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Abstract

Background: Majority of research and commercial efforts have focussed on use of artificial intelligence (Al) for
fracture detection in adults, despite the greater long-term clinical and medicolegal implications of missed fractures

in children. The objective of this study was to assess the available literature regarding diagnostic performance of Al
tools for paediatric fracture assessment on imaging, and where available, how this compares with the performance of
human readers.

Materials and methods: MEDLINE, Embase and Cochrane Library databases were queried for studies published
between 1 January 2011 and 2021 using terms related to ‘fracture, ‘artificial intelligence] imaging’and ‘children’ Risk of
bias was assessed using a modified QUADAS-2 tool. Descriptive statistics for diagnostic accuracies were collated.

Results: Nine eligible articles from 362 publications were included, with most (8/9) evaluating fracture detection on
radiographs, with the elbow being the most common body part. Nearly all articles used data derived from a single
institution, and used deep learning methodology with only a few (2/9) performing external validation. Accuracy
rates generated by Al ranged from 88.8 to 97.9%. In two of the three articles where Al performance was compared to
human readers, sensitivity rates for Al were marginally higher, but this was not statistically significant.

Conclusions: Wide heterogeneity in the literature with limited information on algorithm performance on external
datasets makes it difficult to understand how such tools may generalise to a wider paediatric population. Further
research using a multicentric dataset with real-world evaluation would help to better understand the impact of these
tools.
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Key points + Strict inclusion and exclusion criteria for algorithm
development may limit the generalisability of Al tools
+ Most artificial intelligence tools for fracture detec- in children.
tion on children have focussed on plain radiographic + Al performance was marginally higher than human
assessment. readers, but not significantly significant.
« Almost all eligible articles used training, validation + Opportunities exist for developing Al tools for very
and test datasets derived from a single institution. young children (<2 years old), those with inherited

bone disorders and in certain clinical scenarios (e.g.
suspected physical abuse).
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Background

It is estimated that up to a half of all children sustain a
fracture at some point during childhood [1, 2] (~133.1
per 10,000 per annum). Fractures also represent a leading
cause for long-term disability in children [3] and are pre-
sent in 55% of children who have been physically abused
[4]. Given the differences in children’s bone appearances
on imaging compared to adults (including differences
at varying stages of bone maturation), and the different
patterns of injury (such as buckle/torus fractures, corner
metaphyseal injuries, bowing deformities), emergency
physicians, who are the frequently the first to review and
act upon imaging findings, can miss up to 11% of acute
paediatric fractures, compared to a specialist paediatric
radiologist [5—8]. Of these, the majority (7.8%) could lead
to adverse events and changes in management [8]. This is
particularly concerning given that over half (57%) of all
UK paediatric orthopaedic-related litigation cases relate
to undetected or incorrectly diagnosed injuries, costing
£3.5 million, with an average pay-out of between £28,000
and £57,000 per case [9, 10]. These results are not limited
to UK practice, with similar results from Norway [11]
and the USA [12, 13], where paediatric claims resulted in
higher indemnity paid per case compared with adults [12,
14].

One potential solution would be the use of artificial
intelligence (AI) algorithms to rapidly and accurately
abnormalities, such as fractures, on medical imaging.
Such algorithms could be useful as an interpretative
adjunct where specialist opinions are not always avail-
able. A systematic review of AI accuracy for adult long
bone fracture detection on imaging reported pooled sen-
sitivity and specificity rates of 96 and 94%, respectively
[15]. Another systematic review [16] reported that sev-
eral Al algorithms [17-21] were either as good or better
at detecting limb fractures on radiography compared to
general physicians and orthopaedic surgeons. Whilst a
minority of studies included any paediatric cases within
their training dataset for algorithm development [22, 23],
few have analysed how well these perform specifically
and solely for the paediatric population.

The objectives of this systematic review are to assess
the available literature regarding diagnostic performance
of Al tools for paediatric fracture assessment on imaging,
and where available, how this compares with the perfor-
mance of human readers.

Materials and methods

Ethical approval was not required for this retrospec-
tive review of published data. This study was registered
in PROSPERO International prospective register of sys-
tematic reviews, CRD42020197279 [24]. The updated
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PRISMA (Preferred Reporting Items for Systematic
reviews and Meta-Analyses) statement guidelines were
followed [25] (Additional file 1).

Literature review

MEDLINE (Ovid), EMBASE, Web of Science and the
Cochrane Library databases were searched for eligi-
ble articles published between 1 January 2011 and 31
December 2021 (11 years range), using database specific
Boolean search strategies with terms and word variations
relating to ‘fracture; ‘artificial intelligence; ‘imaging’ and
‘children’ The full search strategy was conducted on 1
January 2022 (Additional file 1: Tables S1-S4). A repeat
search was conducted on 18 February 2022 and again on
30th April 2022 to assess for interim publications since
the original search.

Eligibility criteria

Inclusion criteria encompassed any work investigating
the diagnostic accuracy for classification, prediction or
detection of appendicular fractures on any radiological
modality in children, using one or more automated or
artificial intelligence models. Expert radiological opin-
ion, follow-up imaging or surgical/histopathological find-
ings were all considered acceptable reference standards.
Studies were limited to human subjects aged 0—20 years,
to include adolescents. No restrictions were placed on
method of imaging, dataset size, machine vendor, type
of artificial intelligence/computer-aided methodology or
clinical setting.

Exclusion criteria included conference abstracts, case
reports, editorials, opinion articles, pictorial reviews and
multimedia files (online videos, podcasts). Articles with-
out a clear reference standard, clear subgroup reporting
(to assess whether a paediatric cohort was analysed) or
those relating to robotics or natural language process-
ing (NLP) rather than image analysis were excluded.
We excluded any animal studies and those referring to
excised bone specimens.

All articles were independently searched by two
reviewers (both paediatric radiologists with prior experi-
ence of conducting systematic reviews and meta-analy-
ses). Abstracts of suitable studies were examined, and full
papers were obtained. References from the retrieved full
text articles were manually examined for other possible
publications. Disagreements were resolved by consensus.

Methodological quality

Given the lack of quality assessment tools specifically
designed for artificial intelligence methodology [26], we
used the modified Quality Assessment of Diagnostic
Accuracy Studies (QUADAS-2) criteria [27] with con-
sideration of several items outlined from the Checklist
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for Artificial Intelligence in Medical Imaging (CLAIM)
guideline [28].
These are as follows:

(1) Patient Selection, risk of bias: consideration regard-
ing appropriate patient selection for the intended
task, collating a balanced data set, suitable data
sources, unreasonable/extensive exclusion criteria

(2) Patient Selection, applicability: how applicable/
useful the algorithm for intended usage, given the
patient selection.

(3) Index test, risk of bias: consideration of measures of
significance and uncertainty in the test;

(4) Index test, applicability: information on validation
or testing of the algorithm on external data;

(5) Reference Standard, risk of bias: sufficient detail to
allow replication of ground truth/reference stand-
ard, whether reader was blinded to clinical details;

(6) Reference Standard, applicability: appropriateness
for clinical practice.

This combined assessment using QUADAS-2 and
CLAIM has been previously employed by other authors
for systematic reviews evaluating artificial intelligence
studies [29]. Due to the low number of studies fulfill-
ing our inclusion criteria, it was decided a priori to not
exclude any studies on the basis of quality assessment
to allow as complete a review of the available literature
possible.

Data extraction and quantitative data synthesis

Two reviewers independently extracted data from the
full articles into a database (Excel, Microsoft, Redmond
WA, USA). A descriptive approach was used to synthe-
sise the extracted data. Information regarding the data-
sets in terms of the number of images, types of images,
and number of diagnostic classes within the data set was
collected and recorded. The evaluation metrics (i.e. diag-
nostic accuracy rates) used in each dataset for each study
were described. Due to the heterogeneity of data and
body parts assessed, it was planned a priori to provide a
narrative description of the results.

Results

Eligible studies

The initial search performed on 1 January 2022 yielded
362 articles, after the removal of duplicate studies. On
the basis of study title and abstract, 318 articles were
excluded or irretrievable. After review of the full text
(n=44), eight studies were eventually included [17, 30—
36]. An additional search of the medical literature on 18
February 2022 revealed one additional study. A PRISMA
flowchart is shown in Fig. 1.
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Methodological quality assessment
The risk of bias and applicability of the various studies
are outlined in Fig. 2. In two studies, there was a high
risk of bias and applicability concerns regarding patient
selection [32, 35]. In one of these [35], a 3-dimensional
ultrasound sweep of the distal radius was performed by
medical students on a ‘convenient sample’ of children
attending the emergency department with wrist inju-
ries. Patients were neither consecutive, nor randomly
sampled; therefore, it was questionable as to how gener-
alisable the study results could be. In the second study
[32], children were only included if they had a con-
firmed lower limb fracture, and were labelled as having
either normal fracture healing time or delayed fracture
healing (>12 weeks). The mechanism for follow-up
to determine fracture healing time, or the reason for
choosing a 12-week time frame, was not specified, and
furthermore it was not stated whether children with
pre-existing bone fragility disorders were included.
Almost half of all studies had unclear/moderate con-
cerns regarding applicability of patient selection (4/9,
44.4%) [31, 34, 36, 37], and most had concerns regard-
ing applicability of index test (6/9, 66.7%) [31-36]. This
was predominantly due to studies imposing strict exclu-
sion criteria in their patient selection (e.g. exclusion of
patients with healing bones, certain types of fractures,
and treatment with cast or surgical correction devices)
which would limit the application of the algorithm in
clinical practice. In four studies the risk of bias for the
reference standard was considered unclear/moderate
as the radiology readers were unblinded to the clini-
cal history, which may have influenced their report-
ing of findings and subsequent algorithm performance
[33-35]. Only two studies reported results for external
validation of their algorithm using a dataset which was
distinct to the training and validation datasets [17, 30].

Patient demographics and study setting
The list of studies included, study aims, and patient
inclusion/exclusion criteria are provided in Table 1.
Patient demographics, type of centre and ground truth/
reference levels are covered in Table 2. The majority of
the studies (5/9, 55.6%) involved assessment of paediat-
ric upper limb trauma, with three assessing the elbow
and two assessing the forearm. One study assessed any
fracture of the appendicular skeleton, and the remain-
ing three assessed trauma of the lower limb.

In three of the studies, children below the age of
1 year were not included in the study dataset and in one
study the age range was not provided. In three studies,
the gender split of the dataset was not reported, and
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Records identified from:
Medline (n = 142)
Embase (n = 132)

Web of Science (n = 126)
Cochrane Library (n = 0)

Identification

v

Studies included in review
(n=9)

Fig. 1 PRISMA flow chart for the study search and selection

v

Records removed before screening:
Duplicate records removed (n = 37)

Records screened
(n = 363) —
v
Reports sought for retrieval
g (n = 46) >
-
o v
Reports assessed for eligibility
(n = 45) >

Records excluded
Not fracture related (n = 97)
Not imaging related (n = 74)
Not Al related (n = 146)

Reports not retrieved: (n = 1)

Reports excluded
Not paediatric/ age group unclear (n = 17)
Not original research (n = 2)
Not Al computer vision related (n = 10)
Not fracture related (n = 5)
Not appendicular fracture (n = 2)

none of the studies provided details regarding the eth-
nicity or socio-economic class of the patients.

The majority of studies (8/9, 88.9%) used datasets
which were derived from the author’s own institution
(i.e. a single centre study), and analysed fractures on plain
radiography. Only one study reported the development of
an Al algorithm for fracture detection using ultrasound.
The ground truth/reference level for fracture assessment
was from the radiology report (7/9, 77.8%), the opinion of
an orthopaedic surgeon (1/9, 11.1%) and in the one study
related to ultrasound assessment, the corresponding
plain radiography report acquired within 30 days of the
ultrasound acted as the reference standard for presence
of forearm fracture.

Imaging dataset sizes

The total datasets within the articles were described in
different ways, some in terms of number of patients or
number of examinations (where each consisted of mul-
tiple images) and some in terms of the total number of

images. Datasets ranged from between 30 and 2549
patients; 55-21,456 examinations; and 226-58,817
images. Depending on the aims and objectives of each
study, some provided a breakdown of the number of
examinations (and the split between normal and abnor-
mal examinations) as well as the number of images allo-
cated to training, validation and testing. Full details are
provided in Table 3.

Imaging algorithm methodology

Technical details regarding methodology and hyperpa-
rameters used in the computer-aided/ artificial intel-
ligence algorithm development are summarised in the
Additional file 1: Table S5.

In one study, a computer-aided detection (CAD)
method was used to generate a graphical user interface
(GUI) to automatically extract/segment forearm bones
on an image, analyse the curvature and determine pres-
ence of underlying bowing/buckling fractures [36]. In
another study, a commercially available AI product
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Risk of Bias Applicability Concerns

Patient Selection
Flow and Timing

Index Test
Reference Standard

Reference Standard
Patient Selection

Index Test

Zhou, 2016

Malek, 2016
England 2018
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Choi, 2020
Starosolski, 2020
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Zhang, 2021
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Flow and Timing
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Index Test

Reference Standard
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Fig. 2 Methodological quality assessment of the included studies using the QUADAS-2 tool. Risk of bias and applicability concerns summary about
each domain are shown for each included study
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utilising a deep convolutional neural network (Rayvolve®)
[30] was employed. The remainder either developed or
re-trained existing convolutional neural networks. One
study evaluated the use of self-organising maps (SOM)
and also convolutional neural networks in the evaluation
of fracture healing [32].

In terms of neural network architecture, the com-
mercially available product (Rayvolve®) was based on
a RetinaNet architecture [30], two studies based their
neural network on the Xception architecture [33, 34]
and one study used the ResNet-50 architecture [17]. For
the remainder, the neural network architecture was not
described in the study.

Algorithm diagnostic accuracy rates

The diagnostic accuracy rates for each study are listed
according to body part and also data set (e.g. validation
or test set) in Table 4. For the most common paediatric
body part assessed (elbow), the algorithms tested on the
test dataset achieved sensitivities of 88.9-90.7%, with
specificity of 90.9-100%. The only study that evaluated
fracture detection rate for the whole appendicular skel-
eton (across multiple body parts) achieved 92.6% sensi-
tivity and 95.7% specificity [30].

In three studies, the performance of the final Al algo-
rithm was tested against independent human readers
on the same dataset [17, 31, 35]. The differences in diag-
nostic accuracy rates are provided in Table 5. England
et al. [31] reported their Al algorithm to have a margin-
ally lower diagnostic accuracy rate than a senior emer-
gency medicine trainee in detecting elbow effusions
(diagnostic accuracy 90.7% compared to 91.5%), but a
greater sensitivity (90.9% versus 84.8%). Zhang et al. [35]
reported their AI algorithm to perform better than a
paediatric musculoskeletal radiologist in detecting distal
radial fractures on ultrasound (92% diagnostic accuracy
versus 89%). Choi et al. [17] examined an Al algorithm
for supracondylar fracture detection which achieved a
greater sensitivity than the summation score of three
consultant radiologists (100% versus 95.7%). When
this algorithm used as an adjunctive measure for image
interpretation, it was able to demonstrate an improved
performance for the lowest performing of the three radi-
ologists, with sensitivity rates improving from 95.7%
(radiologist acting alone) to 100% (same radiologist with
Al assistance). Despite these slight differences in perfor-
mance across the studies, there was an overlap in the 95%
confidence intervals provided suggesting the changes
were not statistically significant.
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Discussion

Almost all published literature relating to Al assessment
for acute appendicular fractures in children is based on
radiographic interpretation, with fractures of the upper
limb (specifically the elbow) being the most common
body part assessed. Nearly all articles used training, vali-
dation and testing data derived from a single centre, with
few performing external validation. When Al tools were
compared to the performance of human readers, the
algorithms demonstrated comparable diagnostic accu-
racy rates and in one study improved/augmented the
diagnostic performance of a radiologist.

In this review, we focussed on the assessment of com-
puter-aided/artificial intelligence methods for paediat-
ric appendicular fracture detection, given that these are
the most commonly encountered fractures in an oth-
erwise healthy paediatric population (accounting for
approximately 70-99% of paediatric fractures [37-39],
with less than 5% of fractures affecting the axial skel-
eton [40-42]). Publications related to the application of
computer-aided/Al algorithms for paediatric skull and
spine fractures have been described. One developed an
AT algorithm for detection of skull fractures in children
from plain radiographs [43] (using CT head report as
reference standard) and reported high AUC values both
on their internal test set (0.922) and external validation
set (0.870), with improvements in accuracy of human
readers when using Al assistance (compared to with-
out). Whilst demonstrating proof of concept, since most
radiology guidelines encourage the use of CT over radio-
graphs for paediatric head trauma [44—46], clinical appli-
cability is limited.

In two articles pertaining to spine fractures [48, 49], the
authors applied commercially available, semi-automated
software tools designed for adults to a paediatric popula-
tion for the detection of vertebral fractures on plain radi-
ography or dual-energy X-ray absorptiometry (DEXA).
They reported low sensitivity for both software (36 and
26%) not sufficiently reliable for vertebral fracture diag-
nosis. This finding raises an important general issue
regarding the need for adequate validation and testing
of Al tools in specific patient populations, in this case
children, prior to clinical application to avoid potentially
detrimental clinical consequences. This was conducted in
the current systematic review for one commercially avail-
able product (Rayvolve®, AZMed) which demonstrated
high diagnostic accuracy rates, particularly for older chil-
dren (sensitivity 97.1% versus 91.6% for 5—18-year-olds
versus 0—4-year-olds; p<0.001). Whilst other fracture
detection products are now commercially available (e.g.
BoneView, Gleamer [49]), peer-reviewed publications of
such products to date relate only to diagnostic accuracy
rates in adults [50] (although paediatric outcomes are
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Table 3 Input data demographics and study dataset sizes, organised by publication date
Author, year  Body part Total Total dataset (exams Training set Validation set Test set
dataset and images)
(patients)
Zhou [36] Forearm 226 226 radiographs (59 226 radiographs (59  N/A N/A
bowing fractures) bowing fractures)
Malek [32] Lower limb (femur, 57 Unclear, presumed 57 39 exams 9 exams 17 exams
tibia, fibula) exams. No mention (18,50% normal; 18, (4, 44.4% normal; 5, (11,64.7% normal; 6,
of projections or total  50% abnormal) 55.6% abnormal) 35.3% abnormal)
images. (25, 50%
normal healing time;
25, 50% delayed heal-
ing time)
England [31] Elbow 882 901 lateral radio- 657 images 115images 129 images
graphs (images) (500, 76.2% normal; (82,71.3% normal; 33, (96, 74.4% normal; 33,
157, 23.8% abnormal) 28.7% abnormal) 25.6% abnormal)
Rayan [33] Elbow Not stated 21,456 exams; 58,817 20,350 exams; 55,721 1106 exams; 3096 N/A
images images images
(4966, 24% normal, (516, 47% normal,
15,384, 76% abnor- 590, 53% abnormal)
mal)
Choi [17] Elbow 810 1619 elbow exams; 1012 exams 254 examinations Temporal set: 258
3238 images (780, 77.1% normal; (196, 77.2% normal; exams
232,22.9% abnormal) 58,22.8% abnormal) (192, 74.4% normal; 66,
25.6% abnormal) Geo-
graphic set: 96 exams
(72,75.8% normal, 23,
24.2% abnormal)
Starosolski [34] Distal tibia 490 490 exams; 245,50%  Not stated Not stated 98 images (49, 50%
abnormal 245, 50% normal; 49, 50%
normal abnormal)
Dupuis [30] Appendicular skel- 2549 2634 exams; 5865 N/A N/A 1825, 69.2% normal;
eton images 809, 30.8% abnormal
exams
Zhang [35] Distal radius 30 55 x 3D ultrasound 21 sweeps (~6000 1640 image slices N/A
‘sweeps' of both images) Abnormal: selected from
wrists (injured and Normal split not 72 sweeps of 36
contralateral); Each stated patients.23, 64%
‘sweep'having ~ 382 normal; 13, 36%
image slices Overall abnormal cases 990,
19 cases of distal wrist 60% normal; 650, 40%
fracture abnormal images
Unclear how this
validation dataset was
acquired
Tsai [58] Distal tibia 124 patients 250 radiographs (177 187 radiographs 13 radiographs 50 radiographs
(35 abnor- normal, 73 abnormal)
mal, 89
normal)

available as a conference abstract on the company web-
site [51]).

Most studies in this review specifically chose to develop
and apply their Al algorithm for one specific body part,
rather than all bones of the paediatric skeleton. Taking
the commonest body part for assessment (i.e. the elbow),
dedicated algorithms yielded higher diagnostic accuracy
rates than the commercially available product for the
same body part (which was trained to detect fractures
across the entire appendicular skeleton). In this example,

the improvement in sensitivity was between 89.5 and
90.7% (for test data, using dedicated algorithms) versus
88% for the generalised tool. Whilst the difference may
be small, it could vary across other body parts which we
have insufficient dedicated algorithm information for.
It will therefore be important to better understand the
epidemiology of fractures across different population
groups, and whether algorithms that have increased diag-
nostic accuracies for certain commonly fractured body
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parts would need to be additionally implemented for cer-
tain institutes.

Another aspect highlighted by the present study
relates to patient selection, with variable inclusion and
exclusion criteria amongst the different studies, a broad
range of patient ages (with heterogeneity in bone matu-
ration and mechanisms of injury), with few assessing
fractures in children under 2 years (who are more likely
to be investigated for suspected physical abuse [52]), or
those with inherited bone disorders (e.g. osteogenesis
imperfecta). This could be due to fewer children within
these categories attending emergency departments
to provide the necessary imaging data for training Al
models, but the result is that specific paediatric popu-
lations may be unintentionally marginalised or poorly
served by such new technologies and raises potential
ethical considerations about their future usage par-
ticularly when performance characteristics are extrap-
olated beyond the population on which the tool was
developed and validated [53]. An example would be
an Al tool which could help to evaluate the particular
aspects of fractures relating to suspected physical abuse
as an adjunct to clinical practice given that many prac-
tising paediatric radiologists do not feel appropriately
trained or confident in this aspect of imaging assess-
ment [54-57]. Whilst data are limited, one study did
address the topic of using Al for identifying suspected
physical abuse through the detection of corner meta-
physeal fractures (a specific marker of abuse) [58] with
a high diagnostic accuracy. Future studies addressing
these patient populations, and with details regarding
socio-economic backgrounds of cases used for train-
ing data, would be helpful to develop more inclusive
and clinically relevant tools. Expanding the topic of
fracture assessment to address bone healing and post-
orthopaedic complications may be another area for fur-
ther development given that most articles also excluded
cases with healing fractures, presence of casts or
indwelling orthopaedic hardware.

With the exception of one study, all methods for devel-
oping artificial intelligence for fracture detection identi-
fied in this review relied on creating or retraining deep
convolutional neural networks with the ability to ‘learn’
features within an image to better provide the most
accurate desired output classification. Only one study
exclusively adopted a more traditional machine learn-
ing method using stricter, rule-based computer-aided
detection methods for identifying bowing fractures of the
forearm [36]. It is unclear whether using a convolutional
neural network was unsuitable or less accurate for the
detection of these specific fractures or was not attempted
due to lack of capability; however, differences in perfor-
mance of various methods should be compared within
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the same dataset in relation to not only performance but
also resource requirements/costs and other aspects such
as ‘exploitability’ of features used by the algorithm. It
is likely that the trend for future Al tools for paediatric
fracture detection will include development of single or
an ensemble of convolutional neural networks to provide
optimal performance. Nonetheless, one should not com-
pletely disregard simpler machine learning methods, and
consider how they can be best employed given the sig-
nificant computational power and thus carbon footprint
produced from training deep learning solutions, espe-
cially in the light of current global efforts for creating a
more sustainable environment [59].

Although there are fewer publications relating to Al
applications for paediatric fractures than in adult imag-
ing, these data have demonstrated that several solutions
are being developed and tested with children in mind.
Given the current crisis in the paediatric radiology work-
force and restricted access to specialist services [60-65],
an immediate, accurate fracture reporting service could
potentially confer a cost-saving effect [66] and neutralise
healthcare inequalities. Nevertheless, there were many
limitations to the published literature. For example,
health economic analyses and studies assessing whether
such algorithms do actually translate into real improve-
ments in patient outcomes are lacking, and it is unclear
how generalisable many of the algorithms may be given
that most have been tested in a single centre, without
external validation and without appropriately powered
studies for those that have used multi-reader studies
to compare human versus Al performance. Therefore,
although this review found that in a subset of the studies
the performance of Al algorithms was not significantly
different from human performance, this may be due to
an under powered sample size. Furthermore, in practice,
paediatric radiographs may be interpreted by a range of
different healthcare professionals working at different
experience levels and with varying subspecialty back-
grounds (e.g. general radiologists, paediatric radiologists,
musculoskeletal radiologists, paediatricians, orthopaedic
surgeons). The current literature only reviews the com-
parison between Al performance and one kind of health-
care professional. This limits our understanding of who
such Al algorithms may best serve and thus how best to
implement them.

It should also be recognised that there may be great dif-
ferences between optimised test performance in valida-
tion sets versus the ‘real-world” impact of implementing
such a tool into routine clinical workflows, not only as a
consequence of differences/variations in input data, but
also usability aspects and pragmatic ability to incorporate
such tools into existing workflows. These factors raise
questions regarding future widespread implementation
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Table 5 Studies comparing artificial intelligence algorithms versus (or combined with) human reader, organised by publication date

Author, year Human/Al Accuracy, % (95% Cl) Sensitivity, % (95% Cl) Specificity, % (95% Cl) TP FP FN TN
England [31] Al 0.907 0.909 0.906 87 9 3 30
(0.843-0.951) (0.788-1.000) (0.844-0.958)
PGY5 emergency medicine trainee  0.915 0.848 0.938 M 6 5 28
(non-radiologist) (0.852-0.957) (0.681-0.949) (0.869-0.977)
Choi, [17] Al (Geographical test set) 0.895 1.000 0.861 23 10 0 62
(0.817-0.942) (0.852-1.000) (0.759-0.931)
Summated score of three radiolo- 0.975 0.957 0.981 66 4 3 212
gists (2-7-year experience) from (0.950-0.988) (0.880-0.985) (0.953-0.993)
different institution to test dataset
Lowest performing radiologist alone NS 0957 0.972 NS NS NS NS
(AUC 0.977 (0.924-0.997)) (0.781-0.999) (0.903-0.997)
Lowest performing radiologist with NS 1.000 0.972 NS NS NS NS
Al assistance (AUC 0.993 (0.949-1.000)) (0.852-1.000) (0.903-0.997)
Zhang [35] Al (Test set—data undefined) 0.920 1.000 0.870 NS NS NS NS
Human: paediatric musculoskeletal ~ 0.89 1.000 0.833 9 6 0 30
radiologist (0.782-0.949) (0.833-1.000) (0.681-0.921)

95% confidence intervals are omitted where these are not provided in the publication

NS not stated. CI confidence interval. AUC area under the curve, PPV positive predictive value, NPV negative predictive value, TP true positive, FP false positive, FN false

negative, TN true negative, PGY postgraduate year

and funding of AI solutions as individual hospitals and
healthcare systems will require return on their invest-
ment at the level of clinical/operational impact rather
than pure ‘test performance’[67]. Due to these reasons,
it will be necessary for economic analyses and cost and
clinical effectiveness studies to be performed to under-
stand whether Al algorithms for fracture detection in
children do offer improved benefits.

Improved methods of secure data sharing (possibly
with public datasets of paediatric appendicular radio-
graphs) and greater collaboration between hospitals and
industrial and academic partners could be beneficial
in terms of developing and implementing novel digital
tools for paediatric imaging at a lower cost, with future
real-world implementation studies. Further research
on the topic of AI for paediatric fracture detection
should consider aspects that would be helpful to hospi-
tal decision-makers, but also consider the uncertainties
and bias within test datasets such as the wide age range
of patients included, range of different pathologies and
injury patterns sustained by children at different stages
of maturation which may not all be as accurately evalu-
ated. Improved transparency and subgroup analyses of
these, with more robust external validation of emerg-
ing and commercially available tools, would provide the
necessary evidence for clinicians and hospital managers
to better understand whether such technology should be
integrated into their own healthcare systems.

There were several limitations to the present study.
During the literature review, we included studies that
specifically related to paediatric fracture detection. It

is possible that some studies may have included chil-
dren within their population dataset, but did not make
this explicit in their abstract or methodology and there-
fore may have been excluded. Secondly the Al literature
is expanding at a rapid rate, and it is likely by the time
of publication that newer articles may be available. In
order to minimise this effect, an updated review of the
literature using the same search strategy was performed
immediately before initial article submission and after
reviewer resubmission to ensure the timeliness of the
findings. We also acknowledge that articles relating to Al
applications may be published in open source, but non
peer-reviewed research sharing repositories (e.g. arXiv)
which were not searched and therefore excluded since
only adequately peer-reviewed articles were included.
Finally, it proved difficult to consistently extract the
required information from the available literature. When
assessing for bias, we used a slight adaptation of the
QUADAS-2 guideline (whilst future tools are developed
[68]) and in some cases the study methodology appeared
incomplete or incomprehensible, particularly those writ-
ten prior to published Al reporting guidelines [69-71].
Accordingly, we included the AI algorithm methodol-
ogy as an Additional file 1 table due to wide variations in
reporting making direct comparisons challenging.

Conclusions

In conclusion, this review has provided an overview of
the current evidence pertaining to Al applications of
paediatric appendicular fracture assessment on imaging.



Shelmerdine et al. Insights into Imaging (2022) 13:94

There is a wide heterogeneity in the literature with
respect to paediatric age ranges, body parts assessed
by Al for fracture detection and limited information on
algorithm performance on external validation.

Further work is still required, especially for testing
solutions across multiple centres to ensure generalis-
ability, and there are currently opportunities for the
development of AI solutions in assessing paediatric
musculoskeletal trauma across other imaging modali-
ties outside of plain radiography and in certain at risk
fracture populations (e.g. metabolic or brittle bone
diseases and suspected child abuse cases). Improved
research methodology, particularly by using a multi-
centric dataset for algorithm training with external
validation and real-world evaluation, would help to bet-
ter understand the impact of these tools for paediatric
healthcare.
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