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Resilience Assessment for Power Systems Under
Sequential Attacks Using Double DQN with

Improved Prioritized Experience Replay
Lingkang Zeng, Wei Yao, Senior Member, IEEE, Hang Shuai, Member, IEEE, Yue Zhou, Member, IEEE,

Xiaomeng Ai, Member, IEEE and Jinyu Wen, Member, IEEE

Abstract—The information and communication technology
enhances the performance and efficiency of cyber-physical power
systems (CPPSs). However, it makes the topology of CPPSs more
exposed to malicious cyber attacks in the meantime. This paper
proposes a double deep-Q-network (DDQN) based resilience
assessment method for power systems under sequential attacks.
The DDQN agent is devoted to identifying the least sequential
attacks to the ultimate collapse of the power system under
different operating conditions. A cascading failure simulator
considering the characteristics of generators is developed to
avoid a relatively optimistic assessment result. In addition, a
novel resilience index is proposed to reflect the capability of the
power system to deliver power under sequential attacks. Then, an
improved prioritized experience replay technique is developed to
accelerate the convergence rate of the training process for DDQN
agent. Simulation results on the IEEE 39-bus, 118-bus and 300-
bus power systems demonstrate the effectiveness of the proposed
DDQN-based resilience assessment method.

Index Terms—Resilience assessment, cyber-physical power
system, cascading failure simulation, double deep-Q-network,
prioritized experience replay.

I. INTRODUCTION

ADVANCED information and communication technology
has been integrated into power systems for the en-

hancement in performance and efficiency, which turns elec-
trical grids into cyber-physical power systems (CPPSs) [1]–
[3]. However, the complex interconnectivity between differ-
ent devices and elements makes CPPSs more exposed to
malicious cyber and physical attacks [4], [5]. Specifically,
the topology attacks could cause the power line outages,
which would lead to the widespread power flow transfer and
further cascading failures [6]. It can create severe damage
in CPPSs, for example, the 2015 Ukraine blackout caused
by false data injection attacks [7]. Hence, it is necessary to
conduct the resilience assessment in advance [8], in order to
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provide guiding suggestions for the investment in resilience-
enhancement countermeasures [9], [10].

In spite of the not-yet-standardized definitions of resilience
of CPPSs [11], there is a relatively widely recognized defini-
tion: the ability of CPPSs to tolerate cyber-based and power-
based disturbances or recover from disturbances by operation
technology [12]. There have been plenty of researches on
the resilience assessment of power systems under power-
based attacks or extreme weather events [13], [14]. However,
compared with the power-based faults, the cyber-based attacks
on topology require less attack resources and can be conducted
more flexibly. It can also lead to severe blackouts [6], [15],
[16], which is launched by tampering the status data [17], [18]
or malicious line-switching operation [19], [20]. Usually, there
are two main kinds of topology attacks: synchronous attack
[21]–[23] and sequential attack [24]–[27]. The sequential
attack is proposed in [24] firstly and proved that it may result
in severer blackouts than the synchronous attack. Besides, it
requires less coordination on attack resources, which means
the higher flexibility in the choice of attack lines [27]. Hence,
this paper will focus on the resilience assessment of CPPSs
under the sequential cyber attacks on the power topologies.

Generally, the resilience assessment of power systems iden-
tifies the least sequential attacks for the system failure. It
consists of two main parts: the cascading failure simulator
(CFS) and the design of contingency/attack. CFS is pro-
posed to simulate the cascading failure and corresponding
recovery operation strategies of the power systems under
attack/disturbance [28]. Basically, they are designed using the
dc power flow (DC-PF) model [29]–[32] or the computa-
tionally efficient AC model [33]. Some stochastic cascading
failure models [34], [35] are further proposed to simulate the
cascading failures considering the high uncertainty of load
and renewable generations. However, the characteristics of
generators are sometimes not sufficiently considered for the
generator rescheduling during the cascading failure process
in the above researches. For example, Ref. [29]–[31] ignored
the lower power limits of generators. Ref. [33]–[35] ignored
the governor droop coefficients, which reflected the primary
frequency regulation. Ref. [32] considered the characteristics
of generators, but ignored the power loss when deciding the
load shedding. These insufficient considerations might lead to
a relatively optimistic result of the resilience assessment under
sequential attacks. The post-contingency evolution simulator
proposed in [36] made up for these deficiencies. Whereas, due
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to the ac power flow and various modelled control measures, it
is too computationally intensive for the resilience assessment
under sequential attacks. Moreover, there are few resilience
indexes to describe the functionality of the power system to
deliver power under sequential attacks [11].

On the other hand, the contingency/attack for resilience
assessment is usually designed by operation experience. The
resilience of critical electrical power infrastructure is analyzed
under extreme weather events in [37], or evaluated by Monte
Carlo simulation in [38]. However, the rarely occurred extreme
weather events and blackouts caused by cyber-attacks in
practice may lead to the scarcity of historical data. Besides,
numerous simulations would bring a considerable computa-
tional burden in modern complex power systems.

With the rapid development of reinforcement-learning (RL)
theory [39], [40], some RL algorithms are introduced to
design the contingency/attack for the resilience assessment
of power systems. The RL-based agent can be trained with
the experience data through the interaction with CFS, rather
than the historical data of extreme weather events. Ref.
[41] proposed a table-based Q-learning method to identify
the critical sequential topology attacks. However, the branch
operating state is discrete, which means the Q-table needs to
be retrained for another new operating condition. Thanks to
the development of deep learning in recent years, the deep
neural network can be used to evaluate actions with respect
to continuous states [42]. A deep-Q-network (DQN) based
cyber-physical coordinated attack strategy is proposed in [43]
to attack the critical line with the minimal cyber resources.
Nevertheless, the DQN agent in [43] still cannot deal with
different operating conditions due to the same state design
as [41]. Moreover, the threshold of practical grids collapse
might be higher than that in [41], [43]. It means that the
Markov Decision Process (MDP) lasts relatively longer, and
the action space would be huge. As a result, a much larger
Q-table is required to save the Q value of different state-
action pairs. Besides, numerous transitions with low rewards
would be generated by the exploration. It would make the
DQN agents trained with the conventional experience replay
technique spend a lot of time converging to the approximate
optimal, especially when the computing and training resources
are limited.

Considering the aforementioned problems, this paper pro-
poses a double deep-Q-network (DDQN) based method for
resilience assessment of power systems under sequential at-
tacks using improved prioritized experience replay (PER).
The proposed DDQN based agent is supposed to identify the
least sequential attacks resulting in the system collapse under
different operating conditions. Numerous simulation results
on the IEEE 39-bus, 118-bus and 300-bus power systems
verify the effectiveness of the proposed DDQN based agent
for resilience assessment under sequential attacks.

The main contributions of this work are summarized here:

• A DDQN based agent using an improved PER technique
is proposed for the resilience assessment of power sys-
tems under sequential attacks among different operating
conditions.

• A DC-PF based CFS is proposed to simulate the complex
failure and corrective manipulations of power systems
under sequential attacks, which can consider the char-
acteristics of generators. In addition, a novel resilience
index is designed to reflect the capability of CPPSs to
deliver power under sequential attacks.

• The improved PER technique is proposed to accelerate
the convergence of the training process for DDQN based
agents. It scores the priority of experience in replay buffer
with the combination of temporal difference (TD) error
and the average episode reward.

The rest of this paper is organized as follows. The CFS
considering generator characteristics is briefly introduced in
Section II. Section III presents the MDP formulation of the
DDQN based agent for resilience assessment followed by the
introduction of improved PER technique. Section IV discusses
the simulation results on three IEEE benchmarks and Section
V concludes the paper.

II. CASCADING FAILURE IN POWER SYSTEMS UNDER
SEQUENTIAL ATTACKS

A. Cascading Failure Simulator Under Sequential Attacks

Malicious line-switching attacks on critical lines can turn
their status from in-service to out-of-service. It can trigger
large-scale power flow transfer and lead to severe cascading
failure. When the number of out-of-service lines reaches a
certain threshold, it can be regarded as a collapse of the
power system [41]. After that, the line maintenance and power
recovery will take a long time. Referring to the architecture
of the MATCASC toolbox in MATLAB [44], the cascading
failure simulator based on the DC-PF model is shown in Fig.
1. It is expected to make the power system collapse through
the least topology attacks during the resilience assessment. To
this end, the malicious sequential topology attacks and the
cascading failures resulting from the attacks are conducted in
turn. Note that the branch short time emergency ratings of
transmission lines are set as the thermal capacity and their
augmented values. The detailed information refers to [6]. The
procedures of the cascading failure simulation based power
system resilience assessment under sequential attacks are as
follows:

1) Load the initial operating condition of the power system,
including the bus data, line data, and generator data.

2) Calculate the power flow on lines with the DC-PF model.
3) Attack one of the operating lines and update the topology

of the power system.
4) Detect whether the whole power system turns into several

sub-grids after the attacked line is tripped out. All the
lines in the sub-grid without generators turn into out-of-
service state.

5) Re-dispatch the active generations and loads to ensure the
active power balance in each sub-grid.

6) Update the power flow with the re-dispatched data using
the DC-PF model. If there exist overloaded lines, trip the
overloaded lines with minimal capacity and turn to 4).

7) Check whether the total line-outages Ntotal are less than
the threshold Nc. If yes, turn to step 3) and attack another
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Fig. 1. System collapse caused by sequential attacks and cascading failure

operating line. Otherwise, output the attack sequence. The
number of attacks will reflect the resilience of the power
system under this operating condition.

B. Re-dispatch Strategy During Cascading Failure

Different from the Cascading Failure Simulation module
in [44], the re-dispatch strategy in this paper additionally
considers the governor droop coefficient and the lower power
limits of generators. The details of the re-dispatch strategy are
given as follows:

1) Calculate unbalanced power: Summarise the total load
PL, active power of each generator Pi

g and the corresponding
upper limit Pi

max, and lower limit Pi
min in the concerned sub-

grid. Calculate the unbalanced power ∆P as follow:

∆P = PL−ΣPi
g (1)

2) Load shedding: If ∆P> Σ(Pi
max−Pi

g), the power shortfall
will still exist after increasing all the generations to their upper
limits. In this situation, cut off the load in amount of ∆PL:

∆PL = 0.1PL⌈
∆P−Σ(Pi

max−Pi
g)

0.1PL
⌉ (2)

It means that the load would be cut off at internals of 10% of
the current load. Although the CFS in this paper is based on
the DC-PF model, the ⌈•⌉ function considers the power loss on
the transmission lines in practical grids. Then the unbalanced
power goes to ∆P = PL−∆PL−ΣPi

g.
3) Generator tripping: If |∆P| > Σ(Pi

g−Pi
min), the power

surplus will still exist after decreasing all the generations to
their lower limits. In this situation, trip off the generator in
ascending order of (Pi

g−Pi
min) until |∆P| ≤ Σ(Pi

g−Pi
min). Then

re-calculate the unbalanced power ∆P. This is because the
heat generated by the friction of valve and steam cannot be
taken away in time at a low operating point. It could cause
the damage to the blade of steam turbine of generator when
the generator operates under the lower power limit. It is also
uneconomical for generators to operate at a fairly low power
point with the consideration of generating cost, like auxiliary
power consumption.

4) Power generation adjustment: Adjust the power of each
operating generator according to its droop coefficient Ri. Dur-
ing the primary frequency regulation for the unbalanced power,

the governor droop coefficient approximately determines how
much the generator responds to the frequency deviation [36].
Note that the frequency dynamics is ignored here. The power
adjustment is formulated as follows:∆Pi

g =
1
Ri

∆P/Σ
1
Ri

Pi
min < Pi

g < Pi
max

(3)

If Pi
g reaches its own upper or lower limit, the rest adjustment

amount will be apportioned to other generators.

C. Resilience Index Based on the Number of Attacks

Since the resilience of the power system in this paper
reflects the capacity to tolerate malicious attacks and continue
to deliver affordable power, the resilience index is defined
based on the number of attacks as follows:

RIk =
ke

∑
k=1

F(k)1/k

F(k) = (N−Ntotal
k )/N

1≤ k ≤ ke,k ∈ N+,ke ∈ N+

(4)

where RIk is the resilience index of power system after k
attacks. N is the number of operating lines in the initial
operating condition, while Ntotal

k is the total out-of-service lines
caused by k attacks. F(k) is the ratio of the number of the
remaining operating lines to the number of the initial operating
lines, which reflects the damage to the structure of the power
system after k attacks. Note that F(k) is positive and in the
range of [0,1), while k is a positive integer. ke is the number
of attacks when the system collapses (Ntotal

k ≥ Nc).
Since RIk is the cumulative value of F(k) to the power

of 1/k, it increases with the attack times k until the power
system collapses. It is reasonable that the more attacks the
power system can tolerate, the more resilient the system is.
In addition, the power operator is no greater than 1, which
is a kind of amplification of F(k) in the integration. The
amplification increases with the attack times k. It means that
the capability to tolerate multiple attacks are more precious
and counts more in the resilience assessment of power system.
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III. DEEP REINFORCEMENT LEARNING BASED
RESILIENCE ASSESSMENT

The DDQN based resilience assessment method is intro-
duced in the following section. Firstly, the resilience assess-
ment of the power system under sequential attacks will be
formulated as an MDP problem. Then, the DDQN agent
using the improved PER technique is developed to make
decisions of sequential attacks. The end of this section gives
the training procedures of the DDQN based agent for resilience
assessment.

A. Markov Decision Process Formulation of Resilience As-
sessment under Sequential Attacks

Fig.2 shows the MDP of the resilience assessment for
the power system which reflects the interaction between the
agent and the proposed cascading failure simulator. The key
elements of MDP are state sk, action ak, reward rk, terminal
Tend and the state transformation function. In detail, the agent
firstly decides the attacking line ak when it received the current
power flow state sk from the concerned power system. Then
the DC-PF based cascading failure simulation is conducted
with the state sk and action ak until there is no overloaded
line. That represents the state transformation completes and
the next power flow state sk+1 is obtained. The corresponding
reward is made according to the reward function which is
designed in prior. The MDP continues as the current state sk
is replaced by sk+1, until the terminal state of the MDP arrives
and Tend is true.

Q evaluation 

network

Q* target 

network

Cascading failure 

simulator

Cascading failure

DDQN based agent for power system 

resilience assessment

Attack line 

Power system state

Reward

Transition

Current state

Attack line

Next state

Reward

Terminal flag

Replay buffer

Save transitions Terminal flag

Experience replay
Loss

Load state, 

generator state,

branch state

Interaction 

through MDP

Malicious attack

Fig. 2. The framework of the DRL based resilience assessment method

1) State: The state sk refers to the power flow state of power
system at decision step k, which can be described as:

st =
[
P1

L(k), ...,P
x
L(k),P

1
g (k), ...,P

m
g (k),P1

b (k), ...,P
y
b (k)

]
(5)

where Px
L(k) represents the active power load of bus x at step

k. Pm
g (k) represents the active power generation of generator m

at step k. Py
b (k) represents the active power transmitted on the

branch y at step k. x, m and y are the number of the observed
buses, generators and branches, respectively.

2) Action: The action ak refers to the index of the power
transmission lines that the agent decides to attack at decision
step k. Accordingly, ak can be described as:

ak ∈ AAAkkk,AAAkkk =
{

i|i ∈ AAA000∩Bi
k = 1

}
AAA000 = {1, i, ...,N}
BBBkkk =

[
B1

k ,B
i
k, ...,B

N
k
]
,Bi

k ∈ {0,1}
(6)

where, AAAkkk represents the collection of available attacking lines
in power system at decision step k. AAA000 represents the initial
collection at step 0 when all the transmission lines are under
operation. N is the corresponding number of lines in the initial
collection which is also the dimension of the output layer of
the agent. BBBkkk refers to the operating state of all the branches
listed in AAA000 and Bi

k is the operating state of branch i at
decision step k, where 0 means out-of-service and 1 means
under operation. In this way, the transmission line selected by
the agent at every decision step is guaranteed under operation.

In addition, the ε-greedy strategy is also adopted for action
selection, which is beneficial to make a balance between
exploitation and exploration during the training process. It is
formulated as follows:P(ak = a∗k) = 1− εk,ak ∈ AAAkkk

a∗k = argmax
ak∈Ak

Q(sk,ak)
(7)

where a∗k is the action with the biggest value evaluated by Q
network. P(ak = a∗k) is the probability of selecting the most
valued action at decision step k, which is 1− εk. It means
that there is a probability of εk for randomly selecting a
transmission line in AAAkkk.

εk = min
{

ε0−ns×∆ε,ε f
}

(8)

where ε0 and ε f are the initial and final value of ε . ns is
the training step and ∆ε is the attenuation of the ε . Usually,
1≥ ε0 ≥ εk ≥ ε f ≥ 0. Note that the ε-greedy strategy is only
applied in the training stage. For the action selection in the
evaluation stage, the greedy strategy is adopted instead.

3) Reward and Terminal: The reward rk(sk,ak), referred to
rk, is designed according to the state transition and the terminal
flag. The formulation of rk is obtained as:

rk =−k1 + k2×No
k + k3×Tend (9)

where k1 and k2 are the coefficients for the attack cost and
effect, respectively. k3 is the reward when the MDP terminates.
The attack effects No

k refers to the number of newly increased
transmission lines that are out of service after the cascading
failure simulation under the attack ak. It can be obtained as:

No
k =

N

∑
i=1

Bi
k−

N

∑
i=1

Bi
k+1 (10)

The terminal Tend can be formulated as:

Tend =

{
0,Ntotal

k < Nc
1,Ntotal

k ≥ Nc
(11)

where Ntotal
k is the number of line outages, Ntotal

k = N −
∑N

i=1 Bi
k+1. Nc is the threshold of the out-of-service lines that

represents the power system collapse. When the total out
of service lines are less than Nc, Tend equals 0. It means
that the MDP has not yet terminated and the agent will
continue deciding the attack transmission line. Otherwise, Tend
equals 1, which means the MDP has terminated and the
resilience assessment is completed. The number of attacks in
the sequence [a1,a2, ...,ak] reflects the resilience of the power
system under this operating condition.
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B. Double Deep-Q-Network Algorithm

The deep Q network (DQN) algorithm uses the Q-target
network to not only select the action at the next state ak+1
but also evaluate the corresponding Q value Q(sk+1,ak+1). It
could result in the over-high evaluation of the Q value at the
next decision step. To this end, the double deep Q network
is proposed in [42] to separate the selection of ak+1 and
evaluation of Qk+1. It can be described as:

Qi
j(sk+1,ak+1) = Qi

j(sk+1, argmax
ak+1∈AAAk+1

Q∗ij (sk+1,ak+1|θ ∗i)|θ i)

(12)
where Qi and θ i represent the evaluation network and its
parameters at i-th iteration, respectively. Qi∗ and θ i∗ repre-
sent the target network and its parameters at i-th iteration,
respectively. ak+1 refers to the attacking transmission line at
the next decision step. j is the number of transitions. As shown
in (12), ak+1 is firstly determined by maximizing the output
Q value of Q target network with state sk+1. Then the Q value
for (sk+1, ak+1) is evaluated by Q evaluation network. In this
way, the training process of the Q evaluation network will be
more stable. Note that, the ε-greedy strategy is not used during
the parameters update with replayed transitions.

The purpose of training is to minimize the difference
between evaluated Q value Qi

j(sk,ak|θi) and target Q value
Q̂i

j(sk,ak), which is represented by temporal-difference (TD)
error eTD(θ i):

eTD j(θ
i) = Qi

j(sk,ak|θ i)− Q̂i
j(sk,ak) (13)

Q̂i
j(sk,ak) =

[
r j +(1−Tend)×Qi

j(sk+1,ak+1)
]

(14)

where Qi(sk+1,ak+1) obtained in (12) is the evaluated Q value
of the next attack. Note that, if the MDP terminates after
decision step k, the target Q value Q̂i

k(sk,ak) equals to the
reward r(sk,ak). Then, an Adam optimizer is adopted to update
the parameters of the Q evaluation network to minimize the
mean-square TD-errors of the replayed batch of cascading
failure transitions. Thus, the gradient of the network parameter
is obtained as:

∆ j(θ i) = eTD j(θ
i) ·∇θ Qi

j(sk,ak|θ i) (15)

where ∆ j(θ i) is the gradient for Q evaluation network param-
eter θ i brought from transition j at i-th iteration.

C. Improved Prioritized Experience Replay

The cascading failure transitions are saved in the replay
buffer in form of (sk, BBBkkk, ak, sk+1, BBBk+1, rk, Tend). They will
be replayed to update the parameter of Q evaluation network,
which improves the exploitation of transitions and decreases
the relevance of these cascading failure transitions. Thanks
to the reward design in (9), the actions that cannot terminal
the MDP of resilience assessment still get non-zero reward. It
means that the hindsight experience replay proposed for the
sparse-reward MDP problem is not needed here [45].

In general, the experience replay adopts uniform random
sampling (URR), which means the sampling probability of
each cascading failure transition is similar. However, those

transitions with higher TD errors apparently are more un-
expected to the agent and should be sampled with higher
probability [46]. In [47], the transitions with higher rewards
are replayed with higher probability in the training of the
DRL based agent for automatic generation control (AGC)
dispatch. When it comes to the resilience assessment of
the power system, the transitions from the shorter attacking
sequences, rather than the transitions that terminal the MDPs,
are more valuable for the training of resilience assessment
agents. Hence, the improved PER, which scores the prior-
ity of transition with the combination of TD-error and the
average episode reward, is introduced here to accelerate the
convergence rate of the training for DDQN based resilience
assessment agents.

Fig. 3 shows the diagram of the improved PER, which
includes stochastic prioritization replay, importance sampling
weight correction, priority update, and transition replacement.
Concretely, it is designed as follows:

1) Stochastic prioritization replay: The stochastic prioriti-
zation replay samples a batch of transitions from the replay
buffer according to their probabilities, which depend on the
priorities of transitions. The priority of the cascading failure
transition is formulated as:{

p j = max{ηα ,(|eTD j |+R j)
α}

R j = RT j/NT j
(16)

where p j is the priority of cascading failure transition j.
Pj = p j/∑k pk is the sampling probability of transition j,
which is proportional to the priority p j. ∑k pk is the sum of the
priorities of all transitions in replay buffer. |eTD j | and R j are
the absolute value of the TD error and reward of transition
j, respectively. RT j and NT j are the total reward and the
number of attacks of the episode that the transition j belongs
to. η is the upper limit of priority, which is set to restrict
the replay frequency of those transitions with extremely high
priority. α is the priority coefficient representing how much
the prioritization get involved in experience replay. Especially,
the stochastic prioritization replay becomes uniform random
replay when α = 0.

2) Importance-sampling weight correction: Since the distri-
bution of the cascading failure transitions replayed by PER is
different from that of URR, the stochastic prioritization replay
inevitably introduces bias to the training process. In order to
compensate for the bias, the importance-sampling (IS) weight
is introduced to correct the gradient of the replayed transitions.

w j = (Pj/min{Pj|1≤ j ≤ nbatch})−β (17)

where w j is the IS weight of cascading failure transition j.
min{Pj|1≤ j ≤ nbatch} is the minimal priority of the replayed
batch of transitions, while nbatch is a training hyper-parameter,
the batch size. β is the coefficient of the IS weight correction
, which represents how much the gradients resulting from
the replayed transitions get corrected. β is set as 0 ≤ β ≤ 1.
Obviously, there is no IS correction for β = 0, while the IS
correction is fully conducted for β = 1.

It can be seen in (17) that the higher the transition priority
Pj, the lower the IS weight of the transition w j, the more
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the corresponding gradient magnitude decays. In this way, the
gradient of the network parameter is corrected as:

∆ j(θ i) = w j · eTD j(θ
i) ·∇θ Qi

j(sk,ak|θ i) (18)

3) Priority update and transition replacement: As shown
in Fig. 3, once the parameters of the Q evaluation network is
updated with the sampled cascading failure transitions, the TD
errors of this batch transitions need to be re-calculated with the
latest Q evaluation network. The overall decline in the priority
of these transitions is foreseeable owing to the shrink of TD
errors.

On the other hand, when the replay buffer is full of tran-
sitions, the old ones with the lowest priority will be replaced
by the newly generated transitions. Thanks to the introduction
of the average episode reward, the valuable transitions even if
replayed frequently could be kept to some degree.

D. Training Process of the DDQN Based Resilience Assess-
ment Method

The DDQN based model needs to be well-trained offline
before it is used to assess the resilience of the power sys-
tem under different operating conditions (OCs). The pseudo-
code of the training process is given in Algorithm 1, which
is conducted through the interaction with cascading failure
simulator, experience replay, and network parameters update.
With the performance of the agent converging gradually, the
output sequential attacks will assess the resilience of the power
system more accurately.

IV. CASE STUDY

Simulations are conducted on IEEE 39-bus, 118-bus and
300-bus power systems to verify the effectiveness of the
proposed DDQN based method for the resilience assessment
of power systems under sequential attacks. The detailed data
of these test benchmarks refer to Matpower [48].

The IEEE 39-bus power system, which consists of 10 gen-
erators, 39 buses, 21 loads, 12 transformers and 34 branches.

Algorithm 1 Training process of DDQN based agent for
resilience assessment

1: Generate different initial OCs and divide them into train-
ing collection Ct and evaluation collection Ce.

2: Set total training episodes NT , transition capacity M, train-
ing batch size B, learning rate lr, network synchronization
frequency fs, agent evaluation frequency fe, discount
factor γ , greedy coefficient ε and other parameters.

3: Initialize the cascading failure simulator (CFS); initialize
the networks of the agent; set the training step ns = 0.

4: while ns ≤ NT do:
5: Update greedy coefficient ε .
6: Randomly select an initial OC in Ct ;
7: s1, BBB111← CFS.reset(). ◃ Reset the CFS and get the initial

state s1 and branch operating state BBB111.

8: Set total reward RT = 0, terminal flag Tend = False,
attacking sequence aaa =[ ].

9: while Tend = False do:
10: at ← agent.actionSelect(st , BBBttt , ε). ◃ Decide the

attacking line according to (7).

11: aaa← [aaa,at ].
12: st+1, BBBt+1, rt , Tend← CFS.simulate(at ).
13: st ← st+1, BBBttt ← BBBt+1, RT ← RT + rt .
14: end while
15: Output attacking sequence aaa.
16: Calculate priorities of transitions according to (16).
17: transition.add(). ◃ Add the transition (st , BBBttt , at , st+1, BBBt+1, rt ,

Tend ) into the replay buffer.

18: transition.prioritizedReplay().
19: θ i← θ i +∆ j(θ i). ◃ Update θ i according to (18) with Adam

optimizer.

20: transition.update(). ◃ Update the priorities of the replayed

transitions with the latest θ i.

21: ns← ns +1.
22: θ ∗i← θ i. ◃ Update θ ∗i every fs times for which θ i updates.

23: agent.eval(). ◃ Evaluate the agent with all OCs in Ce every fe

times for which θ i updates.

24: end while
25: Save the best and latest agent.
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Note that the short time emergency ratings of those trans-
formers connecting generators are designed according to the
capacity of the connecting generators. All the loads are divided
into three groups except for load 9, 12 and 31, which are less
than 10 MW in the standard OC. The load level of each group
is set to be 0.8, 0.9, 1.0 and 1.1, respectively. Then 64 different
initial OCs in total are obtained, among which 54 OCs are
randomly selected as training collection Ct and the rest ten
OCs are regarded as the evaluation collection Ce.

A. Comparison of Cascading Failure Simulators

In order to verify the important role that the governor droop
coefficient and the lower power limit of generators play in
cascading failure simulation, two types of CFS are designed
as follows:

1) CFS1: the proposed CFS in this paper.
2) CFS2: the same as CFS1 without consideration of the

governor droop coefficient and the lower power limit of
generators.

Table I gives the shortest attack sequences resulting in power
system collapse, which are obtained by traversal method with
CFS1 under all evaluation operating conditions Ce. Note that
the threshold for the collapse of the 39-bus power system is set
to 50%, which is 23 lines being out of service. The sequential
attacks are conducted on CFS1 and CFS2 respectively. The
resilience indexes and the corresponding numbers of lines
out of service after every attack are also shown in Table I.
The power system adopting CFS1 can collapse within three
attacks under all Ce, except for OC.1 under which only two
attacks can make it. In contrast, the power system adopting
CFS2 cannot collapse after the sequential attacks under any
Ce. The resilience indexes verify that the assessment of the
proposed CFS1 is relatively more conservative. Fig. 4 shows
the comparison of the lines out of service resulting from the
shortest sequential attack simulated by CFS1 and CFS2.

TABLE I
THE RESULTS OF RESILIENCE ASSESSMENT CONDUCTED WITH CFS1 AND

CFS2 UNDER EVALUATION OPERATING CONDITIONS Ce

OC. Load level Attacked CFS1 CFS2
lines Ntotal

k RI3 Ntotal
k RI3

1 [1.0, 0.8, 0.8] 10⃝- 16⃝ 1-24 1.67 1-16 1.79
2 [0.9, 1.1, 0.9] 16⃝- 35⃝- 10⃝ 1-6-23 2.70 1-6-17 2.77
3 [0.9, 0.8, 0.9] 16⃝- 35⃝- 10⃝ 1-6-23 2.70 1-6-17 2.77
4 [0.8, 1.1, 0.8] 4⃝- 11⃝- 9⃝ 1-6-23 2.70 1-6-14 2.80
5 [0.8, 1.0, 0.9] 16⃝- 35⃝- 10⃝ 1-6-23 2.70 1-6-17 2.77
6 [1.1, 0.9, 0.8] 35⃝- 38⃝- 32⃝ 8-21-23 2.36 7-15-16 2.54
7 [1.0, 0.8, 1.1] 35⃝- 38⃝- 32⃝ 8-21-23 2.36 7-15-16 2.54
8 [0.9, 0.8, 1.1] 35⃝- 38⃝- 32⃝ 8-21-23 2.36 7-15-16 2.54
9 [1.0, 1.0, 0.8] 14⃝- 17⃝- 35⃝ 12-13-23 2.38 7-8-11 2.67
10 [1.0, 1.0, 1.0] 35⃝- 11⃝- 15⃝ 13-14-23 2.35 13-14-15 2.43

B. Characteristics of Generator Considered in CFS

Taking the OC.10 in Table I as an example, the numbers
of lines out of service for CFS1 and CFS2 are the same after
the first and second attacks. It is after the third attack that the
power system simulated with CFS1 collapse, where attacking
transmission line 15⃝ resulting in eight more lines out of service

N
u
m

b
e
r 

o
f 

li
n
e
s
 

o
u
t 

o
f 

s
e
rv

ic
e

CFS2

CFS1

Fig. 4. The number of lines out of service caused by the same attacking
sequence with different CFSs under different operating conditions (There are
two bars shown at every time attack along the axis of attack. Among them,
the left ones represent the number of lines out of service for CFS2, while the
right ones represent that for CFS1. The light blue surface parallel to the xy
plane represents the threshold of the collapse, whose value is 23.)

in CFS1 than that in CFS2. Fig. 5 shows the power of each
generator under OC.10.

The main difference between CFS1 and CFS2 lies in
whether the power is less than the lower power limit of the
generator. For CFS1 in Fig. 5(a), G1 and G7 have been tripped
off before the third attack, while G2 and G3 also get tripped
off after the attack. As for CFS2 in 5(b), G2, G3, and G7
keep connected to the power system but with fairly low power,
which could cause the potential damage to the blade of steam
turbine of generator and the uneconomical operation. Hence,
the resilience assessed with CFS1 is closer to the practical
operation of a power system, which considers the governor
droop coefficient and lower power limit of generators.

Fig. 6 shows the whole cascading failure process simulated
by CFS1 under the sequential attack for OC.10. The first attack
aims at line 35⃝ (connecting bus 21 and bus 22), which is one of
the two main power delivery paths of G2 and G3. The outage
of line 35⃝ led to the overload of line 38⃝ (connecting bus 23 and
24), which was tripped out later. Then all the power delivery
paths of G6 and G7 were out of service and the power was
far too much for the only load on bus 23 in this sub-grid.
As a result, the power system lost about 39.75% power, and
G7 was tripped off. Then the second attack did not result in
power loss. Before the third attack, line 15⃝ (connecting bus 7
and bus 8) was the only power delivery path for G2 and G3.
When it was attacked, the left loads in this area were too low
to keep anyone of the generators operating economically and
safely. It resulted in the tripping off of G2 and G3 and about
another 1.97% power loss. In the end, over 23 transmission
lines were out of service and the power system collapsed. The
simulation results indicate that the governor droop coefficient
and the lower power limit of generators play an important role
in cascading failure simulation.

C. DDQN Agent v.s. Q-Table Agent

In order to verify the capability of the DDQN based agent
to assess resilience of power systems under different operating
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After 1st attack

After 2nd attack After 3rd attack

Upper power limit Lower power limit

Power off Before any attacks

(a) Simulated by CFS1

Upper power limit Lower power limit

After 1st attack

After 2nd attack After 3rd attack

Before any attacksPower off

Power less than lower limit

(b) Simulated by CFS2

Fig. 5. The power of generators under the sequential attacks for OC.10 in
39-bus system

conditions, comparison simulations are conducted with differ-
ent collapse thresholds for the Q-table based agent and the
DDQN based agent, respectively. The collapse thresholds are
set to Nc = 10, Nc = 14, Nc = 19 and Nc = 23, which are 20%,
30%, 40% and 50% of the total transmission lines in 39-bus
power system, respectively. All the simulations are conducted
with CFS1, so are the simulations in the next subsection.

The learning parameters of table-based Q-learning agent are
set the same as that in [41]. Since the discrete state of the Q-
table cannot represent different operating conditions with the
same transmission line status, the Q-learning agent is trained
and evaluated under each operating condition individually.
Then the numbers of attacks required for all operating con-
ditions in evaluation collection are summed to compare with
that of DDQN based agent.

As for the DDQN based agent, there are 5 fully connected
layers in the deep Q evaluation network. The number of
neurons in each layer is set as 28-256-256-256-46. The hyper-
parameters of the agent is set as follows: total training steps
NT = 30000, memory capacity M = 10000, training batch size
B = 256, learning rate lr = 0.001, model synchronization fre-
quency fs = 20, model evaluation frequency fe = 100, discount
factor γ = 0.9, greedy coefficient ε0 = 1.0, ∆ε = 0.0001 and
εf = 0.1. The DDQN based agent is trained under the training
OC collection Ct and evaluated the performance of resilience
assessment under evaluation OC collection Ce.

Fig. 7 shows the performance comparison of the Q-table
and the DDQN based agent for resilience assessment with
different collapse thresholds. It can be seen that the numbers
of attacks required by both agents for threshold Nc = 10 are

almost the same. However, when the threshold increases to
Nc = 23, the number of attacks required by Q-table agent is
almost twice that required by DDQN based agent. That is to
say, the number of attacks required to result in collapse under
all of Ce increases with the increase of the threshold for power
system collapse. What is more, the increase of attacks required
by the Q-table based agent is much more obvious than that
required by the DDQN based agent.

Meanwhile, it is noticed that the training process of the
DDQN agent is relatively more stable than that of the Q-table
agent. This is because the increase of threshold leads to the
longer MDP of resilience assessment for the power system. As
a result, the Q-table needs to explore a larger state-action space
for the training process and requires more cache to save and
update the Q values corresponding to the explored state-action
pairs, which greatly increases the difficulty of the training
process convergence and increases the time consumption. In
contrast, the DDQN based agent can exploit the transitions
more efficiently with the help of experience replay, which is
beneficial to the convergence of the training process. Besides,
the well trained agent can be used to assess the resilience of
power system under different operating conditions.

D. Improved PER v.s. URR

In order to verify the effectiveness of prioritized experi-
ence replay for the training of the DDQN agent, comparison
simulations are conducted for the DDQN based agent using
PER (marked as “PER-DDQN”) and DDQN based agent using
uniform random replay (URR). The hyper-parameters of PER
are set as: the upper limit of priority η = 15, the priority
coefficient α = 0.6, and the initial value of IS correction
coefficient β0 = 0.4, which are recommended in [46]. β
increases 2.5×10−3 every 100 times of experience replay and
the final value is β0 = 1. The rest hyper-parameters are the
same as that of the DDQN agent. The threshold of power
system collapse is Nc = 23. Simulations are repeated five times
for both PER-DDQN agent and DDQN agent.

Fig. 8 shows the number of attacks required by different
resilience assessment methods. The smallest number goes to
the traversal method, which is only 29 for ten OCs as sum-
marised in Table I. However, it takes from tens of thousands to
millions of trials for the traversal method to find the shortest
attack sequence under each OC. It is unacceptable for the
resilience assessment relatively larger scale power system with
a high collapse threshold. As for the DDQN based agents,
the smallest numbers of attacks required by both agents are
around 40. The average number of the PER-DDQN agent is
about 2 less than that of the DDQN agent at the end of the
training process. In addition, the purple dashed line in Fig. 8
represents the smallest number obtained by the DDQN agent,
which is obtained by the PER-DDQN agent early at about
12000 training episodes. That means the training of PER-
DDQN agent converges faster than DDQN agent. Besides, the
performance of the PER-DDQN agent is more stable than that
of the DDQN agent at the end of the training process.

Fig. 9 provides the resilience assessment performance com-
parison of different methods under Ce. As is shown, the
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Fig. 6. The collapse process of OC.10 under sequential attacks simulated by CFS1

Fig. 7. Performance of DDQN agent compared to Q-table method with
different collapse threshold (The numbers of attacks are smoothed by sliding
window, which takes the minimum of the three numbers around.)

traversal method can make the power system collapse after
twice attacks under one of Ce. It can make the power system
collapse under all Ce after three times attacks. Among the
rest reinforcement learning agents, the resilience assessment
performances of DDQN and PER-DDQN are pretty close.
PER-DDQN can result in the collapse after 5 times attack
under ten OCs, which is two OCs more than that of DDQN.
It means that the PER-DDQN agent is slightly better than the

Fig. 8. Performance comparison of different resilience assessment methods
with the collapse threshold Nc = 23 in 39-bus system

DDQN agent. As for the table-based Q-learning agent, there
is still only one OC under which the power system would
collapse after 6 times attacks.

E. Stochastic Prioritization Replay and the Priority Update

Fig. 10 shows the priority distribution of one batch of
transitions replayed by URR and PER. The priorities of the
transitions replayed by URR are obviously lower than that of
the transitions replayed by PER. In this way, the transitions
replayed by PER are relatively more valuable than those
replayed by URR for the update of the Q evaluation network.
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Fig. 9. Evaluation results with different power system resilience assessment
methods

The stochastic prioritization replay makes the training process
more aggressive, thus making the PER-DDQN converge faster.
Also, it can be seen that the priorities of the replayed memories
get lower overall after the update of the Q evaluation network.
The decline is not too much owing to the average episode
reward. In this way, the valuable transitions that come from the
episode with a short attacking sequence can keep competitive
during the stochastic prioritization replay.

Fig. 10. The priority distribution of the memories sampled by different
strategies

F. Importance-Sampling (IS) Weight Correction

Fig. 11 shows the losses calculated from the transitions with
and without IS weight correction during the training process.
The difference between the two kinds of losses gets larger and
larger. There are two main reasons: one is that the principle
of transition replacement makes the overall priorities of the
transitions in replay buffer higher and higher. It leads to the
increase of loss without IS weight correction and is beneficial
to the fast convergence. The other goes to that the IS weight
correction coefficient β becomes closer to 1 at the last part of
the training process, which means that the loss will be fully
compensated by IS weight. It shrinks the gradient and makes
the learning step smaller. As a result, the resilience assessment

performance of PER-DDQN is more stable than that of the
DDQN agent at the last part of the training process.

Fig. 11. The loss for the prioritized replayed batch of transitions

G. Transition Replacement in the Improved PER

Fig. 12 shows the priority distribution of the whole transi-
tions in replay buffer during the training process. The priority
distribution analyzed at the first time is overall lower than
that analyzed at the final time. Specifically, the number of
transitions with high priority (p ≥ 3.5) at the final time is
about twice that at the first time. It implies that the proposed
transition replacement principle tends to keep the transitions
with higher priority in the replay buffer with limited capacity.
Together with the prioritization replay, it makes the training
process of the PER-DDQN agent more efficient than that of
the DDQN agent with URR.

Fig. 12. The priority distribution of the transitions in replay buffer during the
training process (NHP represents the number of the transitions with priority
higher than 3.5)

H. Effectiveness verification in 118-bus system

The diagram of IEEE 118-bus system is available in [6],
which consists of 54 generators, 99 loads, and 186 branches
with 11 transformers. Among them, 85 non-transformer
branches at voltage level of 138 kV are selected as the critical
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lines which are available for the sequential attacks. In order
to generate different OCs, the 118-bus systems is divided into
three parts. Based on the typical OC, the load and generation
level is set from 0.7 to 1.05 with an interval of 0.05, which
are 8 choices in total for each part. Among the 512 generated
OCs, only 101 OCs meet the (N−1) security constraints for
the 85 critical lines. Then, 20 OCs are selected randomly as
Ce and the rest OCs are taken as Ct.

Fig. 13. Performance comparison of different resilience assessment methods
with the collapse threshold Nc = 19 in 118-bus system (The numbers of attacks
required by PER-DDQN and DDQN are smoothed by sliding window, which
takes the minimum of the five numbers around.)

The number of neurons in each layer of agent is set as
203-256-256-256-85. The total training step is NT = 10000,
and the model evaluation frequency is fe = 200. The rest
parameters design of the DDQN based agent in 118-bus
system is the same as that in 39-bus system. The threshold
of system collapse is Nc = 19. Simulations are repeated five
times for both PER-DDQN agent and DDQN agent. Fig. 13
shows the comparison results of the performance on Ce. The
well-trained PER-DDQN agent needs average 2.65 sequential
attacks to make the collapse occur among the 20 evaluation
OCs. The results indicate that the training of PER-DDQN
agent converges faster than DDQN agent.

I. Effectiveness verification in 300-bus system

The IEEE 300-bus system consists of 69 generators, 199
loads, and 411 branches with 107 transformers. Among them,
60 non-transformer branches at relatively lower voltage levels
of 115 kV and 230 kV are selected as the critical lines.
Similarly, the 300-bus systems is divided into three parts.
The load and generation level is set from 0.75 to 1.1 with
an interval of 0.05, which are 8 choices in total for each part.
Among the 512 generated OCs, only 309 OCs meet the (N−1)
security constraints for the 60 critical lines. Then, 80 OCs are
selected randomly as Ce and the rest OCs are taken as Ct.

The number of neurons in each layer of agent is set as
258-256-256-256-60. The parameters design of the DDQN
based agent in 300-bus system is the same as that in 118-
bus system. The threshold of system collapse is Nc = 21.
Simulations are repeated five times for both PER-DDQN agent
and DDQN agent. Fig. 14 shows the comparison results of the
performance on Ce. The well-trained PER-DDQN agent needs
average 3.32 sequential attacks to make the collapse occur
among the 80 evaluation OCs. The results also indicate that

the faster convergence process of the training for PER-DDQN
agent. Besides, it reflects that the performance of PER-DDQN
agent is more stable than that of the DDQN agent.

Fig. 14. Performance comparison of different resilience assessment methods
with the collapse threshold Nc = 21 in 300-bus system (The numbers of attacks
required by PER-DDQN and DDQN are smoothed by sliding window, which
takes the minimum of the five numbers around.)

V. CONCLUSION

This paper proposes a DDQN based resilience assessment
method for power systems under sequential attacks. A DC
power flow based cascading failure simulator is proposed to
simulate the topology and power flow changes, which can take
the governor droop coefficient and lower bound generation of
generators into consideration. Besides, an index based on the
number of attacks is proposed for the resilience assessment,
which reflects the capability of the power system to tolerate
attacks. Then a DDQN based agent is proposed to conduct
the resilience assessment under different operating conditions.
In addition, the improved PER technique is developed for the
training of the DDQN based agent, which scores the priority of
transition by the combination of TD-error and average episode
reward.

Simulation results in the 39-bus, 118-bus and 300-bus
power systems verify the superiority of the proposed resilience
assessment method. The resilience assessed with the proposed
CFS is more prudential than that without the sufficient con-
sideration of generator characteristics. The proposed DDQN
based agent can assess the resilience of power systems under
different operating conditions. Compared to uniform random
replay technique, the improved PER technique brings faster
convergence and more stable resilience assessment perfor-
mance in the last part of the training process.

Future work will focus on the development of the deep
reinforcement learning based defender to protect the power
network from collapse under malicious attacks.
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