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California wildfire spread derived 
using VIIRS satellite observations 
and an object-based tracking 
system
Yang Chen  1 ✉, Stijn Hantson  1,2, Niels Andela  3, Shane R. Coffield1, Casey A. Graff4, 
Douglas C. Morton5, Lesley E. Ott6, Efi Foufoula-Georgiou  1,7, Padhraic Smyth4, 
Michael L. Goulden  1 & James T. Randerson1,7

Changing wildfire regimes in the western US and other fire-prone regions pose considerable risks 
to human health and ecosystem function. However, our understanding of wildfire behavior is still 
limited by a lack of data products that systematically quantify fire spread, behavior and impacts. Here 
we develop a novel object-based system for tracking the progression of individual fires using 375 m 
Visible Infrared Imaging Radiometer Suite active fire detections. At each half-daily time step, fire 
pixels are clustered according to their spatial proximity, and are either appended to an existing active 
fire object or are assigned to a new object. This automatic system allows us to update the attributes 
of each fire event, delineate the fire perimeter, and identify the active fire front shortly after satellite 
data acquisition. Using this system, we mapped the history of California fires during 2012–2020. 
Our approach and data stream may be useful for calibration and evaluation of fire spread models, 
estimation of near-real-time wildfire emissions, and as means for prescribing initial conditions in fire 
forecast models.

Background & Summary
Fire is an integral process within the Earth system that influences ecosystem structure and atmospheric com-
position1. Climate warming, land management, and demographic trends have changed the role of fire in recent 
decades2, leading to new extremes in fire behavior that have created unprecedented environmental, societal, and 
climate impacts3,4. The distribution of fire sizes and day-to-day variations in fire behavior and fire spread rate 
are influenced by interactions between multiple weather and ecosystem processes, and it is still a challenge for 
current models to represent these complex physical and ecological processes correctly5. New observations are 
needed to characterize fire regimes (e.g., frequency, intensity, and severity) over different periods and regions, 
evaluate the impacts of fires on air quality, climate and ecosystems, and forecast fire occurrence and spread. 
While fire spread models, either with physics-based algorithms6,7 or empirical formulations8–10, are widely used 
to project the behavior of individual fires and regional ensembles, the evaluation of their performance is often 
limited by a lack of high-quality observations11.

Fire perimeter and area data were historically derived from field and aerial observations. Since the late 
1970s, satellite remote sensing instruments, particularly from Landsat, have provided an alternative, reliable 
data source for fire area and fire severity mapping12. In many early applications of satellite datasets, fire detec-
tions were often reported as a series of independent, pixel-level events on a spatial grid, which often ignored 
the spatial and temporal linkages between them. Recent studies have used ideas from object-oriented classifi-
cation and contextual growth to track the properties of individual fires using pixel-level fire data13–19 (Table 1). 
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By clustering fire pixels that are detected nearby in time and space, this type of approach maximizes the benefit 
of routine satellite observations of fires. The most widely used data in these studies are burned area products 
from mid-resolution infrared imaging sensors (e.g., Moderate Resolution Imaging Spectroradiometer, MODIS). 
However, these products are often not suitable for generating a rapid assessment of fire events. This is because a 
sustained interval of post-fire surface reflectance observations is needed in the change detection algorithm used 
for estimating burned area. Alternatively, the thermal anomaly and radiative power detected by satellites provide 
instantaneous information on the location and energy release of active fires20, which allows for the detection 
of small fires and delineation of fire events in near-real-time16,21,22. However, the spatiotemporal coverage of 

Study Region Time period
Satellite fire 
detection

Spa. 
res. Temp.res.

Geospatial 
approach (spatial, 
temporal)

NRT 
product

External 
perimeter 
required

Vector 
output Fire size Product

Lobeoda 
and Csiszar, 
200735

Northern Eurasia 2001–2009 MODIS AF 
(MOD14) 1 km Daily Spatiotemporal 

(2.5 km, 4-day) No No No All —

Archibald and 
Roy, 200919 Southern Africa 2000-2008 MODIS BA 

(MCD45) 500 m Daily Spatiotemporal 
(touched, 8-day) No No No All —

Archibald et 
al., 201336 Global 1997–2010 MODIS BA 

(MCD45) 500 m Daily Spatiotemporal 
(touched, 2-day) No No No All —

Balch et al., 
201337 The Great Basin, USA 2000–2009 MODIS BA 

(MCD45) 500 m Daily Spatiotemporal 
(touched, 2-day) No No No All —

Veraverbeke et 
al., 201438

Alaska and western 
US 2007–2012

MODIS BA 
(MCD45, 
MCD64), 
AF 
(MCD14)

500 m
1 km Daily Kriging model No Yes No Selected large 

fires —

Loepfe et al., 
201439 Europe 2001–2010 MODIS AF 

(MOD 14) 1 km Daily
Propagation 
algorithm (11 km, 
1-day)

No No No  > 2 hot spots —

Hantson et al., 
201540 Global 2002–2010 MODIS BA 

(MCD45) 500 m Daily Spatiotemporal 
(touched, 14-day) No No No All —

Oom et al., 
201641 Global 2003 MODIS BA 

(MCD45) 500 m Daily
Spatiotemporal 
(touched, 2-day, 
8-day, 14-day)

No No No All —

Frantz et al., 
201642 Southern Africa 2010 MODIS BA 

(MCD45) 500 m Daily
Spatiotemporal 
(touched, 1-day, 
3-day, 5-day)

No No No All —

Benali et al., 
201643 5 regional zones 2000–2013 MODIS AF 

(MCD14) 1 km Daily
Temporally 
constrained
clustering 
algorithm

No Yes No All —

Nogueira et 
al., 201744 Brazil savannas 2002–2009

MODIS BA 
(MCD45) 
and Fire-
CCI BA

500 m Daily Spatiotemporal 
(touched, 8-day) No No Yes (fitted 

ellipses) All —

Laurent et al., 
201818 Global 2005–2011

MODIS BA 
(MCD64) 
and MERIS 
BA

500 m
300 m Daily

Spatiotemporal 
(touched, 3-day, 
5-day, 9-day, 
14-day)

No No Yes (fitted 
ellipses)

 > 5 burned 
pixels FRY

Artes et al., 
201914 Global 2000–2018 MODIS BA 

(MCD64) 500 m Daily
Spatiotemporal 
(touched, 5-day, 
16-day)

No No No All GlobFire

Andela et al., 
201913 Global 2003–2016 MODIS BA 

(MCD64) 500 m Daily
Local minima and 
fire persistence 
thresholds

No No No All Fire Atlas

Balch et al., 
202017 CONUS 2001–2019 MODIS BA 

(MCD64) 500 m Daily Spatiotemporal 
(2315 m, 11-day) No No Yes All FIRED

Scaduto et al., 
202021 Northern California 2017–2018

MODIS AF 
(MCD14) 
and VIIRS 
AF (I-band)

500 m
375 m Daily

Three geospatial 
interpolation 
approaches

Yes Yes No  > 5000 acres —

Lizundia-
Loiola et al., 
202016

Global 2001–2018 MODIS AF 
(MCD14) 1 km Daily Spatiotemporal 

(1875 m, 4-day) No No No All —

This study California 2012–2020 VIIRS AF 
(I-band) 375 m Half-daily

Progressive 
spatiotemporal 
aggregation (LCT 
dependent spatial 
thresholds, 5-day)

Yes No Yes All FEDS

Table 1. A list of recent studies delineating fire events using satellite fire observations. AF and BA are acronyms 
of ‘Active Fire’ and ‘Burned Area’, respectively. The ‘Geospatial approach’ column includes spatial and temporal 
thresholds (shown within the parentheses) used for clustering fire pixels.
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active fire detections is incomplete as a consequence of fire spread (and sometimes fire extinction) in between 
consecutive satellite overpass times, and as a consequence of land surface masking by clouds and fire aerosols23.

Here we developed an automatic system (Fig. 1) to dynamically track the growth of all fire events at a regional 
scale, using active fire pixels recorded by the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument24. 
For each 12-hour overpass, the VIIRS active fire pixels are extracted and grouped into different fire objects 
(Fig. 2). Fire attributes and vector shapes of the fire perimeter and active fire front line are recorded in the system 
at each time step. An alpha shape algorithm delineates the fire perimeter and fills in the gaps between the active 
fire detections in consecutive time steps22. This makes it possible to dynamically track changes in shape, active 
front, and other properties for each fire in a region in near-real-time.

By applying this algorithm to VIIRS active fire detections in California, we created an object-based Fire 
Events Data Suite (FEDS) over the past 9 fire seasons (2012–2020). The FEDS contains direct serialization of all 

Fig. 1 A conceptual diagram of the fire object tracking system. For each half-daily time step (t), new active fire 
detections from VIIRS (locations and fire radiative power, FRP) are used as inputs to modify the pixel, fire and 
allfires objects. Subsequently the properties and geometries of every fire object are dynamically tracked across 
time and space, and the output data are saved in 4 layers of products (shown in different colors) with different 
data formats (Pickle, GeoPackage, NetCDF, and CSV, see Table 4 for detail).

Fig. 2 A schematic diagram of fire tracking. (a) Two idealized fire objects (Fire 1, Fire 2) at the time step t. 
Colored and grey dots represent newly detected and previously detected VIIRS active fire pixels. The brown 
segments along the fire perimeter are the active fire fronts. (b) At the next time step t + 1, new fire pixels (in 
red) are clustered (C1, C2, C3), and are used for forming a new fire object (C1 for Fire 3), or for the growth of an 
existing fire object (C2 for Fire 1). Expanded fire objects (Fire 2) are merged with an existing active fire object 
(Fire 1) if they grow close enough (due to the addition of C3). Vector shapes of the fire perimeter and active fire 
fronts for each fire object are updated at each time step.
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fire objects, core fire properties, and vector geometries at each time step, the time series of attributes for large 
fires, and year-end summary files for wildfire statistics.

The system and the dataset presented here may be of potential interest to different stakeholders and research 
communities. FEDS provides a basis for analyzing the response of wildfires to variability in climate and land sur-
face properties and for evaluating the performance of fire spread models. Specifically, the cumulative fire spread 
(over a 12-hour interval) from FEDS may inform optimization of model parameters regulating fire spread rates 
as a function of surface environmental conditions. It may also allow for more comprehensive comparisons across 
all large fires within a specific ecoregion or biome. In addition, dynamical tracking of the spatiotemporal evolu-
tion of fire perimeters provides a means (in future work) for the estimation of high-resolution fire emissions in 
near-real-time. Furthermore, this dataset can also potentially be used to support the development of machine 
learning methods that can improve the real-time prediction of the future evolution of active fires. This will be 
particularly important for risk evaluation, fire management, and air quality forecasts.

Methods
Overview. In this study, we used VIIRS active fire detections to track the dynamic evolution of all fires in 
California from 2012 to 2020 (Fig. 1). We developed an approach that has the following steps. First, after reading 
the satellite fire pixel data at each 12-hour time step, the new fire pixels are aggregated into multiple clusters using 
the fire pixel locations and an automatic clustering algorithm. These clusters are then spatially compared to exist-
ing fire objects. If a cluster is not close to any existing active fire object, we use all fire pixels within the cluster to 
form a new fire object. If a cluster is located near an existing fire object which is still active, we view the cluster as 
an extension of the existing fire. In this case, we append all pixels within the cluster to the corresponding existing 
fire object, allowing the existing object to grow. When a fire expands and gets close enough (within a pre-defined 
distance threshold) to an existing active fire object, we merge the two objects. For each time step (12 hours in this 
case for the two overpasses), we derive or update a suite of attributes and status indicators associated with each 
fire event, including pixel-level attributes of fire and surface properties, vector geometries related to the fire shape, 
and meta-attributes characterizing the entire fire object.

Data input. Satellite remote sensing instruments provide active fire detections with accurate geographical 
location and broad spatial coverage. The primary data for this fire tracking system are active fire locations and 
the fire radiative power (FRP) recorded by the VIIRS instrument aboard the Suomi National Polar-orbiting 
Partnership (Suomi-NPP) satellite24. VIIRS observes Earth’s surface twice each day in low and mid latitude 
regions, with local overpass times of approximately 1:30 am and 1:30 pm. Compared to its predecessor, the 
MODIS sensors on the Terra and Aqua satellites, VIIRS has a higher spatial resolution and can detect smaller and 
cooler fires24. Also, the VIIRS instrument provides a more consistent pixel area across the image swath25, resulting 
in more accurate estimates of active fire location. Therefore, compared with MODIS, the VIIRS active fire prod-
ucts can be used to map fire event progression with higher accuracy21. Two streams of VIIRS active fire data are 
operationally produced using a contextual fire detection algorithm24, drawing upon VIIRS moderate resolution 
band (M-band) and imaging band (I-band) reflectance and radiance data layers. In this fire tracking system, 
we used the Suomi-NPP VIIRS I-band fire location data product (VNP14IMGML, Collection 1 Version 4) that 
contains the centre location, FRP, scan angle, and other attribute fields associated with each pixel. The I-band fire 
detection product has a 375-m spatial resolution at nadir (the sub-satellite point) and an average resolution across 
the full swath of about 470 m. Theoretical estimates of fire detection efficiency for the VIIRS sensor indicate that 
during the day, VIIRS can detect 700 K fires with 50% probability that have a size of about 200 m2 (a 15 m × 15 m 
fire area)24. During night, the detection efficiency increases, and VIIRS can detect 700 K fires as small as 40 m2. 
From a fire spread tracking perspective, these detection efficiencies imply that in many instances, the area of a fire 
pixel that is covered with flaming fire combustion is several orders of magnitude smaller than the overall pixel 
size. The VNP14IMGML data, available from 2012 onwards, were downloaded from the University of Maryland 
VIIRS Active Fire website (https://viirsfire.geog.umd.edu/).

Land cover data are an additional input in the system required to classify different fire types and determine 
the spatial connectivity threshold. Here we use the U.S. National Land Cover Database (NLCD 2016)26 that is 
available from the Multi-Resolution Land Characteristics (MRLC) Consortium website (https://www.mrlc.gov/
national-land-cover-database-nlcd-2016). We aggregated the original 30-m data to match the spatial resolution 
of VIIRS active fire data, and merged the original 16 classes into several groups: ‘Water’, ‘Urban’, ‘Barren’, ‘Forest’, 
‘Shrub’, ‘Grassland’, and ‘Agriculture’. We used the 1000-hour dead fuel moisture from the high-resolution (4 km) 
gridMET product27 for the purpose of separating wildfires and management fires. This gridMET dataset was 
computed from 7–day average conditions composed of day length, hours of rain, and daily temperature and 
humidity ranges. Regularly updated gridMET data are available from the Climatology Lab website (http://www.
climatologylab.org/gridmet.html).

Other ancillary and validation datasets used in this study included a shapefile of California borders and fire 
perimeters from the California Forestry and Fire Protection’s Fire and Resource Assessment Program (FRAP) 
dataset (https://frap.fire.ca.gov/mapping/maps/).

Fire object hierarchy. Fire detections from VIIRS are dynamically tracked within the framework of a 
three-level object hierarchy (Fig. 1). The lowest level is the fire pixel object, which includes the geographical loca-
tion (latitude and longitude), the FRP value, and the origin (first assigned fire object id). The second level is the fire 
object, which includes all attributes associated with each individual fire event at a particular time step (Table 2). 
Each fire object includes one or more fire pixel objects, a unique identification number (id), and a set of attributes 
associated with the whole fire. Two types of fire attributes are derived and recorded for each fire object. The first 

https://doi.org/10.1038/s41597-022-01343-0
https://viirsfire.geog.umd.edu/
https://www.mrlc.gov/national-land-cover-database-nlcd-2016
https://www.mrlc.gov/national-land-cover-database-nlcd-2016
http://www.climatologylab.org/gridmet.html
http://www.climatologylab.org/gridmet.html
https://frap.fire.ca.gov/mapping/maps/


5Scientific Data |           (2022) 9:249  | https://doi.org/10.1038/s41597-022-01343-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

type encompasses temporal (e.g., ignition time, duration) and spatial (e.g., centroid, ignition location) character-
istics of the object as well as general properties (e.g., size, type, active status). The second type is the geometric 
information related to the fire object, including the fire perimeter, the active fire front line, and the newly detected 
fire pixel locations (stored as vectors). All fire objects in the State of California are combined to form an allfires 
object, to characterize the whole-region fire situation at a specific time step. The allfires object comprises a list of 
fire objects, and also contains meta information representing the statistics of all fires and the records describing 
fire evolution. A full list of the attributes associated with the pixel object, the fire object, and the allfires object is 
presented in Table 2.

Fire event tracking. The fire records (locations and FRPs) from the monthly VIIRS active fire location prod-
ucts (VNP14IMGML) are read into the system at each half-daily time step (roughly 1:30 am and 1:30 pm local 
time). We apply spatial and temporal filters to the data to extract active fire pixels recorded in California during 
each 12-hour time interval. We also apply quality flag filters (thermal anomaly type of ‘0: presumed vegetation fire’ 
in VNP14IMGML)) to ensure the use of only pixels likely associated with vegetation fires. The fire location and 
FRP values are used to create fire pixel objects. To speed up the calculation, the newly detected active fire pixels 
after filtering are first aggregated to specific clusters using the distances between them and an automatic cluster-
ing algorithm. In this initial aggregation algorithm, a ball tree28 is created to partition all newly detected active 
fire pixels into a nested set of hyperspheres in a 2-D space (latitude and longitude). This space partitioning data 
structure can be used to expedite nearest neighbours search29 and allow for quick cluster grouping. Here we refer 
to a cluster as a collection of pixel objects that are recorded at the same time step and are also spatially nearby. In 
the following steps, all pixels within a cluster are considered as a whole for fire merging and creation.

OBJECT TYPE VARIABLE MEANING APPROACH

Pixel
Property

t Time of detection From VIIRS active fire pixel recording time

FRP Fire radiative power From VIIRS active fire data

origin Fire id of originally assigned fire object Recorded at time of creating a new fire object using 
the pixels

Geometry loc Latitude and longitude From VIIRS active fire location data

Fire

List of pixel 
objects

pixels All pixel objects Dynamically tracked using VIIRS active fire data

newpixels All pixel objects newly detected Dynamically tracked using VIIRS active fire data

ignpixels All pixel objects formed at the time step 
of ignition Recorded at the ignition time of the fire object

flinepixels All new pixel objects near the fire line Determined from newpixels and fline

extpixels All pixel objects near the fire perimeter Determined from pixels and hull

Property

id Fire identification number Set at the time of object creation

t_st, t_ed First and last time when fire pixels are 
recorded

Recorded at the first and the last time steps when fire 
pixels associated with the fire object are detected

duration Duration of the fire Calculated from t_st and t_ed

invalid Indicator of the validity of a fire object Set to True if the fire object is merged to another 
object or classified as static fire

isactive The active status Set to True if t_inactive <  = 5 days

t_inactive Time length of inactive Determined using t_ed and current time

farea Spatial area of the fire Calculated from hull

centroid Centroid of the fire Calculated from hull

pixden Fire pixel density Calculated from pixel number and farea

meanFRP Mean FRP of the new fire pixels Calculated from newpixels

LCTmax Dominant land cover type Read from the NLCD data

stFM1000 1000-hr fuel moisture at t_st Read from the gridMET data

ftype Fire type Determined using LCTmax and stFM1000

fperim Length of fire hull perimeter Calculated from hull

flinelen Length of the active fire line Calculated from fline

Geometry
hull Vector shape of fire perimeter Derived by applying the alpha shape algorithm to all 

fire pixel locations

fline Vector shape of active fire line Calculated from hull and new fire pixel locations

Allfires

List fires All fire objects A collection of all fires at a time step

Property

t Current time step Recorded in the model

heritages Fire merging history Recorded when merging incidence occurs

fids_expanded
fids_new
fids_merged
fids_terminated

List of ids for fire objects with shape 
changes (expansion, forming, merging, 
termination)

Recorded when fire object changes occur

Table 2. List of main attributes associated with pixel, fire and allfires objects.
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We define an extended area for every existing fire object as the fire vector perimeter (see the section of 
Calculating and recording fire attributes for detail) plus a radial buffer that depends on the fire type property of 
the object. The buffer is set to 5 km for forest fires and 1 km for other fire types (shrub, crop, urban), considering 
that the fire spread rate can differ across biomes13. We then evaluate the spatial distance between the perimeters 
of a newly classified cluster and all existing active fire objects (a fire object keeps an active status if one or more 
active fire pixels associated with it are detected during the past 5 days), and calculate the shortest distance. If the 
shortest distance is smaller than the buffer of the associated existing active fire (i.e., new cluster overlaps with 
the extended area of an existing fire object), we assume all fire pixels in the new cluster are associated with the 
growth of the existing fire object at the current time step (Fig. 2). The existing fire object is updated by appending 
all fire pixel objects within the new cluster. If a newly classified cluster does not overlap with the extended area of 
any existing active fire object, we assume this is a new fire. A new fire object (by assigning a new fire id) is created 
using all fire pixel objects in the cluster.

With the addition of new fire pixels, an existing fire object may expand and touch the extended area of 
another existing active fire object. If this happens, we assume that these two existing fire objects merge into a 
single object at this time step. All fire pixels in the fire object with a higher id number (a later start date, termed 
as the ‘source fire’) are appended to the fire object with lower id number (earlier start date, termed as the ‘target 
fire’) in this case. We record the id of the target fire in a list of fire mergers, and update all attributes associated 
with this fire (Fig. 3). In order to avoid double counting, the source fire object (with all pixels being transferred 
to the target fire object) is flagged as invalid, and is excluded from statistical analysis of fire events.

Calculating and recording fire attributes. Other than individual fire pixels contained in a fire object, 
several core attributes (properties and geometries) are also dynamically updated at each time step and are used 
for fire tracking and characterization.

Important time-related attributes include the fire ignition time (the time step at which the first fire pixel 
within the fire object was detected), the fire end time (the latest time step with an active fire observation), and 
the fire duration (the time difference between the ignition time and end time). If a fire object does not have 
new active fire pixels appended during 5 consecutive days (i.e., the fire end time is more than 5 days before the 
present time step), its status is set to inactive. Once inactive, a fire object is no longer evaluated for use in future 
clustering (i.e., new active fire detections later will form new fire objects, even if they are spatially close to the 
inactive fire object).

Each fire object is assigned to a specific fire type. The fire type is identified using the major land cover type 
within the fire perimeter (Table 3). In an initial analysis, we found that prescribed fires, on average, have higher 
coarse fuel moisture levels than wildfires. Therefore, we also record the 1000-hour fuel moisture (fm1000) from 
the gridMET dataset27 for each fire object (corresponding to the ignition time step) and use this value to divide 
forest and shrub fires further to wildfire and prescribed types.

An essential step in this object-based fire tracking system is to determine the vector shape of the fire perim-
eter. In this system, we use an alpha shape30 algorithm to derive bounding polygons containing fire pixels in a 
fire object. For an alpha shape, the radius of the disks forming the curves in the polygon is determined by the 
alpha parameter α. Compared with the commonly used convex hull, the alpha shape hull is able to capture the 
irregular shapes around the fire perimeter more accurately22.

To identify the optimal values for the α parameter, we performed the following analysis. First, we derived the 
final fire perimeters for all large fires that occurred in California during the 2018 wildfire season using a set of 

Fig. 3 The time series of growth for the SCU Lightning Complex fire (2020). Panel (b) shows the fire size of 
the SCU fire (total area within the fire object perimeter) at half-daily time steps. A fraction of the fire growth 
(shown in orange) was due to the addition of newly detected fire pixels. Panel (a) shows the number of new fire 
pixels (associated with the SCU fire object) detected at each time step. The other part of the fire growth (shown 
in red) was due to the merging with existing fire objects. Panel (c) shows the number of fire pixels in the existing 
objects that were merged to the SCU fire object.
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α values ranging from 500 m to 10 km and compared the results with more refined fire perimeters from the Fire 
and Resource Assessment Program (FRAP) dataset (Fig. 4). Large magnitude α values tended to overestimate 
the total burned area, while small α values often fragmented a large fire event. We found that a value of α = 1 km 
was optimal in terms of balancing the ability of the hull to catch the boundary shape and to keep the integrity of 
a fire object. For each time step, we applied the alpha shape algorithm to all fire pixel locations associated with 
a fire object since the time of ignition. This processing step resulted in a concave hull with the shape of polygon 
or multipolygon. To account for the pixel size, we expanded the concave hull to the fire perimeter using a buffer 
size equal to half of the VIIRS nadir cross-track pixel width (187.5 m). The alpha shape algorithm does not work 
when the total number of fire pixels (npix) is less than 4. If npix equals 3, we used a convex hull algorithm and the 
same 187.5 m buffer to determine a polygon perimeter. If npix is 1 or 2, circles centered on the fire pixel location 
with radius of 187.5 m were used.

We also calculate the active front line for each fire object at each time step. The active fire front consists of the 
segments of the fire perimeter that are actively burning and releasing energy and emissions. The position of the 
active fire line is critical in evaluating the fire risk, estimating the fire emissions, and predicting fire spread. We 
derive the active portion of the fire perimeter as segments that are within a 500 m radius of newly detected fire 

DOMINANT LAND 
COVER TYPE FM-1000 FIRE TYPE

Forest
 >  = 12% Forest wildfire

 < 12% Forest management fire

Shrub, Grassland
 >  = 12% Shrub wildfire

 < 12% Shrub management fire

Agriculture N/A Agricultural fire

Urban N/A Urban fire

Water, Barren N/A Other fire

Table 3. Classification of fire types based on dominant land cover type (from the US National Land Cover 
Database) within each fire perimeter and the 1000-hr fuel moisture (FM-1000, from gridMET dataset) at the 
time of ignition.

Fig. 4 Optimization of the alpha shape parameter (α). For all large fires (final size > 4 km2) in California during 
2018, fire perimeters were estimated using VIIRS active fires and different alpha parameters. By comparing (a) 
the burned area (BA) and (b) the number of fire objects with the FRAP data, an optimal alpha parameter of 
1 km was identified for use in this study (shown in red). The vertical bars and lines show the mean and 1-std 
variability from all fires. The dashed blue lines indicate the ideal values when compared to FRAP. Panels (c)–(h) 
show the fire perimeters derived using different alpha shape parameters for two sample fires in 2018. The shapes 
with pink color are final FEDS fire perimeters derived from VIIRS active fires using the alpha shape algorithm. 
The blue shapes represent the corresponding fire perimeters from the FRAP dataset. Overlap between FRAP 
and FEDS is shown in purple.
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pixel locations. We found that this threshold allowed for a continuous projection of the active fire front in rapidly 
expanding areas of large wildfires during the 2018 fire season; this threshold may be optimized in future work to 
maximize performance metrics for fire model forecasts. The resulting active line for each fire at each time step 
has the shape of a linestring (object representing a sequence of points and the line segments connecting them), 
a multi-linestring (a collection of multiple linestrings), or a linear ring (closed linestring). Figure 5 shows an 
example map of the fire perimeters and active fire front lines on September 8 during the 2020 wildfire season.

Additional fire properties, such as the fire area and active fire line length, are also derived using these geome-
tries of the fire object (see Table 2). Note this list can be easily expanded to include more user-defined properties 
with the help of the fire object core vector data.

The allfires object contains a list of all existing fire objects at a time step. This object also records the ids of fire 
objects that have been modified (including fires newly formed, fires that expanded with new pixel additions, fires 
with pixels addition due to merging, and fires that just became invalid) at the current time step.

Creating the fire event data suite (FEDS). By tracking the spatiotemporal evolution of all fire objects 
in California, we derived a complete dataset of fire events for each calendar year (Jan 1 am – Dec 31 pm) during 
the Suomi-NPP VIIRS era (2012–2020). The dataset contains four products that represent the fire information in 
California at multiple spatial scales and from different perspectives (Fig. 1 and Table 4), ranging from the most 
detailed and memory-intensive data format (Pickle) to the most high-level format (CSV).

The first product is the direct serialization result of the allfires object at each time step (twice per day). The 
product is stored as a Pickle file31 which allows for analysis of the complex allfires object structure (including 
all attributes associated with all fire objects it contains). This file also serves as the restart file for continued fire 
tracking at any time step, which is essential for the operational mode using the near-real-time fire data. By 
restoring an exact copy of the previously pickled allfires object, any attribute in the allfires object can be dese-
rialized from the saved files. The Pickle file is the most basic data product in the dataset, and is created at each 
half-day time step.

The second product (Snapshot) represents a more accessible and self-explanatory variant of the Pickle seri-
alization product. In this product, we tabulated important diagnostic attributes for each fire and saved them in 
GeoPackage32 data files. Each GeoPackage file includes three data layers: one contains the properties and the fire 
perimeter geometry, another contains the active fire line geometry, and a third contains the new fire pixel loca-
tion geometry. This product, created at a half-daily time step, allows for a more straightforward interpretation 

Fig. 5 An example map of fire perimeters and fire active fronts in California. The map was created using the 
fire event data suite (FEDS) as of the Suomi-NPP afternoon overpass (~1:30 pm local time) of Sep 8, 2020. The 
background is the Aqua MODIS Corrected Reflectance Imagery (true color) recorded at the same day (provided 
by the NASA Global Imagery Browse Services). The active front line of a fire is shown in yellow, active fire areas 
are shown in red, and the area of inactive (extinguished) fires are shown in dark red.
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of regional fire status at a particular time step. We also created a GeoPackage file that summarizes the final fire 
perimeters and attributes for all fires during the whole study period (2012–2020).

The third product (Largefire) focuses on the temporal evolution of individual large fires with an area greater 
than 4 km2. At each time step, the time series of properties and geometries (fire perimeter, active fire line, and 
new fire pixel locations) for each of the large fires are extracted and saved to GeoPackage files. This product 
facilitates the visualization and analysis for an individual targeted fire (Fig. 6) and is particularly useful in the 
near-real-time evaluation, forecasting, and policy making.

The fourth product (Summary), which is stored as NetCDF and CSV files and created at the end of a fire sea-
son, records the all-year time series of fire statistics (including major fire attributes such as number, size, dura-
tion, fire line length, etc.) over the whole State of California. This product provides a feasible regional summary 
of the temporal evolution of fires.

PRODUCT 
NAME PURPOSE

FILES

Name Format Contents

Serialization
Full access to all attributes associated 
with all levels of fire objects at each 
time step

YYYYMMDDAP.pkl Pickle Serialization of the fire object

Snapshot
Easy access to major attributes 
associated with each fire object at 
each time step

YYYYMMDDAP.gpkg Gpkg Fire attributes and perimeter

Finalperimeter_2012-2020.gpkg Gpkg Final fire perimeters and attributes 
for all fires during 2012–2020

Largefire
Easy access to time series of major 
attributes associated with large fire 
objects

LargeFires_YYYY.gpkg Gpkg Time series of large fire attributes 
and perimeter

LargeFires_2012–2020.gpkg Gpkg
Time series of attributes and 
perimeter for all large fires during 
2012–2020

Summary Summary of regional statistics of all 
fire events within a year

fsummary_YYYY1231PM.nc NetCDF Time series of regional fire statistics

Flist_heritage_YYYY.csv CSV List of fire merging history

Flist_large_YYYY.csv CSV List of large fire ids

Table 4. Data structure of the FEDS. In the file name, ‘YYYY’ indicates the four-digit year number, ‘MM’ 
indicates the two-digit month number, ‘DD’ indicates the two-digit day number, ‘AP’ indicates the two-letter 
string of morning (‘AM’) or afternoon (‘PM’) overpasses. In each GeoPackage (.gpkg) file, there are three data 
layers, with ‘perimeter’ layer storing fire attributes and perimeters, ‘fireline’ layer storing fire active front lines, 
and ‘newfirepix’ layer storing positions of newly detected fire pixels.

Fig. 6 The spatiotemporal evolution of the Creek fire (2020). Contours and dots reflect the fire perimeters and 
newly detected fire pixels at each 12-hour time step. Data for the period of Sep 5 am–Nov 6 am, 2020 are shown.
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Potential for near-real-time (NRT) fire event tracking. While the main objective of this paper is to 
apply the object-based fire tracking system to historical VIIRS fire detections and create a retrospective multi-year 
FEDS, we note that this system has the potential to be used for tracking fire events in near-real-time, providing 
rich and valuable information for fire management and short-term risk assessment. We have experimented with 
the use of this system for NRT fire event tracking in California using the daily NRT Suomi-NPP VIIRS active 
fire detection product (VNP14IMGTDL, collection 6) as the main data source. The VNP14IMGTDL product 
is routinely produced and is publicly available at the NASA Fire Information for Resource Management System 
(FIRMS). Since the NRT product undergoes less rigorous quality assurance, we use only fires with ‘nominal’ or 
‘high’ confidence levels from the NRT product for fire tracking. Some active fire detections from the NRT data 
are potentially associated with static non-vegetation fires (e.g., fires from gas flaring in oil and gas or landfill 
industries or false detections due to reflection from solar panels) and are not the main interest for vegetation fire 
studies. To avoid the unnecessary computation associated with these static fires, we record and evaluate the fire 
pixel density for each fire object at each time step. When a small fire (<20 km2) has an exceptionally persistent fire 
signal (i.e., with cumulative fire pixel density since ignition > 20 per km2), it is considered to be a static fire and 
subsequently labelled as invalid.

Similar to the retrospective FEDS, we use the active fire detections to create an object serialization product, 
a regional snapshot GIS product, and a time series product of large fire evolution twice daily. This experimental 
NRT data will be available upon publication through a university hosted server.

Data Records
The FEDS data records for the 2012–2020 fire seasons can be accessed via the figshare data repository33.

The dataset provides four compressed files for each year (Table 4): (i) Serialization.tar.gz contains all Pickle 
(.pkl) files that store half-daily allfires objects; (ii) Snapshot.tar.gz contains GeoPackage (.gpkg) files that store 
major fire attributes and geometries at half-daily time step, as well as a GeoPackage file that store the final geom-
etry and attributes of all fires; (iii) Largefire.tar.gz contains GeoPackage files of large fire time series, and (iv) 
Summary.tar.gz include several year-end summary files in the formats of NetCDF and comma separated values 
(CSV). We recorded a total of 35337 active fire objects in California over the 2012–2020 period. The GeoPackage 
file of large fire time series includes 735 fires with a final size greater than 4 km2, and 12801 records of 12-hour 
growth increments.

Technical Validation
Comparison of the final fire perimeters with FRAP. The Fire and Resource Assessment Program 
(FRAP), established by the California Department of Forestry and Fire Protection, develops the fire perimeter 
GIS layer for public and private lands throughout California at the end of each calendar year (http://frap.fire.
ca.gov/frap-projects/fire-perimeters). The FRAP fire perimeter database is widely viewed as the most complete 
digital record of fire perimeters in California. While the main objective of this study is to track the spread dynam-
ics of individual fires and not to map the burned area precisely, a comparison of our year-end fire objects for 2018 
to the FRAP database does provide a partial validation of the ability of our algorithm to accurately classify the 
size and shape of large wildfires. Note that the fires from FRAP and our fire objects do not always have a one-to-
one match. The FEDS data recorded a much greater number of small fires. Sometimes, a single FRAP fire can 
correspond to multiple fire objects in FEDS. In the comparison, we used all fire objects that had spatial overlap 
with each FRAP fire.

Overall, the final fire perimeters for 2018 from the California FEDS agreed well with that from the FRAP 
dataset (Tables 5 and 6). The total burned areas from the two sources were similar (with a ratio of 1.091 over 
California), and the slope (Fig. 7) and accuracy (Table 6) were very close to 1. The spatial overlap of burned 
areas (two examples are shown in Fig. 4) was close, and all performance metrics (precision, recall, intersection 
over union, F1 score) varied between 0.71 and 0.93 on a per fire basis and between 0.79 and 0.93 on a regional 
basis (Table 6). Commission errors were partly due to the inclusion of unburned islands as a result of the vector 
perimeter algorithm. It is also important to note that the FRAP dataset does not capture all small fires, and this 
also contributes to the mismatch between two datasets. The agreement in size distributions of all large fires 
(Fig. 8a) suggests that the fire object approach does not have a systematic bias in grouping active fire pixels. 

FEDS: UNBURNED FEDS: BURNED SUM

FRAP: UNBURNED (TN)
40.65

(FP)
0.11

(FRAP_UB = TN + FP)
40.76

FRAP: BURNED (FN)
0.05

(TP)
0.61

(FRAP_B = FN + TP)
0.66

SUM (FEDS_UB = TN + FN)
40.70

(FEDS_B = FP + TP)
0.71

(AREA_TOTAL)
41.42

Table 5. Confusion matrix of the comparison between FEDS year-end fire perimeters and FRAP burned area in 
the State of California. Areas of comparison (in Mha) are derived using all fires occurring in California during 
2018. The FRAP data are considered as the actual class and the FEDS data are considered as the predicted class. 
TN: True Negative; FN: False Negative; FP: False Positive; TP: True Positive; FEDS_UB: Unburned area from 
FEDS; FEDS_B: Area burned from FEDS; FRAP_UB: Unburned area from FRAP; FRAP_B: Burned area from 
FRAP; AREA_TOTAL: Total land area in California.
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The inter-annual variability in the total area within the fire perimeters from this study also agreed well with the 
FRAP data (Fig. 8b,c).

Comparison of fire progressing with the NIFC event polygons. The National Interagency Fire Center 
(NIFC) Incident Feature Service provides daily polygons for some historical fire incidents in the US using multi-
ple sources of observational data. We extracted daily fire polygons for 7 large fires occurring in California during 
the 2018 fire season (https://data-nifc.opendata.arcgis.com/maps/nifc::national-incident-feature-service-2018) 
and compared the temporal progressing of the fire area with that derived in our fire object-based FEDS dataset. 
We found the daily evolution of the fire size (Fig. 9a) and spatial range (Fig. 9b) for these fires from the FEDS 
dataset agreed reasonably well with the NIFC data. For the set of 7 fires in the NIFC dataset (representing 262 
daily snapshots), performance metrics (precision, recall, intersection over union, F1 score) varied between 0.72 
and 0.95 on a per fire basis, and between 0.75 and 0.95 across the full set of fires (Table 6).

Data limitations and uncertainty. The dataset’s quality is influenced by both the uncertainty in VIIRS 
active fire detections and limitations of the algorithm we used for dynamical tracking of wildland fire perimeters.

METRICS DEFINITION

FRAP NIFC

REGIONAL PER FIRE REGIONAL PER FIRE

Ratio FEDS_B/REF_B 1.091 1.145 ± 0.403 1.198 1.298 ± 0.409

Accuracy (TP+TN)/AREA_TOTAL 0.996 — — —

Precision TP/FEDS_B 0.847 0.827 ± 0.145 0.788 0.744 ± 0.157

Recall TP/REF_B 0.925 0.923 ± 0.252 0.944 0.943 ± 0.166

Intersection Over Union (IOU) TP/(TP + FP + FN) 0.794 0.706 ± 0.212 0.753 0.725 ± 0.149

F1 score 2 * (Precision * Recall)/(Precision + Recall) 0.884 0.847 ± 0.192 0.859 0.850 ± 0.079

Table 6. Scores of FEDS fire perimeter by comparing with FRAP or NIFC data using all fires occurring 
in California during 2018. For comparison to FRAP data, only the year-end fire perimeters are used. The 
REGIONAL columns represent the agreement in the whole region of California. The PER FIRE columns 
represent the mean values and 1-σ uncertainty for comparisons with each individual large fire in the FRAP 
or NIFC dataset. In the NIFC column, we list the scores by comparing all valid fire perimeters of large fires 
shown in Fig. 9a with the afternoon (‘PM’) fire perimeters from FEDS for each day. Accuracy is only reported 
for comparisons with FRAP in the whole region of California (FRAP REGIONAL column). Area values in the 
DEFINITION column are calculated from the confusion matrix as defined in Table 5. REF_B represents area 
burned from FRAP or NIFC.

Fig. 7 Comparison of fire perimeter final sizes from the FEDS with FRAP burned area.Each dot represents a 
large fire (final size > 4 km2) occurring in California during 2018. Purple areas in inset figures show regions of 
agreement for the two example wildfires. FEDS fire perimeter generally agrees well with FRAP, but sometimes 
underestimates the burned area for fast moving grassland fires, such as the Waverly Fire.
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The VIIRS I-band fire product has a relatively high spatial resolution (375 m at nadir) and therefore has a 
more minor omission error than its predecessors (such as MODIS). But the pixel size for the VIIRS fire product 
is much larger at the edge of the image swath due to oblique scanning, which increases the uncertainty in the 
sub-pixel fire location. This may also reduce the detection efficiency, particularly for small or cool fires. Larger 
pixel areas at the edge of a scan make it more challenging to determine the actual area occupied by a VIIRS fire 
pixel. In the current algorithm, we assume the fire is located at the centre of each fire-affected pixel.

Thermal anomalies reported in the VIIRS fire location data do not always represent real fire detections. 
Occasionally, smoke plumes within the lower atmosphere can be hot enough to be classified as fire pixels. Due 
to the parallax effect, the surface geo-registration of these pixels can have a spatial discrepancy relative to the 
location of the actual fire burning on the surface, leading to incorrect determination of fire perimeter and active 
fire front line. Fire aerosols and clouds also make it difficult to detect active fires.

Fires can spread rapidly and go undetected during the time between repeat satellite overpasses. This is par-
ticularly an issue for grassland fires in windy conditions (e.g., the Waverly fire shown in Fig. 7) because low 
fuel loads limit the time an area will support flaming-phase combustion - which is more easily observed by the 
VIIRS sensor. Our algorithm assumes all areas between two consecutive fire perimeters are burned during that 
time step. This method reduces omission errors which are common in the active fire-based approaches, but 
also may misclassify unburned islands, leading to an overestimation of the burned area. Compared to previous 
studies, this issue is partly improved in our approach by using fire detections with a higher spatial resolution 
(VIIRS I-band data) and recording the fire perimeters at a higher temporal resolution (12-hour intervals). We 
compared the interior area (with a 1-km buffer) of the final perimeters from FEDS with MODIS burned area 
product (MCD64A1) for all large fires occurred in California during 2018, and estimated that 9% of area within 
the fire perimeter may be unburned islands. This is comparable to the unburned fraction (12%) derived from 
the FRAP fire perimeter34.

The accuracy of the fire identification and fire perimeters is not only limited by the quality of satellite fire 
detections but also depends on the connectivity parameters used for grouping pixels and fire objects, as well as 
the alpha shape parameter used to estimate the fire perimeter. We use land cover dependent connectivity param-
eters and optimize the alpha shape parameter (see the Methods section) in this study to improve the accuracy. 
Together, considering the spatial resolution of VIIRS observations (with a mean pixel size of ~470 m across the 
swath width), the potential for a wildfire to occupy only a small area within a VIIRS pixel (see section ‘Methods’ 
above), and additional uncertainties introduced from the use of an optimized alpha-shape parameter (Fig. 4), 
we estimate the mean uncertainty related to the spatial position of any specific perimeter location is approx-
imately ± 500 m (defined as ± 1 standard deviation). Errors may be larger in rare instances where hot smoke 

Fig. 8 Comparison of fires from FEDS and FRAP.(a) The fire size distributions are calculated from all large fires 
occurring in California during 2018. (b) Interannual variability of fire object numbers from the FEDS dataset 
over California during 2012–2020. (c) Similar to (b), but for fire burned areas. Large fires are fires with a final 
size greater than 4 km2.
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plumes (instead of surface fires) trigger the fire detection algorithm, yielding a projection of active fire locations 
onto land surfaces that may be outside the true fire perimeter.

Data completeness and scalability. Suomi-NPP was launched on October 2011, and the VIIRS active 
fire data are available since Jan 20, 2012. We applied the algorithm presented here to all fire season days and cre-
ated the Californian fire event database for 2012–2020. As mentioned before, the same method can also be used 
to create a near-real-time database for each 12-hour time step using the VIIRS NRT fire product which NASA 
regularly updates. In the future, our algorithm may allow for tracking fires at a higher temporal resolution if addi-
tional active fire observations become available with comparable spatial resolution and geolocation accuracy at 
complementary satellite overpass times.

With the rich information associated with each fire, including the fire perimeter and active fire front, an 
important next step is to extend this dataset by deriving other fire attributes by combining it with other data 
sources (e.g., land surface and meteorology).

Since the VIIRS active fire data is a global product, the system presented in this paper can be scaled up to 
quantify fire behaviour and spread rates in other regions with minor modifications. The fire tracking approach 
in the system can also be applied to other sources of active fire data. Specifically, integration of additional infor-
mation from other VIIRS sensors on NOAA 20 and JPSS 2 (planned launch in Sept 2022) will provide additional 
capability to resolve fire perimeters by providing multiple view angles and by increasing the likelihood of meas-
uring surface conditions (and active fires) in areas with extensive smoke and cloud cover.

Usage Notes
We provide example Python scripts (in SampleCode.py) to read the four types of products that comprise this 
dataset (Table 5).

The fire attributes at a time step (half-daily) can be read from the GeoPackage files using the read_gpkg 
function. The function returns a Geopandas DataFrame (GDF), with the index column representing the fire 
indices, geometry column representing vector shapes of the fire perimeter, active fire line, and the new active fire 
locations, and other columns representing other fire properties (if available).

Similarly, the time series of attributes for large fires stored in GeoPackage files can also be loaded into GDFs. 
For each large fire, the time column of the GDF spans the whole period starting from the ignition time and fire 
ending time (the last time step with active fire detection).

Fig. 9 Comparison of the temporal progression of large fires from FEDS with that from NIFC. (a) Time series 
of burning fraction (representing the size of a fire object normalized by the final sizes from each dataset) at 
each time step after ignition. FEDS data are shown in light-coloured lines and NIFC data in dark-coloured 
lines. Among the large fires occurring in California during 2018, seven fires were selected for comparison 
based on the availability of NIFC data, fire duration, and the one-to-one correspondence between two datasets 
(Sometimes a single fire object from FEDS is spatially overlapped with multiple fires from NIFC). With this plot, 
the fires are ordered from left to right from shortest duration to longest duration. Note that the NIFC daily fire 
perimeter data were only available for part of the fire duration. (b) Spatial progression of Ferguson fire (2018) 
as defined from FEDS and NIFC. For FEDS, the ‘AM’ fire perimeters are shown in solid lines and the ‘PM’ fire 
perimeters are shown in dotted lines.
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The year-end statistical summary is a self-explanatory NetCDF file and can be read into memory using the 
read_netcdf function. The time dimension spans the whole half-daily time steps (from Jan 1st am to Dec 31th 
pm) for each year. The list of fire merging history (heritage) and large fires can be read from file using the 
read_csv function.

The allfires object stored in the Pickle serialization files can be read using the read_pickle function. Properties 
related to the allfires object, as listed in Table 3, are available for extraction and evaluation. All available fire 
objects, including those associated with invalid fires, are included in the list variable allfires.fires. The indices 
in the list represent fire identification numbers (fids). The attributes associated with individual fires can be 
extracted using a specific fire id – allfires.fires[fid]. Similarly, the properties of individual active fire pixel object 
can be evaluated using allfires.fires[fid].pixels[pid], in which pid is the unique pixel id within a fire.

Code availability
The open-source Python code of the fire tracking system, as well as sample scripts for reading the dataset, are 
freely available at the figshare data repository33, along with the 2012–2020 FEDS dataset.

Versions and packages of the Python script include Numpy (1.17.5), Pandas (1.0.1), Geopandas (0.7.0), Xarray 
(0.15.0), Scipy (1.4.1), Shapely (1.7.1), Gdal (3.0.4), and Pyproj (2.5.0).
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