1.3.1056 (R Core Team 2018).
Measures of microbial taxonomic alpha-diversity (Shannon and Inverse Simpson) were
calculated using the phyloseq package (McMurdie and Holmes, 2013) and data were analysed
using General Linear Models (GLMs) with appropriate error distribution. Model assumptions and
fit were assessed using residual plots (as specified by Bolker et al. 2009). Best fitting model
selection was based on Akaike Information Criterion (AIC) using a backward elimination
approach and the presence of potential influential points on model outcomes were checked for
(using Cook’s D and leverage). To test the relationship between alpha diversity measures
(Shannon [Inverse Gaussian family and log link], Inverse Simpson [Inverse Gaussian family and
identity link] where included as response variables and cleaner fish station metadata (individual
station identity, site and sample type) as explanatory variables. Date of sampling was included
in the initial GLMs to test for links between diversity measures and sampling points. No effect of
sampling date was found on diversity measures and so was removed from the final models.
Prior to analysis alpha diversity measures were rescaled from zero to one using the “scales”
package (Wickham 2017): this method does not remove the variability between values, but

simply transforms data to aid model fit. Beta diversity was assessed using PERMANOVA, based
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on unweighted UniFrac indices, using the ‘adonis’ function in the R package ‘vegan’ (Dixon
2003).

Building network relationships of shared bacteria between substrates

Bipartite networks were used to visualise the association of bacteria genera within each
substrate at site level; these graphs represent interconnectedness (edges) between entities
(nodes). Nodes, here represent substrates, which included (ACDC — Algae Covered Dead Coral,
Coral — brain coral (Faviidae genera), Coral Ecosphere water — water from the immediate
surrounding of the coral, Diseased Coral — brain corals exhibiting disease, Fish - Sharknose
goby cleaner fish skin mucus, Green — green mat zoanthid, (Zoanthus pulchellus), Sea — sea
water from the three reef sites and Yellow - yellow encrusting zoanthid, Palythoa caribaeorum)
grouped by site. Nodes were coloured by substrate type and generated using a median average
proportion ASVs at genera level within each site. Edges represent shared bacterial genera
between substrates. Networks depicting microbe sharing between fish, water and substrates
were constructed using genera instead of using ASV level as using individual ASVs introduced
considerable noise. These networks were calculated in R following the graph constructor
workflow by Sedlar et al. (2016) using a 0.001 threshold of abundance of Genus level ASVs
nodes and edges were created. Output from the graph constructor workflow were then visualised
using Gephi (gephi.org, accessed November, 2021) (Bastian et al. 2009). Using Gephi,
modularity was used to detect community structure in the network. A modularity matrix is built
by determining the number of edges that fall within groups (by measure of eigenvalues — metrics
of distance) in the network, compared to a theoretical standard number of edges in an equivalent

network where edges are placed at random (Newman 2006).

Results

Microbial communities of the cleaner fish station constituents

The microbiota of 212 samples of cleaner fish and cleaner fish station benthic organisms
comprised 48,531 amplicon sequence variants (ASVs) (fish skin n = 3167, coral n = 6308,
diseased coral n = 4408, green zoanthid n = 12040, yellow zoanthid n = 1137, algae covered
dead coral (ACDC) n = 17723, coral ecosphere n = 22520 and reef water n = 4266). Note n =
33 samples did not contain sufficient reads for detailed analysis, thus were not included in
analyses (see Supplementary Materials Table 5 for full list of samples). All samples were
dominated by the common top four phyla Protobacteria, Cyanobacteria, Bacteroidetes and

Planctomycetes (Fig. 4.1). Proteobacteria had the highest relative abundance in all substrates
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(range from 30%-82%) apart from diseased coral for which Cyanobacteria had the highest
abundance at 31%.

Fish skin and yellow zoanthid had the most similar community profiles in terms of
abundance (Fig. 4.1). Fish skin were dominated by Proteobacteria (75%) and the top ten phyla
made up 98.6% of all ASVs (Actinobacteria (5.2%), Bacteroidetes (4.9%), Cyanobacteria
(3.3%), Tenericutes (2.9%), Planctomycetes (2.9%), Firmicutes (2.0%), Acidobacteria (1.6%),
Chloroflexi (0.7%), Verrucomicrobia (0.3%) and Omnitrophicaeota. Yellow zoanthid was also
dominated by Proteobacteria (82.1%) and the top ten phyla made up 99% of all ASVs
(Bacteroidetes (7.3%), Cyanobacteria (5.5%), Actinobacteria (1.4%), Planctomycetes (1.2%),
Epsilonbacteraeota (0.5%), Omnitrophicaeota (0.3%), Verrucomicrobia (0.3%), Acidobacteria
(0.2%), Patescibacteria (0.2%)).

1.00 4
Phylum
0751 B Acidobacteria B Kiritimatiellaeota
3 B Actinobacteria B Latescibacteria
s Ml Bacteroidetes B Lentisphaerae
S M Chloroflexi B Marinimicrobia (SAR406 clade)
2 Hl Cyanobacteria B Omnitrophicaeota
o 0-507 B Dadabacteria Patescibacteria
g B Deinococcus-Thermus [ Planctomycetes
3 M Epsilonbacteraeota Proteobacteria
S M Fibrobacteres Spirochaetes
o M Firmicutes Tenericutes
0.251 B Fusobacteria unidentified
B Gemmatimonadetes Verrucomicrobia

0.00

ACDC
Coral
Coral.Ecosphere.water
Diseased.Coral

Fish

Green
Sea

Yellow

Figure 4.1: Proportional abundance of top ten bacterial phyla found in each sample type:
Sharknose goby cleaner fish (Elacatinus evelynae) and associated benthic constituents of each
cleaner fish station from three reefs in Man O’War Bay, Tobago. ACDC — Algae Covered Dead
Coral, Coral — brain coral (Faviidae, genera), Coral Water (Coral Ecosphere Water) — water from
the immediate surrounding of the coral, Diseased Coral — areas of brain corals exhibiting
disease, Fish - Sharknose goby cleaner fish skin mucus, Green — green mat zoanthid, (Zoanthus
pulchellus), Sea — sea water from the three reef sites and Yellow - yellow encrusting zoonathid

(Palythoa caribaeorum).
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All substrates significantly separated from each other by measures of beta diversity
(PERMANOVA;p<0.05) see Supplementary Materials Table 4, Supplementary Fig 1 and Fig.
4.1. demonstrating that the microbial communities of all samples were significantly different
from each other. Measures of alpha diversity, Shannon and Inverse Simpson, were included
in GLMs with the following variables: date of sampling, station number, reef site (Booby,
Pirates or Turpin’s) and sample type. Both Simpson and Shannon measures were significantly
different between sample types (Inverse Simpson GLM: F=7.3683, p<0.0001; Shannon GLM:
F = 31.017, p<0.0001), while date of sampling, station number and reef site were not
significant. This difference in samples is illustrated in NnMDS analysis (Fig. 4.2) using Bray
Curtis ordination and 95% confidence ellipses. Fish and coral particularly clustered separately
and showed no overlap in ellipses. ACDC and green zoanthids also showed close connections
while coral and yellow zoanthid ellipses seemed to span all substrates. Substrates were
separated to site in ordination plots using Bray Curtis, there were no clear trends associated
with site, however the coral ecosphere water from Booby Reef clustered away from Turpin’s
and Pirates Reef. Despite this, coral mucus, which was predicted to correlate with ecosphere

water, did not show the same clustering.
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Figure 4.2: NMDS plots of microbial communities from sharknose cleaner fish (Elacatinus

evelynae) and the substrate constituents of their cleaner stations. Left: All substrates (ACDC —

Algae Covered Dead Coral, Coral — brain coral (Faviidae), Coral Water (Coral Ecosphere Water)

— water from the immediate surrounding of the coral, Disease — brain corals exhibiting disease,

Fish - Sharknose goby cleaner fish skin mucus, Green — green mat zoanthid, (Zoanthus

pulchellus), Sea — sea water from the three reef sites and Yellow - yellow encrusting zoanthid,

(Palythoa caribaecorum) with 95% confidence ellipses. Right: Three groups of benthic

constituents (Ecosphere water, Coral and Diseased Coral, and ACDC and yellow or green

zoanthids) separated by site.

Network relationships of shared bacteria between substrates

A bipartite network was used to demonstrate the relatedness between the microbial

communities with nodes represented by different substrates (Fig. 4.3 A). Modularity analysis

of this network revealed five distinct communities, firstly - fish cluster with yellow zoanthids

(Fig. 4.3 B). Within the fish-yellow zoanthid cluster, 34 bacterial genera were shared with fish

from the following phyla: Proteobacteria (41%), Actinobacteria and Bacteroidetes (12%)

followed by: Planctomycetes, Acidobacteria, Cyanobacteria, Verrucomicrobia, Acetothermia,
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Omnitrophicaeota and Patescibacteria (between 3% and 9% in descending order). The
second community cluster consisted of coral and coral water. The third community cluster
consisted to algae covered dead coral (ACDC) and green zoanthid. However, there was
crossover between some coral and diseased coral nodes representing more sharing of genera
with green zoanthid than each other. One water sample from Booby Reef and one from a

diseased coral clustered into independent communities.

Fish

Yellow Zooanthid
Diseased Coral
Coral

Green Zooanthid
ACDC

Water

Figure 4.3: Bipartate networks of shared microbial genera substrates including sharknose
goby cleaner fish mucosal samples (Elacatinus evelynae) and cleaner fish station substrates
from three different reefs in the Man O’'War Bay, Tobago. Station substrates include; (ACDC
— Algae Covered Dead Coral, Coral — brain coral (Faviidae), Coral Water (Coral Ecosphere
Water) — water from the immediate surrounding of the coral, Disease — brain corals exhibiting
disease, Fish - Sharknose goby cleaner fish skin mucus, Green zoanthid— green mat zoanthid,
(Zoanthus pulchellus), Sea — sea water from the three reef sites and Yellow - yellow encrusting
zoanthid, (Palythoa caribaecorum) A. Network showing shared bacterial genera among
substrate type. B. Modularity network depicting the substrates separating into five distinct

modules, colours represent the distinct modules allocated to the nodes.

Discussion

Together our results provide evidence for microbial sharing between sharknose goby

cleaner fish (Elacatinus evelynae) and a benthic zoanthid associated with their cleaner
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stations. To our knowledge this is the first study to test whether there are any shared genera
of bacteria between sharknose goby cleaner fish and their immediate habitat. Overall, there
was a distinct, separation between all station constituents in terms of microbial communities:
coral, diseased coral, algae covered dead coral, yellow zoanthid, green zoanthid and coral
‘ecosphere’ water. Although all microbial communities of the station were distinct, we found
shared genera between cleaners and the yellow zoanthid Palythoa caribaeorum. This result
is intriguing given that cleaners are most often observed on live corals and previously it has
been shown that fish skin microbiota is distinct from their surrounding communities (Sylvain
et al. 2020). Together, this study highlights the potential for microbe sharing between cleaner
and live benthic organisms of the cleaner station, thus furthering the importance of the coral
reef habitats microbes. Bacteria may be of functional importance to organisms and bacteria
may be shared between individuals thus conveying these functional traits..

Sharknose cleaner fish spend most of their time on their cleaning stations waiting for
clients (Whiteman and C6té 2002; Coté and Soares 2011). During this time they are mostly
found on corals, in direct contact with the coral’s mucosal layer and within the coral ecosphere,
therefore we predicted shared microbes between these three substrates. Yet shared microbes
only occurred between fish skin and the yellow zoanthid, Palythoa caribaecorum. Fish and
yellow zoanthid shared 34 genera, from 10 phyla, primarily Proteobacteria, Actinobacteria and
Bacteroidetes (for full list see Supplementary Table 6). Further, modularity clustering identified
cleaners and yellow zoanthids in the same module, independent from other substrates
including ecosphere water (see Fig. 4.3 B).

P. caribaeorum is a common mat zoanthid in the Caribbean (Kemp et al. 2006; Durante
et al. 2018), and sharknose gobies are occasionally seen resting on top of P. caribaeorum
(pers. observ.). Passive contact does not usually correlate with shared microbes: marine
animals harbour distinct communities from the surrounding water (Bik et al. 2016; Sylvain et
al. 2020) and amphibian species co-inhabiting ponds also do not share microbes (McKenzie
et al. 2012). This suggests that skin-associated microbes are not simply a reflection of the
available microbiota within the immediate surroundings of the host and that there may be a
selective mechanism for microbial acquisition. Contact between individuals can elicit microbial
changes; for example, anemone fish reared in laboratory settings showed altered microbial
compositions when fish were introduced to anemones (Pratte et al. 2018). Anemones sampled
in the wild were also found to have converged microbial functions with their anemone fish
symbiont (Titus et al. 2020). The microbial coupling and convergent microbiomes seen in the
anemone-anemone fish mutualism however is not likely driven by passive contact (Titus et al.
2020). These two mutualists have co-evolved and benefits each other through a range of

behavioural and chemical attributes; the anemone fish protects the anemone from predators,
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and in return the anemone gains a variety of nutrients (Porat and Chadwick-Furman 2005;
Cleveland et al. 2011).

P. caribaeorum is known to harbour high levels of the marine toxin palytoxin (Béress
et al. 1983; Guppy et al. 2019). Palytoxin is a highly complex and potent toxin found in several
marine species (Sharma et al. 2014; Patocka et al. 2015) though the origin of the toxin is
unknown and how Palythoa spp. acquire, or make, the toxin is still not understood (Aratake et
al. 2016). However, there is evidence for a bacterial origin, Seemann et al. (2009) found
several strains of bacteria, isolated from P. caribaeorum, which demonstrated palytoxin-like
hemolysis suggesting the ability to produce palytoxin. Additionally free-living
Cyanobacteria, Trichodesmium, also produce palytoxin (Patocka et al. 2015). In P.
caribaeorum, palytoxin is thought to provide protection defending the colony from predation
(Guppy et al. 2019). Intriguingly, there is some evidence that palytoxins could bioaccumulate
up the food chain, posing a risk to reef ecology and human consumption (Guppy et al. 2019).
Sharknose gobies are not known to consume P. caribaeorum, however Elacatinus prochilos,
a close relative of the sharknose do consume sponges and coral polyps (Arnal and Coté
2000). Therefore, consumption of P. caribaeorum by sharknose gobies cannot be ruled out as
a potential mechanism for these shared microbes.

During cleaning behaviour, cleaner fish spend a significant amount of time in direct
contact with potentially diseased clientele removing their ectoparasites, dead or damaged
tissue and mucous (Cote 2000; Grutter and Bshary 2004). Horizontal transfer of microbes
between fish has been demonstrated (Burns et al. 2017) thus contact with clients could
facilitate transfer of both pathogenic microbes and beneficial ones. E. prochilos, is thought to
exist as two ecotypes; cleaning and non-cleaning (sponge-eaters), those that clean were
found to have a significantly increased prevalence of potentially pathogenic bacteria genera
in their gut and skin microbial communities (Xavier et al. 2019). Yet despite this increased
exposure, the cleaning mutualism persists, suggesting the benefits of cleaning outweigh the
negatives of acquiring potential pathogens.

In addition to increased infection potential, some clients could predate the cleaner
(Darcy et al. 1974; Cote 2000). Cleaners are small fish with very little physical protection and
although their mutualistic cleaning behaviour affords them protection from predation to some
extent (Cheney et al. 2008; Cheney 2013), it has also been proposed that sharknose gobies
may be toxic, similar to their close relatives (Colin 1975; Lettieri and Streelman 2010). Toxins
have been found in Gobiodon spp. (see Noguchi and Hashimoto 1973) and are thought to
potentially be secreted from cells in the skin (Hashimoto et al. 1974), although this is not
confirmed. Their striped colouration may both signal cleaning behaviour and be an aposematic
cue (Lettieri & Streelman, 2010). Toxins such as tetrodotoxins cause paralysis through

disruption of nerve to muscle signalling (Narahashi 2008). Though the chemical nature of
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Elactinus spp. are unknown, Elacatinus individuals proved to be “distasteful” to predators and
caused hyperventilation after consumption (Tuttle et al. 2021). The origin of toxins in many
species is unresolved, however microbial origins have been proposed for tetrodotoxin
synthesis in many species (Chau et al. 2011; Li et al. 2020). Further, some animals can
sequester chemical defences through consuming organisms which harbour toxins (Hay and
Fenical 1996). For example, the Spanish dancer nudibranch Hexabranchus sanguineus
consumes sponge (Halichondria spp.) which contains oxazole macrolides. The nudibranch is
then able to modify these macrolides and concentrate them into its dorsal mantel and eggs
where they act as defence against predators (Hay and Fenical 1996; Hines and Pawlik 2012).
If cleaners were able to sequester palytoxin, or microbes which produce palytoxin, during their
contact (or potential consumption) with P. caribaecorum the toxin could be the source of the
cleaners “distastefulness”.

Evidence for a host’s ability to preferentially select their bacterial communities through
genetics and immunity is increasing (Browne et al. 2017). Further, there is surprising evidence
that hosts may also actively control their symbiont populations (Ezenwa et al. 2012), thus
suggesting that sharknose gobys may be able to actively play a role in acquiring specific
microbes. Several squid species (Sepiolidae and Cephalopoda spp.) harbour bioluminescent
bacteria (Vibrio and Photobacterium) in a specialised cavity lined with epithelial cells called a
light organ (Herring 1977; Jones and Nishiguchi 2004). The bioluminescent capacity of the
Hawaiian bobtail squid Euprymna scolopes and its commensal bacteria, Vibrio fischeri, has
been extensively studied (McFall-Ngai and Ruby 1991). Upon hatching, the squid ventilates
seawater through pores into their light organs where only V. fischeri can establish (Nyholm
and Nishiguchi 2008). The bioluminescent activity of the symbiont follows cyclic fluctuations
in accordance with circadian rhythms of the squid host which may be regulated by oxygen
flow (which is needed to catalyse the reaction producing the luminescence, and regulation
in leiognathid fishes has been previously suggested by McFall-Ngai (1991) to the symbionts.
This suggests that the squid host may be able to regulate the activity of the symbiont
(Boettcher et al. 1996). Few examples of such microbial acquisitions pathways exist, more
research should focus on microbe acquisition, including the pathways relevant to the
sharknose goby.

Access to mutualistic symbionts is an underappreciated benefit to group living
(Lombardo 2008). Social insects living together offer a unique demonstration of how shared
microbes can be beneficial to hosts (Lombardo 2008; Koch and Schmid-Hempel 2011). Apis
mellifera worker bees initially lack gut bacteria and acquire their microbes in part from other
members of the hive, faecal material and exposure to hive components (Powell et al. 2014).
Without this microbial transmission bumblebees are more susceptible to Crithidia bombi, a

virulent gut parasite. Affording such protection, the microbiota may be considered as a host’s
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extended immune phenotype (Koch and Schmid-Hempel 2011). Sharknose gobies can be
found living individually on corals or in groups, up to 9 cleaners were found on one station
used in this study (Dunkley et al. 2020; Whittey et al. 2021). In an eight-year study, cleaner
local abundance (number of cleaners at a station) was only significant in predicting cleaning
during one of these years of sampling (Dunkley et al. 2020). Further, overall cleaner local
abundance was not as significant as other variables relating to client identity and abundance.
This suggests that cleaner number in cleaning behaviour may be context dependent, however
is not likely to be a fundamental predictor of cleaning behaviour (Dunkley et al. 2020). Thus,
group living in cleaners is likely not essential to cleaning behaviour, but effects regarding
microbiota has not been considered and need further exploration.

Mutualistic relationships are ubiquitous in nature and have facilitated numerous
ecological functions and inter-species symbioses (Meyer-Abich 1943; Aanen and Hoekstra
2007; Bronstein 2015). Indeed, symbiotic relationships are fundamental to biological systems
(Gilbert et al. 2012) and microorganisms are emerging as key players in maintaining reef
health (Vanwonterghem et al. 2020). Meta-organisms, such as coral or zoanthid holobionts
do not exist in isolation but are nested within communities of other holobionts and are therefore
a part of a larger marine environment (McFall-Ngai et al. 2013) therefore impacts on corals
and their microbiota may affect the system at reef scale (Hoegh-Guldberg et al. 2019;
Vanwonterghem and Webster 2020). Here, we show that the cleaner fish microbiota although
distinct from the microbial communities found at the station, do share some microbial taxa with
the yellow mat zoanthid. This study has provided evidence for potential inter-species
horizontal transfer of microbes however full sequencing of microbial taxa is needed to confirm
the same strains are shared between individuals. Although the transmission route, and the
benefits for this microbe sharing is unclear we suggest that cleaners may actively seek out
beneficial microbes for protection. We suggest further research into the association of
cleaners with the yellow mat zoanthid and to investigate the nature of cleaner fish
‘distastefullness’ as proposed by Tuttle et al. (2021). Given this highly complex and integrated
system it is timely to investigate these nested microbial ecosystems using metagenomics to
understand their functions so that we might predict not only how they will function in future but
also how we then might be able to harness these functions to help coral reefs
(Vanwonterghem and Webster 2020; Bell et al. 2018).
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Chapter 5

Microbiota of the Caribbean cleaner fish,
the sharknose goby (Elacatinus evelynae)

Abstract

The sharknose goby (Elacatinus evelynae) is a dedicated cleaner fish, gaining all its
nutrition from cleaning interactions with its clients. During these cleaning events, the cleaner
is inadvertently exposed to numerous potentially parasitised individuals in the form of client
fish species. Despite the benefits of this feeding strategy, the cleaner fish potentially risks high
transmission potential from the parasites and pathogens of the client fish. Given the
importance of skin microbiota in fish as the first barrier of immune defence it is possible that
cleaners may harbour a diversity and composition of microbes that facilitate their protection
from parasites. Here, we quantify bacterial communities of the sharknose gut and skin, and
identify functional gene groups in these commensal communities. As in closely related
Elacatinus spp. previously studied, the skin communities were dominated by proteobacteria,
while Tenericutes and Proteobacteria dominated the gut community. We identified genes with
predicted functions involved in argine biosynthesis, which are potentially linked to the creation
of toxin precursors. Our study reveals potential further importance of the microbial
communities of cleaner fish. The diversity and function of many reef fish microbiota is unknown
and given the current threat to coral reefs there is an urgent need to further our understanding

of the complex microbial interactions on reefs.

Introduction

Coevolution between microbes and vertebrates has resulted in a highly interdependent
system where microbes live in symbiosis with these hosts (Shapira 2016). The diverse
microbial communities that live within and on their multicellular hosts provide major health
benefits (Gomez and Balcazar 2007; Hayes et al. 2010; Chung et al. 2012; Ezenwa et al.
2012; Tarnecki et al. 2017). Although it is widely accepted that microbiota are important to all
living organisms, studies of non-human animal microbiota, particularly wild animals lag behind

those of humans (Pascoe et al. 2017). Incorporating the complex environment of wild animals
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into microbial studies will help us understand the function of microbial communities in a natural
context, allowing us to further our understanding of the microbiota.

The gut microbiota has received increased attention for its association with host health,
fithess, development, nutrition acquisition and behavioural attributes (Ley et al. 2005; Ley et
al. 2008; Backhed 2011; Backhed et al. 2015; Li et al. 2016; Hajjo and Geva-Zatorsky 2020).
An animal’s skin is a unique interface affected by both host factors (mobility, cellular functions,
immunity, mucous secretion etc) and the surrounding environment (water, air, soil, other
multicellular organisms) (Chiarello et al. 2015). The skin barrier is especially relevant for
organisms inhabiting aquatic environments. Marine mammals, fish, amphibians and other
aquatic animals share their environment with a huge array of microorganisms, which they are
in direct and constant contact with (Eakins and Sharman 2010; Apprill 2017). Whereas the
outer layer of a terrestrial animals’ skin is typically dead epithelial cells (stratum corneum in
mammals; Prausnitz et al. 1993), fish skin is an immunologically active mucosal surface
(Magnadottir 2010; Salinas et al. 2011; Gomez and Primm 2021), which hosts a diverse
microbial community (Legrand et al. 2017). The skin-environment interface has high potential
for exchange of microbes, particularly in marine ecosystems, making it a dynamic and
complex environment (Gomez and Primm 2021).

Coral reefs are one the most diverse and rich aquatic environments, as hotspots of
biodiversity they support 25% of all marine species (Reaka-Kudla 1997). Coral reefs are also
rich in microbial diversity and the functions of these microbes are only just being appreciated
(Somboonna et al. 2014; Silveira et al. 2017; Somboonna et al. 2017; Vanwonterghem and
Webster 2020). Globally, millions of people rely on reefs as nutritional and socio-economic
resources (Reaka-Kudla 1997; Moberg and Folke 1999; Hoegh-Guldberg et al. 2019). Coral
fisheries are an important food source for many coastal communities and support an estimated
6 million reef fishers globally (Teh et al. 2013). Cleaner fish play a critical role in coral reef
ecosystems by providing a cleaning service in which they remove ectoparasites and dead or
damaged tissue from visiting marine organisms, termed clients (Cote 2000). Increased access
of clients to cleaners has been linked to higher body condition (Ros et al. 2011) and stress
reduction (Soares et al. 2011). ‘Dedicated’ cleaners gain nutrition exclusively from cleaning
(Vaughan et al. 2017) and therefore come into direct contact with a number of different client
species (e.g. Dunkley et al. 2019; Cote 2004). Few cleaners have been reported as being
parasitised, with the exception of Labroides dimidiatus (see Narvaez et al. 2021), despite
clients being potential vectors of disease (Grutter 2002). Frequent contact with clients creates
the potential for microbial exchange, therefore cleaners offer a unique model system to
explore the microbial communities in a species which engages in multiple social interactions

in a wild and diverse system (Soares et al. 2019; Pereira et al. in press.).
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In other vertebrate species, a high diversity of bacteria has been associated with
increased resilience to pathogenic bacteria (van der Waaij et al. 1971; Girvan et al. 2005) and
disruptions to communities, which often lead to a loss in diversity, can cause infections by
opportunistic pathogens (Antwis et al. 2014; Bates et al. 2019). Further, specific bacteria have
been directly linked to providing protection against pathogens, for example blocking
arboviruses in mosquitoes (Moreira et al. 2009) and deterring Crithidia bombi, a virulent
eukaryotic parasite, in bumble bees Bombus terrestris (see Koch and Schmid-Hempel 2011).
Thus, the host microbiota can be considered as an extended immune phenotype (Koch et al
2011). Advances in functional gene prediction software packages, such as Picrust2, means
we can now infer gene functions of microbial communities (Douglas et al. 2020; Laroche et al.
2021). The use of inference approaches such as Picrust2 is increasing, Picrust2 has been
used to quantify core microbial communities on salamander skin (Plethodon cinereus) (see
Loudon et al. 2014), identify a potential microbial origin for toxicity in fish (li et al 2020) and
has uncovered different functional profiles in healthy and unhealthy fish (Ma et al. 2019; Ellison
et al. 2021). Further, Titus et al. (2020) demonstrated association of functional genes from
microbial communities in anemones which hosted mutualistic anemone-fish (Amphiprion
spp.), suggesting functional roles of microbes in this mutualistic relationship.

The co-evolution between wild vertebrate hosts and their microbial communities is an
emerging area of interest in wildlife ecology (Gillman 2020), given that reefs are under
considerable threats from climate change (Garpe et al. 2006; Graham et al. 2006) it is timely
to uncover these interactions, particularly in ecologically important species such as cleaner
fish. Here we compare the skin and gut microbiota from sharknose cleaner gobies from two
long-term study sites in Tobago. We predict distinct communities in skin and gut microbiota.
In line with other microbial investigations of fish microbial communities, we predict that fish
skin will harbour increased diversity of microbial constituents compared to the gut (Chiarello
et al. 2015) and that this may also be reflected in the predicted functionality of the microbes.
Additionally we predict some differences in microbial communities between the geographical

sites sampled.

Materials and Methods

Study site and sample collection

During June 2017, sharknose gobies (Elacatinus evelynae) were collected using hand
nets from two spatially distinct reefs: Booby Reef (n=12) and Pirates’ Reef (n=12) in Man O’
War Bay, Tobago (11°19.344'N, 060°33.484'W). All fish were collected from live brain

(Faviidae spp.) or star coral (Montastraea spp.) cleaner stations, each inhabited by 1-13
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individual sharknose gobies. Immediately following capture within the sea, individual fish (one
per location — station) were transferred from a net into a container of seawater in situ. On
transfer to the field laboratory, within 2 hours of capture, each fish was euthanized by
immersion in a lethal dose of MS-222 (tricaine methanesulfonate). Skin mucous samples were
collected immediately by swabbing the skin with a sterile cotton swab, which were placed into
individual Eppendorfs containing 95% molecular grade ethanol. The fish were then transferred
into individual Eppendorfs containing RNAlater®. MS-222 is known to inhibit bacterial growth
(Fedewa and Lindell 2005), however as samples were stored immediately in RNAlater® we
suggest no interference in microbial community composition. Swabs and whole fish samples
were stored at 3 °C for 3 weeks before being transported to the UK where whole fish were
frozen at -18°C and swabs kept at room temperature before processing, eight months later.
Swabs kept in ethanol were not frozen due to stability of samples when submerged in ethanol.
Prior to DNA extraction, ethanol from the skin swabs was evaporated using miVacTM. Using
a dissecting microscope, each fish was screened for macroparasites on the skin, gills and
buccal cavity, and in the gut and body cavity. Fish were photographed with a scale bar and
from these fish standard lengths were measured using Image J (Schneider et al. 2012). During

dissection, the entire gut and contents were removed for DNA extraction.

Bacterial 16S rRNA amplification and sequencing

DNA was extracted from the contents of 24 skin swabs and 24 gut samples using
DNeasy® PowerSoil® Kit (QIAGEN®, Milan, Italy) according to the manufacturer’s
instructions. DNA concentration and quality was measured in a NanoDropTM 2000
Spectrophotometer (Thermo Fisher Scientific, United States). Using 16S rRNA primers
F515/R806 (forward: 5 GTGCCAGCMGCCGCGGTAA 3, reverse: 5
GGACTACHVGGGTWTCTAAT 3’; (Caporaso et al. 2011) and lllumina adaptors, each DNA
sample was amplified for the V4 region of the 16S rRNA gene (~250 bp). These F515/R806
primers have been used previously to characterize bacterial communities in coral reef fish
(Parris et al. 2016; Chiarello et al. 2018) including in a closely related species of cleaner fish
(Elacatinus prochilos; see Xavier et al. 2019). Two positive controls (ZymoBIOMICS™
Microbial Community Standard) and four negative controls (nuclease free water) were
processed through the entire DNA extraction and PCR amplification stages alongside the test
samples. To create the library, samples where multiplexed using the dual-indexing sequencing
strategy of Kozich et al. (2013) and PCR was performed: 95 °C for 2 min (one cycle), 95 °C
for 20 s, 55 °C for 15 s, 72 °C for 5 min (30 cycles), and 72 °C for 10 min (1 cycle). The PCR
products were visualised using an E-Gel with SYBR safe DNA Gel Stain 2% (Life
Technologies). The library was normalised using SequalPrep Normalisation Plate Kit (Life

Technologies) following the manufacture’s protocol for sequential elution. The concentration
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of pooled samples in the library was determined using Kapa Biosystems Library Quantification
kit for lllumina® platform. The Agilent Bioanalyzer High Sensitivity DNA analysis kit (Agilent®)
was used to determine the sizes of the amplicons and the final library was normalised to equal
molar concentrations. Sequencing was performed in a single run on the lllumina® MiSeq
platform, using a MiSeq Reagent Kit V2 500 cycles (lllumina® MS 102-2003) targeting a depth
of 46,000 to 51,000 reads per sample.

Bioinformatic pipeline processing 16S data

Raw FASTQ files were analysed using QIIME2 (release 2018.11). Reads were
denoised trimmed to 230 ensuring a minimum quality score of 25. A frequency table of
Amplicon Sequence Variants (ASVs) was built using Dada2 (Callahan et al., 2016). Taxonomy
was assigned using the SILVA 132 database using a 99% similarity threshold. The resulting
representative sequences were used to create a phylogenetic tree using SEPP (Mirarab et al.
2012) for downstream phylogenetic analyses. Processing of samples was carried out in
RStudio 1.1.456 (R Core Team 2018) using the phyloseq package (McMurdie and Holmes,
2013). Using phyloseq, samples with fewer than 5000 reads were filtered and removed (two
skin samples and five gut samples). Note, n = 7 samples (n = 5 gut and n = 2 skin) did not
contain sufficient reads for detailed analysis. Mock microbial communities were removed and
non-bacterial reads were filtered out by keeping all ‘bacteria’ (Kingdom level) and removing
‘mitochondria’ (Family level) and ‘Chloroplasts’ (Class level). Singletons were removed, and
samples were rarefied to 90% of the minimum sequence depth based on rarefaction curves
leaving a minimum of 5396 reads per sample. The most abundant ASVs were plotted by

selecting sequences which represented >1% of all sequences.

Statistical analysis

All statistical analysis was carried out in R version 1.1.456 (R Core Team 2018).
PERMANOVA was used to test the significance of alpha diversity metrics between site and
tissue type. The R package mvabund (Wang et al. 2012) was used to compare the relative
abundance of bacterial phyla and classes between the two sites. To compare the phylogenetic
distance profiles of microbial communities between tissue type, and geographically distinct
reefs ordination plots were created using weighted and unweighted UniFrac measures.
Multivariate analyses (PCoA) of microbial community structure between sample type and site
were assessed using PERMANOVA based on UniFrac indices (weighted and unweighted)
and Bray-Curtis dissimilarity, using the ‘adonis’ function in the R package ‘vegan’. Data were
visualised using R packaged ggplot2 (Ginestet et al. 2011).

Measures of microbial taxonomic alpha-diversity (Shannon, Inverse Simpson and

Faiths phylogenetic diversity) were calculated using the phyloseq package (McMurdie and
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Holmes, 2013) and data were analysed using General Linear Models (GLMs) with appropriate
error distribution. Model assumptions and fit were assessed using residual plots (as specified
by Bolker et al. 2009). Best fitting model selection was based on Akaike Information Criterion
(AIC) using a backward elimination approach and the presence of potential influential points
on model outcomes were checked for (using Cook’s D and leverage). To test the relationship
between alpha diversity measures (Shannon [Gamma family and identity link], Inverse
Simpson [Gamma family and log link] and Faith’s Phylogenetic Distance measures [Gamma
family and identity link]) and sharknose metadata (individual station location, body length, site

and body sample type).

Microbial gene function prediction using Picrust2

Picrust2 was used to predict the functional profiles of gut and skin bacterial
communities (Douglas et al. 2020). Through inferences based on reference genomes, gene
functions of the predicted genes were inferred from MetaCyc pathways (using the online
database https://metacyc.org/). DESeq2 was used to test differential gene abundance
between in skin and gut communities (Love et al. 2014). Abundances with a difference of P <

0.05 were considered significant.

Results

Comparison of gut and skin microbial communities

No macroparasites were detected on the skin, gills nor buccal cavity of sharknose goby
cleaner fish (Elacatinus evelynae; n = 24). A total of 474,208 raw reads were generated from
microbiota 16S sequencing (97,128 for gut and 377,080 for skin). The gut microbiota of 18
individual sharknose gobies consisted of 293 amplicon sequence variants (ASVs) and 1113
ASVs from 22 skin swab samples, 103 (7.3%). of which were unclassified at genus level and
not included in downstream analysis. Tenericutes and Proteobacteria dominated the gut
samples making up 47.3% and 46.8% of the total reads, respectively, followed by
Spirochaetes (3.4%), Firmicutes (1.3%), Fusobacteria (0.7%) and Cyanobacteria (0.2%) (Fig.
5.1). In contrast, for the skin microbiota 87.6% of reads comprised Proteobacteria and the next
top 5 phyla Actinobacteria, Bacterioidetes, Tenericutes, Firmicutes and Cyanobacteria

comprising between 0.5 and 3% of the total reads (Fig. 5.1).
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Figure 5.1: Proportional abundance of the most abundant bacterial communities present
(>1%) at genera level in gut and skin of Sharknose goby cleaner fish (Elacatinus evelynae)
from two different reefs Booby Reef and Pirates Reef collected from the Man O’'War Bay,

Tobago. 7.3% of ASVs were unclassified to genus level and were removed from plots.

All alpha diversity of skin was significantly higher than gut communities for all tested
measures (Inverse Simpson GLM: 3 =0.7118, F=17.52, p<0.001; Shannon GLM: 3 = 0.2369,
F=36.118, p<0.0001; Faith’s Phylogenetic Distance, GLM: 3 = 1.5918, F = 23.384, p<0.0001).
Skin and gut microbial communities were distinct from one another for all measures (weighted
UniFrac adjusted R2 = 0.40, F139=6.10, P =0.001), unweighted UniFrac (adjusted R2 = 0.12,
F139= 5.2, P = 0.001) and Bray-Curtis (adjusted R2 = 0.36, F139= 21.34, P = 0.001;), see
Supplementary Materials Fig. 2.

Comparison of skin and gut communities between the two reef sites

There were no differences in alpha diversity associated with site (Booby vs Pirates
reefs), locations within the site nor fish body length (PERMANOVA P>0.05). No significant
differences were found in beta diversity between sites for skin and gut when using weighted
UniFrac (adjusted R2 = 0.06, F139=2.57, P = 0.08) unweighted UniFrac (adjusted R2 = 0.03,
Fi39 = 0.98, P = 0.44) and Bray-Curtis (adjusted R2 = 0.03, F13 = 1.16, P = 0.29), see
Supplementary Fig. 2. Abundances of Proteobacteria, however, were higher in cleaners gut
samples from Pirates than Booby and Tenericutes were higher in gut samples from Booby

Reef than Pirates Reef (Fig. 5.2 and Supplementary Fig 3).
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Figure 5.2: Metacoder heatmaps of read abundances from skin and gut microbial samples of
sharknose goby cleaner fish (Elacatinus evelynae) collected from two different reefs Booby
Reef and Pirates Reef in the Man O’'War Bay, Tobago to Family level. Left; differences in read
abundance in skin samples from Booby and Pirates sites combined. Right; differences in read

abundance in gut samples from Booby and Pirates sites combined.

Functional analysis of microbial genes

We identified four main classes of genes that differed significantly between skin and
gut microbial communities: “Biosynthesis”, “Degradation/Utilization/Assimilation”, “Generation
of Precursor Metabolites” and “Macromolecule Modification”. In total, 423 genes were
identified and 207 genes varied significantly between skin and gut samples, suggesting that
these two organs have functionally distinct microbial communities. In the skin, 126 microbial
genes were increased in abundance compared to gut and in 81 genes were at greater
abundance in the gut (Fig. 5.3). Of the 126 genes increased in skin communities 46% were
“Biosynthesis” and “Degradation/Utilization/Assimilation”, 6% were “Generation of Precursor
Metabolites” and 2% “Macromolecule Modification”. For gut microbial communities, most
genes increased were “Biosynthesis” at 73%, followed by
“Degradation/Utilization/Assimilation” (17%), Generation of Precursor Metabolites” (9%) and
“Macromolecule Modification” (1%). The average logfold2 increase in gene abundance in skin
microbes was 3.63 (+ 4.23, S.E.), whereas gut genes were only increased by 1.21 (£1.04,
S.E.), suggesting an overall increased microbial activity in the skin communities as opposed
to gut (Fig. 5.3). Finer scale classifications were noted for three “Biosynthesis” genes
associated with arginine synthesis (ARGORNPROST-PWY, ARGSYN-PWY, ARGSYNBSUB-
PWY) (n = 2 increased abundance in the skin, n = 1 increased abundance in gut) and one
‘Degradation” gene (increased abundance in the skin, PWY-7616) associated with

detoxification pathways.
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Figure 5.3: Plots showing the relative abundance of significantly different MetaCycle pathways
associated with microbial communitites of the skin and gut from Sharknose goby cleaner fish
(Elacatinus evelynae). Genes to the right of the dashed line are significantly increased skin
communitites, while genes to the left are significantly increased in gut communities. Genes
were identified via Picrust2 and significance between samples were determined using
DEseq2.

Discussion

This study demonstrates the phylogenetic differences in microbial communities in the
gut and skin of sharknose goby (Elacatinus evelynae) cleaner fish and shows that these
communities were consistent across two different reef localities. Our results support previous
findings that the skin and gut microbiota of wild sharknose goby cleaner fish are distinct (Xavier

et al. 2019; Pereira et al. preprint). Tenericutes and Proteobacteria dominated the gut
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communities, while the skin communities were dominated by Proteobacteria only. Further,
here for the first time, we identified 423 genes associated with microbial functions and found
that the skin microbial communities were richer in functional genes than the gut (Fig. 5.3).
Overall, the gut and skin profiles matched those found in Elacatinus spp. previously
studied in the Caribbean (Xavier et al. 2019; Pereira et al. preprint). This is unsurprising as
many vertebrate species exhibit phylosymbiosis, the phenomenon whereby the phylogeny of
the host is a key driver of microbial community composition (Boutin et al. 2014; Chiarello et
al. 2018). Phylosymbiosis suggests that there are genetically driven host factors which select
for and against particular microbial species. The environment can be an equal driver of
microbiota diversity and composition (Pérez et al. 2010; Kueneman et al. 2014; Chiarello et
al. 2019). Additionally, both environmental and genetic factors may affect the communities
associated with particular organs in different ways (Sylvain et al. 2016) and a change in one
may elicit change in another (Legrand et al. 2017). Investigating the microbiota of 114 wild
fish, Sylvain et al. (2020) identified that species-specific factors of the host significantly
modulated gut communities, while skin microbiota were primarily associated with
environmental factors including the bacterioplankton community (Sylvain et al. 2020).
Although not significant, in this study we observed higher abundance of Tenericutes in
cleaners gut communities at Booby Reef as opposed to Pirates Reef (Fig. 5.2). Further
investigation of results would include full genome comparisons of bacterial communities from
the different sites. Given the difference in site ecologies we would expect some significant
differences in microbial communities. However as reef fish abundance is stochastic, cleaner
fish microbiota may reflect the different species that cleaner fish make contact with during
cleaning behaviour. This observation is intriguing as this is similar to the community
assemblages in the non-cleaning ecotype of the broadstripe cleaner fish (Elacatinus prochilos)
sampled in Barbados (Xavier et al. 2019). The non-cleaning ecotype of E. prochilos, which
are sponge dwellers also harboured higher abundance of Tenericutes compared to the
cleaning ecotype (Xavier et al. 2019). Certainly, the sharknose gobies (E. evelynae) sampled
in this study are prolific cleaners (Dunkley et al. 2019a; Dunkley et al. 2019b; Dunkley et al.
2020; Whittey et al. 2021). However, whether the observed difference in tenericutes
abundance between sites is the result of host genetics or ecology, including behaviour and
diet, is not clear. The cleaning broadstripe cleaning goby ecotype was found to harbour a
greater prevalence of potentially pathogenic bacteria than its non-cleaning ecotype (Xavier et
al. 2019), but genus-level identification does not necessarily identify pathogenicity (Gomez
and Primm 2021). In the current study, we found no evidence for virulent nor pathogenic genes

in the microbial community functional profiling of gut and skin communities of the sharknose

goby.
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During cleaning interactions, cleaners can remove ectoparasites such as gnathiids
from clients at a rate that significantly decreases gnathiid abundance (Grutter 1996). Although
an essential food source to cleaners, clients are thought to be potential vectors for disease
transmission, including parasites (Xavier et al. 2019). Although rarely reported, cleaners can
indeed become infected with parasites themselves (Jones et al. 2004). In aquaculture,
cleaners became infected by pathogenic Aeromonas salmonicida demonstrating the
transmission potential of parasites during close contact (Treasurer and Leider 1994). Wild
cleaner wrasse (Labroides dimidiatus) collected from the Great Barrier Reef were parasitised
by 12 species of parasites from eight groups; five ectoparasites and three endoparasites
(Narvaez 2021). In our study, however we found no evidence of either ecto- or endoparasites.
The fish in both studies were caught using similar methods, with nets; however, in our study
fish were euthanised with MS222 prior to being preserved in RNAlater, although there is
currently no evidence to support that this would affect parasite detection, the level of fish
handling does and therefore could have affected the lack of parasites found on the samples.
Surprisingly, macroparasites are often overlooked (Poulin et al. 2016), despite making up over
40% of all biodiversity (Hatcher and Dunn 2011) and are thought to be highly prevalent on
coral reefs (Justine 2010; Bernal et al. 2015; Sikkel et al. 2019). They play active roles in food
webs (Kuris et al. 2008) and cause significant adverse effects to their hosts (Jones and Grutter
2005; Grutter et al. 2018) ranging from increased stress (Triki et al. 2016) and wounds (Honma
and Chiba 1991) to host death (Mugridge and Stallybrass 1983). Thus, sharknose goby
consuming parasites whilst maintaining close contact with infected individuals but not
themselves being heavily parasitised suggests that they have some specialised mechanism
of withstanding infection.

Fish skin is a highly active immune organ which elicits immune responses similar to
the gut of other vertebrates (Xu et al. 2013). The immune response of vertebrates is to a large
extent orchestrated by microbial commensals (Gomez et al. 2008; Gomez et al. 2013; Xu et
al. 2013). Indeed, the skin microbiota of fish is often considered an extended immune
phenotype (Koch and Schmid-Hempel 2011). Thus, the cleaner fish skin microbiota may play
a functional role in resistance to parasitism. All measures of microbial diversity were higher in
the skin of cleaner fish than gut and the functional analysis of the microbial communities
identified 126 bacterial genes which were increased in the skin community of fish compared
to gut communities, providing evidence of a highly productive and metabolically important
environment. In addition, using Picrust2, Li et al. (2020) identified pathways relating to the
production of arginine were significantly enhanced in toxic puffer fish as opposed to non-toxic
puffer fish. Although not confirmed, arginine has been proposed as a precursor in the
synthesis of tetrodotoxin. Here we found three arginine biosynthesis genes, two of which were

present at significantly higher rates in the gut and another at a higher rate in the skin.
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Additionally, we found one gene with a high abundance in the skin as opposed to the gut,
associated with detoxification pathways. The presence of detoxification pathways may be an
indication of a ‘coping’ mechanisms by bacteria to co-habit toxic forming bacteria. The
advantages of harbouring toxins are not known for sharknose goby, toxins could deter
predation by clients or third-party species, but may also deter parasites. Further research on
sharknose goby parasites including the use of molecular detection (e.g. 18s metataxonomics)
should be used to further understand the prevalence of parasites in this species.

The role of the microbiota in host behaviour can range from social signalling and mate
preference (Dicentrarchus labrax) (Sharon et al. 2010), (Crocuta crocuta) (Theis et al. 2012),
metamorphosis (Hydroides elegans) (Huang et al. 2012), regulating emotional behaviour (Mus
musculus) (Bravo et al. 2011; Heijtz et al. 2011), attractiveness to parasites (Mus musculus
(Verhulst et al. 2011) and pathogen defence (Apis mellifera) (Engel et al. 2012). Given this
interaction between the microbiota and host behaviour (for review of multiple species see
Ezenwa et al. 2012) and knowing that cleaning interactions can be affected by behavioural
traits such as personality (Elacatinus evelynae) (Dunkley et al. 2019b), there is the potential
for microbes to in turn influence cleaning behaviour of sharknose gobies. Understanding the
microbiota of cleaner fish may help us understand the role microbes may play in this mutualism
and in social interactions (Soares et al. 2018).

Most microbial communities in coral reef fish have not been described (Parris et al.
2016). Coral reefs are currently threatened by multiple anthropogenic stressors and the
consequences of human-mediated perturbations on microbial communities are largely
understudied (de Melo and Sarmento 2019). Further, warm water bleaching events, which are
increasing due to climate change (Hughes et al. 2018), can disrupt host-parasite numbers on
reefs and the effects of rebounding parasite numbers are unclear, thus cleaner species, and
their parasite removal service, may prove even more valuable on future reefs (Sikkel et al.
2019). Knowledge of host microbiota, including which microbes are present and what
functionality the microbial community may confer to hosts could provide a valuable tool for
conservation and monitoring species health (Hauffe and Barelli 2019) thus microbiota
research is an important area of research. We need to further our understanding of how these
microbes function within fish communities and what is their relevance in terms of immunity
and nutritional relevance so that we might potentially be able to apply this knowledge for

conservation or for enhancing aquaculture (Tarnecki et al. 2017).
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Chapter 6

General Discussion

Summary of Chapters

The aim of this thesis was to further our understanding of species interactions on reefs
at different spatial scales, from within host to across reefs. Chapters 2 and 3 review coral reef
fish interactions with natural coral and artificial structures on reefs, while Chapter 4 and 5
investigate interactions at a microbial level by investigating the microbiota of cleaner fish
(Elacatinus evelynae) within host, and with their surrounding habitat. The importance of the
structural complexity of the cleaner fish station to cleaning behaviour was hitherto unexplored.
Chapter 2 shows that taller and more structurally complex (by fine scale vector dispersion
measures) corals are inhabited more frequently by cleaner fish than short, uniform corals.
These same morphologies of cleaning stations also promoted higher rates, durations and
frequencies of cleaning events. Cleaning events were longer at taller stations and at stations
with larger refuge sizes. Thus, Chapter 2 highlights the need for heterogeneity at a microscale
(at the level of a single coral head) to facilitate particular ecological functions such as cleaning
interactions.

Due to anthropogenic losses of coral structure, artificial reefs are being increasingly
used to replace these lost structures (Seaman 2007; Paxton et al. 2020b), however
behavioural observations of individual coral reef fish interactions with artificial structures are
scarce. Most studies which have observed fish behaviour around artificial structures focus on
existing structures: wrecks, wind or tidal turbines, cables, and oil and gas structures
(Priyadarshana et al. 2001; Jamieson et al. 2006; Williamson et al. 2021; Yoshida et al. 2021).
In these studies, ‘behaviours’ usually refer to the broader elements of fish ecology such as
fish movement including avoidance of structures (Priyadarshana et al. 2001; Jamieson et al.
2006; Williamson et al. 2021; Yoshida et al. 2021) or species distribution and presence
(Hammar et al. 2013; Viehman et al. 2015). Additionally, some studies have focused on
predation, for example coastal jetties provide a refuge for fish predators of flatback turtle
(Natator depressus) hatchlings and jetties had significantly increased predation rates
compared to those without (Wilson et al. 2019). How species interact with their habitat, and

their consequential behaviour can affect outcomes of community dynamics and ecological
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interactions (Almany 2004). Therefore, understanding the intricacies of reef fish interactions
with artificial habitat will have conservation implications. To further knowledge of fish
responses to artificial structures at a local scale, Chapter 3 investigates the interactions of
individual coral reef fish with artificial structures (fish hives). Interactions of fish with fish hives
were studied in two differing ecological settings, one existing reef and another sandy area,
reef adjacent. Fish assemblages were similar around hives and corals, but damselfish
dominated the interactions around hives and defended hives at a higher rate than natural
corals. As fish hives became covered in algae Chapter 3 suggests hives were defended at a
higher rate than live corals due to the increases surface area available for farming algae.
Chapter 4 presents a novel link between the microbial communities of E. evelynae
and the yellow encrusting zoanthid (Palythoa caribaeorum) which were shown to share 34
genera of bacteria while all other microbial communities of the cleaner station organisms were
distinct. Finally, Chapter 5 further investigates the microbiota of E. evelynae in the gut and
skin and identifies 423 genes associated with their microbial communities. Together,
Chapters 2 and 4 demonstrate the importance of the habitat to E. evelynae both structurally
and as living sources of microbial communities, while Chapter 5 suggests potential sharing of

E. evelynae skin microbiota with the microbiota associated with the habitat.

Mutualisms on coral reefs

The common theme throughout the thesis was that of species interactions and
mutualistic relationships. In Chapter 1 the importance of the habitat to the mutualistic cleaner
fish was demonstrated, showing that particular features of the coral habitat affect this
mutualism. In any mutualism, there is always outside influence from other independent
variables than constitute the context of the mutualism (Chamberlain et al. 2014; Hoeksema
2015). Context includes environmental factors and other species that may directly or indirectly
affect the mutualism (Bronstein 2015). Mutualisms are integral interactions in a much broader
web of interactions (Fontaine et al. 2011) and as such take place in the presence of other
species, referred to as third-party species (Bronstein 2015; Dunkley et al. 2020). Sharknose
goby cleaning events are largely driven by the abundance of clients and the presence of third-
party species (other reef inhabitants not taking part in the cleaning interaction)(Dunkley et al.
2020). Corals can certainly be thought of as playing a role in the environmental context of
cleaning interactions as corals shape reef fish assemblages (Kawasaki et al. 2003; Almany
2004; Gratwicke and Speight 2005; Darling et al. 2017; Ferrari et al. 2018). Corals therefore
are linked to this mutualism by providing the sharknose goby with an array of clients. However,
given the importance of the cleaner station in facilitating cleaning behaviour (Chapter 2), coral

species could also be considered as a third-party influencer in cleaning mutualisms.
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Coral structure may influence behaviour of clients and affect personality types

Different levels of complexity within habitats can affect species behaviours (Danley
2011; Church and Grant 2018). Complex habitats provide space for refuge (Hdjesjo et al.
2004; Gratwicke and Speight 2005; Graham and Nash 2013) and typically support a greater
diversity of biota (Ferrari et al. 2018) thus creating different ecological contexts and altering
the costs and benefits of particular behaviours (Grant 1993; Adams 2001). For example, the
physical construct of complex habitats can restrict an individuals’ field of view, this renders
aggressive behaviours less effective and territorial animals will avoid habitats where structures
inhibit visibilities (Eason and Stamps 1992). Additionally, aggressive behaviour of zebra fish
(Danio rerio) facilitated food acquisition more in “open”, less complex habitats as opposed to
more complex habitats (Basquill and Grant 1998). Consequently, aggressive behaviours occur
less in habitats with greater complexity (Eason and Stamps 1992; Basquill and Grant 1998).
Further, in less complex and more open habitats, bold behaviour can be rewarded through
gaining access to food or mates (Ward et al. 2004; Myhre et al. 2013). However, there may
also be less need for aggression in complex habitats due to increased resources, and in open
habitats increased aggression may also increase the likelihood of encountering predators
(Grabowski 2004; Barley and Coleman 2010; Kobler et al. 2011). Intriguingly Church and
Grant (2018) propose evidence of personalities of Atlantic salmon (Salmo salar) based on
behavioural observations of salmon in habitats of varying complexity. Salmon were captured
from habitats of varying degrees in complexity and placed in artificial open or more complex
habitats (in semi-natural environments). Salmon were more active and aggressive in open
habitats (contrary to findings from Eason and Stamps 1992; Basquill and Grant 1998),
however the original habitat of the salmon did not then predict personality types (Church and
Grant 2018). Thus the habitat heterogeneity, along with other variables such as diversity and
abundance of other species (i.e. the context), may elicit a variety of behaviours and ultimately
behavioural strategies and personality (Hojesjo et al. 2004; Brockmark et al. 2007; Church
and Grant 2018).

Sharknose goby cleaner fish exhibit a range of personality traits including activity,
boldness and exploration (Dunkley et al. 2019b). Sharknose gobies which are bolder
experience an increased rate of posing by clients whereas more active cleaners clean a lower
diversity at a lower rate (Dunkley et al. 2019b). Given that the habitat can directly determine
personality traits and behaviour (Church and Grant 2018), and that personality effects cleaning
(Dunkley et al. 2019b), it is unsurprising then that cleaners and cleaning behaviour are
associated with given coral shapes (tall and complex in shape); Chapter 2. To further
understand this interaction of habitat, behaviour and personality, we must consider structural

complexity at a reef-wide scale and suggest this be an area of future research. Additionally,
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given that mutualisms are affected by third-party species, we must also consider how the

habitat affects third party species and their behaviour.

Corals are threatened — can we artificially reproduce this habitat?

In the Caribbean, live coral cover has significantly decreased (Gladfelter 1982;
Aronson and Precht 2001) and many reefs are also overfished, resulting in a reduction of fish
stocks (Paddack et al. 2009; Vermeij et al. 2019). The extent of damage on reefs is preventing
normal ecological functioning (Graham et al. 2007; Newton et al. 2007) therefore there is an
urgent need for conservation efforts (Edwards and Gomez 2007; Kennedy et al. 2013).
Consequently, artificial structures are being deployed to enhance fisheries (Paxton et al.
2020b) and there are huge global efforts to replant corals, Bostrom-Einarsson et al. (2020),
estimates there are over 229 coral species are currently being replanted.

Some reef conservation projects, particularly artificial reef projects (as opposed to
coral nurseries) have yielded inconsistent results with regards to their success (Paxton et al.
2020b). Some artificial structures have facilitated invasive species (Airoldi et al. 2015; Castro
et al. 2021) and tyres which were widely used as an artificial reef substrate (Jensen et al.
2001), have been found to release toxic chemicals into the aquatic environment (Fenner and
Member 2006). Some of the inconsistencies regarding the overall outcome of artificial reef
projects stems from the lack of cohesiveness, such as goals of projects are often not set
(Edwards and Gomez 2007; Becker et al. 2018). The duration of monitoring artificial reefs is
also problematic as it takes years for assemblages to settle yet monitoring efforts tend to last
on average 18 months (Bostrom-Einarsson et al. 2020). In Chapter 3 the behavioural
responses of coral reef fish to fish hives were studied for over a 16-month period. Therefore,
continued monitoring of hives in future years will be necessary to further understand the long-
term responses to artificial structures.

The coral loss on reefs often results in a phase-shift, where reefs change from being
coral dominated ecosystems to algae and sponge dominated along with a change in
community structure of associated reef fauna (McManus and Polsenberg 2004; Cheal et al.
2010; Cruz et al. 2015). Farming damselfish may further perpetuate the issue by farming algae
which can hinder coral settlement, growth and survival of seeded corals in conservation
projects (Ogden and Lobel 1978; Arnold et al. 2010; White and O’Donnell 2010; Schopmeyer
and Lirman 2015; Hata et al. 2020). Effects of farming damselfish are so detrimental that their
removal has been suggested as a means of enhancing coral restoration success (Williams et
al. 2019b). However, it is important to understand that artificial reefs and their success or
failure are context dependent (Paxton et al. 2020b), and by appreciating that damsels do not

always hinder coral growth (Seraphim et al. 2020), it should be noted that removal of
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damselfish prior to nursery or artificial reef deployment may be unnecessary. In Chapter 3,
seeded elkhorn corals (Acropora palmata) established and grew despite being colonised by
farming damselfish. Chapter 3 suggests therefore that a combination of additional damselfish
habitat space when setting up coral nurseries should be considered in future conservation

efforts as opposed to damselfish removal.

Live corals offer structure, harbour essential microbes and predate parasites

Coral structure is important for many species and influences ecological process such
as predator-prey interactions (Catano et al. 2016; Pereira and Munday 2016; Richardson et
al. 2017). However, there are attributes of living corals which cannot be replicated artificially.
Corals have chemical cues which not only encourage the settlement of other corals but have
also been found to attract reef fish (Lecchini et al. 2005; Lecchini and Nakamura 2013;
Soeparno et al. 2013). Corals have been observed predating gnathiid parasites in laboratory
feeding experiments and the abundance of gnathiids were reduced on live, hard corals
compared to dead corals on the Great Barrier Reef (Paula et al. 2021). Additionally, corals
harbour an array of diverse microorganisms distinct from the surrounding sea water microbiota
(Vanwonterghem and Webster 2020), which may confer advantages to reef fish (Chapter 4).
Thus, while replication of structure is a promising mitigation strategy for coral reefs (Paxton et
al. 2020b), artificial structures alone cannot replicate corals.

There is a growing appreciation for the importance of microorganisms in maintaining
animal health (Peixoto et al. 2017; Egerton et al. 2018) and loss of corals will also result in a
loss or disruption of their associated microbiota (Vanwonterghem and Webster 2020). When
commensal microbial populations are disrupted, often causing severe negative affects to the
host (Gomez and Primm 2021). Causes of dysbiosis include antibiotic treatments (He et al.
2017; Kim et al. 2019), thermal stress (Ezzat et al. 2021), changes in diet (Tomasello et al.
2016) and ingestion of microplastics (Jin et al. 2018). With this knowledge there is an
understanding that conservation efforts must also include microorganisms (McFall-Ngai et al.
2013; Hutchins and Fu 2017; Hauffe and Barelli 2019). Given that the hosts microbiota is
dynamic and susceptible to change, how they may be affected by dysbiosis and potential
anthropogenic drivers is complex (Hernandez-Gomez 2020). Therefore, a comprehensive
baseline of microbial functions and community assemblages in functional coral reef systems
must be established. In Chapters 4 & 5 of this thesis the microbial communities of E. evelynae
and its associated habitat are quantified. While Chapter 4 reveals an intriguing relationship
between the microbial communities of E. evelynae and Palythoa caribaeorum, demonstrating
shared genera between the two, Chapter 5 reveals, for the first time microbial genes which in

other species of marine fishes are associated with the production of toxic chemicals. Further
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research needs to be undertaken to first investigate the origin of palytoxin in P. caribaeorum
and whether microbes which produce the toxin are present in cleaner fish microbiota. Many
marine organisms including Cyanobacteria produce the palytoxin and given that it is a large
and highly complex molecule, it is highly unlikely to be a chemical by-product (Seemann et al.
2009; Patocka et al. 2015; Patocka et al. 2018).

Conclusions

Anthropogenic stressors are negatively affecting biological communities at a range of
scales, from microbial communities to reef wide coral and fish assemblages (Greenspan et al.
2020). The research presented in this thesis has extended our knowledge of coral reef fish
behaviour in relation to the structural elements of their habitat both natural and artificial
(Chapter 2 & 3). Additionally, this work has furthered our appreciation of the microbial
community of the cleaner fish E. evelynae (Chapter 4) and our understanding of the
connectivity of microbial communities between reef species (Chapter 5). This research has
highlighted areas for future research for conservation interest including fish behaviour with
reef scale complexity and to pursue more robust knowledge of the functions of microbial

communities in E. evelynae.
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Supplementary Information

Supplementary Table 1: Species observed within two fish lengths of corals and artificial reef
structures (hives) and further subdivided into species observed around hives at Pirates Reef

and Booby Reef, Man O’War bay Tobago.

Species Booby Coral  All hives Pirates hive Booby hive
Baitfish X
Banded Butterflyfish X

Barracuda

x

X X

X

Blueheaded Wrasse X

X X X X

Blue Tang X
Brown Chromis
Caeser Grunt X
Clown Wrasse

Dark Damselfish
Doctorfish

Four Eyed Butterflyfish

French Grunt

X X X X X X X

X X X X X

Graysby Grouper
Gray Snapper
Honeycomb Cowfish X
Jacknife Fish
Mahogany Snapper
Ocean Surgeon X
Orange Spotted Filefish
Porcupine Fish
Princess Parrotfish
Puddingwife

Queen Parrotfish
Redband Parrotfish
Sand Diver

Scrawlled Filefish

Scorpion fish

X X X X X X X X X X X X X X X X X X X X X X

X X X X X X
X X X X X X X X X X X X X X X X X X X X X X X X X X X

X X X X X X X X

Sergeant Major X

77



Sharknose goby
Slippery Dick
Spanish Hogfish
Stoplight Parrotfish
Striped Parrotfish
Squirrel fish
Tomtate
Trumpetfish

White Spotted Filefish
Yellowfin Mojarra
Yellowtail Goatfish

Yellowtail Parrotfish

Supplementary Table 2. Substrate sampling location and details of brain corals that

constituted cleaning stations for the sharknose goby (Elacatinus evelynae). Zero indicates no

sample, and one a sample taken.

X X X X X X X X X X X X

X X X X X

X X X X X

X X X X X

x

White Mat Total
a
Brain Healthy ) encrusting samples
Reef Diseased zoanthid, Coral
coral . brain zoanthid, Algae per
location brain coral Zoanthus water
number coral Palythoa cleaning
i pulchellus
caribaeorum station

1 Booby 1 0 0 1 1 1 4

2 Booby 1 0 1 1 1 1 5

3 Booby 1 0 0 1 1 1 4

4 Booby 1 1 0 1 1 1 5

5 Booby 1 1 0 1 1 1 5

6 Booby 1 0 0 0 1 1 3

7 Booby 1 0 1 1 1 1 5

8 Booby 1 1 0 1 1 1 5

9 Booby 1 1 0 1 1 1 5

10 Booby 1 0 0 1 1 1 4

11 Booby 1 0 0 1 1 1 4

12 Booby 1 1 0 1 1 1 5
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13 Booby 1 0 0 1 1 1 4
14 Booby 1 0 0 1 1 1 4
15 Turpins 1 0 0 1 1 1 4
16 Turpins 1 0 1 1 1 1 5
17 Turpins 1 0 0 1 1 1 4
18 Turpins 1 0 0 1 1 1 4
19 Turpins 1 0 0 0 1 1 3
20 Turpins 1 0 1 1 1 1 5
21 Turpins 1 1 0 1 1 1 5
22 Turpins 1 0 0 1 1 1 4
23 Turpins 1 0 0 1 1 1 4
24 Pirates 1 0 1 1 1 1 5
25 Pirates 1 0 1 1 1 1 5
26 Pirates 1 1 0 1 1 1 5
27 Pirates 1 0 0 1 1 1 4
28 Pirates 1 0 0 1 1 1 4
29 Pirates 1 1 0 0 1 1 4
30 Pirates 1 1 0 1 1 1 5
31 Pirates 1 1 1 0 1 1 5
Total
samples
31 10 7 27 31 31 137
per
substrate
Supplementary Table 3. Substrate sampling details of ‘control’ brain corals with no
associated cleaner fish. Zero indicates no sample, and one a sample taken.
White Total
. Mat
Brain Healthy | encrusting samples
Reef . Diseased . zonathid, Coral
coral brain zoanthid, Algae per
location brain coral Zoanthus water
number coral Palythoa cleaning
] pulchellus .
caribaeorum station
1 Booby |1 1 0 1 1 1 5
2 Booby |1 1 0 1 1 1 5
3 Turpins | 1 1 0 1 1 1 5
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4 Pirates |1 1 0 1 1 1 5
5 Pirates |1 1 1 0 1 1 5
6 Pirates |1 1 0 1 1 1 5
7 Pirates |1 0 0 1 1 1 4
8 Pirates |1 1 0 0 1 1 4
Total
samples
8 7 1 6 8 8 38
per
substrate
Supplementary Table 4. PERMANOVA results between beta of diversity microbial
communities of different substrates Sharknose goby cleaner fish (Elacatinus evelynae) and
associated benthic constituents of each cleaner fish station from three reefs in Man O’'War Bay,
Tobago. ACDC - Algae Covered Dead Coral, Coral — brain coral (Faviidae), Coral Ecosphere
water — water from the immediate surrounding of the coral, Diseased Coral — brain corals
exhibiting disease, Fish - Sharknose goby cleaner fish skin mucus, Green — green mat zoanthid,
(Zoanthus pulchellus), Sea — sea water from the three reef sites and Yellow - yellow encrusting
zoanthid, Palythoa caribaeorum.
Sample
Group 1 Group 2 size Permutations | pseudo-F p-value g-value
ACDC CORAL 84 999 7.54233778 | 0.001 0.00110526
CORAL
ACDC WATER 79 999 5.18348491 | 0.001 0.00110526
ACDC DISEASE 57 999 2.96419273 | 0.001 0.00110526
ACDC FISH 75 999 14.0688407 | 0.001 0.00110526
ACDC GREEN 76 999 1.76690432 | 0.001 0.00110526
ACDC YELLOW 50 999 4.07932836 | 0.001 0.00110526
CORAL
CORAL WATER 81 999 9.7191176 | 0.001 0.00110526
CORAL DISEASE 59 999 1.18539748 | 0.08 0.08
CORAL FISH 77 999 7.01578476 | 0.001 0.00110526
CORAL GREEN 78 999 5.91975984 | 0.001 0.00110526
CORAL YELLOW 52 999 1.73467338 | 0.001 0.00110526
CORAL WATER DISEASE 54 999 4.55997744 | 0.001 0.00110526
CORAL WATER FISH 72 999 16.4598511 | 0.001 0.00110526
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CORAL WATER GREEN 73 999 5.95602112 | 0.001 0.00110526
CORAL WATER YELLOW 47 999 5.11389304 | 0.001 0.00110526
DISEASE FISH 50 999 4.44260805 | 0.001 0.00110526
DISEASE GREEN 51 999 2.53358436 | 0.001 0.00110526
DISEASE YELLOW 25 999 1.51326524 | 0.019 0.01995
FISH GREEN 69 999 12.6038724 | 0.001 0.00110526
FISH YELLOW 43 999 2.79680676 | 0.001 0.00110526
GREEN YELLOW 44 999 3.61379183 | 0.001 0.00110526
Distances to FISH
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Supplementary Figure 1: Beta diversity of microbial communities of different substrates

Sharknose goby cleaner fish (Elacatinus evelynae) and associated benthic constituents of each

cleaner fish station from three reefs in Man O’War Bay, Tobago. ACDC — Algae Covered Dead

Coral, Coral — brain coral (Faviidae), Coral Ecosphere water — water from the immediate

surrounding of the coral, Diseased Coral — brain corals exhibiting disease, Fish - Sharknose
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goby cleaner fish skin mucus, Green — green mat zoanthid, (Zoanthus pulchellus), Sea — sea

water from the three reef sites and Yellow - yellow encrusting zoanthid, Palythoa caribaeorum.

Supplementary Table 5: Top ten bacterial phyla found in each sample type, Sharknose goby
cleaner fish (Elacatinus evelynae) and associated benthic constituents of each cleaner fish
station from three reefs in Man O’'War Bay, Tobago. ACDC — Algae Covered Dead Coral, Coral
— brain coral (Faviidae), Coral Ecosphere water — water from the immediate surrounding of the
coral, Diseased Coral — brain corals exhibiting disease, Fish - Sharknose goby cleaner fish skin
mucus, Green — green mat zoanthid, (Zoanthus pulchellus), Sea — sea water from the three reef
sites and Yellow - yellow encrusting zoanthid, Palythoa caribaeorum.

m Top five phyla in descending order

Cleaner fish skin  Proteobacteria  Actinobacteria Bacteroidetes Cyanobacteria Planctomycetes
mucus

(Elacatinus

evelynae)

Brain coral
mucus

Brain coral
water

Diseased brain
coral

Proteobacteria

Proteobacteria

Cyanobacteria

Cyanobacteria

Cyanobacteria

Proteobacteria

Bacteroidetes

Bacteroidetes

Bacteroidetes

Planctomycetes

Planctomycetes

Planctomycetes

Actinobacteria

Actinobacteria

Actinobacteria

Palythoa Proteobacteria  Bacteroidetes Cyanobacteria Actinobacteria Planctomycetes
caribaeorum

Zoanthus Proteobacteria Cyanobacteria Bacteroidetes Planctomycetes  Verrucomicrobia
pulchellus

Algae covered

Proteobacteria

Cyanobacteria

Bacteroidetes

Planctomycetes

Verrucomicrobia

dead coral

Supplementary Table 6: Percentage of shared bacteria of 10 genera of bacteria shared

between cleaner fish (Elacatinus evelynae) and yellow zoanthid (Palythoa caribaeorum).

Bacteria at genera | Percentage shared
level between Fish and
Yellow Zoanthid
Proteobacteria 41.18
Actinobacteria 11.76
Bacteroidetes 11.76
Planctomycetes 8.82
Acidobacteria 5.88
Cyanobacteria 5.88
Verrucomicrobia | 5.88
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Supplementary Figure 2: PCoA plots showing beta diversity of cleaner fish (Elacatinus
evelynae) microbiota for the variables a) site; b) sample type; c) gut samples between site; d)
skin samples between site; using the weighted UniFrac, unweighted UniFrac and Bray-Curtis

beta diversity index with 95% confidence interval (Cl) ellipses.
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