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Abstract

Demand response program is being implemented in the National Electricity Market of Singapore, which boosts the flexibility
of demand side to actively participate in the real-time electricity market. Meanwhile, it is also significant to implement such a
program in the day-ahead market, since generation companies could arrange their generating plans and load providers are able to
adjust their hourly purchasing schedules. However, uncertain factors should be considered in the demand response program of
the day-ahead market, such as the uncertain electricity load. Regarding the issue, this paper proposes a day-ahead bidding and
clearing framework considering demand response with uncertain and correlated nature of electricity loads. To this end, a data-
driven Dirichlet process mixture model is introduced to represent the load uncertainty, which might bring about the economic risk.
To further reduce such a risk, a worst-case conditional value at risk is integrated into our proposed framework, and a WCVaR
based two-step risk averse market clearing model is proposed. Finally, we conduct numerical studies based on the Singapore
electricity market. Numerical studies demonstrate the outperformance of Dirichlet process mixture model for the load uncertain
representation, and also verify that the worst-case conditional value at risk based market clearing model could effectively reduce
the economic risk while maximizing the social welfare.

Keywords: Market clearing, demand response, data-driven, uncertainty representation, economic risk.

1. Introduction

1.1. Research Background

National Electricity Market of Singapore (NEMS), as the
first liberalized electricity market in Asia, is well-known for
its distinguished efficiency and maturity. Recently, this well-
structured market is undergoing an important reform to im-
plement the demand response (DR) program in the real-time
market (RTM) [1]. DR is defined as the end-users’ intentional
modifications of energy consumption stimulated by electric-
ity price fluctuations or incentive payment mechanisms [2].
It could bring about multiple benefits to power system oper-
ations, such as lowering electricity prices, mitigating peak-
valley load gaps, enhancing operational security of power grids,
etc. [3, 4].

Market clearing (MC) plays a crucial role for electricity
market operations, as the electricity supply and demand should
be cleared and priced. With the incorporation of DR program
in NEMS, generation companies and load providers are both
required to submit their bidding offers to the power system op-
erator (PSO) during each dispatch period in RTM. On the gen-
eration side, each unit should bid on energy, reserve, and regu-
lation resources [5]. On the demand side, load providers in the
wholesale market are capable to submit bidding offers as well,
which include the information of total load demand and load
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curtailment. The load curtailment information is in the form
of price-quantity tranches, which is a salient feature of Singa-
pore’s DR program. These tranches specify the load providers’
willingness to voluntarily reduce their electricity load at a cer-
tain price level.

1.2. Literature Review
Because of the significant role in electricity markets, nu-

merous studies have investigated DR participation in the MC
[6–9]. For instance, a price-based self-scheduling scheme for
the multi-energy market is proposed in [6], which aims to max-
imize the total profit while considering characteristics of var-
ious DR consumers. Similarly, [7] presents an optimization
framework, with the adoption of a newly developed heuristic
algorithm, to obtain the optimal bidding strategy in the day-
ahead market. A competition framework in a retail energy
market is formulated in the presence of DR [8], which veri-
fies that it could reduce prosumers cost and increased retailers
profit with DR. [9] proposed an improved incentive-based DR
model, in which the incentive value is not a fix value and re-
lates to the peak intensity of each hour. Nevertheless, the above
works adopt a deterministic optimization approach to study the
MC problem with DR, which may be inadequate considering
various factors, such as the load uncertainties.

Moreover, some studies have adopted stochastic optimiza-
tion methods to deal with the MC problem considering load
uncertainties [10–13]. For instance, [10] studies an economic
dispatch framework based on the scenario analysis, which ex-
plores the uncertainties brought by DR providers in the day-
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ahead MC. Also, [11] presents a multi-stage stochastic model
in order to analyse behaviours of electricity market partici-
pants. Considering the load uncertainties, [12] presents a bi-
level optimization problem to clear the market after strategic
scheduling of a multi-energy system. To cope with the uncer-
tainties such as load under the multi-level electricity market,
the bi-level stochastic programming approach is exploited to
maximize the profit of both retailers and DR aggregators [13].

However, two aspects shall be taken into account while
considering uncertain loads, i.e., the uncertainty characteriza-
tion and its impact on the MC. On the one hand, some studies
have focused on probabilistic representations of load uncer-
tainties. For instance, [13] and[14] employs the Normal prob-
ability distribution to model the uncertainty of electrical load.
To take full advantages of load data, an ensemble method is
proposed by clustering time-series profiles into multiple groups
to obtain the aggregated load information [15]. Moreover, in
[16], the Gaussian mixture model (GMM) is used to represent
electricity load uncertainty, and the covariance matrix denotes
correlations among different time periods. However, the accu-
racy of GMM significantly relies on the number of Gaussian
components, which is usually set by the prior knowledge.

On the other hand, the risk induced by load uncertainties
should not be ignored in the MC, and the conditional value at
risk (CVaR) has been widely used to deal with this issue [17–
20]. For instance, [17] adopts a bidding strategy based on a
bi-level optimization approach, in which the MC is solved and
CVaR is used as a risk assessment metric against load uncer-
tainties. Similarly, [18] models a strategic behaviour in the
power market while considering load uncertainties, which is
solved via a risk-based stochastic optimization approach with
the CVaR. A bidding strategy model is proposed for microgrid
to participate in the day-ahead energy markets considering the
uncertainties of load[19]. Moreover,the risk of participation in
the day-ahead and real-time energy market is assessed using
CVaR criteria and sensitivity analysis. In addition, in order to
maximize profits of combined heat and power units when they
are participating in the multi-energy market, [20] proposes a
bidding strategy, in which the CVaR indicator measures the
economic risk brought by load uncertainties.

It should be mentioned that the usage of CVaR is usually
based on the standard probabilistic distribution of random vari-
ables, as shown in the above studies. However, it is difficult
to obtain the exact probabilistic distribution of electricity load,
which is usually data-dependent. Indeed, a mixture probability
distribution may be obtained from historical data [21], which
refers to a set of probabilistic components and corresponding
weights. Therefore, whether CVaR is capable for controlling
the economic risk in such a case is unknown.

1.3. Motivation and Contribution of This Paper

According to the above literature review, we identify the
research gaps listed as follows:

1. The NEMS has implemented a load curtailment based
DR mechanism in the wholesale electricity market. It is
verified to be effective in the practice, yet based on the
single period merely [5]. Therefore, we aim to extend
such DR mechanism to multi-period horizon in DAM.
However, due to the day-ahead forecasting errors of elec-
tricity load, its uncertainty might bring about the eco-
nomic risk that impacts the social welfare.

2. When dealing with the characterization of uncertain load,
standard probabilistic distributions are usually adopted
to generate scenarios, whose accuracies are limited. More-
over, GMM is used to characterize the electricity loads
in recent researches. However, the accuracy of GMM is
dependent on the number of mixture components, which
is usually manually set.

3. The conventional risk indicators, such as CVaR, are usu-
ally adopted based on the standard probabilistic distri-
bution of random variables. However, they might not be
suitable to address the economic risk in data-dependent
mixture distribution.

In order to deal with these research gaps, we conduct our
research in the following aspects, which are the contributions
of our work.

1. This paper proposes a day-ahead bidding and clearing
framework based on the DR mechanism of Singapore’s
wholesale electricity market, in which load providers
could bid on load curtailments. This framework includes
the day-ahead bidding mechanism with the DR program,
the load uncertainty representation and a risk averse mar-
ket clearing model (MCM).

2. A data-driven Dirichlet process mixture model (DPMM)
is adopted to capture the uncertainties and time-series
correlation of electricity load for the first time, to the
best of authors’ knowledge. Compared with traditional
probabilistic model, the number of mixture probability
distribution components could be automatically and op-
timally obtained without using prior knowledge.

3. We introduce a worst-case conditional value at risk (WC-
VaR) of the social welfare to measure the economic risk
induced by load uncertainties. Then, a WCVaR based
two-step risk averse MCM is proposed to maximize the
expected social welfare while reducing the economic risk.
Note that WCVaR is a risk indicator that represents the
worst possible CVaR value among a set of probability
distribution components [22]. In addition, the impact of
the WCVaR index on the MC process is further studied.

The rest of this paper is organized as follows. Section 2
presents an overview of the DR mechanism in NEMS and in-
troduces the day-ahead bidding and clearing framework con-
sidering DR. Then, the data-driven DPMM for representing
time-series load uncertainty is introduced in Section 3. Next,
Section 4 shows the proposed WCVaR based two-step risk
averse MCM. Numerical simulation results are presented and
analyzed in Section 5. Finally, the conclusion is drawn in Sec-
tion 6.

2. Problem Description

In this section, we firstly introduce the mechanism of DR
program in the NEMS’s wholesale market in 2.1. Participating
such a program, load providers are capable to bid on the load
curtailments for each dispatch period. On this basis, we pro-
pose a bidding and clearing framework considering DR for the
day-ahead wholesale market, which is presented in 2.2.

2.1. DR Mechanism in the NEMS
When participating in the DR program of the NEMS, li-

censed load providers are qualified to submit bidding offers to
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the PSO. The most important information in the bidding of-
fers includes the total load and load curtailment, in the form
of price-quantity tranches. The total load is the overall elec-
tricity demand estimated by the load provider during the dis-
patch period. Furthermore, these tranches specify the quan-
tities of electricity demand that the load provider is willing
to curtail at certain price levels. For instance, as shown in
Figure 1 (a), when electricity price is equal to or higher than
LPn,1, i.e., the higher price of the two tranches offered by the
load provider n, it tends to curtail the total quantity of both
tranches as LQn,1 + LQn,2. It is notable that all the quantities
for such tranches of a bidding offer could be deemed as cur-
tailable loads for a load provider, which is submitted to PSO.

Figure 1: (a) Price-quantity tranches of bidding offer of load provider n; (b)
All bidding offers on demand side in descending order.

Then, in order to determine the inelastic electricity de-
mand, i.e., the system non-curtailable (SNC) load, the electric-
ity load forecast information from PSO DEng is used. Accord-
ingly, SNC can be calculated through subtracting total quan-
tities of curtailable (elastic) bidding offers from the forecast
electricity load. It is formulated as follows.

S NC = DEng −

N∑
n=1

Kn∑
k=1

LQn,k (1)

where n is the index of bidding offers (n = 1, 2, · · · ,N), note
that each load provider submit one bidding offer and N is the
total number of load providers. k is the index of price-quantity
tranches for bidding offer n(k = 1, 2, . . . ,Kn) and Kn is the
number of tranches for bidding offer n. LQn,k are the quantity
of the curtailable load of tranche k in bidding offer n.

Since SNC is the total inelastic electricity load of whole
market, which is not subject to any curtailments, the corre-
sponding price that load providers are willing to pay is set as
a fixed large value PL. Afterwards, bidding offers on the de-
mand side would be arranged in descending orders, as shown
in Figure 1(b), consisting of the price-quantity tranches that
represent all potential curtailments and the SNC. Finally, PSO
clears the market according to the bidding offers of both the
generation and demand sides, and determine the energy prices.

2.2. Day-ahead Bidding and Market Clearing Considering DR

In NEMS, the DR program is verified to be effective on the
single-period basis in RTM [5]. Nevertheless, implementing
the DR program on multi-period basis in DAM is also signif-
icant, since load providers could flexibly adjust their hourly
purchasing schedules according to day-ahead price signals [23].
Therefore, we aim to expand the aforementioned DR mecha-
nism, which is featured by the bidding of load curtailment, into
DAM considering multiple periods. However, load uncertain-
ties usually exist in DAM, which brings the economic risk to

Figure 2: The day-ahead bidding and clearing framework.

the social welfare. Note that the economic risk refers to the
lower welfare than the expected one.

To reduce such kind of risk, we propose a day-ahead bid-
ding and clearing framework considering DR in the whole-
sale electricity market, in which a WCVaR based two-step risk
averse MCM is further proposed. In this framework, market
participants include generation companies and load providers
(licensed electricity retailers or large consumers). As shown
in Figure 2, the day-ahead bidding and clearing framework is
conducted as following three procedures.

Procedure 1: First of all, the day-ahead electricity load
forecasting information is published to the market participants
by the PSO. However, due to the existence of load forecast
errors, the uncertainty of correlated time-series load should
be better characterized. To this end, we adopt a data-driven
DPMM method to capture the characteristics of load informa-
tion based on historical data in this paper. Then, the proba-
bilistic scenarios are generated by the scenario-reduction based
Monte-Carlo simulation, in order to conduct the stochastic op-
timization. This part will be further presented in Section 3.

Procedure 2: The market participants for both generation
and demand sides will submit bidding offers for the next day
to PSO. On the generation side, companies will submit day-
ahead bidding offers for individual units with price-quantity
tranches that are in the ascending order [24]. Each tranche
specifies the expected selling price and corresponding supply-
ing quantity. It should be notable that there are three kinds
of transacting products in the wholesale market, including the
energy, reserve and regulation. To be specific, the energy refer
to the electricity that could be consumed by users. The reserve
and regulation are both ancillary services purchased by PSO,
in which reserve is needed for dealing with unexpected gener-
ation outages, and regulation represents the capacity to com-
pensate load variations. Thus, generation companies should
bid on such products for each unit as well.

On the demand side, load providers bid on total load and
curtailable load of every periods for the next day, in the form
of price-quantity tranches as stated in 2.1. Bidding offers on
the demand side are based on the historical price information,
i.e., relative high load curtailment bidding occurs within the
periods when the historical price is high. In other words, load
providers are willing to consume less electricity with a higher
price.

Procedure 3: Considering the bidding information of both
sides, PSO clears the day-ahead market by maximizing the so-
cial welfare with the adoption of MCM. However, the load
uncertainty might bring about the economic risk. Therefore,
a WCVaR based two-step risk averse MCM is proposed to
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clear the market, by dispatching on power quantities of gen-
eration units, as well as load curtailments of providers. It will
be specifically formulated in Section 4.

3. Data-driven DPMM Based Load Uncertainty Model

Note that the load uncertainty usually exists as it is difficult
to forecast the load with the perfect accuracy. Usually, such
uncertainties are presented by assuming that the load forecast
error follows certain probabilistic distributions. However, this
is an ideal assumption, which may not reflect actual situations
[25, 26]. Also, the uncertain load with different time scales are
correlated [16]. Therefore, it should be better to characterize
the load uncertainty, while considering the correlations among
different time periods. To this end, we adopt a data-driven
DPMM by leveraging historic load to better represent the load
uncertainty in our work. Details of the data-driven DPMM is
presented as follows.

3.1. Dirichlet Process with Stick-Breaking Representation
DPMM is based on Dirichlet Process (DP), which is de-

scribed via a collection of base probabilistic distributions and
their corresponding weights [27]. DP could be expressed ex-
plicitly by the well-known stick-breaking representation via
discrete distributions [28]. A discrete distribution G is defined
to be DP distributed if

G |{ϕ,H} ∼ DP(ϕ,H) (2)

where ϕ represents a concentration parameter, and H stands for
the base distribution parameterized by matrix Λ. We consider
two collections of independently generated stochastic variables
βm and Ωm with respect to ϕ and H.

βm ∼ Beta(βm|1, ϕ) (3)
Ωm ∼ H (Ωm|Λ) (4)

where m = {1, · · · ,∞}. It should be mentioned that variable set
{βm} are parameters for (8), and Beta(βm|1, ϕ) represents Beta
distribution, which is expressed as follows.

Beta(βm|1, ϕ) =
Γ(1 + ϕ)
Γ(1)Γ(ϕ)

β0
m(1 − βm)ϕ−1 (5)

where, Γ(·) is the Gamma function. Then, we introduce an
impulse function δΩm as the indicator, to distinguish whether
the distribution parametrized by Ωm is chosen by G.

δΩm (ω) =

1, ω=Ωm

0, elsewhere
(6)

where ω is the continuous variable of discrete distribution G.
Then, the stick-breaking representation of G is defined as fol-
lows.

G =

∞∑
m=1

πmδΩm (7)

πm = βm

m−1∏
s=1

(1 − βs) (8)

where
∑∞

m=1 πm = 1. In the process of breaking a unit length
stick into an infinite number of pieces, πm could be consid-
ered as the length of m-th piece regarding the breaking pro-
portion βm. In summary, G is a distribution indicating whether
H (Ωm|Λ) weighted by πm is selected.

3.2. DPMM for Multi-Period Load

Indeed, according to the historical multi-period load data,
DPMM is able to update its mixture components determined
by {πm} and {Ωm}without using the prior knowledge. By adopt-
ing a T -dimensional vector ε = {εt} to represent random load
variables, the probability density function (PDF) of ε is formu-
lated as follows.

p(ε|π,Ω) =

∞∑
m=1

πm pm(ε|Ωm) (9)

where π = {πm}
∞
m=1 and Ω = {Ωm}

∞
m=1, pm(ε|Ωm) stands for

the PDF of the mixture component m, and πm indicates the
corresponding weight.

The most crucial purpose of introducing DPMM is to char-
acterize load uncertainties and their correlations among multi-
ple time periods. To this end, we set the prior distribution of
H as a T -dimensional Gaussian distribution (T = 24), since
it could indicate the correlations of multi-period loads through
covariance matrices [16]. Hence, the DPMM can be expressed
as an infinite set of 24-dimensional Gaussian mixture distribu-
tion.

p(ε|π,Ω) =

∞∑
m=1

πmNm(ε|µm,Σm) (10)

in which Ω = {µm,Σm}
∞
m=1, where µm is the mean vector, Σm

is the covariance matrix, and Nm(ε|µm,Σm) represents the 24-
dimensional Gaussian component m.

Then, we consider a set of observed load dataset E =

{ε[r]}Rr=1, ε[r] is the independent r-th sample, r ∈ {1, · · · ,R}, and
R is the number of collected samples. Therefore, the DPMM
on the observed data can be expressed as follows.

p(E |π,Ω) =

R∏
r=1

 ∞∑
m=1

πmNm(ε[r]|µm,Σm)

 (11)

However, it is unknown that which component the indi-
vidual sample ε[r] belongs to. Therefore, the binary variable
vector z[r] = [z[r]

1 , · · · , z
[r]
m , · · · ] is introduced to indicate which

mixture component that the samples are associated with. For
instance, z[r]

m = 1 if load sample ε[r] belongs to the m-th compo-
nent. Then, given the indicating variable set Z = {z[r]

m }
r=R,m=∞

r=1,m=1
for all samples and the parameter setΩ for all components, the
conditional PDF of E is formulated as follows.

p(E |Z,Ω) =

R∏
r=1

∞∏
m=1

Nm(ε[r]|µm,Σm) z[r]
m (12)

Conventionally, the parameter of prior distribution could
be estimated according to statistical characteristics of the ob-
served data. However, it is difficult to directly determine the
hyperparameters, i.e., the latent variable set W = {Z,Ω,β,Ψ},
where β = {βm}

∞
m=1 and Ψ = {ϕm}

∞
m=1. In order to address such

a dilemma, the variational inference (VI) is adopted to esti-
mate the posterior probability of latent variables W . The VI
provides a deterministic methodology to approximate the pos-
terior PDF p(W |E ) of latent variable set W [29], by converting
the posterior PDF computation to a numerical optimization of
Kullback-Leibler (KL) divergence, which is usually deemed
as a measure of difference between two probability distribu-
tions [30]. Detailed deductions and formulations of VI can be
referred to Appendix A.
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In brief, VI assumes a group of variational posteriors over
its latent variables, and it finds the closest variational poste-
rior p̂(W ) to the true posterior p(W |E ). The KL divergence is
used to measure the distance from the true posterior p(W |E )
to p̂(W ) i.e.,

DKL(p̂(W )||p(W |E ))
=Ep̂(W )[ln p̂(W ) − ln p(W |E )]
=Ep̂(W )[ln p̂(W ) − ln p(W ,E )] + ln p(E )

(13)

Then, we can obtain the closest distribution p̂(W ) to p(W |E )
via arg min

p̂(W )
DKL(p̂(W )||p(W |E )). In this way, the components

and corresponding weights involved in DPMM are determined
according to the posterior of latent variable set W .

The dataset in this paper is obtained based on the scaling
load data in the Energy Market Company, which is the system
operator of Singapore’s wholesale electricity market. The bet-
ter performance of DPMM, compared with traditional GMM,
will be presented in Section 5.

3.3. Sampling from DPMM

Indeed, the VI algorithm for the DPMM parameter estima-
tion could determine a truncated distribution with the optimal
number of components. Therefore, a fixed maximum number
of components M̂, i.e., the number of stick-breaking pieces,
should be determined in advance. Then, the actual number of
component M (M ≤ M̂) is obtained through the inferring pro-
cess based on real data, accordingly.

In this way, the multi-period load information could be
represented by a multivariate Gaussian mixture distribution.
However, it is difficult to generate samples from a mixture dis-
tribution directly [31]. Therefore, we aim to individually sam-
ple from each Gaussian component of the DPMM, and aggre-
gate the samples altogether.

With this consideration, S probabilistic scenarios of load
are obtained from the final DPMM

∑M
m=1 πmNm(·), by the scenario-

reduction based Monte-Carlo simulation [32]. Specifically, we
first assign each Gaussian component Nm with the number of
scenarios S m = πmS , where m = 1, 2, · · · ,M. Afterwards,
S m load samples are generated from the Nm, which are de-
noted by a load scenario set ξm = {ξ1, · · · , ξsm , · · · , ξS m }. sm

is the scenario index corresponding to ξm. Finally, all sample
sets are collected together, forming a total load scenario set
ξDPMM = {ξ1, · · · , ξm, · · · , ξM}.

4. WCVAR Based Two-step Risk Averse Stochastic Opti-
mization for MCM

As stated in Section 2, after submitting bidding offers for
both generation and demand sides, PSO conduct the day-ahead
MC in the wholesale market. It is difficult to determine the
optimal day-ahead schedule on power generation of units and
load curtailments of load providers accurately, due to the ex-
istence of load uncertainty. Therefore, we use a two-step
stochastic optimization approach to solve this problem. The
first step aims to obtain the deterministic dispatch and the unit
commitment states based on the forecast information. The sec-
ond step is to adjust the decisions after realization of proba-
bilistic scenario sets by maximizing the expectation for social
welfare. It should be mentioned that lower welfares in certain

scenarios are deemed as the economic risk, and thus the risk
aversion is taken into consideration in our work.

It is notable that the load uncertainty is represented by the
data-driven DPMM, which is realized by weighted multiple
scenario sets regarding to the Gaussian mixture components,
as stated in Section 3. Therefore, the probabilistic character-
istics with respect to the scenario sets are different, and eco-
nomic risks regarding such scenario sets should be well man-
aged. To this end, we introduce the worst-case conditional
value at risk (WCVaR) as the risk indicator. It represent the
CVaR against the worst-case scenario set, which is more ap-
propriate to solve the risk averse MCM optimization prob-
lem regarding to the DPMM. Therefore, we propose a WC-
VaR based risk averse MCM using the two-step stochastic op-
timization, which is another contribution of our work. In the
following parts, we will present the details of WCVaR.

4.1. Introduction of WCVaR
CVaR is widely used when the uncertainties are associ-

ated with standard probabilistic distributions. Given a confi-
dent level α, CVaR is usually defined as the expected value of
the profit that is lower than the (1−α)-quantile of profit distri-
bution. The specific formulation of CVaR can be referred to
Appendix B of this paper.

With the help of discretization based on probability scenar-
ios, an auxiliary function Fα is introduced [33] to facilitate the
solution of CVaR, which is expressed as follows.

Fα(x, η) = η −
1

1 − α

∑
s

ps · [η − f (x, ξs)]+ (14)

where [η − f (x, ξs)]+ = max
{
η − f (x, ξs), 0

}
, f (x, ξs) is the

profit function of variable x under scenario ξs, and its occur-
rence probability is ps. η is an auxiliary variable indicating the
threshold that the probability of profit is less than or equal to
1−α. Then, CVaR can be calculated via the following formula.

Φα(x) ≡ CVaRα(x) = max
η∈R

Fα(x, η) (15)

In our work, the multivariate Gaussian mixture distribution
PM with M components is adopted to represent the PDF of
uncertain loads. It is obtained from DPMM in Section 3 and
expressed as follows.

PM =

 M∑
m
πm pm(·)

∣∣∣∣∣∣∣
1∑
m
πm = 1, πm ≥ 0,m = {1, 2, ...,M}

 (16)

where pm(·) represents the PDF of multivariate Gaussian mix-
ture component m, and πm is the corresponding weight. WC-
VaR is defined as the worst-case CVaR value among all mix-
ture components [34]:

WCVaRα(x) = min
pm(·)∈PM

Φα(x) = min
pm(·)∈PM

max
η∈R

Fα(x, η) (17)

4.2. Two-step Risk Averse MCM
With the adoption of the WCVaR, our proposed two-step

risk averse MCM is formulated as follows.

max
x,∆x

{ First step︷︸︸︷
F(x) +

Second step︷                              ︸︸                              ︷
min

pm(·)∈PM

[
(1 − ρ) · Fm(∆x|ξm)

+ρ · Φα,m(∆x|ξm)
]︸                ︷︷                ︸

Second step

} (18)
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where F(x) is the social welfare of the first step optimization
with respect to decision x. ∆x represents the decision adjust-
ment regarding the scenario set ξm. Fm(∆x|ξm) is the expected
social welfare regarding the Gaussian mixture component m.
Φα,m(∆x|ξm) could be deemed as the expected value that is
lower than the (1 − α)-quantile of social welfare distribution
with respect to ξm. ρ is the risk aversion factor in the range
of [0, 1). The second step optimization is a min-max problem,
seeking to maximize the expected social welfare while min-
imizing the risk under the worst case. It can be formulated
into a mixed-integer linear programming problem, which can
be efficiently solved by the solver of Gurobi [35].

4.3. First Step Optimization of MCM
In order to better describe the optimization of MCM, Fig-

ure 3 illustrates a double auction MC process regarding the
first-step optimization in the time period t. To be specific,
there are two stepwise curves. One in the ascending order is
the sorted bidding offer curve on the generation side, and the
other in the descending order is the sorted bidding offer curve
on the demand side. Market clearing price is determined as the
price on the generation side when the supply and demand are
balanced in the electricity market [36].

Figure 3: Illustration of the objective function in the first-step MCM

The shaded area denotes the social welfare of the market,
which is normally defined as the summation of the producer
and consumer surplus. The first-step problem is to maximize
the social welfare based on the forecast information of load,
which is formulated as follows.

max
x

F(x) =

T∑
t=1

(
PL × lt0 + bt − gt

)
s.t. (22) ∼ (34)

(19)

in which

bt =

N∑
n=1

Kn∑
k=1

(
LPn,k × ltn,k

)
(20)

gt =

I∑
i=1

[ JEng
i∑
j=1

(
PEng

i, j × qEng,t
i, j

)
+

JRes
i∑

j=1

(
PRes

i, j ×

qRes,t
i, j

)
+

JReg
i∑

j=1

(
PReg

i, j × qReg,t
i, j

)] (21)

In (19), x is the decision variables set {qEng,t
i, j , qRes,t

i, j , qReg,t
i, j ,

τ
Reg,t
i , lt0, l

t
n,k}. Specifically, i is the index of bidding offers and j

is the index for price-quantity tranches on the generation side.
I is the number of bidding offers (units). JEng

i , JRes
i and JReg

i

are numbers of tranches of bidding offer i for the energy, re-
serve, and regulation, respectively. qEng,t

i, j , qRes,t
i, j and qReg,t

i, j de-
note the actual quantity of tranche j of bidding offer i for the
three products accepted by PSO in the time period t. lt0 stands
for the dispatched system non-curtailable load, and ltn,k is the
accepted quantity of the price-quantity tranche k of bidding
offer n.

In addition, T is the number of dispatch time periods, and
PL is a relatively high price corresponding to the non-curtailable
load, which would not be influenced by DR. bt represents the
actual energy cost in the time period t for the dispatched cur-
tailable load, as expressed in (20), where LPn,k is the bidding
price for tranche k of offer n. gt is the generation cost cal-
culated by (21), where PEng

i, j , PRes
i, j and PEng

i, j are the bidding
energy, reserve and regulation price for tranche j of offer i,
respectively. Meanwhile, the following constraints should be
satisfied.

1) Constraints for Generator Capacity and Ramping Lim-
its

The total amount of energy, reserve, and regulation to be
dispatched by each generation unit should not exceed its gen-
eration capacity, as shown in (22). Meanwhile, the ramping
constraint is presented in (23).

JEng
i∑
j=1

qEng,t
i, j +

JRes
i∑

j=1

qRes,t
i, j +

JReg
i∑

j=1

qReg,t
i, j ≤ Oi ∀i, t (22)

− RDi ≤

JEng
i∑
j=1

(
qEng,t

i, j − qEng,t−1
i, j

)
≤ RUi ∀i, t (23)

where Oi is the capacity for the generation unit regarding the
bidding offer i. RUi and RDi are the corresponding ramping
up and down rates, respectively.

2) Constraints for Energy
The dispatched energy should match the demand as ex-

pressed in (24). Constraints (25)∼(26) limit the dispatched en-
ergy and curtailment quantity of each tranche. (27) denotes the
boundaries for the dispatched non-curtailable load.

I∑
i=1

JEng
i∑
j=1

qEng,t
i, j = lt0 +

N∑
n=1

Kn∑
k=1

ltn,k ∀n, k, t (24)

0 ≤ qEng,t
i, j ≤ QEng

i, j ∀i, j, t (25)

0 ≤ ltn,k ≤ LQt
n,k ∀n, k, t (26)

0 ≤ lt0 ≤ S NCt ∀n, k, t (27)

where QEng
i, j is the energy bidding quantity for tranche j of of-

fer i. LQt
n,k denotes the curtailable load bidding quantity for

tranche k of offer n, in the time period t. It is notable that
S NCt is calculated via (1) based on the forecast load. Also,
the quantity of load curtailment is relatively large when the
cleared wholesale electricity price (WEP) is high [37].

3) Constraints for Regulation
Similar to the energy balance in (24), the regulation is bal-

anced with the demand DReg,t, as expressed in (28). Con-
straints (29) and (30) impose limits on the unit for regula-
tion: (i) the quantity of dispatched energy should be no less
than its dispatched regulation by a pre-defined minimum out-
put RegMin

i ; (ii) the total quantity of dispatched energy and reg-
ulation should be no more than a pre-defined maximum output
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RegMax
i . Note that the two constraints are valid only when the

unit is qualified and dispatched for regulations, as indicated by
the binary variable τReg,t

i . Similarly, constraint (31) expresses
that regulation should not exceed the bidding quantity QReg

i, j for
each tranche.

I∑
i=1

JReg
i∑

j=1

qReg,t
i, j = DReg,t ∀t (28)


JEng

i∑
j=1

qEng,t
i, j −

JReg
i∑

j=1

qReg,t
i, j

 × τReg,t
i ≥ RegMin

i ∀i, t (29)


JEng

i∑
j=1

qEng,t
i, j +

JReg
i∑

j=1

qReg,t
i, j

 × τReg,t
i ≤ RegMax

i ∀i, t (30)

0 ≤ qReg,t
i, j ≤ QReg

i, j ∀i, j, t (31)

4) Constraints for Reserve
Different from the energy and regulation, the reserve ca-

pacity should be sufficient to cover the power losses due to
failure of some generators. It may be further scaled by the risk
adjustment factor λ1 (set by the PSO) to ensure a more secure
power supply, as enforced in (32). On the contrary, constraint
(33) prevents the situation that the excessive reserve is pro-
vided by a unit. That is, it is required that such reserve should
not exceed a certain percentage, i.e., λ2 of the dispatched en-
ergy for economic concerns. In addition, the reserve to be dis-
patched of each unit is bounded by the bidding quantity QRes

i, j ,
as shown in (34).

I∑
i=1

JRes
i∑

j=1

qRes,t
i, j ≥ λ1 × max

i=1,...,I


JEng

i∑
j=1

qEng,t
i, j +

JRes
i∑

j=1

qRes,t
i, j

 ∀t (32)

JRes
i∑

j=1

qRes,t
i, j ≤ λ2 ×

JEng
i∑
j=1

qEng,t
i, j ∀i, t (33)

0 ≤ qRes,t
i, j ≤ QRes

i, j ∀i, j, t (34)

4.4. Second Step Optimization With WCVaR

After the realization of load uncertainty with probabilis-
tic scenario sets, the adjustments based on dispatch decisions
of the first step are conducted considering maximizing the ex-
pected social welfare under the worst scenario set ξm. By in-
troducing an auxiliary variable ζsm for each scenario ξsm , the
second-step problem could be transform into the following solv-
able form.

min
pm(·)∈PM

{
max
x,∆x,η

[
(1 − ρ) ·

T∑
t=1

(
PL × ∆lt

sm
+ ∆bt

sm
− ∆gt

sm

)
+ρ ·

(
η −

1
1 − α

∑
sm

psm · ζsm

]}

s.t. ζsm ≥ η −

T∑
t=1

(
PL × ∆lt

sm
+ ∆bt

sm
− ∆gt

sm

)
ζsm ≥ 0

(39) ∼ (51)

(35)

where ∆ltsm
is the dispatched non-curtailable load with respect

to scenario ξsm . ∆bt
sm

is defined as the corresponding deviation

of bt in scenario ξsm . ∆gt
sm

represents the generation cost devi-
ation associated with the second step. They are expressed as
(36) and (37), respectively.

∆bt
sm

=

N∑
n=1

Kn∑
k=1

(
LPn,k × ∆ltn,k,sm

)
(36)

∆gt
sm

=

I∑
i=1

[ JEng
i∑
j=1

(
PEng

i, j × ∆qEng,t
i, j,sm

)
+

JRes
i∑

j=1

(
PRes

i, j ×

∆qRes,t
i, j,sm

)
+

JReg
i∑

j=1

(
PReg

i, j × ∆qReg,t
i, j,sm

]] (37)

where the variable set {∆qEng,t
i, j,sm

,∆qRes,t
i, j,sm

,∆qReg,t
i, j,sm

,∆ltn,k,sm
} are ad-

justments for each scenario ξsm in the second step regarding
{qEng,t

i, j , qRes,t
i, j , qReg,t

i, j , ltn,k}. To facilitate the mathematical descrip-
tion, the S NCt

sm
for each scenario ξsm in the time period t is

introduced as follows.

S NCt
sm

= DEng,t
sm −

N∑
n=1

K∑
k=1

LQt
n,k ∀sm, t (38)

It should be notable that DEng,t
sm is the energy demand for

scenario ξsm . Constraints (39)-(51) are counterparts of (22)-
(34) in the second-step stochastic optimization, presented as
follows.

JEng
i∑
j=1

(
qEng,t

i, j +∆qEng,t
i, j,sm

)
+

JRes
i∑

j=1

(
qRes,t

i, j +∆qRes,t
i, j,sm

)

+

JReg
i∑

j=1

(
qReg,t

i, j + ∆qReg,t
i, j,sm

)
≤ Oi ∀i, sm, t

(39)

−RDi, j ≤

JEng
i∑
j=1

[(
qEng,t

i, j + ∆qEng,t
i, j,sm

)
−

(
qEng,t−1

i, j +

∆qEng,t−1
i, j,sm

)]
≤ RUi, j ∀i, sm, t

(40)

I∑
i=1

JEng
i∑
j=1

(
qEng,t

i, j + ∆qEng,t
i, j,sm

)
= (lt0 + ltsm

) +

N∑
n=1

Kn∑
k=1(

ltn,k + ∆ltn,k,sm

)
∀sm, t

(41)

0 ≤
(
qEng,t

i, j +∆qEng,t
i, j,sm

)
≤ QEng

i, j ∀i, j, sm, t (42)

0 ≤ ltn,k + ∆ltn,k,sm
≤ LQt

n, j ∀n, k, sm, t (43)

0 ≤ lt0 + ltsm
≤ S NCt

sm
∀sm, t (44)

I∑
i=1

JReg
i∑

j=1

(
qReg,t

i, j + ∆qReg,t
i, j,sm

)
= DReg,t ∀sm, t (45)

JEng
i∑
j=1

(
qEng,t

i, j + ∆qEng,t
i, j,sm

)
−

JReg
i∑

j=1

(
qReg,t

i, j + ∆qReg,t
i, j,sm

) × τReg,t
i

≥ RegMin
i ∀i, sm, t

(46)


JEng

i∑
j=1

(
qEng,t

i, j + ∆qEng,t
i, j,sm

)
+

JReg
i∑

j=1

(
qReg,t

i, j + ∆qReg,t
i, j,sm

) × τReg,t
i

≤ RegMax
i ∀i, sm, t

(47)

0 ≤
(
qReg,t

i, j +∆qReg,t
i, j,sm

)
≤ QReg

i, j ∀i, j, sm, t (48)
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I∑
i=1

JRes
i∑

j=1

(
qRes,t

i, j + ∆qRes,t
i, j,sm

)
≥ λ1 × max

i=1,...,I

{ JEng
i∑
j=1

(

qEng,t
i, j + ∆qEng,t

i, j,sm

)
+

JRes
i∑

j=1

(
qRes,t

i, j + ∆qRes,t
i, j,sm

)}
∀sm, t

(49)

JRes
i∑

j=1

(
qRes,t

i, j +∆qRes,t
i, j,sm

)
≤ λ2 ×

JEng
i∑
j=1(

qEng,t
i, j + ∆qEng,t

i, j,sm

)
∀i, sm, t

(50)

0 ≤
(
qRes,t

i, j + ∆qRes,t
i, j,sm

)
≤ QRes

i, j ∀i, j, sm, t (51)

Specifically, generation limits and ramping constraints of
units are enforced by (39) and (40), respectively. Constraint
(41) represents the energy balance, and (42)∼(43) describe bounds
on generation and demand side variables in the second step.
Constraint (44) is the boundary limit of dispatched non-curtailable
load. Constraint (45) represents the regulation balance after
the adjustment of second step. The limitations on regulation
of generating units are shown in (46) and (47). The overall
reserve requirement and proportion constraint are presented
in (49) and (50), respectively. In addition, (48) and (51) are
bounds of regulation and reserve quantities, respectively.

5. Simulation and Results

In this section, the simulation case is set firstly in Sub-
section 5.1. Performance of load uncertainty represented by
DPMM is then presented in Subsection 5.2. Finally, the results
of WCVaR based risk averse MCM is shown in Subsection 5.3,
and the impact of risk aversion factor is analyzed in Subsection
5.4.

5.1. Simulation Case Setup
In this study, the real electricity load data are collected

from Energy Market Company [37] in Singapore electricity
market ranging from 1st Aug, 2016 to 31st Dec, 2019. With-
out loss of generality, the load forecast information on 17th,
Mar. 2020 is used to conduct the first step optimization.

Table 1: Bidding Offers on Generation Side

i
Oi RegMin

i RegMax
i QEng

i,1 QEng
i,2 QRes

i,1 QRes
i,2

(MW) (MW) (MW) (MW) (MW) (MW) (MW)
1 330 50 290 150 150 40 20
2 430 45 350 180 200 40 30
3 350 80 300 180 140 60 40
4 340 95 320 170 160 80 50
5 290 80 290 150 120 70 40
6 240 45 220 130 110 20 30
7 260 40 180 90 100 50 25
8 400 90 250 135 130 60 60

QReg
i,1

QReg
i,2 PEng

i,1 PEng
i,2 PRes

i,1 PRes
i,2 PReg

i,1 PReg
i,2

(MW) (MW) ($/MWh) ($/MWh) ($/MWh) ($/MWh) ($/MWh) ($/MWh)
10 15 50 105 28.5 33 19 40
10 10 65 110 19.7 32.9 18 35
22 17 70 115 13 15 19 26
18 18 80 120 14 17 17 31
23 14 85 130 15 16 13 25
10 5 90 140 17 20 13 47
12 8 95 150 25 30 25 70
10 10 100 160 10 28 20 30

Bidding offers on the generation side are listed in Table 1,
with 8 generation units (i.e., I = 8). Each bidding offer in-
cludes two price-quantity tranches for the energy, reserve, and

Table 2: Bidding Offers on Demand Side

Period 1 2 3 4 5 6 7 8 9 10 11 12
WEP

($/MWh) 94 89 85 80 79 88 95 97 107 113 117 114

LQt
1,1(MW) 0 0 0 0 0 0 0 0 3 7 12 9

LQt
1,2(MW) 0 0 0 0 0 0 0 0 2 6 9 7

LQt
2,1(MW) 0 0 0 0 0 0 0 0 2 5 8 6

LQt
2,2(MW) 0 0 0 0 0 0 0 0 1 3 5 3

LQt
3,1(MW) 0 0 0 0 0 0 0 0 2 6 11 8

LQt
3,2(MW) 0 0 0 0 0 0 0 0 2 6 9 7

Period 13 14 15 16 17 18 19 20 21 22 23 24
WEP

($/MWh) 111 115 118 129 132 113 108 113 109 105 100 96

LQt
1,1(MW) 6 10 14 33 40 7 4 8 5 2 0 0

LQt
1,2(MW) 5 8 10 25 30 6 3 6 3 2 0 0

LQt
2,1(MW) 4 6 8 21 25 5 2 5 3 1 0 0

LQt
2,2(MW) 2 4 5 12 15 3 1 3 2 1 0 0

LQt
3,1(MW) 5 9 12 29 35 6 3 7 4 2 0 0

LQt
3,2(MW) 5 8 10 25 30 6 3 6 3 2 0 0

Table 3: Demand Side Load Curtailment Price Bidding

Load provider n=1 n=2 n=3
Bidding tranche k=1 k=2 k=1 k=2 k=1 k=2
Price ($/MWh) 150 125 145 140 120 115

regulation. The ramping rates RDi, j and RUi, j are set as 35%
of the capacity of each unit per hour [38]. Also, the quantities
of load curtailment tranches are listed in Table 2. Moreover,
the bidding prices for each tranche on demand side LPn,k are
listed in Table 3.

The other simulation setting are shown as follows. The
regulation demand DReg,t is set to be 130 MW, and the price of
inelastic demand PL is a relatively high value as 200 $/MWh.
The confidential level α is 0.9, and risk aversion factor ρ is set
as 0.1 originally. The other parameters are set as: λ1 = 1.5 and
λ2 = 0.6. In addition, the total number of load scenarios S is
set as 200.

5.2. Representation of Uncertain Load
In this subsection, to verify the effectiveness of the data-

driven DPMM, we compare its performance with that of tra-
ditional GMM. To this end, the DPMM as well as the com-
pared traditional GMM are adopted to fit the scaled load data.
Then, the PDFs of several hourly loads are shown in Figure 4.
Specifically, GMM1, GMM2, and GMM3 refer to the Gaussian
mixture models with mixture component numbers of 1, 2, and
3, respectively. The VI based DPMM and GMM with different
component numbers are compared visually, with the reference
of histograms based on the original data set. It should be noted
that the probabilistic models regarding the load are established
based on 24-dimensional Gaussian distribution. Therefore, the
whole models are difficult to be visualized due to the high-
dimensional features. Based on this condition, the indication
of probability density curves in Figure 4 could be deemed as
one-dimensional mapping of multi-dimensional DPMM. It could
be observed that DPMM demonstrates better performances in
capturing the probabilistic characteristics of load information
during several time periods. For instance, the multi-peak fea-
tures of the load PDF profiles in the 9-th, 12-th, 15-th, 18-th
and 21-st periods are well reflected.

However, the PDF curves of the 3-rd, 6-th and 24-th peri-
ods obtained by DPMM are with slight differences from those
of GMM1, GMM2 and GMM3 from visual observations. There-
fore, the fitting performances should be conducted with quan-
titative analysis. Specifically, we introduce the log-likelihood
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Figure 4: Probability density curves of different probabilistic models in different time periods

Table 4: Numerical Fitting on Load Dataset

Log-
L(103)

Chi-
square
GoF

Log-
L(103)

Chi-
square
GoF

Log-
L(103)

Chi-
square
GoF

Log-
L(103)

Chi-
square
GoF

Log-
L(103)

Chi-
square
GoF

Log-
L(103)

Chi-
square
GoF

Log-
L(103)

Chi-
square
GoF

Log-
L(103)

Chi-
square
GoF

Period 3-rd 6-th 9-th 12-th 15-th 18-th 21-st 24-th
GMM1 -5.55 57.58 -5.57 40.66 -6.46 569.78 -6.42 513.03 -6.49 641.25 -6.37 524.8 -5.82 73.01 -5.56 50.31
GMM2 -5.55 57.62 -5.57 42.39 -6.21 80.67 -6.18 54.7 -6.17 44.5 -6.11 66.01 -5.81 46.04 -5.61 50.93
GMM3 -5.55 58.73 -5.57 42.99 -6.21 81.07 -6.19 56.02 -6.16 45.15 -6.11 66.23 -5.8 47.13 -5.61 52.28
DPMM -5.54 55.87 -5.57 40.81 -6.2 64.93 -6.17 29.89 -6.16 42.81 -6.11 65.02 -5.8 42.26 -5.61 46.97

(Log-L) and the Chi-square goodness of fit (GoF) to quantify
the differences. The larger Log-L value indicates a higher ac-
curacy. For Chi-square GoF, the smaller value means a better
fit. The Log-L and GoF values for GMM with different com-
ponent numbers and DPMM are shown in Table 4. It is ob-
served that Log-L values of DPMM for all periods are lager
than such values of GMMs. Also, the Chi-square GoF values
of DPMM is obviously smaller than those of GMMs except
for the 40.81 in the 6-th period, which is slightly bigger than
Chi-square GoF of GMM1.

Moreover, in order to further evaluate the outperformance
of incorporated algorithm, we compare DPMM with GMM, as
well as K-means and the only clustering neural network based
self-organizing map (SOM) algorithm. Nevertheless, imple-
menting K-means and SOM could not obtain analytic func-
tions. Therefore, it is difficult to visualize and evaluate them
by statistical index such as Log-L and the Chi-square GoF.
Therefore, we introduce four measurement indices, i.e., Sil-
houette Coefficient [39], Root-mean-square standard deviation
(RMSSTD) [40], R-Square and Hubert’s Γ statistic [41], to in-
dicate the priority of DPMM. The specific formulations and
explanations of above indices are in Appendix C. The compar-
ison of performance measurement among the different algo-
rithms are listed in Table 5.

Table 5: The Performance Measurement of Different Algorithm

Algorithm Silhouette
Coefficient RMSSTD R-Square Hubert’s Γ

statistic
SOM 0.524 - - -

K-means 0.629 0.436 0.941 250718.249
GMM1 - 0.687 0.712 -
GMM2 0.791 0.518 0.907 216245.411
GMM3 0.338 0.515 0.908 218940.656
DPMM 0.792 0.413 0.961 263012.216

In summary, it is easily observed that DPMM is evaluated
to be best for the four measurements. Also, it should be notable
that only Silhouette Coefficient is measured in SOM algorithm,
since the cluster center is not analytical solvable. Moreover,

the K-means performs well in measurements of RMSSTD, R-
Square and Hubert’s Γ statistic, yet worse than DPMM. When
it comes to GMMs, Silhouette Coefficient of GMM2 is rela-
tively good, while GMM3 performs better in other indices. In
summary, DPMM shows a better ability to represent electric-
ity load data. As a matter of fact, DPMM still outperforms
through the quantitative analysis.

Then, the 24-period load probabilistic scenarios are gen-
erated from DPMM by the scenario-reduction based Monte-
Carlo simulation. In this way, these scenarios are adopted in
the two-step stochastic optimization, and the related results are
in Subsection 5.3.

5.3. Simulation Results of the WCVaR Based Risk Averse MCM

In this subsection, in order to show the outperformance of
the proposed WCVaR based MCM, we conduct simulations
and obtain the results, compared with that of the CVaR based
MCM. Note that the latter MCM is the two-step MCM adopt-
ing the risk indicator of CVaR based on all the probabilistic
scenarios. Its objective function is shown in (D.1) of Appendix
D.

The risk averse term Φα,m(∆x|ξm) in (18) is adopted to re-
duce the economic risk regarding the social welfare. In other
words, it seeks to optimize the expectation of lower social wel-
fare with respect to specific scenarios under the worst case. To
verify the advantages of adopting WCVaR as the risk indica-
tor, we compare the performance of WCVaR based MCM with
that of CVaR. The comparative results are presented in Figure
5, Figure 6 and Table 6, respectively.

One of the purposes of the day-ahead MC is to determine
the electricity prices. Figure 5 shows the clearing price com-
parisons for the energy, reserve and regulation in each time
period after the two-step MC. It is easily observed that the
energy prices with WCVaR based MCM are generally lower
than or equal to those of the CVaR. It indicates that WCVaR
based MCM could achieve an overall lower day-ahead elec-
tricity price. In terms of the reserve, its corresponding clear-
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Figure 5: Day-ahead market clearing prices for (a) energy, (b) reserve and (c)
regulation by comparing WCVaR and CVaR based MCMs

ing prices are no higher than except for the 9-th, 18-th and
21-st time periods. It reveals that the lower cost of reserve re-
source is required for the power system by adopting the WC-
VaR. Furthermore, the regulation prices with respect to CVaR
based MCM are as high as 80 $/MWh for most periods. There
are only two periods, i.e., the 10-th and 18-th, during which
the WCVaR based results lead to higher prices. Therefore, the
observations in Figure 6 reveal that lower clearing prices are
obtained by the WCVaR based MCM.

Table 6: Dispatched Results under Different Tests

Generation
cost ($)

First-step
welfare ($)

Two step
expected

welfare ($)
WCVaR based model 2.8326×106 1.7041×106 2.3161×106

CVaR based model 2.8352×106 2.1563×106 2.3154×106

On the basis of the clearing prices for energy, reserve and
regulation, simulation results for generation cost and social
welfare are obtained, which are listed in Table 6. On the one
hand, the expected generation cost are lower in the WCVaR
based MCM, which is 2.8326×106 $ compared with 2.8352×106

$ regarding that of CVaR. Which is because that the lower
cleared prices are obtained by the WCVaR based MCM. On
the other hand, it is notable that the corresponding social wel-
fare of the first-step F(x) is 1.7041×106 $, much lower than
2.1563×106 $ in the CVaR based MCM. It is because that
the more robust dispatching decision is conducted in the first
step, and more dispatching adjustments are used in the second-
step with WCVaR based MCM, to overcome the economic
risk brought by load uncertainties. Moreover, its social wel-
fare of the two-step expectation is 2.3161 ×106 $, higher than
2.3154×106 $ regarding the CVaR based results. Therefore,
it could be concluded from the simulation results of this part
that WCVaR serves as a better risk indicator, due to the higher
social welfare and lower economic risk it could obtain.

Furthermore, our proposed MCM is incorporated with a
DR program, thus it is also necessary to analyze the dispatched
load curtailment for load providers. As shown in Figure 6,
the bars with bidding group represent the total quantities of all
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Figure 6: Accepted load curtailment comparison of WCVaR based and CVaR
based results

tranches for bidding curtailable load in each time period. The
other two groups are dispatched load curtailments regarding
CVaR based and WCVaR based results, respectively. It is ob-
served that the quantities of dispatched load curtailments for
the WCVaR based MCM are more than CVaR based model in
the 9-th∼22-nd periods. This phenomenon indicates that the
WCVaR based MCM tends to achieve more load curtailments.

5.4. Analysis of Risk Aversion Factor

In this subsection, the impacts of risk averse level on the
dispatch results, including the expected social welfare, total
generation cost, energy generation cost and curtailment per-
cent, are elaborately analyzed, by adjusting the risk aversion
factor at 0.1, 0.3, 0.5, 0.7, 0.9, respectively. The simulation re-
sults with different risk averse levels are presented in Table 7,
and the relationship between the obtained results and the risk
aversion level is illustrated in Figure 7.

Table 7: Results for Different Risk Aversion Factor

Risk
averse
level

Social
welfare ($)

Generation
cost ($)

Energy
cost ($)

Curtailment
percent

(%)
ρ = 0.1 2.3161×106 2.8326×106 2.6381×106 60.21
ρ = 0.3 2.3161×106 2.8322×106 2.6379×106 60.47
ρ = 0.5 2.3159×106 2.8315×106 2.6371×106 61.20
ρ = 0.7 2.3157×106 2.8300×106 2.6356×106 62.87
ρ = 0.9 2.3137×106 2.8269×106 2.6318×106 64.30
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Figure 7: Simulation results under different risk averse levels (a) Social wel-
fare (b) Generation cost (c) Energy cost (d) Curtailment percent.

First, it is easily observed from Figure 7(a) that the social
welfare slightly decreases with the increase of risk aversion
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factor ρ, from 2.3161×106 $ to 2.3137 ×106 $. It reveals that
there exists a trade-off relationship between the expected social
welfare and economic risk. In other words, the expected social
welfare will be reduced if we pay more attention to controlling
the risk induced by load uncertainty. Furthermore, the gener-
ating cost for the energy in Figure 7(c) are decreased when the
risk averse level rises, which might be because that more loads
are expected to be curtailed, as shown in Figure 7(d). On this
basis, the total generation cost are reduced along with the ris-
ing of ρ, as illustrated in Figure 7(b). In summary, improving
the risk averse level could, to some extent, reduce the expected
social welfare, yet it also lowers the generation cost and dis-
patches more load curtailments. Therefore, decision makers
should make reasonable dispatches by adjusting the risk aver-
sion factor, which is also our future research direction.

6. Conclusion

This paper develops a day-ahead bidding and clearing frame-
work considering DR with load uncertainty in the wholesale
electricity market. A series of scenario sets are generated based
on a data-driven DPMM to represent load uncertainties, con-
sidering the correlation of different time periods. In order to
control the economic risk induced by load uncertainties, a WC-
VaR based two-step risk averse MCM is proposed to maximize
the social welfare. The first-step optimization is conducted
based on system load forecast. Then, the dispatching adjust-
ments are carried out in the second step after the realization of
load uncertainty.

Numerical analysis demonstrates the outstanding perfor-
mance of our proposed framework. First, the load curtailment
based DR mechanism is verified to be effective in the day-
ahead market. When dealing with the uncertainty in day-ahead
load forecasting, the performance of DPMM in representing
time-series load uncertainty is better than GMM. In addition,
the WCVaR based risk averse MCM could well optimize the
social welfare while controlling the economic risk when the
load uncertainty is represented by the mixture model. The risk
averse level of the MCM could be adjusted by the correspond-
ing factor. In summary, this study could serve as a technical
reference for the electricity market operations.

Appendix A. Variational Inference for DPMM

Given observed data set E , the logarithm of posterior prob-
ability distribution p(E ) could be expressed as follows when
we introduce a variational posterior p̂(W ).

ln p(E ) = ln p(E ,W ) − ln p(W |E )

= ln
p(E ,W )

p̂(W )
− ln

p(W |E )
p̂(W )

= ln p(E ,W ) − ln p̂(W ) − ln
p(W |E )
p̂(W )

= ln p(E ,W ) − ln p̂(W ) + ln
p̂(W )

p(W |E )

(A.1)

The expectation of regarding p̂(W ) for both sides in (A.1)
could be formulated as follows.∫

p̂(W ) ln p(E )dW =

∫
p̂(W ) ln p(E ,W )dW −∫

p̂(W ) ln p̂(W )dW +

∫
p̂(W ) ln

p̂(W )
p(W |E )

dW

(A.2)

Then, the above equation could be reformulated as follows.

ln p(E ) =

ELOB︷                                            ︸︸                                            ︷
Ep̂(W )[ln p(E ,W )] − Ep̂(W )[ln p̂(W )]

+ Ep̂(W ) ln
p̂(W )

p(W |E )︸                ︷︷                ︸
DKL( p̂(W ))||p(W |E )

(A.3)

Here, p(E ) is a constant since it is the real probability den-
sity function to be approached. Ep̂(W ) ln p(E ,W )−Ep̂(W ) ln p̂(W )
is the evidence lower bound (ELOB), denoted as L ( p̂(W )).

Ep̂(W ) ln
p̂(W )

p(W |E )
is the Kullback-Leibler (KL) divergence. There-

fore, the minimization of KL divergence could be alternatively
transformed into the maximization of L ( p̂(W )).

In order to solve the maximization of ELOB regarding p̂(W ),
latent variables Z,Ω,β and Ψ are assumed to be mutually in-
dependent. This assumption has been widely adopted in the
variational inference field [29]. Consequently, the variational
posterior p̂(W ) is factorized into multiple partitions with re-
spect to Z,Ω,β,Ψ, expressed as follows.

p̂(W ) =

∞∏
m=1

{ R∏
r=1

p̂(z[r]
m )] p̂(Ωm) p̂(βm) p̂(ϕm)

}
(A.4)

The above factorization of p̂(W ) regarding the latent vari-
ables is feasible. Then, the VI could be implemented by iter-
atively maximizing L ( p̂m(Wm)) at one time, which is formu-
lated as

L ( p̂m(Wm))
=Ep̂(Wm)[ln p(E ,W )] − Ep̂(Wm)[ln p̂(Wm)]
=Ep̂(Wm)

{
Ep̂(W )n,m [ln p(E ,W )] − ln p̂(Wm)

}
+ C

(A.5)

where Ep̂(W )n,m represents the expectation of all variational
factors p̂(Wn) except for p̂(Wm), n and m are indexes of mix-
ture components, C is the aggregated terms independent on
p̂(Wm). The maximization exists if and only if ln p̂(Wm) =

Ep̂(W )n,m [ln p(E ,W )].
On this basis, the parameter estimation by VI is conducted

as follows. First, all the variational factors p̂(Wm) are appro-
priately initialized. Then, we compute p̂(Wm) according to
ln p̂(Wm) = Ep̂(W )n,m [ln p(E ,W )] for every m until L (p̂(W ))
is converged. Eventually, this iterative process could find the
optimal posterior distributions. Once the posterior distribu-
tions regarding latent variables are determined, the real condi-
tional distribution p(E |W ) is obtained.

Appendix B. Formulation of CVaR

Originally, the conditional value at risk (CVaR) has been
developed as the indicator for the higher losses under the un-
certain environment [42] in the portfolio optimization field.
Reducing such indicator could well manage the risk for deci-
sion making. On the contrary, if we seek to improve the lower
profit under the uncertain environment, the CVaR with respect
to the profit function could also be useful.

To be specific, assuming f (x, y) denote the profit function
regarding to the decision vector x ∈ X and a random vector
y ∈ Y , the probability of f (x, y) no less than a threshold η is
represented as

ψ(x, η) =

∫
f (x,y)≥η

p(y)dy (B.1)
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where p(y) is the underling probability density of random vec-
tor y. On this basis, the VaR for the profit function f (x, y)
regarding confidential level α is defined as follows.

VaRα(x) = max{η ∈ R : ψ(x, η) ≥ α} (B.2)

Therefore, the CVaR regarding f (x, y) is formulated by the
expectation of the profits that are lower than VaR with confi-
dential level α, shown as follows.

CVaRα =
1

1 − α

∫
f (x,y)≤VaRα(x)

f (x, y)p(y)dy (B.3)

It should be mentioned that the direct computation of CVaR
is difficult because of the existence of convoluted and implicit
terms. Rockafellar et. al have made a significant contribution
by introducing an auxiliary function [33] as follows.

Fα(x, η) = η −
1

1 − α

∫
y

[η − f (x, y)]+ p(y)dy (B.4)

where [η − f (x, y)]+ = max
{
η − f (x, y), 0

}
. Then , the CVaR

can be obtained as follows (see Theorem in [33]).

CVaRα(x) = max
η∈R

Fα(x, η) (B.5)

In practical calculations, the probability density p(y) is usu-
ally characterized by the sample-based method. Therefore,
with the introduction of probabilistic sample ξs, Fα(x, η) could
be approximated by

Fα(x, η) = η −
1

1 − α

∑
s

ps · [η − f (x, ξs)]+ (B.6)

Appendix C. Formulation of evaluation measurements

The evaluation measurement used in Table 5 are listed as
follows.
Silhouette Coefficient [39]: Silhouette Coefficient compare
the average distance to data points in the same cluster to av-
erage distance to those in other clusters. Its value range is
[−1, 1], the higher the better. Given a sample point x, the defi-
nition of Silhouette Coefficient is formulated as:

s(x) =
b(x) − a(x)

max{a(x), b(x)}
(C.1)

in which, a(x) is the average distance between x to other points
in the same cluster, b(x) is the minimum average distance be-
tween x to all points in the different clusters. The Silhouette
Coefficient is the average value of all s(x).
Root-mean-square standard deviation (RMSSTD) [40]: Used
to measure the homogeneity of clustering results, i.e. compact-
ness, which is defined in (C.2). The smaller the value is, the
better clustering performance.

RMS S T D =


∑
i

∑
x∈Ci

‖x − ci‖
2

P
∑
i

(ni − 1)


1
2

(C.2)

where Ci represent the i-th cluster, ci is the center of Ci ,

x ∈ Ci

means x is a sample point in the cluster Ci , ni is the number of
sample points, P is the number of dimensions of the sample.
R-Square [40]: R-Square represents the improvement of square
error after clustering compared with which before clustering.
The greater the value, the better. It is formulated as:

RS =

∑
x∈D
‖x − c‖2 −

∑
i

∑
x∈Ci

‖x − ci‖
2

∑
x∈D
‖x − c‖2

(C.3)

where D represent the whole dataset, c means the centres of all
sample points. The rest definitions are the same as (D.2).
Hubert’s Γ statistic [41]: The Hubert’s Γ statistic has been
shown to be effective in assessing fit between data and a priori
structures. The larger the Γ value, the more consistent the clus-
tering result is with the original distance of the sample, that is,
the higher the clustering quality. It is expressed as follow.

Γ =
2

n(n − 1)

∑
x∈D

∑
y∈D

d(x, y)dx∈Ci,y∈C j (ci, c j) (C.4)

in which d(x, y) represent the distance between sample point
x and y, dx∈Ci,y∈C j (ci, c j) is the distance between the clustering
centre ci which x belonging to and clustering centre c j which
y belonging to. n(n−1)

2 is the number of (x, y) sample pairs.

Appendix D. Formulation of CVaR based MCM

In this way, after formulating the CVaR with the sample-
based method, the CVaR based MCM is formulated as follows.

max
x,∆x

{
F(x)︸︷︷︸

First step

+ (1 − ρ) · F(∆x|ξ) + ρ · CVaRα(∆x|ξ)︸                                          ︷︷                                          ︸
Second step

}
(D.1)

References

[1] E. M. Authority, Implementing demand response in the national elec-
tricity market of singapore., https://www.ema.gov.sg/cmsmedia/
Electricity/Demand_Response/Final_Determination_

Demand_Response_28_Oct_2013_Final.pdf.
[2] J. J. Chen, B. X. Qi, Z. K. Rong, K. Peng, Y. L. Zhao, X. Zhang,

Multi-energy coordinated microgrid scheduling with integrated de-
mand response for flexibility improvement, Energy 217 (2021) 119387.
doi:https://doi.org/10.1016/j.energy.2020.119387.
URL https://www.sciencedirect.com/science/article/pii/

S0360544220324944

[3] H. L. Chen, M. B. Liu, Y. Q. Liu, S. J. Lin, Z. B. Yang, Partial surrogate
cuts method for network-constrained optimal scheduling of multi-carrier
energy systems with demand response, Energy 196 (2020) 117119.
doi:https://doi.org/10.1016/j.energy.2020.117119.
URL https://www.sciencedirect.com/science/article/pii/

S0360544220302267

[4] Y. L. Wang, Y. Z. Ma, F. H. Song, Y. Ma, C. Y. Qi, F. F.
Huang, J. T. Xing, F. W. Zhang, Economic and efficient multi-
objective operation optimization of integrated energy system consid-
ering electro-thermal demand response, Energy 205 (2020) 118022.
doi:https://doi.org/10.1016/j.energy.2020.118022.
URL https://www.sciencedirect.com/science/article/pii/

S0360544220311294

[5] S. F. Zhou, Z. Shu, Y. Gao, H. B. Gooi, S. X. Chen, K. Tan,
Demand response program in Singapore’s wholesale electricity
market, Electric Power Systems Research 142 (2017) 279–289.
doi:https://doi.org/10.1016/j.epsr.2016.09.022.
URL http://www.sciencedirect.com/science/article/pii/

S0378779616303741

[6] P. Y. Liu, T. Ding, Z. X. Zou, Y. H. Yang, Integrated demand
response for a load serving entity in multi-energy market consid-
ering network constraints, Applied Energy 250 (2019) 512–529.
doi:https://doi.org/10.1016/j.apenergy.2019.05.003.
URL http://www.sciencedirect.com/science/article/pii/

S0306261919308578

12



[7] X. Lu, Y. Yang, P. Wang, Y. Fan, F. Yu, N. Zafetti, A new converged
Emperor Penguin Optimizer for biding strategy in a day-ahead deregu-
lated market clearing price: A case study in China, Energy 227 (2021)
120386. doi:10.1016/j.energy.2021.120386.

[8] H. Aghamohammadloo, V. Talaeizadeh, K. Shahanaghi, J. Aghaei,
H. Shayanfar, M. Shafie-khah, J. P. S. Catalão, Integrated Demand Re-
sponse programs and energy hubs retail energy market modelling, En-
ergy 234 (2021) 121239. doi:10.1016/j.energy.2021.121239.

[9] E. Shahryari, H. Shayeghi, B. Mohammadi-ivatloo, M. Moradzadeh,
An improved incentive-based demand response program in day-
ahead and intra-day electricity markets, Energy 155 (2018) 205–214.
doi:10.1016/j.energy.2018.04.170.

[10] H. Ming, L. Xie, M. C. Campi, S. Garatti, P. R. Kumar,
Scenario-based economic dispatch with uncertain demand response,
IEEE Transactions on Smart Grid 10 (2) (2019) 1858–1868.
doi:10.1109/TSG.2017.2778688.

[11] M. Shafie-khah, J. P. S. Catalão, A stochastic multi-layer agent-
based model to study electricity market participants behavior,
IEEE Transactions on Power Systems 30 (2) (2015) 867–881.
doi:10.1109/TPWRS.2014.2335992.

[12] N. Nasiri, S. Zeynali, S. N. Ravadanegh, M. Marzband, A hybrid robust-
stochastic approach for strategic scheduling of a multi-energy system as
a price-maker player in day-ahead wholesale market, Energy 235 (2021)
121398. doi:10.1016/j.energy.2021.121398.

[13] M. Dadashi, S. Haghifam, K. Zare, M.-R. Haghifam, M. Abapour, Short-
term scheduling of electricity retailers in the presence of Demand Re-
sponse Aggregators: A two-stage stochastic Bi-Level programming ap-
proach, Energy 205 (2020) 117926. doi:10.1016/j.energy.2020.117926.

[14] N. Rezaei, Y. Pezhmani, A. Khazali, Economic-environmental risk-
averse optimal heat and power energy management of a grid-connected
multi microgrid system considering demand response and bidding strat-
egy, Energy 240 (2022) 122844. doi:10.1016/j.energy.2021.122844.

[15] Y. Wang, Q. Chen, M. Sun, C. Kang, Q. Xia, An ensemble forecasting
method for the aggregated load with subprofiles, IEEE Transactions on
Smart Grid 9 (4) (2018) 3906–3908. doi:10.1109/TSG.2018.2807985.

[16] R. Singh, B. C. Pal, R. A. Jabr, Statistical representation
of distribution system loads using gaussian mixture model,
IEEE Transactions on Power Systems 25 (1) (2010) 29–37.
doi:10.1109/TPWRS.2009.2030271.

[17] R. Panda, P. K. Tiwari, Economic risk-based bidding strategy for
profit maximisation of wind-integrated day-ahead and real-time double-
auctioned competitive power markets, IET Generation, Transmission
Distribution 13 (2) (2019) 209–218.

[18] P. Sheikhahmadi, S. Bahramara, J. Moshtagh, M. Y. Damavandi, A risk-
based approach for modeling the strategic behavior of a distribution
company in wholesale energy market, Applied Energy 214 (2018) 24–
38. doi:https://doi.org/10.1016/j.apenergy.2018.01.051.
URL http://www.sciencedirect.com/science/article/pii/

S0306261918300631

[19] S. Das, M. Basu, Day-ahead optimal bidding strategy of micro-
grid with demand response program considering uncertainties and
outages of renewable energy resources, Energy 190 (2020) 116441.
doi:10.1016/j.energy.2019.116441.

[20] L. Tian, Y. L. Xie, B. Hu, X. P. Liu, T. Y. Deng, H. H. Luo, F. Q. Li,
A deep peak regulation auxiliary service bidding strategy for CHP units
based on a risk-averse model and district heating network energy storage,
Energies 12 (17) (2019) 3314. doi:10.3390/en12173314.
URL https://www.mdpi.com/1996-1073/12/17/3314

[21] W. Labeeuw, G. Deconinck, Residential electrical load model
based on mixture model clustering and Markov models, IEEE
Transactions on Industrial Informatics 9 (3) (2013) 1561–1569.
doi:10.1109/TII.2013.2240309.

[22] S. S. Zhu, M. Fukushima, Worst-case conditional value-at-risk with ap-
plication to robust portfolio management, Operations Research 57 (5)
(2009) 1155–1168. doi:10.1287/opre.1080.0684.
URL https://doi.org/10.1287/opre.1080.0684

[23] J. A. Schachter, P. Mancarella, Demand response contracts as real op-
tions: A probabilistic evaluation framework under short-term and long-
term uncertainties, IEEE Transactions on Smart Grid 7 (2) (2016) 868–
878. doi:10.1109/TSG.2015.2405673.

[24] D. Shah, S. Chatterjee, Optimal placement of time flexible supplier’s
block bid in a day-ahead electric market using genetic algorithm, in:
2019 Second International Conference on Advanced Computational and
Communication Paradigms (ICACCP), 2019.

[25] Y. Li, G. Hao, Y. Liu, Y. Yu, Z. Ni, Y. Zhao, Many-objective distri-
bution network reconfiguration via deep reinforcement learning assisted
optimization algorithm, IEEE Transactions on Power Delivery (2021)
1–1doi:10.1109/TPWRD.2021.3107534.

[26] Z. Li, Y. Li, Y. Liu, P. Wang, R. Lu, H. B. Gooi, Deep
learning based densely connected network for load forecasting,
IEEE Transactions on Power Systems 36 (4) (2021) 2829–2840.
doi:10.1109/TPWRS.2020.3048359.

[27] Z. Y. Ma, P. Rana, J. Taghia, M. Flierl, A. Leijon, Bayesian estimation of
dirichlet mixture model with variational inference, Pattern Recognition
47 (2014) 3143–3157. doi:10.1016/j.patcog.2014.04.002.

[28] D. M. Blei, M. I. Jordan, Variational inference for dirichlet process mix-
tures, Journal of Bayesian Analysis 1 (1) (2006) 121–143.

[29] D. Blei, A. Kucukelbir, J. McAuliffe, Variational Inference: A Re-
view for Statisticians, Journal of the American Statistical Association
112 (518) (2017) 859–877. doi:10.1080/01621459.2017.1285773.

[30] S. Kim, T. Kang, Texture classification and segmentation using wavelet
packet frame and Gaussian mixture model, Pattern Recognition 40
(2007) 1207–1221. doi:10.1016/j.patcog.2006.09.012.

[31] Z. W. Wang, C. Shen, F. Liu, A conditional model of wind power forecast
errors and its application in scenario generation, Applied Energy 212
(2017) 771–785.

[32] Z. Chen, L. Wu, Z. Li, Electric demand response management for dis-
tributed large-scale internet data centers, IEEE Transactions on Smart
Grid 5 (2) (2014) 651–661. doi:10.1109/TSG.2013.2267397.

[33] R. T. Rockafellar, S. Uryasev, Optimization of conditional value-at-risk,
The Journal of Risk 2 (3) (2000) 21–41. doi:10.21314/JOR.2000.038.

[34] X. J. Tong, F. Wu, L. J. Qi, Worst-case CVaR based port-
folio optimization models with applications to scenario plan-
ning, Optimization Methods and Software 24 (2009) 933–958.
doi:10.1080/10556780902865942.

[35] H. Sekhavatmanesh, R. Cherkaoui, Distribution network restoration in a
multiagent framework using a convex OPF model, IEEE Transactions on
Smart Grid 10 (3) (2019) 2618–2628. doi:10.1109/TSG.2018.2805922.

[36] Z. Zhao, L. Wu, G. Song, Convergence of volatile power markets with
price-based demand response, IEEE Transactions on Power Systems
29 (5) (2014) 2107–2118. doi:10.1109/TPWRS.2014.2307872.

[37] E. M. Company, Singapore energy price and demand forecast, https:
//www.emcsg.com/marketdata/priceinformation.

[38] Q. Wang, J. Watson, Y. Guan, Two-stage robust optimization for N-k
contingency-constrained unit commitment, IEEE Transactions on Power
Systems 28 (3) (2013) 2366–2375. doi:10.1109/TPWRS.2013.2244619.

[39] P. J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis, Journal of Computational and Applied
Mathematics 20 (1987) 53–65. doi:10.1016/0377-0427(87)90125-7.

[40] C. Liu, J. Cen, Training Subset Selection for Support Vector Regression,
in: 2019 Federated Conference on Computer Science and Information
Systems (FedCSIS), 2019, pp. 11–14. doi:10.15439/2019F363.

[41] C.-Y. Tang, Y.-L. Wu, Y.-C. Lee, Cluster and Clustering Algorithm
Validity in Image Retrieval, in: 2006 IEEE International Conference
on Systems, Man and Cybernetics, Vol. 4, 2006, pp. 3318–3323.
doi:10.1109/ICSMC.2006.384630.

[42] S. Alexander, T. F. Coleman, Y. Li, Minimizing CVaR and VaR for a
portfolio of derivatives, Journal of Banking & Finance 30 (2) (2006)
583–605.

13


