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Blind Image Quality Assessment for Authentic
Distortions by Intermediary Enhancement and

Iterative Training
Tianshu Song, Leida Li, Pengfei Chen, Hantao Liu, Jiansheng Qian

Abstract—With the boom of deep neural networks, blind
image quality assessment (BIQA) has achieved great processes.
However, the current BIQA metrics are limited when evaluating
low-quality images as compared to medium-quality and high-
quality images, which restricts their applications in real world
problems. In this paper, we first identify that two challenges
caused by distribution shift and long-tailed distribution lead to
the compromised performance on low-quality images. Then, we
propose an intermediary enhancement-based bilateral network
with iterative training strategy for solving these two challenges.
Drawing on the experience of transitive transfer learning, the
proposed metric adaptively introduces enhanced intermediary
images to transfer more information to low-quality images for
mitigating the distribution shift. Our metric also adopts an
iterative training strategy to deal with the long-tailed distribution.
This strategy decouples feature extraction and score regression
for better representation learning and regressor training. It not
only transfers the knowledge learned from the earlier stage to
the latter stage, but also makes the model pay more attention
to long-tailed low-quality images. We conduct extensive experi-
ments on five authentically distorted image quality datasets. The
results show that our metric significantly improves the evaluating
performance on low-quality images and delivers state-of-the-art
intra-dataset results. During generalization tests, our metric also
achieves the best cross-dataset performance.

Index Terms—image quality assessment, authentic distortion,
low-quality, enhancement, generalization.

I. INTRODUCTION

BLIND image quality assessment (BIQA) for authentic

distortions has received intensive attention in recent years

on account of its wide applications in many image processing

fields, such as image capture, enhancement, retrieval, and

transmission [1]–[11]. Since authentically distorted images do

not have reference images and authentic distortions are much

more complex than synthetic distortions, designing BIQA

models for authentic distortions is challenging.

With the boom of deep neural networks, the current BIQA

metrics for authentic distortions have achieved great advances.
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Fig. 1. Evaluation performance on images with different quality. The results
are based on RBID [12] and KonIQ-10k [13] datasets. When image quality
scores are labeled [12]–[14], the 25% quantile at the entire score interval is
defined as the threshold of poor-quality. Following this definition, we define
images with the lowest 25% scores as low-quality images, and other images
are medium-quality and high-quality images.

However, the evaluation performance on low-quality images

is significantly worse than that on medium-quality and high-

quality images. To show the varying capacities on the evalua-

tion of low-quality and medium-/high-quality images, we fine-

tune a popular pre-trained Vision-Transformer model (data-

efficient image transformer (DeiT) [15]) on two IQA datasets,

and show the performance on images with different quality

in Fig. 1 (some popular convolutional neural networks, i.e.
ResNet18 [16] and VGG16 [17], achieving similar results).

As observed from Fig. 1, the evaluation ability on low-quality

images is rather limited.

Accurately assessing low-quality images is vital for IQA

metrics because low-quality images widely exist in real life.

For example, in image enhancement, the original images (even

the enhanced images) are often with low-quality. To evaluate

and improve the image enhancement algorithms, an ideal

IQA model is expected to be able to precisely evaluate the

qualities of original low-quality images and the enhanced

images. Second, low-quality image assessment can help blind

people. Many low-quality images are taken by blind people

(i.e. VizWiz image quality issue dataset [18]), who try to

overcome real visual challenges in their daily lives. Precisely

evaluating those low-quality images and pointing out their

flaws is helpful to obtain better images for blind photographers

and further improve the VizWiz mobile application. Current
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Fig. 2. Distribution shift between low-quality images and medium-/high-
quality images. The left column shows low-quality images and the right
column shows medium-/high-quality images.

IQA metrics fail to accurately evaluate low-quality images,

limiting their real-world applications to a great extent.

The existing BIQA metrics rarely pay attention to such

problem. Therefore, we start by identifying possible reasons.

First, we deem that the distribution shift between low-quality

images and medium-/high-quality images results in the limited

evaluation ability. Most deep learning-based IQA metrics

employ the pre-trained model on ImageNet [19] to mitigate the

data shortage problem. Though this strategy improves model

performance, it does not perform well on low-quality images.

As shown in Fig. 2, low-quality images have noticeable differ-

ences from medium-/high-quality images, and they are quite

different in distributions of brightness, contrast, sharpness, etc.
Therefore, there exists a significant distribution shift between

low-quality images and medium-/high-quality images. Since

ImageNet mainly contains medium-quality and high-quality

images, parameters trained on ImageNet cannot be transferred

to IQA tasks for low-quality images satisfactorily. To intu-

itively show the distribution shift, following the method in

[20], we adopt the CORAL distance [21] to measure 1) the

distribution shift between low-quality images and medium-

/high-quality images in IQA datasets, 2) the distribution shift

between low-quality images in IQA datasets and images in

ImageNet, 3) the distribution shift between medium-/high-

Fig. 3. Coral distance between low-quality images and medium-/high-quality
images in IQA datasets and images in ImageNet.

Fig. 4. Long-tailed distribution of mean opinion score (MOS) in KonIQ-10k.
Low-quality images are marked with yellow, and other images are marked
with blue. Low-quality images are images with the lowest 25% MOS.

quality images in IQA datasets and images in ImageNet. The

results on three representative IQA datasets are shown in Fig.3,

where larger distance means larger distribution shift. We can

observe from Fig.3 that the distribution shift between medium-

/high-quality images and images in ImageNet is the smallest.

Low-quality images have much significant distribution shift

from images in ImageNet and medium-/high-quality images.

Second, the long-tailed distribution of IQA datasets also leads

to the poor performance. Current authentically distorted IQA

datasets typically have long-tailed score distributions, where

low-quality images only account for a small portion of the

whole dataset. We illustrate such phenomenon in Fig. 4,

where the KonIQ-10k dataset [13] is shown considering its

representativeness. It is known from Fig. 4 that the long-tailed

distribution is apparent. Specifically, the total number of low-

quality images (images with the lowest 25% quality scores

[12]–[14]) account for only 3.9% of the whole dataset, which

easily causes the trained model biased towards medium-/high-

quality images.

Motivated by the above facts, this paper presents an inter-

mediary enhancement-based bilateral network with iterative

training strategy to deal with both challenges caused by

distribution shift and imbalanced distribution. First, enlight-

ened by transitive transfer learning [22], [23], the proposed
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metric adaptively introduces an enhanced intermediary image

for low-quality inputs to establish connection between low-

quality images and high-quality images. The pre-trained model

can extract more information from the enhanced intermediary

image, which mitigates the distribution shift and strengthens

the model’s adaptability to low-quality images. Second, the

proposed metric utilizes an iterative training strategy with two

training stages to deal with the long-tailed distribution. This

strategy decouples the feature extraction and score regression

[24], [25]. By this means, the proposed method transfers

the knowledge learned at the first stage for targeted training

of low-quality images at the second stage. It also makes

the model pay more attention to low-quality images which

are prone to be ignored due to their long-tailed distribution.

Therefore, our method alleviates the challenge caused by

imbalanced distribution. Finally, with the bilateral network, the

proposed method integrates a conventional feature extractor

and a low-quality image enhanced feature extractor, which

significantly improves the evaluation ability on low-quality

images while guaranteeing the evaluation ability on common

images.

The contributions of this paper are summarized as follows:

• We propose a new BIQA model with intermediary en-

hancement and iterative training for enhancing the eval-

uation ability on low-quality images.

• We propose an approach to build a connection between

low-quality images and high-quality images by adaptively

introducing enhanced intermediary images to strengthen

the pre-trained model’s adaptability to low-quality im-

ages, which mitigates the distribution shift.

• We introduce an iterative training strategy to tackle the

long-tailed distribution problem of low-quality images.

This makes the model pay more attention to low-quality

images, which further improves the evaluation ability.

The rest of this paper is arranged as follows. In Section

II, we briefly review the existing BIQA metrics, image en-

hancement algorithms, and long-tailed learning methods. The

proposed method is detailed in Section III, and experiments

are presented in Section IV. Finally, Section V concludes this

paper.

II. RELATED WORK

A. Blind Image Quality Assessment

Traditional BIQA metrics typically utilized a score re-

gressor with handcrafted features (such as BRISQUE [26]

and NFERM [27]), or codebooks (such as CORNIA [28]

and HOSA [29]) for evaluating image quality. However,

handcrafted features or codebooks are limited in describing

authentic distortions.

With the boom of deep learning, deep neural networks

have been widely adopted to extract features for authentically

distorted images. Earlier attempts tried to extract features from

small patches with specially designed shallow neural networks

[30]–[33]. Though these metrics achieved decent performance

on synthetic distortions, their performance on authentic distor-

tions are unsatisfactory due to the small sample property of

IQA and the limited feature representation ability of shallow

networks. To avoid these two issues, many recent BIQA

models employ ImageNet pre-trained network for extracting

quality-aware features [34]–[39]. For example, Zhu et al.
[38] fine-tuned models pre-trained on ImageNet with synthetic

distortions to extract the meta-knowledge for the subsequent

fine-tuning on authentic distortions. Zhang et al. [34] adopted
a two-stream network, called DBCNN, for quality evaluation.

The backbone of one stream was pre-trained with many

synthetically distorted images, and the other stream was pre-

trained on ImageNet. Following this framework, Zhang et al.
[35] proposed a new approach, called UNIQUE, to train the

two-stream network with a mixed dataset obtained from six

IQA datasets with both synthetic distortions and authentic

distortions. Some recent IQA metrics adopted lifelong strate-

gies to improve the generalization ability of IQA models.

For example, Liu et al. [40] proposed a lifelong IQA metric

through a split-and-merge distillation strategy. Zhang et al.
[41] continually trained an IQA model on a stream of IQA

datasets by adopting the continual learning strategy. Ma et
al. [42] proposed a remember-and-reuse network to perform

the cross-task IQA based on the incremental learning strategy.

Though these metrics have achieved great process for evaluat-

ing authentic distortions, we observe that they are still limited

in evaluating low-quality images due to the following reasons.

First, as discussed above, models pre-trained on ImageNet

(mainly consisting of medium-/high-quality images) cannot

easily transfer to low-quality images due to the distribution

shift. Second, the long-tailed distribution property of IQA

datasets causes those models biased towards medium-/high-

quality images. Therefore, we propose a new IQA model

for mitigating challenges of distribution shift and long-tailed

distribution.

B. Image Enhancement

The proposed metric introduces enhanced images for miti-

gating the distribution shift. Since low-light and blur are most

common in low-quality images, low-light image enhancement

(LLIE) and image deblurring are briefly reviewed. Many

popular LLIE algorithms [43] are based on the Retinex theory

[44], which assumes that the observed color image can be

decomposed into reflectance and illumination. RetinexNet [45]

is the representative of Retinex theory-based metrics, which

successfully combined deep neural networks with Retinex

theory. It first decomposed an low-light image into two parts

of reflectance and illumination, and then enhanced the decom-

posed images. Finally, it fused the decomposed images and

obtained the enhanced image with visually pleasing quality.

Many popular deep learning-based image deblurring algo-

rithms, such as SRN-DeblurNet [46] and DeblurGAN [47],

have been proposed for synthetically blurred images. For ex-

ample, to deblur images from coarse-to-fine, SRN-DeblurNet

specially designed a scale-recurrent network for processing

multi-scale inputs. To achieve more image details during de-

blurring, DeblurGAN adopted generative adversarial networks

(GANs) to deblur images, because GANs are adept at generat-

ing vivid details. To deblur real-world blur distortions, Rim et
al. [48] first created a real blur-based dataset, containing image
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Fig. 5. The proposed blind image quality assessment by Intermediary Enhancement and Iterative Training (IEIT). The framework consists of two training
stages based on a bilateral network. The input of ‘Backbone 1’ is a batch of images, and the input of ‘Backbone 2’ is a batch of image pairs. The predicted
score s1 of ‘Regressor 1’ at the second stage is the final image quality score. During the second training stage, ‘Backbone 1’ is frozen and ‘Backbone 2’ is
trained with low-quality image pairs only.

pairs of real-wolrd blurred images and the corresponding

ground-truth sharp images. Then, they trained the above two

models on this dataset. Models trained on this dataset achieved

much better performance on authentic blur distortions, which

is adopted to enhance blur images in this paper.

C. Deep Long-tailed Learning

One challenge leading to the poor evaluation ability on low-

quality images is the long-tailed distribution property of IQA

datasets. Therefore, deep long-tailed learning [24] is another

research field related to this paper, which includes some

popular strategies of resampling [49], reweighting [50] and

decoupled training [51]. Resampling strategy aims to balance

the number of training sample of different classes during

model training. Zhang et al. [49] adopted a specially designed

loss to determine the sampling rate for different classes, aiming

to sample more training data for the under-represented tail

classes. The reweighting strategy typically re-balances classes

by adjusting loss. Lin et al. [50] proposed focal-loss with

higher weights for the hard-to-learn tail classes and lower

weights for the easy-to-learn head classes. Decoupled training

is designed for better representation learning and classifier

training by decoupling the training procedure into feature

extraction and classifier training. Chu et al. [51] first trained
feature extractor, and then made augmentation on tail-classes

for re-training the classifier.

Most of the current deep long-tailed learning approaches

focus on classification tasks or detection/segmentation tasks,

but rare works pay attention to regression tasks. As stated in

[52], the long-tailed distribution for the regression task has

different properties from the classification task, and which

strategy is effective for IQA task remains largely unknown.

In this paper, we make attempts to mitigate the problem of

long-tailed distribution on low-quality images.

III. PROPOSED METHOD

In this paper, we propose a new BIQA model via Intermedi-

ary Enhancement and Iterative Training (IEIT) with the objec-

tive to enhance the evaluation ability of low-quality images,

which has been mainly caused by the distribution shift and

long-tailed distribution. Specifically, to improve the evaluation

ability on low-quality images and guarantee the evaluation

ability on other images, the proposed method adopts a bilateral

network to integrate a conventional feature extractor and a low-

quality image enhanced feature extractor. With the objective of

mitigating the distribution shift and strengthening the feature

extractor’s adaptability to low-quality images, we introduce

the enhanced images for the low-quality image enhanced

feature extractor to extract more information about low-quality

images. For alleviating the long-tailed distribution challenge

and making the model pay more attention to low-quality

images, we utilize an iterative training strategy to transfer the

knowledge learned at the first stage for targeted training of

low-quality images at the second stage. The whole structure of

the proposed method is illustrated in Fig. 5, which consists of a

bilateral network with enhanced input images and two training

stages. The top backbone is a conventional feature extractor,

whose input is a batch of images, aiming to learn conventional

quality assessment features. The bottom backbone is a low-

quality image strengthened feature extractor, whose input is

a batch of image pairs composed of original images and the

corresponding selectively enhanced images. To improve the

Authorized licensed use limited to: Cardiff University. Downloaded on June 09,2022 at 09:28:18 UTC from IEEE Xplore.  Restrictions apply.



1051-8215 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2022.3179744, IEEE
Transactions on Circuits and Systems for Video Technology

5

Enhancement

Network Trained
on ImageNet

0.502 0.859

Predict Top-5
Confidence

0.493 0.868

0.672 0.388

0.712 0.517

Select

Abandon

Select

Abandon

Select High
Confidence

Final Input Pairs

Original 
Images

Enhanced 
Images

Fig. 6. The process of selective enhancement. Enhanced images with higher
prediction confidence are chosen, and enhanced images with lower confidence
are replaced with their original images.

evaluation ability on low-quality images while guaranteeing

the ability on common images, the bilateral network integrates

both feature extractors, and make predictions by combining

both features through the regressor in the top lateral.

A. Selective Enhancement

To mitigate the distribution shift, the proposed method

introduces intermediary enhanced images. The pre-trained

model can extract more useful information from enhanced

images, which improves its transferability to low-quality im-

ages. However, one may doubt that some enhanced images

may even be harmful to the adaptability, because current

enhancement algorithms are still not flawless. To address this

issue, we propose a selective strategy. For our approach, it

is vital to make the pre-trained model understand enhanced

images. If the pre-trained model has difficulty in understanding

the enhanced images, the extracted features will consequently

have low reliability and practicability, and vice versa. Since the

pre-trained model is a classification model, better-understood

images tend to achieve higher classification accuracy. Due

to the lack of semantic labels in IQA datasets, we utilize

recognition confidence as an alternative, which is related to the

understanding of an image [53]. Based on this, we compare

the top-5 prediction probability of original images with that of

enhanced images. To ensure that enhanced images are better

understood, only enhanced images with higher prediction

confidences are chosen, and enhanced images with lower

confidence are replaced with their original images directly.

By this means, better-understood images are introduced, which

provide more information and mitigates the distribution shift.

The whole process of selective enhancement is illustrated in

Fig. 6.

In our method, we make selective enhancement on im-

ages with low-light and blur distortions. These two kinds

of distortions widely exist in low-quality images, such as

the Smartphone Photography Attribute and Quality (SPAQ)

Fig. 7. The histogram of brightness and sharpness of low-quality images
and medium-quality and good-quality images in SPAQ dataset. (a) shows the
histogram distributions of brightness. (b) shows the histogram distributions of
sharpness.

dataset [39], which includes labels of image quality, sharp-

ness and brightness. For intuitive understanding, we show

the histogram distributions of brightness and sharpness of

images with different quality in Fig. 7. From Fig. 7 we can

observe that compared with medium-quality and high-quality

images, low-quality images tend to have lower brightness and

sharpness. Therefore, we adopt LLIE and image deblurring

algorithms with the proposed selective strategy to enhance

images for tackling the distribution shift challenge.

B. Iterative Training

We adopt an iterative training strategy with two training

stages to overcome the challenge caused by long-tailed distri-

bution. During the first training stage, the top backbone, de-

noted as V1, extracts conventional quality assessment features

f1 from a batch of images I . The bottom backbone, denoted

as V2, extracts features f2 and f3 from a batch of image pairs

(I,E) composed of original images and the corresponding

selective enhanced images, where f2,f3 corresponds to I,E
respectively. Then, the ‘Regressor 1’, denoted as R1, predicts

the quality score s1 from feature f1 and f4, where f4 is

fused by f2 and f3. Next, the ‘Regressor 2’, denoted as R2,

predicts the quality score s2 from f2 and f3. Finally, these

two scores are sent to the loss function for back-propagation
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Algorithm 1. Training details of the first stage.

Inputs: A batch of images I for V1; a batch of image pairs (I,E)

for V2; the target score of input images yi, i = 1, 2, ..., n, where n

is the batch size of training images.

Output: The total loss for back-propagation, denoted as lt.

1 // Obtain f1 from I:
2 f1 = V1(I);

3 // Obtain f2,f3 from (I,E):
4 f2,f3 = V2(I,E);

5 // Obtain f4 by fusing f2,f3 :
6 f4 = F (f2,f3);

7 // Obtain s1 from f1,f4:
8 s1 = R1(f1,f4);

9 //Obtain s2 from f2,f3:
10 s2 = R2(f2,f3);

11 //Obtain the loss of Regressor 1, denoted as l1:

12 l1 = 1
n

n∑

i=1
abs(yi − s1,i), i = 1, 2, ..., N ;

13 //Obtain the loss of Regressor 2, denoted as l2:

14 l2 = 1
n

n∑

i=1
abs(yi − s2,i), i = 1, 2, ..., N ;

15 //Obtain the total loss lt from l1, l2:
16 lt = l1 + λl2;

Return: lt.

to train V1, V2, R1, R2. The loss function we utilized is mean

absolute error (MAE). The whole process is summarized in

Algorithm 1.
One objective of the first stage is to train the backbone

V1 for extracting conventional quality assessment features,

that are adept at describing medium-/high-quality images. The

other objective is make the backbone V2 acquire image quality

related knowledge for the target training at the second stage.

After the first training stage, both objectives are achieved.
During the second training stage, the inputs of both back-

bones are still images and image pairs. The differences be-

tween these two stages are that parameters of V1 are frozen

during the second training stage. Parameters of V2, R2 are

trained by low-quality image pairs only. At this stage, medium-

/high-quality image pairs having no contribution to V2, R2,

they only affect parameters of R1.
In specific, to train V2, R2, we first extract features f2,f3

from low-quality image pairs (Il,El), and then predicts s2
from them: {

f2,f3 = V2(Il,El),

s2 = R2(f2,f3).
(1)

Next, the predicted score s2 is sent into the MAE loss function

for back-propagation:

l2 =
1

n

n∑
j=1

abs(yj − s2,j), j = 1, 2, ..., N, yj < t; (2)

where y is MOS, n is the batch size of training images, and

t is the threshold value for low-quality images, which means

only low-quality image pairs contribute to l2.
After V2 is optimized with low-quality images, we finally

fine-tune R1 with all images. In specific, we first freeze the

backbone V1, and then extract conventional quality assessment

features f1:

f1 = d(V1(I)) , (3)

where the function ‘d(·)’ means detaching the gradients at the

inference stage. This function it will stop the gradients during

back-propagation.

To train R1, we also need f4, which is obtained by fusing

output features f2,f3:{
f2,f3 = d(V2(I,E)) ,

f4 = F (f2,f3).
(4)

Then, f4 is fused with f1 for predicting score s1:

s1 = R1(f1,f4). (5)

Finally, the predicted score s1 is sent into the MAE loss

function for training R1:

l1 =
1

n

n∑
i=1

abs(yi − s1,i), i = 1, 2, ..., N. (6)

At the second training stage, V1 pre-trained on the first stage

is just utilized for extracting conventional quality assessment

features f1. The quality related knowledge in V2 learned

at the first stage is transferred to the second stage, which

is helpful for learning better representations for low-quality

images. After fine-tuning with low-quality images, V2 has

paid more attention to low-quality images, which mitigates the

challenge that the model biases towards medium-/high-quality

images due to the long-tailed distribution. During this stage,

R1 predicts from the combination of conventional quality

assessment features and features optimized for low-quality

images, which improves the evaluation performance for low-

quality images and ensures performance on common images.

At the test stage, the inputs are the same as the first training

stage. Image I and its enhanced image E, V1, V2, R1 are

necessary, and R2 is abandoned. In specific, we first obtain

conventional quality assessment features f1 from backbone

V1:

f1 = V1(I). (7)

Then we obtain low-quality image strengthened feature f4

from low-quality image strengthened backbone V2:{
f2,f3 = V2(I,E);

f4 = F (f2,f3).
(8)

Finally, we predict the final image quality score s1 by

combining conventional quality assessment feature and low-

quality image strengthened feature:

s1 = R1(f1,f4). (9)

C. Network Training

Different image regions have varying effects on the quality

of the entire image. Therefore, mining the relationship between

different image regions and global content is vital to the IQA

task [55]. However, one basic principle of convolutional neural

network (CNN) is adopting small receptive fields, which leads

to the difficulty in mining the relationship between faraway

regions. In contrast, Vision-Transformer (ViT) [56] utilizes

pure multiheaded self-attention (MSA) modules [57] in pro-

cessing vision tasks. The MSA module is good at processing
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TABLE I
DETAILED INFORMATION OF FIVE AUTHENTIC IQA DATASETS.

Dataset KonIQ-10k [13] SPAQ [39] LIVEW [14] CID2013 [54] RBID [12]
Number of Images 10,073 11,125 1162 480 585
Quality Score Type MOS MOS MOS MOS MOS
Quality Score Range [1, 5] [0, 100] [0, 100] [0, 5] [0, 100]
Image Resolution 1024×768 1080×1440-6656×3744 500×500 1600×1200 480×640-2816×2112
Subject Environment Crowdsourcing Laboratory Crowdsourcing Laboratory Laboratory
Annotators 1459 N/A 8100 188 180
Total Rating Number around 1.2 million N/A around 350,000 around 15,000 around 6,400
Other Labels EXIF EXIF, Attributes, Scene N/A Attributes N/A

Image Source
Selected from
YFCC100m

Captured with 66 mobile
phones in the wild

Captured with 15 digital
devices in the wild

Captured with 79
devices in eight scenes

Captured with 1 digital
camera in the wild

long-range contextual information and global information.

Therefore, ViT can mine the relationship between different

image regions more comprehensively, which benefits the IQA

task. Consequently, we choose the Vision-Transformer as the

backbone of our model.

The regressors we adopted are three fully connected (FC)

layers, whose neuron numbers decrease from the dimension

of fused features to one. Each FC layer is followed by a

rectified linear unit (RELU) as the activation function. The

output of the last FC layer is the final quality score. During

training, this score is then fed into the MAE loss function for

back-propagation. The optimizer we adopted is the stochastic

gradient decrease (SGD) with warming-up strategy.

IV. EXPERIMENTS

A. Evaluation Protocol and Implementation Details

In this paper, we conduct experiments on five authentically

distorted image quality datasets, including KonIQ-10k dataset

[13], Smartphone Photography Attribute and Quality dataset

(SPAQ) [39], LIVE in the Wild Image Quality Challenge

(LIVEW) dataset [14], RBID dataset [12] and CID2013 dataset

[54]. The detailed information is summarized in Table. I.

In all experiments, we adopt the most prevalent Pearson

Linear Correlation Coefficient (PLCC) and Spearman Linear

Correlation Coefficient (SRCC) as evaluation criteria. For the

predicted score sequence {s1, s2, ..., sn} and the target label

sequence {y1, y2, ..., yn}, PLCC and SRCC can be calculated

by:

PLCC =
n
∑

siyi −
∑

si
∑

yi√
n
∑

s2i − (
∑

si)2
√
n
∑

y2i − (
∑

yi)2
, (10)

SRCC = 1− 6
∑

d2i
n(n2 − 1)

, (11)

where di means the difference of ranks of two sequences.

In this paper, we utilize the backbone of data-efficient image

transformer (DeiT) [15] as our feature extractor. DeiT has

the same structure as ViT, and it solves the weakness of

ViT, which needs too many images for training (300 million

images in JFT300M [64]). The DeiT can be trained with

much less resources and achieves better performance than

ViT. In specific, we adopt DeiT-Small pre-trained on ImageNet

with totally 22M parameters, which is less than widely used

models of ResNet50 (26M parameters) and VGG19 (144M

parameters). Therefore, it can well converge during training.

On our experimental setting (NVIDIA Titan-XP GPU), it can

infer 35 images per second with batch size of 1 and 2200

images with batch size of 64. It has an input size of 224×224,
with 12 blocks and 6-headed self attention. Each image is

split into 14×14 patches, and each patch is mapped to a 384-

dimensional vector. During training, we first resize the original

images into 244×244, and then randomly crop images of size

224× 224 as input.
For image enhancement, we choose DeblurGAN-v2 [65]

trained on real-world blur dataset [48] to deblur images and

RetinexNet [45] to enhance the low-light images. Before

regressing the quality score, we need three fusion operations,

which fuses f2,f3 for obtaining s2 and f4, and fuses f1,f4

to achieve s1. In order to reduce the complexity and training

difficulty, we only tried several simple fusing strategies. We

tried the operation of concatenation, minus, multiplication

for obtaining f4, and concatenation, add, multiplication for

s1, s4. Finally, concatenation achieves the best performance.

Therefore, we utilize the concatenation for feature fusion.
During the first training stage, the learning rate is 0.03 with

the warming-up strategy (warming-up with 0.001 and 0.005 for

10 epochs respectively). And the learning rate at the second

training stage is 0.01 (warming-up with 0.001 and 0.003 for

10 epochs respectively). When the performance does not grow

up for 20 epochs, the learning rate is multiplied by 0.3 until

the learning rate is smaller than 5 × 10−5. The parameter λ
in loss function of Algorithm 1 is 1. In our experiments, we

randomly split the dataset into training (80%) and test (20%)

subsets for 10 times, and then the average performance across

all repetitions on the test subset is reported.

B. Performance Evaluation
The primary objective of the proposed model is to improve

the evaluation ability on low-quality images. Therefore, we

first conduct the intra-dataset experiments on low-quality im-

ages. Low-quality images in one dataset are defined as images

with the lowest 25% MOS [12]–[14]. Since rare researches

focus on low-quality images, performance on low-quality

images are rarely reported. Therefore, to make comparisons,

we retrain some popular BIQA methods, including handcrafted

feature-based metrics such as NFERM [27], BRISQUE [26]

and HOSA [29], and code-available deep learning-based met-

rics of WaDIQaM-NR [33], UNQIUE [35], DBCNN [34]

Authorized licensed use limited to: Cardiff University. Downloaded on June 09,2022 at 09:28:18 UTC from IEEE Xplore.  Restrictions apply.



1051-8215 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2022.3179744, IEEE
Transactions on Circuits and Systems for Video Technology

8

TABLE II
PLCC/SRCC RESULTS OF LOW-QUALITY IMAGES. UNIQUE ONLY ACHIEVES RESULTS ON THREE DATASETS DUE TO ITS SPECIALLY DESIGNED MIXED

TRAINING DATASET.

Dataset KonIQ-10k [13] SPAQ [39] LIVEW [14] CID2013 [54] RBID [12] Weighted Average
Criteria PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

NFERM [27] 0.086 0.075 0.331 0.315 0.319 0.327 0.133 0.152 0.199 0.205 0.218 0.206
BRISQUE [26] 0.090 0.103 0.286 0.298 0.079 0.078 0.057 0.058 0.127 0.141 0.183 0.194
CORNIA [28] 0.280 0.284 0.307 0.329 0.228 0.212 0.338 0.319 0.196 0.216 0.289 0.300
HOSA [29] 0.226 0.249 0.321 0.325 0.166 0.148 0.191 0.188 0.179 0.182 0.266 0.277
BMPRI [58] 0.021 0.063 0.048 0.029 -0.232 -0.216 -0.326 -0.393 -0.100 -0.141 0.011 0.019
SCORER [59] 0.122 0.134 0.222 0.233 0.223 0.200 0.221 0.224 0.209 0.212 0.179 0.188
SNP-NIQE [60] -0.106 -0.118 -0.256 -0.191 -0.041 -0.081 -0.337 -0.556 -0.120 -0.200 -0.179 -0.162
QUEADI [61] 0.082 0.091 0.267 0.271 0.113 0.078 0.064 0.033 0.062 0.036 0.171 0.173
UNIQUE [35] 0.347 0.338 / / 0.590 0.605 / / 0.295 0.313 0.368 0.363

WaDIQaM-NR [33] 0.021 0.048 0.439 0.411 0.224 0.192 0.492 0.474 0.194 0.133 0.244 0.238
DBCNN [34] 0.436 0.300 0.481 0.445 0.306 0.376 0.571 0.559 0.159 0.167 0.447 0.375
MetaIQA [38] 0.448 0.476 0.465 0.425 0.579 0.552 0.671 0.683 0.133 0.098 0.459 0.450

IEIT 0.597 0.611 0.498 0.470 0.663 0.681 0.691 0.694 0.392 0.378 0.550 0.543

TABLE III
PLCC/SRCC RESULTS OF INTRA-DATASET TESTS.

Dataset KonIQ-10k [13] SPAQ [39] LIVEW [14] CID2013 [54] RBID [12] Weighted Average
Criteria PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

NFERM [27] 0.725 0.689 0.832 0.823 0.562 0.517 0.825 0.823 0.585 0.559 0.766 0.744
BRISQUE [26] 0.689 0.647 0.832 0.822 0.574 0.557 0.810 0.814 0.617 0.594 0.752 0.728
CORNIA [28] 0.773 0.738 0.867 0.859 0.692 0.655 0.822 0.803 0.712 0.695 0.813 0.792
HOSA [29] 0.791 0.761 0.873 0.866 0.703 0.667 0.835 0.833 0.716 0.684 0.825 0.806
BMPRI [58] 0.152 0.175 -0.436 -0.399 -0.218 -0.141 -0.035 0.155 -0.159 -0.113 -0.121 -0.157
SCORER [59] 0.762 0.732 0.831 0.827 0.619 0.608 0.838 0.835 0.670 0.654 0.787 0.771
SNP-NIQE [60] 0.069 0.116 -0.500 -0.507 -0.296 -0.289 -0.170 0.011 -0.281 -0.288 -0.233 -0.212
QUEADI [61] 0.737 0.711 0.837 0.835 0.594 0.565 0.752 0.758 0.601 0.578 0.774 0.760
NSSADNN [62] / / / / 0.813 0.745 0.825 0.748 / / 0.817 0.746
MEON [63] / / / / 0.693 0.688 0.703 0.701 / / 0.696 0.692
BIECON [32] / / / / 0.613 0.595 0.620 0.606 / / 0.615 0.598

Zhang et al. 2021 [37] / 0.847 / / / 0.835 / / / 0.827 / 0.845
UNIQUE [35] 0.901 0.896 / / 0.890 0.854 / / 0.873 0.858 0.899 0.890

CONTRIQUE [36] 0.906 0.894 0.919 0.914 0.857 0.845 / / / / 0.910 0.901
WaDIQaM-NR [33] 0.805 0.797 0.887 0.882 0.680 0.671 0.868 0.854 0.742 0.725 0.838 0.831

DBCNN [34] 0.869 0.856 0.915 0.911 0.869 0.851 0.871 0.863 0.859 0.845 0.891 0.882
MetaIQA [38] 0.887 0.850 0.871 0.870 0.835 0.802 0.784 0.766 0.777 0.746 0.872 0.853

IEIT 0.916 0.892 0.921 0.917 0.865 0.833 0.891 0.874 0.839 0.809 0.913 0.899

and MetaIQA [38]. Different from other metrics, UNIQUE

is originally designed to be trained with a special mixed-

dataset [35], consisting of KonIQ-10k, LIVEW, RBID, and

other three synthetic IQA datasets. Therefore, only results on

these three authentic datasets are achieved. The performance

on low-quality images of all methods are listed in Table II,

and we can observe from Table II that the evaluation ability

of current popular BIQA metrics are very limited, and the

proposed metric consistently outperforms all other metrics on

all five databases by a large margin.

An ideal IQA metric should not only work well for low-

quality images but also has decent overall performance. There-

fore, we further summarize the results on the entire dataset in

Table III, which consists of eight metrics in Table II (such

as DBCNN, UNIQUE), and other five deep neural network-

based metrics with reported results on authentic IQA datasets.

Results in Table III show that the proposed metric also

achieves SOTA performance during the whole dataset tests,

especially on the two largest datasets of KonIQ-10k and SPAQ.

In Table III, UNIQUE and DBCNN achieve better results on

some small datasets because they were specially pre-trained

with many synthetically distorted images, and then were fine-

tuned on target IQA datasets (UNIQUE was fine-tuned with

six datasets). Benefiting from much more training images, they

achieve better performance than our method on small datasets.

To make the results more intuitive, we show the scatter plots

in Fig. 8. As observed from Fig. 8, the points of the proposed

metric are more densely clustered around the red line.

C. Cross-Dataset Tests

In addition to the intra-dataset test, we also test the gener-

alization ability of the proposed model based on cross-dataset

validation, which is vital in real-world applications. Since the

KonIQ-10k dataset has the largest image capacity, we train

BIQA models on KonIQ-10k and then directly test them on

other datasets.

Different datasets adopt different strategies for labeling

image quality. Directly utilizing models trained on one dataset

to assess other datasets may introduce intrinsic deviation
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Fig. 8. The scatter plots of intra-dataset tests. From top to bottom, each line shows results of HOSA, SCORER, MetaIQA, WaDIQaM, and IEIT, respectively.
From left to right, each column shows results from the dataset of KonIQ-10k, SPAQ, LIVEW, RBID, and CID2013, respectively.

[68]. Therefore, before calculating PLCC/SRCC during cross-

dataset tests, we first adopt a nonlinear-mapping function

to map the predicted scores. As suggested by the Video

Quality Experts Group (VQEG2000) [69], we can map the

relative quality score to the perceptual quality score by a four

parameter nonlinear function:

Qp = f(Qr) =
β3 − β4

1 + e
−Qr−β1

|β2|
+ β4 (12)

where Qr, Qp are the relative quality score and the perceptual

quality score respectively. We can observe from Eq. (12) that

this mapping does not affect the final results of SRCC, and

β3, β4 do not affect the results of PLCC.

Following the method in [68], MOS ranges in all datasets

are linearly rescaled to the value range of 1-5 first, which

means β3 = 5, β4 = 1. Then, we construct a model with one

middle output scoreQr followed by five mapping head to learn

the parameters of βi
j , j = 1, 2, i = 1, 2, 3, 4, 5 (βi

3 = 5, βi
4 =

1). Next, we train the model on all datasets, and each head

corresponds to one dataset. Finally, we obtain the five groups

of parameters βi
j , and each i corresponds to one dataset.

After obtaining those parameters, we can map the output

scores predicted by the model trained on KonIQ-10k for
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TABLE IV
PLCC/SRCC RESULTS OF CROSS-DATASET TEST. THE MODEL IS TRAINED ON KONIQ-10K AND DIRECTLY TESTED ON OTHER DATASETS.

Dataset SPAQ [39] LIVEW [14] CID2013 [54] RBID [12] Weighted Average
Criteria PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

NFERM [27] 0.688 0.711 0.548 0.540 0.715 0.680 0.520 0.530 0.669 0.687
BRISQUE [26] 0.650 0.682 0.575 0.554 0.555 0.533 0.581 0.597 0.637 0.662
CORNIA [28] 0.711 0.766 0.672 0.639 0.605 0.538 0.686 0.688 0.703 0.743
HOSA [29] 0.731 0.771 0.675 0.652 0.690 0.664 0.692 0.679 0.723 0.753

SCORER [59] 0.663 0.588 0.554 0.536 0.654 0.635 0.515 0.518 0.647 0.582
QUEADI [61] 0.143 0.116 0.050 0.082 -0.043 -0.061 0.083 0.101 0.126 0.106

DeepRN (ResNet101) [66] / / 0.750 0.726 / / / / 0.750 0.726
DeepBIQ (InceptionV2) [67] / / 0.821 0.804 / / / / 0.821 0.804

ConCept512 [13] / / 0.848 0.825 / / / / 0.848 0.825
UNIQUE [35] / / / 0.786 / / / 0.783 / 0.785

WaDIQaM-NR [33] 0.743 0.779 0.653 0.647 0.702 0.676 0.629 0.659 0.729 0.759
DBCNN [34] 0.851 0.850 0.764 0.729 0.781 0.736 0.777 0.784 0.838 0.833
MetaIQA [38] 0.834 0.851 0.806 0.783 0.764 0.710 0.780 0.781 0.827 0.837

IEIT 0.868 0.870 0.858 0.829 0.816 0.771 0.831 0.822 0.864 0.861

TABLE V
PLCC/SRCC RESULTS OF ABLATION STUDIES. ’IE’ MEANS INTERMEDIARY ENHANCEMENT. ’IT’ MEANS ITERATIVE TRAINING.

Dataset KonIQ-10k [13] SPAQ [39] LIVEW [14] CID2013 [54] RBID [12]
Criteria PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC
Baseline 0.546 0.581 0.452 0.436 0.594 0.655 0.611 0.656 0.295 0.338

w/ IE (w/o IT) 0.553 0.583 0.476 0.458 0.624 0.658 0.645 0.668 0.353 0.350
w/ IT (w/o IE) 0.577 0.593 0.481 0.458 0.631 0.648 0.684 0.693 0.360 0.371

w/ IE+IT 0.597 0.611 0.498 0.470 0.663 0.681 0.691 0.694 0.392 0.378

Fig. 9. Nonlinear mapping functions from KonIQ-10k to other datasets.

predicting other four datasets:⎧⎪⎪⎨
⎪⎪⎩
Qr = f−1(Qi

p) = βi
1 − ln(

βi
3−Qi

p

Qi
p−βi

4
)
∣∣βi

2

∣∣ , i = 1;

Qi
p = f(Qr) =

βi
3−βi

4

1+e
−Qr−βi

1

|βi
2|

+ βi
4, i = 2, 3, 4, 5;

(13)

where i = 1 represents parameters of the KonIQ-10k dataset,

and i = 2, 3, 4, 5 represents parameters of other four datasets.

The mapping functions from KonIQ-10k to other datasets are

shown in Fig. 9

After adopting the nonlinear mapping, the cross-dataset

evaluation results are shown in Table IV. Table IV clearly

shows that our framework achieves the best generalization

performance on all test datasets. Results on LIVEW and RBID

are even comparable to the intra-dataset evaluation scenario.

The high generalization performance of the proposed metric

owes to the better evaluation ability on low-quality images and

the valuable information provided by the enhanced images.

D. Ablation Studies

The proposed method introduces enhanced intermediary

images for mitigating the distribution shift. It also takes an

iterative training strategy to address the long-tailed distribution

challenge. To prove the effectiveness of the enhanced interme-

diary image and iterative training strategy, we make ablation

studies.

First, we start from a baseline model which is pre-trained

on ImageNet. We then train it on IQA databases without

intermediary enhancement and iterative training, the results

are listed in the first row of Table V. Then, we introduce the

intermediary enhancement without the iterative training. Next,

we introduce the iterative training without the intermediary

enhancement. Finally, we list the results of the proposed

method with both intermediary enhancement and iterative

training in the last row of Table V.

Comparing the second row with the first row in Table V, we

can observe that results trained with intermediary enhancement

are significantly better than results of the baseline model.

Because the enhanced image builds a connection between low-

quality images and high-quality images, which provides more

useful information and mitigates the distribution shift. The

performance on low-quality images is consequently improved.
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Fig. 10. Ablation results on ResNet18 and VGG16. The reported results are
based on the LIVEW dataset.

Adopting iterative training strategy achieves better results

than the baseline model, revealing that iterative training strat-

egy is efficient for evaluating low-quality images as well. Since

the knowledge learned from the first stage is transferred to

the second stage and the model pays more attention to low-

quality images during the second training stage, the challenge

of model biasing towards medium-/high-quality images caused

by long-tailed distribution is mitigated, which leads to the

better performance.

Finally, the proposed metric introduces both enhanced im-

ages and iterative training strategy, which overcomes both

challenges posed by distribution shift and long-tailed distribu-

tion. Consequently, the proposed model with both components

delivers the best performance.

The proposed metric adopts the image enhancement and

iterative training strategies, which do not depend on a spe-

cific network structure and can be generalized to popular

convolutional neural networks (CNNs). For example, we take

experiments with ResNet18 and VGG16, and show the results

in Fig.10. It can be observed from Fig.10 that the proposed

IEIT can significantly improve the evaluation ability of CNNs.

E. Evaluation of Other Long-tailed Learning Strategies

As aforementioned, deep long-tailed learning for regression

is rarely investigated. We also make some other attempts

by directly adopting the reweighting strategy and simply

taking the decoupled training strategy. For the reweighting

strategy, we increase the weight of low-quality images in

the loss function to make the model pay more attention to

low-quality images. For the decoupled training strategy, we

first train the backbone and regressor together, and then fine-

tune the regressor only (freeze the backbone) by adopting

the above reweighting strategy. Finally, for fair comparisons

with the above deep long-tailed learning methods, we also

show the results of proposed method without the intermediary

enhancement (same as the third row in Table V) in Fig. 11.

Fig. 11 shows that directly adopting the reweighting strategy

achieves the worst performance, and the decoupled training

Fig. 11. Comparison of different long-tailed deep learning strategies. The
reported results are based on the KonIQ-10k dataset.

strategy achieves better performance. The performance of the

proposed method is the best. Here are some possible reasons.

Simply utilizing reweighting strategy during training may be

not conducive to the feature representation for medium-/high-

quality images, and the knowledge learned from medium-

/high-quality images is also vital for evaluating low-quality

images. Therefore, decoupled training strategy achieves better

performance by conventionally learning the feature representa-

tion and fine-tuning the regressor only. The proposed method

not only keeps conventional quality assessment features but

also combines it with low-quality image strengthened features.

Therefore, it achieves the best results, which also means the

proposed method apparently mitigating the problem of long-

tailed distribution.

V. CONCLUSIONS

In this paper, we have proposed a novel BIQA model, with

the objective to enhance the evaluation ability on low-quality

images. The proposed model not only adaptively introduces

an intermediary enhanced image to mitigate the distribution

shift challenge, but also adopts an iterative training strategy

for solving the long-tailed distribution challenge. Extensive

experimental results show that the proposed model signif-

icantly improves evaluation ability on low-quality images

and achieves SOTA intra-dataset results. The proposed metric

also obtains the best generalization performance during cross-

dataset tests.
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