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Abstract: Creating the right incentives for a �exible workforce lies at the heart of the gig economy.
For most companies, a key question is how to best connect a limited number of independent
workers in their platforms with service-seeking consumers through the right pricing and matching
mechanisms. We focus on ride-hailing where drivers have signi�cant discretion over where and
when to work across di¤erent locations. Building a spatial model, we study how a platform can
create incentives for independent drivers via prices and commissions, and how such policies a¤ect
drivers�search behavior across a network of locations.

Contrary to common perception, we �nd that the �exibility of the commissions, and not the
�exibility of prices, plays a dominant role in resolving local demand and supply mismatch. This
is because location based price hikes at the bottlenecks negatively distort the local demand and
generally do a poor job in incentivizing drivers towards such locations. Adjusting the commissions,
on the other hand, does not interfere with the local demand; creates better incentives for the
drivers, and therefore is more suitable to mitigate the e¤ects of bottlenecks. Simulations based
on actual ride patterns from New York City and Los Angeles con�rm our insights.
Keywords: Ride-sharing, Gig workers�compensation, Flexible commission, Sharing economy
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

1 Introduction

Traditional taxi markets exhibit signi�cant meeting frictions associated with taxi search and avail-

ability (Lagos, 2000; Frechette et al., 2016; Buchholz, 2021). Vacant cabs often spend a long time

waiting at certain locations while passengers wait for cabs at other locations. Using little technology,

cabs �nd passengers via slow dispatching from local companies or by random street hails. In recent

years, making use of new technologies� mobile devices, location tracking, navigation� ride-hailing

platforms such as Uber and Lyft disrupted the traditional taxi industry and revolutionized the trans-

portation industry as a whole by improved matching e¢ ciency. Founded in 2010, Uber has reported

completion of 10 billion trips worldwide in just eight years (Uber, 2018) and is currently operating

in over 83 countries and 10,000 cities (Uber, 2021).

A key challenge faced by the ride-hailing industry is the shortage of drivers. Finding and keeping

drivers have always been a challenge for ride-hailing platforms as they experience signi�cant driver

turnover (Brown, 2019; Cook et al., 2020). Indeed, according to a report by Uber, 11% of new

drivers stop driving within a month, and about half of them leave within a year (Huet, 2015c).
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Driver shortage has been exacerbated recently due to a combination of factors including pandemic

related health and safety concerns (Siddiqui, 2021), the emergence of alternative work options such as

food and grocery delivery (Bursztynsky, 2021), and ongoing issues with drivers�employment rights,

working and pay conditions (Paul, 2021). Although part of the shortage may be temporary as

several platforms are reported to be "throwing money" to drivers to address severe shortage (D.Lee,

2021), limited supply of drivers will likely stay as a key feature of the ride-hailing platforms for the

foreseeable future.

Given limited supply of drivers, how can a platform create the right incentives using alternative

compensation schemes to generate as many matches as possible? Workforce compensation plans and

incentives have been widely studied in the existing marketing literature e.g., salespeople compensation

(Bhargava and Rubel, 2019; Kim et al., 2019). Such issues, however, require renewed attention within

the context of an independent and �exible workforce commonly found in platform based industries.

Indeed, the platform cannot instruct the drivers when/where to search as it does not employ them. It

can, however, create incentives via prices and commissions, anticipating that the drivers will respond

to such incentives.

Considering the spatial di¤erentiation of supply and demand, if the incentives are not aligned

properly, the platform inevitably experiences bottlenecks and shortages in some locations and excess

supply at other locations. In order to study the strategic impact of such incentives, we consider

alternative mechanisms in which prices and commission rates can be either �xed or �exible. With

�xed-pricing, the platform charges the same per-mile price across the entire city, whereas with �exible-

pricing it sets location-speci�c prices. Fixed and �exible commission rates are de�ned likewise. While

the �xed commission model appears to be the norm among ride-sharing platforms (in most cities

Uber gets a �xed 25% commission and drivers keep 75% of the revenue (Uber, 2020)), an alternative

approach is to charge �exible commission rates based on ride locations. Indeed, Uber has already

experimented with the possibility of charging di¤erent commission rates in di¤erent cities. For

example, in 2015 it raised the commission rate from 20% to 25% in New York, Toronto, Indianapolis,

Boston and Worcester (Huet, 2015a). Similarly, in a pilot program in San Francisco, it announced

testing a tiered structure where UberX drivers pay a 30% commission on their �rst 20 rides in a week,

25% on their next 20 rides, and then 20% on any rides beyond that (Huet, 2015b). These anecdotes

indicate that ridesharing platforms can indeed pursue more granular commission policies. In fact,

various platforms operating two-sided markets are already charging �exible commissions tailored for

each individual job (Taylor, 2014).
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We should further mention that by �exible-pricing we do not mean "surge pricing" as practiced

by Uber, which resolves temporary over�ows in demand, due to, say, major sports events or bad

weather. Instead we note that some locations have fundamentally di¤erent demand patterns as they

consistently pull in and send away more tra¢ c than others1. Such persistent long term di¤erences

call for �exible schemes in which prices and commission rates can be conditioned on location speci�c

factors. If, despite such di¤erences, the platform pursues a rigid, �xed-price-�xed-commission rule,

then it is likely to generate fewer matches than it potentially could; thus lose out both on pro�ts and

consumer surplus.

With this in mind, we develop an analytically tractable model, in which the platform operates on

a network of locations with di¤ering distances and tra¢ c �ows. Being aware of the city�s layout and

tra¢ c �ows, and taking into account the prices and commission rates set by the platform, drivers

self select themselves across these locations to search for customers. We analyze three alternative

pricing and commission models and compare their performance in terms of the number of matches,

pro�ts and consumer surplus.

Our analysis reveals several important insights. First, the �exible commission system is more

suitable to create the right incentives for drivers than the �exible price system, especially when the

platform does not have many vehicles at its disposal. When operating with a limited number of cars,

the platform�s key task is to incentivize drivers towards bottleneck locations (undesirable locations

with short trip lengths). To this end, price interventions not only distort the interior demand and

hamper pro�ts, but also do a poor job in incentivizing drivers to spread themselves evenly across

the city. We show that even after price hikes at the bottlenecks, there still remains excess supply

at other locations, which is a waste of precious resources. In contrast, with a �exible commission

policy the number of cars does not become a constraint until the customer-to-cab ratio ("utilization

rate") hits 100% everywhere, i.e. until no car idles at any location. Up to that point, by �ne-tuning

the commission rates� decreasing them at more desirable locations, increasing them at less desirable

locations, or a combination� the platform can spread the cars evenly across the city and while doing

so, it does not distort the interior demand with unnecessary price hikes. Thanks to these features, the

�exible-commission policy outperforms the �exible-price policy by creating more matches, generating

more pro�ts and, depending on parameters, generating more consumer surplus.

1For instance, based on actual ride patterns, we observe that in Los Angeles there is a consistently high �ow of tra¢ c
to and from Santa Monica, West Hollywood or the Los Angeles International Airport, but the same is not true for, say,
Studio City or Paci�c Palisades. Relatedly, locations have di¤erent expected trip lengths, e.g. if a ride originates from
West Hollywood then it tends to last for 3.9 miles, but if it originates from Paci�c Palisades then it lasts for more than
three times, 12.3 miles.
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A second advantage of the �exible commission policy is that while price interventions are ob-

servable to everyone (passengers and drivers), commission interventions are observable to drivers

only. Customers do not seem to like �ckle fares (Dholakia, 2015; Ariely, 2016), which means that the

�exible-price model might alienate customers and reduce pro�ts. In contrast, the �exible commission

model achieves the demand-supply match in a more subtle way in that neither the commission rates

nor the adjustments to them are observable to the customers.

To illustrate the results in a real-world setting, we calibrate the model for New York City and Los

Angeles based on ride patterns we extracted from a publicly available connectome map on Uber�s

website. Our simulations, in line with the preceding analytical insights, underline the bene�ts of

�exible commissions when there is a shortage of drivers and their ability to utilize every car in a

ride. Once this aspect is controlled for, the gains from �exible pricing seem to be modest. Second,

we document that the performance of pricing models depends on how homogenous a city�s tra¢ c

structure is in terms of the trip lengths and tra¢ c �ows. If these parameters show signi�cant variation

across the city, then pursuing a non-�exible policy is more "costly" for the platform. Our data suggest

that Los Angeles has a less homogenous tra¢ c structure (both in terms of trip lengths and in tra¢ c

�ows across locations) than New York; thus non-�exible rules tend to fare worse in Los Angeles than

in New York. Our subsequent simulations based on randomly generated cities with varying distances

and transition matrices further con�rm these insights.

Related Literature. Our study builds upon the existing literature in the taxi industry. Lagos

(2000) highlights endogenous search frictions in the taxi-cab market. Buchholz (2021) considers a

non-stationary environment by employing data from New York City and analyzing the dynamic

spatial equilibrium of taxi-cabs. The main di¤erence between this stream of work and our model is

that a platform sets prices and commission rates in our study, whereas there is no such platform in

this line of work with exogenous prices and commissions.

Our work is related to the emerging literature on sharing economy and peer-to-peer matching

platforms (Einav et al., 2016; Zervas et al., 2017; Eckhardt et al., 2019; Li and Srinivasan, 2019; Yao

et al., 2022) with a focus on ridehailing (Cramer and Krueger, 2016; Wang et al., 2019; Zhang et al.,

2022). While there has been increased attention on the design of on-demand ride-hailing platforms

and corresponding incentive schemes with an ultimate goal of better matching demand with supply,

most of these studies have focused on addressing short term demand �uctuations, i.e. instantaneous

imbalances between demand and supply, with dynamic "surge pricing" for given locations (Chen and

Sheldon, 2015; Banerjee et al., 2015; Castillo et al., 2017).
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A main feature of our study is the investigation and direct comparison of the trade-o¤s associated

with �xed vs. �exible price and commission models. Ride-sharing platforms� pricing, wage and

compensation decisions have attracted attention (Cachon et al., 2017; Hu and Zhou, 2019); however,

these studies do not explicitly take into account spatial features of the city in which the platform

operates. Indeed, a key aspect of the process of matching demand with supply in ride-sharing is the

spatial di¤erentiation of consumer demand and the direct in�uence of pricing policies on strategic

search behavior of drivers across various locations, which has received relatively little attention in

the literature. Exceptions include Guda and Subramanian (2019) which study surge pricing and

information sharing in a two-zone-two-period setup. Their main interest is to understand when and

in which market zones the platform will use a surge price and explore its implications. Our focus,

however, is stationary characteristics such as di¤erent demand patterns across various locations in a

city (i.e., transition matrix that governs customers�moves), which are arguably as critical as short

term demand �uctuations across locations. Bimpikis et al. (2019) explore spatial price discrimination

for a ride-sharing platform; however, in their model, the platform has access to an in�nite supply of

potential drivers, thus the number of cars does not become a constraint. In contrast, in our model the

number of drivers� especially if it is insu¢ cient� plays a crucial role in explaining the performance

of di¤erent compensation schemes.

Finally, our work has connections with the marketing literature on incentives and compensation

plan design (Basu et al., 1985; Coughlan and Sen, 1989; Jain, 2012; Chan et al., 2014). Previous

literature empirically analyzed implications of various compensation schemes including commission

and bonus based plans (Misra and Nair, 2011; Kishore et al., 2013; Chung et al., 2014; Kim et al.,

2019), and analytically explored how to best align salesperson�s incentives with those of the �rm�s

by considering moral hazard issues (Raju and Srinivasan, 1996; Kalra et al., 2003; Schöttner, 2017).

More recent work focused on two-sided market platforms and examined compensation of salespeople

employed by such platforms in the presence of network e¤ects (Bhargava and Rubel, 2019). A

common aim in this literature is to understand how di¤erent compensation schemes a¤ect e¤ort

choices of the salespeople who have considerable autonomy and �exibility in their work. In a similar

spirit, our study investigates how an on-demand platform designs incentives to e¤ectively manage a

highly independent and �exible workforce.
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2 Model

Environment. Time is discrete and continues forever. We consider a city that consists of n � 2

locations and is populated by a continuum of people with size 1 and a continuum of cars with size

�: The number of people and cars at location i are denoted by yi > 0 and xi > 0 and they satisfyPn
i=1 yi = 1 and

Pn
i=1 xi = �. The physical distance between locations i and j is denoted by �i;j

and people�s moves across these locations are governed by a Markov process, characterized by the

exogenous row stochastic transition matrix T = (ai;j)n�n where ai;j > 0 denotes the probability that

a person at location i wants to go to location j.2

People and cabs are matched via an online platform that sets prices and commission rates.

People�s willingness to pay is uniformly distributed in [0; 1] ; so, if the platform sets price pi at

location i then there are

ri = yi (1� pi)

passengers ("riders") willing to hire a cab at that location. Remaining people are assumed to use

public transport or other means to travel, and they do not generate any revenue for the platform.

The platform�s software identi�es cabs and passengers at location i and creates matches according

to the following matching function:

mi = min fri; xig :

Cabs can drive only a single passenger per trip, and the assignments are random; thus, the probability

that a driver who is searching at location i �nds a passenger is equal to

�i =
mi

xi
= min

�
ri
xi
; 1

�
:

Occasionally, we refer to �i as the utilization rate at location i, because from the platform�s point of

view �i represents the percentage of cabs utilized in a ride.

In addition to matching passengers to cabs, the platform sets prices and commission rates across

the city. In terms of notation pi refers to the per-mile price associated with rides originating from

location i: Similarly the commission rate ci refers to the percentage of the revenue that the driver

keeps after completing a ride originating from location i. Drivers participate in this market if their

expected earning is greater than or equal to their outside option, W; which is the exogenous wage

they could earn in the labor market.

2The strict positivity of xi, yi and ai;j ensures that we avoid absorbing or null recurrent states in the steady state
equilibrium.
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The timing of events is as follows. Each period starts with a "matching session" in which vacant

cars at each location are matched with passengers. All rides take one period to complete.3 We ignore

operating costs (petrol, insurance etc.) as one can rede�ne the outside option net of such costs. At

the end of each period, passengers reach their destinations, matches are dissolved and the process

starts again. Cars with no passengers must wait for the next matching session, however in the mean

time they are free to relocate to another location. When deciding where to search, drivers not only

take into account the probability of �nding a customer �i, but also the price pi, the commission rate

ci and the average trip length originating from that location. Below we analyze the drivers�problem.

Drivers. Let Vi denote the value of searching at location i before the matching session starts,

and Ui be the value of being unmatched once the session ends. A cab that is unable to get a passenger

can either stay in the same location to search again in the next period, or move to another location

if it is more advantegous to search there. It follows that the value of being unmatched at location i

at the end of a period is equal to the discounted value of searching at the best location in the city at

the beginning of the next period, i.e

Ui = max f�V1; :::; �Vng for all i:

Now turn to Vi: We have

Vi = �i

nX
j=1

ai;j max fcipi�i;j + �Vj ; Uig+ (1� �i)Ui:

With probability �i the driver is assigned to a passenger, and with probability ai;j the passenger

travels to location j: If the driver agrees to take this trip, then his payo¤ is equal to share of the

revenue cipi�i;j plus the discounted value of searching at location j; given by �Vj : If he refuses to

travel to location j then he idles for that period and walks away with Ui: Drivers are allowed to refuse

a match, but if they do so, they must wait until the next round, i.e. they cannot instantaneously

re-enter the matching pool in an e¤ort to draw a better ride. With probability 1 � �i he gets no

passenger at all, in which case, again, he obtains Ui:

3 In reality, trips may not �nish exactly within the same time window; however, it is safe to assume that on a per mile
basis long distance trips complete faster than short distance trips (e.g., expressways vs inner city roads); and therefore
are more preferable to drivers. This preference creates an imbalance across the locations and a¤ects drivers� search
decision and the platform�s pricing decision. The equal travel time assumption creates this imbalance in an analytically
tractable way. It is also a common assumption in the literature; see for instance Besbes et al. (2021), Banerjee et al.
(2018) or Lagos (2000).
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Steady State Equilibrium. We focus on a steady state in which the distribution of people and

cabs across locations remains stationary. To ensure this, we require the number of incoming rides to

a location to be equal to the number of outgoing rides from that location, i.e.

mi = a1;im1 + :::+ an;imn; for all i:

The left hand side represents the out�ow from i; whereas the right hand side is the in�ow into i:

Since each ride consists of one passenger and one car, the equation above ensures that in the steady

state the number of cars and passengers at each location remain unchanged. The relationship holds

across the entire city, so letting m = (m1; :::;mn) we write

m =mT; (1)

where

T =

26666664
0 a1;2 :: a1;n

a2;1 0 :: a2;n

: : : :

an;1 an;2 :: 0

37777775 :

Lemma 1 The number of rides in the steady state satis�es

mi = �iM; (2)

where � > 0 is the unique steady state vector of the transition matrix T and M =
Pn
j=1mj.

In words, if there are a total M moves in the city, then a fraction �i 2 (0; 1) of those moves

must be originating from location i. In the steady state, the incoming and outgoing tra¢ c �ows are

equal to each other, so an alternative interpretation of (2) is that a fraction �i of the tra¢ c must be

directed towards i: Either way, the parameter �i is a proxy of how attractive the location is: If �i is

high, then we infer that location i is highly attractive as it pulls in and sends away a lot of tra¢ c.

Furthermore, we require that in the steady state no location should be more pro�table than

others; thus drivers should be indi¤erent across locations, i.e.

V1 = ::: = Vn = V: (3)

The indi¤erence condition has two implications. First, we have Ui = �V for all i; which means that
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in equilirium drivers have no strict incentive to relocate and search at another location. Second, in

equilibrium drivers would not turn down a match and go empty in search of a better opportunity. To

see why, note that if a driver idles, he earns Ui = �V , whereas if he accepts a match, then he earns

pici�i;j + �V: Clearly the second expression is larger than the �rst; hence no driver idles voluntarily.

Our notion of the steady is characterized by (i) the stationarity of the distribution of people and

cars across locations, captured by (1), and (ii) drivers�indi¤erence across locations, captured by (3).

Of course, temporary or even cyclical imbalances in the �ow of tra¢ c due to, say, rush hours, bad

weather, football games etc. may actually violate these conditions. We ignore such �uctuations and

take a rather long term view of the market, and posit that there cannot be a persistent di¤erence

between incoming and outgoing tra¢ c at any location; thus (i) must hold. Similarly, there cannot be

a persistent di¤erence across locations in terms of expected pro�t; thus (ii) most hold. This notion of

equilibrium is common in the literature, e.g. Lagos (2000), as it yields analytically tractable results.

We show that such an equilibrium always exists and it is generally unique under operating models

2 and 3 (below we provide the descriptions of the operating models). Under model 1 we can prove

existence in the interior case, but not in the corner case, though in the numerical simulations the

equilibrium still materializes. Conditions (1) and (3), therefore, are necessary but not su¢ cient for

the existence of a steady state equilibrium.

Simplifying Vi, we have

V (1� �) = �ipicidi for all i; (4)

where

di =

nX
j=1

ai;j�i;j (5)

is the average trip length of a ride originating from i: We label the locations from 1 to n in such a

way that

d1 < d2 < ::: < dn

i.e. location 1 has the shortest expected trip length, whereas location n has the longest. (With no

loss of generality we ignore equalities.) Note that di depends on both on �i;j and ai;j ; thus a location

does not have to be physically the closest to other locations to have the smallest di:

Example 1. Consider the city in Figure 1 (left panel) and suppose that the transition probabilities

are equal to each other (middle panel), i.e. ai;j = 1=4 and ai;i = 0: The expected trip lengths are

9



CB

D

A

E

2

3

2.24

3.16

CB

D

A

E

CB

D

A

E

Figure 1: Layout and tra¢ c �ows

equal to4

dA = 3:72; dB = 4:66 dC = 3:16; dD = 5:41; dE = 6:09:

Location C sits at the intersection of routes, and as expected, it has the shortest trip length; thus,

it can be labelled as location 1. A ranks second; so it is 2, B is 3, D is 4 and E is 5. Now suppose

C attracts more tra¢ c than other locations, e.g. suppose that 70% of tra¢ c out of any location

is directed towards C, while the remaining 30% is shared equally between the other three locations

(i.e. ai;C = 0:7 and ai;j = 0:1; where i; j 6= C). As for the tra¢ c out of C, suppose it is still equally

shared across the four destinations (i.e. aC;i = 0:25). These �ows are depicted in the right panel of

Figure 1. The expected trip lengths are now equal to

dA = 2:83; dB = 3:06; dC = 3:16; dD = 3:96; dE = 5:67:

Now A and B, despite being physically more remote, have shorter trip lengths than C. This is

because when calculating, say, dB the short distance �B;C = 2 has a weight of 70% whereas the

longer distances, say �B;E = 7:4; have only 10% each. The imbalance in the tra¢ c �ow changes the

ranking; so, now location A ought to be labelled as 1, B as 2, C as 3, D as 4 and �nally E as 5.

The re-labelling is important for the following reason. From a driver�s perspective the location

with the minimum di is the least desirable location, and in model 1 this location turns into a

bottleneck if there are not su¢ ciently many cars in the city. The bottleneck location is typically the

most central one� the one with a short physical distance to every other location� however, as the

example illustrates, this is not always the case. Moreover, the location of the bottleneck may change

as the �ow of tra¢ c changes. Throughout the paper we use the numerical labels to refer to locations,

but one should be wary that these labels are relative and may change as the transition matrix or the

4Consider location A and note that �A;B = 4:24; �A;C = 2:24; �A;D = 5:24; and �A;E = 3:16: Since ai;j = 1=4, the
expected length of a trip originating from A is equal to dA = (4:24 + 2:24 + 5:24 + 3:16) =4 = 3:72: Other trip lengths
can be calculated similarly.
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layout of the city changes (e.g. road closures or new roads creating new links).

Drivers participate only if V �W; i.e. if their expected earnings is greater than or equal to their

outside option W: The platform will not pay more than W; thus

�ipicidi =W (1� �) � w; (6)

where w can be thought as the per-period wage. After substituting for �i the equality becomes

mipicidi = xiw; for all i: (7)

Combining (2) and (7) with the fact that
Pn
i=1 xi = � we obtain

xi =
�ipicidiPn
j=1 �jpjcjdj

�; (8)

which pins down the number of cars at location i as a function of prices, commission rates, trip

lengths and the attractiveness of each location. Drivers prefer locations that are more attractive

(high �i5) and that have longer trip lengths (high di). In addition to these exogenous parameters, xi

depends on the price pi and the commission rate ci: The platform can encourage drivers to search at

location i by raising pi or ci: Such decisions are part of the platform�s problem, which we study next.

Platform�s Problem and the De�nition of the Equilibrium. The platform�s per-period

earnings at location i is equal to

�i =

nX
j=1

mipi (1� ci) ai;j�i;j = mipi (1� ci) di:

The second equality follows from (5): Adding di¤erent �is across all locations yields the city-wide

pro�t, �: We have

� =

nX
i=1

�i =

nX
i=1

mipidi| {z }
Revenue

�
nX
i=1

mipicidi| {z } :
Payout to Drivers

Focus on the term relating to the payout to the drivers. Recall that drivers must be indi¤erent across

5 In equilibrium yi (the number of passengers at location i) is proportional to �i: Thus xi tends to be high at locations
where there are more customers.
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locations, i.e. (7) must hold across all locations. Thus

nX
i=1

mipicidi =
nX
i=1

xiw = �w: (9)

There are � drivers operating in the market, and via commissions, they each expect to earn w per

period; so the total payout to drivers is equal to �w: Substituting this relationship into � yields

� =

nX
i=1

mipidi � �w: (10)

The substitution eliminates commission rates from the platform�s objective function. The platform

picks prices to maximize the revenue while the commission rate(s) satisfy ensure drivers�participation

and indi¤erence via (7). Note that in the steady state payo¤s are time invariant; thus the platform�s

lifetime pro�t is simply equal to � = �= (1� �) :

A steady state equilibrium is a time invariant tuple f(pi; ci; xi; yi)gni=1 such that (i) the platform

maximizes its lifetime pro�t; (ii) drivers participate and they are indi¤erent across locations; (iii) the

in�ow of moves equals to the out�ow at each location; (iv) the total measures of cabs and passengers

are equal to � and 1; respectively. Within this setup, we will analyze three di¤erent operating models:

� Model 1 - Flexible Prices, Fixed Commission Rate: pi is location speci�c, but ci = c for all i.

� Model 2 - Fixed Price, Flexible Commission Rates: pi = p for all i but ci is location speci�c

� Model 3 - Flexible Prices, Flexible Commission Rates: Both pi and ci are location speci�c.

3 Operating Models

3.1 Model 1: Flexible Prices, Fixed Commission Rate

We start with the claim that in equilibrium no location exhibits excess demand.

Lemma 2 There cannot be an equilibrium in which xi < ri at any location.

The proof is in the appendix; here we provide a brief sketch of the proof. Fix some p and let S0
denote the set of locations in which demand is greater than or equal to supply with at least one

location exhibiting excess demand, and S1 the set of locations with excess supply. First suppose that

S1 is non-empty. If the platform increases the price(s) in S0 in�nitesimally and it leaves the prices in
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S1 intact, then some of the drivers in S1 will move towards S0; creating more rides at (slightly) higher

prices. Furthermore, if the price rise is kept at a minimum, then despite losing drivers, none of the

locations in S1 will fall into excess demand, which means that the platform can still create the same

number of rides at the same prices in S1. The intervention is pro�table because the platform earns

more in S0 while maintaining the same pro�ts in S1: Now, suppose S1 is empty. This means that all

cars in the city are being used in a ride and yet there is still excess demand at some location(s). But

this implies that prices are too low; and, again there is a pro�table intervention. Combining both

arguments, we see that an equilibrium fails to exist if xi < ri.

Per Lemma 2, ri � xi , mi = ri for all i. Since mi = �iM and
Pn
i=1 yi = 1; we have

M =
1

h (p)
and mi = ri =

�i
h (p)

;

where

h (p) =

nX
i=1

�i
1� pi

; g (p) =

nX
i=1

�ipidi and 
 (p) =
g (p)

h (p)
: (11)

Substituting for mi; we have � = 
(p)� �w: The platform solves

max
p


 (p)� �w s.t. ri � xi for all i:

Note that the constraints ri � xi follow from Lemma 2 and they require the number of passengers

to be less than or equal to the number of drivers at each location.

Lemma 3 The objective function 
 (p) is strictly concave in p:

The proof is in the appendix. Now focus on the constraint ri � xi. Substituting for ri and xi we

have

ri � xi , 
 (p) � pidi�:

The Lagrangian of the platform�s problem can be written as

L = 
(p)� �w +
X

�i [pidi� � 
 (p)] ;

where �i is the multiplier associated with the constraint at location i: The �rst order condition with

respect to pi is given by "
1�

nX
i=1

�i

#

0i (p) + �idi� = 0; (12)
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0 1 0 1

Figure 2: Left: nonbinding constraint (high �), Right: binding constraint (low �)

where


0i (p) =
�i
h (p)

�
di �


 (p)

(1� pi)2

�
:

Figure 2 illustrates two scenarios: one in which the constraint pidi� � 
 associated with location i is

slack (left panel) and the other in which the constraint is binding (right panel). The feasible portion

of 
 satisfying pidi� � 
 is highlighted in bold. Whether or not the constraint binds depends on

how large � is, i.e. how many cars there are in a city. If � is high then the constraint is slack, and

the platform can pick the interior price p�i satisfying the �rst order condition: If � is low, then the

constraint binds, pushing the platform to pick the corner price that equates demand and supply at

that location ("price intervention"). In what follows we prove that the constraints bind in an orderly

fashion, starting at the location with the shortest trip length (location 1), then at the location with

the second shortest trip length (location 2) and so on.

Lemma 4 If �k = 0 then �k+1 = 0: Similarly if �k+1 > 0 then �k > 0:

Letting k = 0; 1; :: we refer to regime-k as the outcome in which the �rst k constraints are active.

Prices in regime-k satisfy

pki di� = 
(p
k) for i = 1; :::; k and (1� pki )2di = 
(pk) for i = k + 1; :::; n (13)

The �rst set of equations follow from the fact that the constraints bind at locations 1 through k;

whereas the second set of equations are due to the �rst order conditions at locations k + 1 through

n: The (unconstrained) case, k = 0, can be solved analytically, which we report in the following
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proposition. For k � 1 we need numerical simulations.

Proposition 1 If � > ��1; where ��1 is given by (19), then the platform sets

pinteriori = 1� E� (d)
2
p
diE�(

p
d)

and cinterior =
4�wE2�(

p
d)

E2� (d)
;

where

E� (d) =
nX
i=1

�idi and E�(
p
d) =

nX
i=1

�i
p
di: (14)

The interior equilibrium emerges if there are su¢ ciently many cars in the city (� > ��1). The

abundance of cars allows the platform to set interior prices without worrying about incentivizing

drivers towards undesirable locations. In such an equilibrium, prices satisfy pinteriori < pinteriori+1 ; i.e.

the platform sets higher prices at locations with longer trip lengths. This relationship can also be

seen in Figure 3 (left panel), where prices in the interior region � > ��1 satisfy p1 < ::: < p5.6 The

platform faces a standard trade-o¤ between extensive and intensive margin e¤ects. On the extensive

margin, it generates more matches by lowering prices, whereas on the intensive margin it raises more

money from each ride by increasing prices. The intensive margin e¤ect is stronger at locations with

longer trip lengths: raising the price may cause a drop in the local demand, but if the location has

a high di then the long trip length more than covers this loss. The opposite is true at locations

with a low di: Taking these considerations into account, the platform sets prices satisfying the above

relationship.

Drivers prefer higher prices and longer trip lengths, so one might ask how they can be indi¤erent

across locations if in equilibrium pi and di move in the same direction. The answer is the probability

of �nding a customer. Location n has the longest expected trip length and the highest price; so, it

attracts more cars (per customer) than any other location. As a result, it has the lowest customer-

to-cab ratio, �i; making it the most di¢ cult location for a driver to �nd a customer. In contrast,

location 1 has the highest �i; which makes up for the short trip length and the low price. In general,

the customer-to-cab ratios satisfy �n < ::: < �1: Notice, however, since � is su¢ ciently large, even at

location 1 there is excess supply, i.e. �1 < 1:

If � falls below ��1 (0.74 in Figure 3) then the interior demand cannot be sustained with the

available cars in the city and the constraints ri � xi start to bind, starting at location 1. In response,
6 In the simulations, for the purpose of exposition, we consider a city with only �ve locations. The layout of the city

and the transition matrix are as in Figure 1, right panel. In Section 4.5 we calibrate the model for New York City and
Los Angeles using real world ride patterns from Uber. The results from both sets of simulations are qualitatively very
similar.
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Figure 3: Equilibrium Prices

the platform increases p1; which diminishes the local demand r1 and increases the local supply x1

(by encouraging more drivers towards that location).7 The price intervention matches the demand

and supply, so �1 = 1 at location 1, but at every other location �i is still less than 1.
8 In other

words, the insu¢ cient number of cars in the city forces the platform to conduct a price intervention

at location 1� a diversion from the interior equilibrium� yet there is still excess supply at other

locations. If the platform could somehow divert drivers from excess supply locations towards location

1 without disturbing the interior price there, then it could earn more. However, within the con�nes

of the current model (single commission rate) it cannot do that. Location 1, from the platform�s

perspective, turns into a bottleneck.

As � falls further down, the constraints ri � xi start to bind at more locations, forcing the

platform to intervene and raise the price at those locations: if � falls below 0:65 then p2 starts to rise,

and if it falls below 0:62 then p3 starts to rise to match the demand and supply at those locations.

Notice that even though the model cannot avoid bottlenecks, it still deals with them locally. The

platform uses location speci�c prices to intervene, and as a result, it does not disturb the demand

at other locations too much. For instance, in Figure 3 when � falls below ��1 the price at location 1

surges up, but prices at remaining (unconstrained) locations stay rather unchanged.

The above observations seem to resonate with the surge pricing strategy employed by Uber. The

surge pricing scheme kicks in when the number of passengers asking for a ride at a location exceeds

the number of available drivers at that location, which in our model is equivalent to the constraint

ri � xi becoming active. Uber executives defend the surge pricing practice saying it serves their

7 It is straightforward to verify that r1 = �1
h(p)

decreases while x1 = �1p1d1�
g(p)

increases in p1.
8Per Lemma 4 the constraints bind in an orderly fashion. If � falls below ��1 then �1 = 1 and �i < 1 for i � 2: If it

falls further down, then �1 = �2 = 1 and �i < 1 for i � 3; and so on.
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goal of "relentless reliability to manage the marketplace math so that supply and demand match

as perfectly as possible in the face of ever-shifting, highly unpredictable circumstances"(Wohlsen,

2013). Our results seem to con�rm a similar insight. Indeed when p1 surges up at location 1, the

local demand r1 goes down while the local supply x1 goes up. Furthermore, Uber�s practice is location

speci�c, i.e. while the price may surge at an excess demand location, it remains unchanged at other

locations. This outcome is also similar to what we observe in our simulations.

In highlighting our model�s insights that may be relevant to real practice such as surge pricing,

we should note the following caveat. Our model is based on a steady state setting; as such Figure

3 depicts steady state equilibrium prices associated with di¤erent values of �. Uber�s surge pricing

practice, on the other hand, appears to be a temporary and transitional solution; thus, it may not

be directly comparable to our steady state results.

Proposition 2 Prices in regime-k are bounded below by pmin = 1 + �=2 �
q
�2=4 + � and satisfy

pk1 > ::: > p
k
k > pmin and pmin < p

k
k+1 < ::: < p

k
n:

Even though we are unable to analytically characterize prices in regime-k when k � 1; we can

still pin down their lower bound pmin: It is easy to verify that as � drops pmin rises, which indicates

that the platform responds to a decreasing number of cars by increasing prices. The second part

of the proposition establishes that at locations 1; :::; k prices are inversely related to the trip length,

which is the opposite of what we have seen in Proposition 1. The reason is that at locations 1; :::; k

the constraints ri � xi bind, thus drivers�indi¤erence condition boils down to pidi = pjdj : If di is

less than dj then pi must exceed pj ; else drivers cannot be indi¤erent.

3.2 Model 2: Fixed Price, Flexible Commission Rates

We start by arguing that Lemma 2 is still valid, i.e. there cannot be an equilibrium in which a

location exhibits excess demand. Save for some minor di¤erences (instead of prices, the platform

uses commission rates to incentivize drivers towards excess demand locations) the proof remains the

same; thus we only provide a sketch of the proof in here. To start, suppose that S1 is non-empty.

If the platform leaves the price p as well as the commission rates in S0 intact, but reduces the

commission rates in S1, then some drivers in S1 would �ow towards locations in S0; creating more

rides there.9 If the reduction is in�nitesimally small (call it "i), then despite losing drivers to S0,

none of the locations in S1 would fall into excess demand, and the remaining drivers would still be
9The number of drivers at location i, xi = �icidi�P

�jcjdj
; increases in ci and decreases in cjs:
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able to serve the initial demand.10 Overall, the platform would not lose any pro�ts in S1, yet it would

create more rides and more pro�ts in S0 rendering the intervention pro�table. Now suppose S1 is

empty, i.e. at every location we have xi � ri with at least one inequality strict. Since all cars are

being used in a ride, and there is still some excess demand, the platform can earn more by increasing

p to the point where demand equals to supply at every location, rendering the conjectured outcome

a non-equilibrium. In conclusion, so long as there is excess demand in the city, the platform has a

pro�table intervention; thus, there cannot be an equilibrium in which xi < ri at any i:

The claim establishes that ri � xi, and therefore, mi = ri = yi (1� p) for all i: In addition, since

mi = �iM and
Pn
i=1 yi = 1 we have

mi = ri = �i (1� p) :

Substituting this relationship, and pi = p into (10) yields

� = (1� p) pE� (d)� �w: (15)

The platform solves maxp � s.t. ri � xi for all i: Substituting for ri and xi, we have

ri � xi , (1� p)
nX
i=1

�icidi � cidi�.

A commission vector c is incentive compatible if it satis�es drivers�indi¤erence across locations, i.e.

it satis�es equation (7). After substituting for mi and xi this is equivalent to

(1� p) p
nX
i=1

�idici = �w: (16)

It follows that

ri � xi , w � pcidi.

Recall that in model 1 the constraints became active in an orderly fashion, starting at location 1 and

then at location 2 and so on. Here this is no longer the case.

Lemma 5 Fix p. Suppose there exists an incentive compatible c under which ri < xi for i � k and

ri = xi for i > k. Then there exists another incentive compatible ĉ under which ri < xi for all i:

10Such "i exists because locations in S1 exhibit excess supply. Since xi > ri , cipdi > w for all i 2 S1; and since
the inequality is strict, there exists "i > 0 satisfying (ci � "i) pdi > w.
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The proof is in the appendix. The idea is that we can generate a new ĉ by marginally shaving o¤

the rates of c at locations where the constraint is slack (but without rendering any of these constraints

binding) and marginally increasing the rates at locations where the constraint is binding. Thus, by

construction all constraints will be slack under the new ĉ.

The Lemma rules out the possibility that ri < xi for some locations and ri = xi at other locations.

Either the constraints are slack at all locations or they bind at all locations. We can now characterize

the equilibrium.

Proposition 3 If � > ��2 =
1
2 then all locations exhibit excess supply, i.e. ri < xi for all i. The

platform sets pinterior = 1
2 ; however the commission rates are indeterminate: there exists a continuum

of c satisfying incentive compatibility while ensuring ri < xi for all i: If, however, � � ��2; then ri = xi
for all i; i.e. no cab idles at any location, and the platform sets

pcorner = 1� � and ccorneri =
w

(1� �) di
:

If � is su¢ ciently large, then the platform can experiment with a wide range of commission

schemes and still keep the customer-to-cab ratio �i below 1 at all locations. Below we present an

example for such an outcome.

Example 2. Consider the city in Figure 1 and let � = 1 and w = 0:6: Furthermore recall that

d5 > d4 > ::: > d1; i.e. location 5 has the longest expected travel distance, location 4 has the second

longest, and so on. Since � > ��2 we deal with the interior equilibrium, which exhibits a continuum

of commission rates, including c and ĉ below.

Location ci �i ĉi �̂i

1 0:85 0:5 0:67 0:63

2 0:78 0:5 0:67 0:59

3 0:76 0:5 0:67 0:57

4 0:61 0:5 0:67 0:45

5 0:42 0:5 0:67 0:32

Table 1 �Equilibrium Commissions

It is straightforward to check that c and ĉ are incentive compatible (they satisfy 16) and that the

constraints w � pcidi are all slack under both commission vectors; hence they both can be posted
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in equilibrium.11 With c the rates satisfy c5 < ::: < c1; i.e. the longer a location�s expected travel

distance di, the lower its commission rate. Drivers want both ci and di to be large, so under c no

location is more popular for the drivers than the other (note that the customer-to-cab ratio �i is

the same across locations), because the commission rates counterbalance the travel distances. In

contrast, ĉ is a �xed-commission system where ĉ1 = ::: = ĉ5: As a result, location 5 becomes the

most popular among the drivers� it has the smallest �̂i� location 4 becomes the second most popular

and so on.

The selection of commissions is not con�ned to c and ĉ; if � > ��2 then the platform can pick a

continuum of other rates. But as � gets closer to the threshold ��2 the platform must increase the

rates at locations with a small di and decrease the rates at locations with a large di to counterbalance

the distance e¤ect.

If � falls below ��2; then the platform can no longer avoid the constraints, so �i hits 1 at all

locations and the platform operates at a 100% utilization rate everywhere in the city. Since the

number of cars in the city is not su¢ cient to address the interior demand, the price, inevitably,

starts to rise (Figure 3, the middle panel). The equilibrium price materializes at the point where the

aggregate demand can be addressed with the number of available cars.

Model 2 gives the platform the ability to avoid bottlenecks. Thanks to the �exible commission

structure, the platform does not resort to a price intervention until the passenger-to-cab ratio is

equal to 100% at every location. Up to that point, by adjusting the commission rates� increasing

them at less desirable locations, decreasing them at more desirable locations, or a combination� the

platform manages to spread the cars evenly and serve the (unconstrained) demand associated with

the interior solution. Thus, in contrast to the previous model, no location turns into a bottleneck.

3.3 Model 3: Flexible Prices, Flexible Commission Rates

Finally we turn to the most �exible scheme. As before, there cannot be an equilibrium in which

xi < ri at any i. Since ri � xi we can write mi = ri = yi (1� pi) and since mi = �iM; andPn
i=1 yi = 1; we have

mi = ri =
�i
h (p)

:

11Recall that in our benchmark (the right hand side panel of Figure 1) the trip lengths are d1 = 2:83; d2 = 3:06;
d3 = 3:16; d4 = 3:96; d5 = 5:67: The steady state vector is equal to � =(0:15; 0:15; 0:4; 0:15; 0:15) : Using these numbers
one can verify that (i) (1� p) p

Pn
i=1 �idici = �w and (ii) w < pcidi under both c and ĉ.

20



Substituting for mi; the platform�s pro�t is equal to

� = 
(p)� �w;

where 
 (p) is given by (11). The constraint ri � xi, after substituting for ri and xi; can be written

as

ri � xi ,
Pn
i=1 �ipicidi
h (p)

� picidi� for all i: (17)

The commission vector c must be incentive compatible, i.e. it must satisfy (7). Substituting for mi

and xi; the condition becomes Pn
i=1 �ipidici
h (p)

= �w: (18)

Combining (17) and (18), the constraint associated with location i can be rewritten as

ri � xi , w � picidi for all i:

Since the commission rates are �exible, either the constraints are slack at all locations (i.e. picidi > w

for all i) or they bind at all locations (i.e. picidi = w for all i). In other words, there cannot be a

scenario where picidi > w for some locations and picidi = w at other locations. When faced with such

an outcome, the platform can simply shave o¤ the the commission rates at excess supply locations

and increase the rates at constrained locations to slacken those constraints. The proof of this claim

is practically the same as the proof of Lemma 5; thus it is skipped in here.

Proposition 4 If � > ��3 � E�(d)
2E2�(

p
d)
then all locations exhibit excess supply, i.e. ri < xi for all i.

The platform sets

pinteriori = 1� E� (d)
2
p
diE�(

p
d)
;

but the interior commission rates are indeterminate. If, however, � � ��3; then no location exhibits

excess supply. Along such an outcome the platform sets

pcorneri = 1� E�(
p
d)�p
di

and ccorneri =
w

di �
p
diE�(

p
d)�

:

With su¢ ciently many cars in the city (� > ��3) the equilibrium is interior and no constraint ri � xi
is active. Thanks to the �exible nature of the commissions, the platform avoids the constraints until

� = ��3: Up to that point, by �ne tuning the location speci�c rates, the platform incentivizes the

drivers to spread themselves across the city in an even way, and thereby, it avoids bottlenecks. If,
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however, � falls below ��3; then the interior demand cannot be addressed with the number of available

cars, so prices start to rise (Figure 3, right panel).

Equilibrium prices satisfy pi < pi+1; i.e. the platform sets higher prices at locations with a

high di: This relationship is similar to what we saw in model 1 and it has the same intuition: at

locations with a high di the intensive margin e¤ect (raising the price to generate more revenue) is

more dominant when compared to the extensive margin e¤ect (lowering the price to create more

matches). Raising the price may cause a drop in demand, but if the location has a high di then the

trip length more than covers the loss in demand, which induces the platform to set marginally higher

prices at such locations. In model 1 this relationship broke down in the corner region because in

that model prices at bottleneck locations had to surge up to incentivize drivers. In here commission

rates are employed for this purpose; thus the relationship remains valid both in the interior and the

corner equilibria.

Note that the interior commission rates are indeterminate. If there are su¢ ciently many cars

in the city then there exists a continuum of payo¤-equivalent equilibria in which the platform may

select from alternative commission structures. A corollary is that, if � is su¢ ciently large then the

platform can implement a �xed commission system (ci = c for all i) without loss of optimality.

Model 3 will serve as a benchmark in our comparisons as the other models are special cases of

Model 3.

4 Comparisons

We now compare the schemes in terms of the number of matches, the amount of pro�ts, and the

amount of consumer surplus they generate. The comparisons, inevitably, depend on whether equi-

libria are interior or corner, so we start with the relevant ��is.

Proposition 5 The thresholds satisfy ��1 > ��3 > ��2:

To see why ��1 > ��3, note that in model 3, the parameter � does not become a constraint until

�i = 1 at every location. In contrast, in model 1 the constraint becomes active as soon as �1 = 1 at

location 1 while there is still excess supply at other locations. This explains why model 3 needs fewer

cars to maintain its unconstrained outcome. As for ��3 > ��2; below we show that model 3 generates

more matches than model 2 in its interior equilibrium. Naturally, it needs more cars in order to

sustain those matches.
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When comparing the performance of di¤erent models, one has to pay attention to these thresholds.

For instance, model 1 allows the platform to tailor prices according to location speci�c factors; so,

one would expect it to generate more pro�ts than the single-price model (model 2). Notice, however,

model 1 requires a large � to sustain its interior equilibrium whereas model 2 does not. If � is less

than ��1 but more than ��2 then the comparison involves the corner outcome of model 1 and the

interior outcome of model 2, which is not clear.

4.1 Number of Matches

Under models 1 and 3 we have mi = �i=h (p) ; and therefore M = 1=h (p) : Similarly, under model

2, mi = �i (1� p), thus M = (1� p) : After substituting for equilibrium prices we have

M1 =

8>><>>:
E�(d)
2E2�(

p
d)

if � > ��1

simulations if � � ��1

M2 =

8<: 1=2 if � > ��2

� if � � ��2
M3 =

8>><>>:
E�(d)
2E2�(

p
d)

if � > ��3

� if � � ��3

Proposition 6 In terms of generating matches model 3 outperforms model 2: M3 > M2 if � > �2

and M3 =M2 if � � �2: Model 1�s performance varies: if � > ��1; then it creates as many matches as

model 3 does, but if � � ��2; then it creates fewer matches than model 2 does.

In the interior equilibrium of a model (� > ��i) the number of cars does not enter into the

platform�s problem as a constraint; thus, the resulting Mi is independent of �: This is why Mi

associated with model i is �at when � > ��i in Figure 4. The parameter � �lters into Mi only when

there is an insu¢ cient number of cars in the city.

Models 1 and 3 produce the same number of matches, and indeed the same prices and pro�ts, if

� is large enough for both models to exhibit their interior outcomes (� > ��1): This is because both

models are based on �exible-pricing, as such, the platform maximizes the same objective function.

The models di¤er in terms of their �exibility in commissions, but if � is large enough this di¤erence

becomes irrelevant because with su¢ ciently many cars at its disposal, the platform can satisfy those

constraints with either commission format.

As � starts to fall, however, the number of cars becomes relevant and Mi depends mainly on the

platform�s ability to spread a limited number of cars evenly without running into bottlenecks. With

few cars in the city (generally if � < ��1) we see that models 2 and 3 generate more matches than

model 1. This is because the utilization rate�equilibrium passenger-to-cab ratio�in those models
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Figure 4: Number of Matches (left), Pro�ts (middle), Consumer Surplus (right)

hits 100% at every location. In contrast, the utilization rate in model 1 is equal to 100% only at

locations with a small di while remaining locations exhibit excess supply. This, of course, is a waste

of resources, causing the platform to create fewer matches than it potentially could.

4.2 Pro�ts

In models 1 and 3 we have � = 
(p)� �w: Substituting for equilibrium prices we have

�1 =

8<:
E2�(d)
4E2�(

p
d)
� �w if � > ��1

simulations if � � ��1
; and �3 =

8<:
E2�(d)
4E2�(

p
d)
� �w if � > ��3

�[E� (d)� �E2�(
p
d)]� �w if � � ��3

Going through similar steps, �2 can be written as

�2 =

8<:
E�(d)
4 � �w if � > ��2

� (1� �)E� (d)� �w if � � ��2
:

Figure 4 (middle panel) shows that �i has a concave trajectory, peaking around ��i. In the region

� > ��i the number of cars does not enter into the platform�s problem as a constraint; thus neither

mi nor pi, and therefore, nor the platform�s revenue depend on �: The cost �w; however, increases in

�: Since the revenue is �at while the cost increases, the pro�t falls when � > ��i: From the platform�s

point of view having a � more than ��i is a waste of resources, because the additional drivers do not

generate any new matches (they constitute excess supply), yet they ought to be paid w each, which

is a drain on the pro�ts.

In the region � � ��i the constraint(s) become active. As � decreases, fewer matches are created
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and the revenue falls. The cost component �w; too, falls with �, so the direction of change in the pro�t

depends on the strength of these movements. The simulation suggests that when � is su¢ ciently close

to ��i, the fall in revenue is only minimal, thus the pro�t initially increases and reaches its maximum

slightly below ��i: This suggests that when � is endogenized, the platform would want to create a

small degree of shortage in the number of cabs.

Proposition 7 In terms of pro�ts model 3 strictly outperforms model 2, i.e. �3 > �2 for any �:

Model 1�s performance varies: if � > ��1; then it generates as much pro�t as model 3 does, thus

outperforms model 2, but if � � �2; then it performs worse than model 2.

The relative performance of models depends on how large � is. If � > ��1 then, as noted above, the

distinguishing feature for a model is whether its prices are �exible, because the constraints ri � xi
can be satis�ed with either commission structure. The proposition establishes that if � is large then

�exible price models (1 and 3) generate more pro�ts than the single price model (2).

However, with an insu¢ cient �; the platform�s ability to avoid bottlenecks and spread the cars

around evenly becomes a more important feature than �ne tuning the prices. Indeed, when � < ��2

we see that �3 � �2 > �1. With a limited number of cars, �exible commission models (2 and 3)

achieve a 100% passenger-to-cab ratio at every location, whereas in the single commission model (1)

this ratio is equal to 100% only at some location(s) while other locations exhibit excess supply. It is

no surprise that with such a waste of precious resources the latter model is not as pro�table.

4.3 Consumer Surplus

The consumer surplus at location i is given by

csi =

nX
j=1

yiai;j�i;j

Z 1

pi

(v � pi) dF (v) ;

where F (v) is the cdf governing a passenger�s willingness to pay and yi is the mass of passengers at

location i. Noting that
Pn
j=1 ai;j�i;j = di and F (v) = v (uniform distribution) we have

csi =
1

2
yidi (1� pi)2 =

1

2
midi (1� pi) :
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The second equation follows from the fact that in equilibriummi = yi (1� pi) : The consumer surplus

for the entire city is equal to

CS =
nX
i=1

csi =
1

2

nX
i=1

midi (1� pi) :

Similar to pro�ts, consumer surplus is linked to the number of matches and, generally, it follows

the same pattern as Mi (Figure 4, right panel). For instance, if � is large, then we see that the

�exible price models (1 and 3) generate more matches, and therefore, more consumer surplus than

the single-price model (2). As � falls, the �exibility of the commission structure starts to become

more important. In this region (roughly � < ��1) �exible commission models (2 and 3) create more

matches, and more consumer surplus, than the single commission model (1).

Combining these observations with the ones in the previous section, we note that if � falls below

��1 then models 2 and 3 create not only more pro�ts but also more consumer surplus than model

1. The observation is somewhat counter-intuitive, as one may think that if pro�ts are high, then

consumer surplus should be low and vice versa. This would be the case if the size of the pie (total

surplus) was �xed; however in here, models 2 and 3 generate more matches, and therefore a higher

total surplus than model 1� or a bigger pie to continue with the analogy� so, they may indeed create

more pro�ts and more consumer surplus.

4.4 Comparative Statics

Here we explore comparative statics pertaining to the transition matrix T . A change in some ai;j

changes the steady state vector, expected trip lengths, and thereby all equilibrium objects. For

analytic tractability, suppose that we are interested in some location i and that passengers at any

other location j wish to move to i with the same probability q 2 (0; 1) ; that is aj;i = q: Furthermore,

passengers at j visit remaining locations with identical probabilities, i.e. aj;k =
1�q
n�2 for j; k 6= i:

Finally, passengers at i visit other locations also with identical probabilities, i.e. ai;j = 1
n�1 : Figure

5 (right panel) provides an illustration of these �ows. With this speci�cation, the steady state

distribution can be computed as:

�i =
q

1 + q
and �j =

1

(n� 1) (1 + q) for j 6= i:

A rise in q increases the �ow of tra¢ c towards i: In the steady state, such an increase must be met

with a drop in the �ows towards other locations. This is why an increase in q causes �i to rise but
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Figure 5: Comparative Statics

�js to fall. Recall that a high value of �i indicates that the location is attractive as it pulls in and

sends away a lot of tra¢ c.

A change in q a¤ects expected trip lengths as well. For tractability suppose that the distance

between the location of interest and every other location is equal to � and the distance between any

other location is equal to ~�; i.e.

�j;i = � and �j;k = ~� for j; k 6= i:

Clearly, if � < ~� then i is a central location and if � > ~� then it is peripheral. Figure 5 provides two

examples for such layouts.12 With this simpli�cation the expected trip lengths can be computed as:

di = � and dj = q� + (1� q) ~�:

In what follows we study the impact of q on prices and pro�ts, starting with model 3.

Model 3: Multiple Prices, Multiple Commission Rates

Proposition 8 Suppose q increases and location i becomes more attractive. If � < ~�, i.e. if location

i is a short distance away from other locations, then pi increases while the platform�s pro�t decreases.

If � > ~� then these relationships are reversed.

In the proof we show that dpi=dq is inversely related to the rate of change in E�(
p
d); which

represents the average trip length in the city. If � < ~� then a rise in q decreases E�(
p
d): Indeed if a

short-distance location becomes more attractive, then the average trip length in the entire city falls.

In response, the platform increases the price at that location.

12We are interested in location A; thus i = A. In the left panel the distance between i and any other location is � = 5
whereas the distance between two other locations is ~� = 10: In this layout i is physically central as it is only a short
distance away from other locations: In contrast, in the middle panel the distance between i and any other location is
� = 8 whereas the distance between two other locations is ~� = 4: In this layout i is peripheral.
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Even though the price goes up, the pro�ts fall. There are two reasons for this. First, the rising

q increases �i but decreases �js; thus we end up with more short-distance trips (associated with

location i) and fewer long-distance trips (associated with other locations). Second, the increasing

q causes djs to fall, which means that even the previously longer trips get shorter. Pro�ts fall as

a result. If � > ~�, i.e. if location i sits far away from other locations, then these relationships are

reversed.

Model 2: Single Price, Multiple Commission Rates

Remark 1 In model 2 the price is independent of the transition matrix T . In response to a change

in the �ow of tra¢ c the platform does not update the price; instead it updates the commissions.

Customers, crucially, do not observe such adjustments. The direction of change in the platform�s

pro�t is same as above: if a location with a relatively small di becomes more attractive then the

platform earns less (and vice versa).

In model 2 both the interior price and the corner price are independent of di and �i: This means

that �uctuations in the transition matrix do not a¤ect the equilibrium price at all� the platform

charges the same per-mile price irrespective of T . This outcome, incidentally, is not speci�c to the

simpli�ed environment presented in this section� prices are independent of di and �i under any

physical layout and transition matrix: Instead of the price, the platform works with the commission

rates to respond to the �uctuations in the �ow of tra¢ c. If, for instance, a change in T causes di to

increase then the platform responds by decreasing ci at that location, because in equilibrium ci and

di are inversely related (Proposition 3).

In this model the platform conducts its �ne-tuning via commissions, and crucially these changes

are not seen by the customers (they are observed only by the drivers); so from the customers�point

of view, the per-mile price not only is the same everywhere, but also is stable. We know that model

3 outperforms model 2 (in terms of pro�ts) due to its additional �exibility in pricing. However, if

the transition matrix T changes then so do all prices and commissions in model 3, which means

that the platform not only has to set location-speci�c price and commission rates, but also must be

actively updating those objects based on �uctuations in T . So much variation and adjustment in

prices might turn o¤ some customers and cause them to turn to alternative means of travel. If one

factors in the presence of such (behavioral) customers then the pro�ts under model 3 would diminish

as the customer base would shrink. The simulations suggest that the di¤erence between �2 and �3

is modest. Taking the above consideration into account, model 2 might, in fact, outperform model 3
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if a non-negligible portion of the customers were to behave as above.

Model 1: Flexible Prices, Single Commission

Comparative statics pertaining to model 1 in its interior region is the same as model 3, because

the unconstrained versions of both models produce identical equilibrium objects (prices, matches,

pro�ts). In its corner region, in addition to the factors listed in Proposition 8, the direction of

change in pi depends on whether location i is a bottleneck or not. Since the net e¤ect is somewhat

cumbersome to disentangle, we skip the details in here.

More importantly, model 1 is based on �exible pricing, as such it is subject to the same criticism

above: the platform posts di¤erent prices at di¤erent locations and it must update those prices as

the transition matrix changes. So much variation and adjustment in prices might turn o¤ some

customers.

4.5 Calibration

In what follows we calibrate the model for New York City and Los Angeles based on real world ride

patterns we extracted from a publicly available connectome map of rides on Uber�s website (Uber,

2019; Bimpikis et al., 2019). Much like a classical connectome map showing point-to-point spatial

connectivity of neural pathways in the brain, the connectome map that was available on Uber�s

website included a visual map of the ride patterns during a single month among the neighborhoods

of these cities. Actual ride frequencies, however, were not readily available in this visual map.

Using the open html code of the website, we were able to extract data including borders de�ning

various neighborhoods in both cities (much like the n locations in our model), the latitude/longitude

coordinates de�ning the center of each neighborhood and the relative likelihood of a ride going from

one coordinate to the other during July 2014. We then created the transition matrix T using the ride

patterns between the nodes, and the distance matrix via Google Maps API using the coordinates of

the nodes (see the Appendix for the transition and distance matrices for NYC).13

Based on the transition matrix T which comprises of actual aggregate ride patterns in both cities,

we next calculate the platform�s pro�t under each scheme and cross-compare their performances. This

helps us illustrate our results in a real-world setting. Figure 6 depicts equilibrium pro�ts against the

13 In both cities some diagonal elements of the transition matrices are non-zero, which means that a number of rides
started and ended within the same neighborhood, e.g. Upper East Side in NYC. Similarly some non-diagonal elements
were zero, indicating no rides took place between those locations. These facts violate our assumptions that ai;j > 0 and
ai;i = 0, but they do not a¤ect the inner workings of the model. Our assumptions are su¢ cient, but not necessary, to
ensure that the transition matrix has a unique steady state vector �: Our calculations show that the transition matrices
associated with both cities are ergodic; thus they both have unique steady state vectors.
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Figure 6: Pro�t Ratios

the number of available cars, �: Model 3 (�exible prices, �exible commissions) is the most versatile

operating system and encompasses the other models as special cases; as such �3 serves as a benchmark

in the simulations. The panel on the left hand side illustrates �1 as a fraction of �3; likewise the

panel on the right hand side illustrates �2=�3.

First, the �xed-commission model (model 1) performs well when � is large but it su¤ers when

� is small. For instance in New York if � > 0:6 (left panel) then �1=�3 exceeds 90%; however, if

� < 0:2 then the ratio drops below 70%. The corresponding numbers in Los Angeles are even lower,

because its tra¢ c pattern is more varied than New York (more on this below). To see why, notice

that with a large �eet (high �) the platform does not run into bottlenecks, so, the �exibility of the

commissions becomes rather unimportant. With a small �eet, however, bottlenecks are unavoidable

and in model 1, due to the �xed commission structure, it is impossible to achieve a high utilization

rate. This is why we observe a sharp drop in relative performance when � falls.

Interestingly, model 2 exhibits the opposite pattern: if � is large then, due to its �xed-price nature,

it underperforms the benchmark, but if � is small then the di¤erence vanishes. The underperformance

is not too severe either: in New York it is generally less than 5% and in Los Angeles less than 10%.

The result underlines the importance of �exible commissions and its ability to utilize every car in a

ride. Once this aspect is controlled for, the gains from location-speci�c pricing seem to be modest in

comparison, especially when the �eet size is small.

While �exible pricing may appear as a �rst option to addess local demand and supply mismatch,
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Figure 7: Tra¢ c Imbalance and Pro�ts in Randomly Generated Cities

our simulations highlight the importance of a �exible commission structure when there is a limited

number of drivers. We �nd that when faced with a shortage of drivers it is the �exibility of the

commissions, and not the �exibility of prices, that enables the platform to create more matches and

generate more pro�ts.

Finally, the performance of a model depends on how uniform the tra¢ c pattern is. If the com-

ponents of � vary signi�cantly, then we say the tra¢ c in that city is rather non-uniform (relative to

another city) as some locations are signi�cantly more popular than others. A similar argument ap-

plies if the components of the distance vector d vary too much. In our model the equilibrium objects

(prices and commissions) depend on �i and di; if they vary too much across locations, then so do

prices and commissions. A non-uniform tra¢ c structure, therefore, calls for signi�cantly varied prices

and commission rates across locations. The implication is that in a city where these variables di¤er

signi�cantly, pursuing a non-�exible policy is more costly. In New York the coe¢ cient of variation

for � is 0.98, for d it is 0.32. The corresponding numbers in Los Angeles are 1.52 and 0.35, implying

that Los Angeles indeed has a more varied tra¢ c structure than New York. This explains why in

the simulations the in�exible rules� price-wise or commission-wise� fare worse in Los Angeles than

they do in New York.

In order to con�rm the last insight, we randomly generated 400 cities, each consisting of 25

locations with distances varying from 2 to 10 miles. Accompanying transition matrices, too, were

randomly generated. In each map, we computed the pro�ts under each scheme (�1; �2 and �3), as

well as the coe¢ cient of variation of � : the higher the coe¢ cient of variation, the more varied the
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tra¢ c pattern in that city. Figure 7 plots �1=�3 and �2=�3 in each map against the corresponding

coe¢ cient of variation. The downward trend in both panels con�rms the above insight: pursuing

a �xed rule� price-wise, commission-wise or both� becomes more costly for the platform as tra¢ c

patterns become more varied (as the coe¢ cient of variation rises).

5 Concluding Remarks

On-demand platforms exhibit unique characteristics in terms of the nature of the work and supply

of the workers. With limited number of independent workers having signi�cant discretion over when

and where to work, platforms need to rely on economic instruments and market forces to e¤ectively

serve consumers. In such an incentive-based, �uid economy, it is imperative to understand market

implications and dynamics associated with various, often competing, incentive schemes. Focusing on

ride-sharing platforms with spatially di¤erentiated supply and demand, we analyze the selection and

performance of prices and commissions� two common economic instruments� in creating the right

incentives for independent drivers.

Our results suggest that a location-speci�c �exible commission policy is more e¤ective in matching

demand and supply than �exible pricing, especially if the platform does not have su¢ ciently many

drivers at its disposal. In the absence of �exible commissions, the platform resorts to price hikes to

prevent excess demand; however such interventions not only distort the unconstrained demand� and

hamper pro�ts� but also do a relatively poor job in incentivizing drivers to spread themselves evenly

across the city. We show that, even after such price hikes, there is still excess supply at other more

desirable locations, which, from the platform�s point of view, is a waste of precious resources.

In contrast, with a �exible commission policy, by �ne tuning the per-mile rates� decreasing

them at more desirable locations, increasing them at less desirable locations, or a combination� the

platform can spread the cars evenly across the city and avoid bottlenecks. With such a policy, the

number of cars does not become a constraint until the customer-to-cab ratio hits 100% everywhere,

i.e. until no car idles at any location. In our comparisons, we �nd that avoiding bottlenecks and

utilizing every car in a ride is a signi�cantly more important factor for pro�ts than tailoring prices

according to location-speci�c elements.

A second potential advantage of using commissions, rather than prices, in aligning supply with

demand is the fact that commission rates are not observable by the customers. Whether the platform

charges di¤erent commission rates at di¤erent locations, or whether it changes them, or keeps them

intact, are only observed by the drivers. Customers experience the impact of such interventions (e.g.
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an increase in the number of drivers at a location), but they do not observe the actual commission

rates. In contrast, price modi�cations are observed by everyone, including the customers. It is

conceivable that such �exible price policy might alienate certain customers and reduce pro�tability.

The recent rise of the �gig�economy brings about new and unique challenges to marketplaces in

that it is the norm rather than the exception for on-demand platforms to rely on a limited number of

independent contractors as opposed to permanent workers to serve customers. On-demand providers

from rides (Uber, Lyft) to deliveries (Grubhub, Deliveroo) to household tasks (Handy, Task Rabbit)

employ gig workers who work on a �uid and �exible basis, yet the legal status of such workers is

a major area of contention. Unlike regular employers, these providers cannot dictate such �exible

workforce on what to do or when to do with regards to their work. Instead, they must rely on

right incentives and market forces to provide e¤ective service to consumers. Our work provides an

important contribution by o¤ering critical insights into the use and implications of two main economic

instruments� prices and commissions� in e¤ective management of gig workers in emerging two-sided

market platforms.
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6 Appendix A�Proofs

Proof of Lemma 1. A Markov chain with a �nite state space is said to be regular if a power of

its transition matrix has only positive entries. In our model n is �nite and since ai;j > 0 it is easy

to verify that T 2 has only positive entries. It follows that the Markov chain associated with T is

regular, and thus ergodic. For an ergodic Markov chain, there is a unique steady state vector

� = (�1; ::; �n) with �i > 0 and
nX
i=1

�i = 1

satisfying � = �T . Furthermore, any vector v > 0 such that v = vT must be a multiple of � (see

Grinstead and Snell (1998), Theorem 11.10). The steady state condition m =mT; therefore, implies

that mi = ��i; where � > 0 is a positive scalar. Since
Pn
i=1 �i = 1 we have � =

Pn
i=1mi �M: �

Proof of Lemma 2. Let S0 denote the set of locations in which demand is less than or equal to

supply with at least one location with excess demand, i.e. S0= fi 2 N+ : ri � xig with at least one in-

equality strict. Similarly let S1 denote the set of excess supply locations, i.e. S1= fi 2 N+ : ri > xig :

Case 1 - S1 6= ; : Since xi � ri we have �i = 1 for all i 2 S0: Similarly xi > ri , �i < 1 for all i 2 S1.

The indi¤erence condition (6) implies

pidi = pjdj ; for all i; j 2 S0 and pidi < pjdj ; for all i 2 S0 and j 2 S1:

Suppose that the platform leaves prices in S1 intact but increases prices in S0 to p0i = pi + "i; where

"i is positive but in�nitesimally small and satis�es

"idi = "jdj ; for all i; j 2 S0:

Note that p0idi = p
0
jdj ; which means �

0
i = �

0
j for all i; j 2 S0: It follows that either �0i = 1 or �0i < 1

for all i 2 S0: If "i is small enough then one can ensure that

�0i = 1; for all i 2 S0 and p0idi < pjdj ; for all i 2 S0 and j 2 S1;

i.e. no location in S0 exhibits excess supply and no location in S1 exhibits excess demand. Recall

that xi < ri at least at one location in S0, whereas xi > ri at every location in S1. Such an "i exists

because the inequalities are strict and "i can be in�nitesimally small. Now we can compare pro�ts.
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Locations in S0: Prices are higher after the intervention. As for the number of rides, recall that prior

to the intervention mi = xi: The fact that �0i = 1 implies that after the intervention we still have

m0
i = x

0
i; however, note that x

0
i > xi. To see why, recall that

xi =
�ipidi�Pn
j=1 �jpjdj

:

After the intervention, prices in S0 go up while prices in S1 remain the same. Since "idi = "jdj we

have p0idi = p
0
jdj for all i; j 2 S0: Taking location i as a reference point we have

x0i =
�ip

0
idi�

p0idi
P
j2S0 �j +

P
j2S1 �jpjdj

for all i 2 S0:

It is easy to verify that x0i > xi because p0i > pi: Since both the prices and the number of rides go

up, the platform earns more in S0 than it did before.

Locations in S1: Prices remain intact. The number of rides is also the same as before, because after

the intervention we still have �0i < 1; thus the number of rides is still equal to yi (1� pi) (recall

that pi remains unchanged): It follows that the platform earns the same in S1 as it did before. The

intervention allows the platform to move idle drivers in S1 to S0 and earn more; thus the initially

conjectured outcome cannot be an equilibrium.

Case 2 - S1 = ;: Along this outcome xi � ri for all i = 1; :::; n with at least one inequality strict;

thus �i = 1 for all i = 1; ::; n: Pick location j as a reference point, and note that since �i = 1 the

indi¤erence condition (6) becomes pidi = pjdj ; for all i: Substituting this relationship into (8) we

have xi = �i� for all i: Recall that ri = yi (1� pi) ; thus xi � ri , yi � �i�=(1� pi): It follows that

nX
i=1

yi >
nX
i=1

�i�

1� pi
, �(pj) < 0;

where

�(pj) = � �
"
nX
i=1

�idi
di � pjdj

#�1
:

The second step obtains because
Pn
i=1 yi = 1 and pidi = pjdj . The inequality �(pj) < 0 is strict

because at least one location has xi < ri: Note that � increases in pj and �(1) > 0: Since �(pj) < 0;

there exists some p0j 2 (pj ; 1) satisfying �(p0j) = 0: So, if the platform increases pj to p0j at location j,

while also ensuring that p0idi = p
0
jdj at other locations; then x

0
i = r

0
i for all i; i.e. no location exhibits

excess demand. Prior to the intervention we had xi � ri; with at least one strict inequality; thus
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the number of rides was equal to mi = xi = �i� for all i: After the intervention we have x0i = r0i;

thus, the number of rides is still equal to m0
i = x0i = �i� for all i: Prices, on the other hand, are

now higher, which means that the platform earns more than before. It follows that the initially

conjectured outcome cannot be an equilibrium. �

Proof of Lemma 3. We start by showing that h�1(p)is strictly concave. The strategy is to establish

that h�1 (p) lies underneath its linearization at some p0; which is given by

ĥ�1(p) = h�1(p0) +rh�1
�
p0
� �
p� p0

�
=

P
i
�i(1�pi)
(1�p0i )2hP

i=1
�i
1�p0i

i2 :
The function is concave if h�1 (p) < ĥ�1 (p) ; i.e. if

"
nX
i=1

�i
1� p0i

#2
<

nX
i=1

�i (1� pi)
(1� p0i )2

nX
i=1

�i
1� pi

:

Letting ti �
q

�i(1�pi)
(1�p0i )2

and si �
q

�i
1�pi ; the inequality becomes

"
nX
i=1

tisi

#2
<

nX
i=1

t2i

nX
i=1

s2i :

The result follows from Cauchy-Scwharz. Note that the inequality is strict; thus h�1(p)is strictly

concave. Observe that 
 = g(p)h�1(p); where g is linear and increasing; whereas h�1 is strictly

concave and decreasing in p. Thus 
 is strictly concave (see Boyd et al. (2004), pg. 119).�

Proof of Lemma 4. Start with the �rst claim. If �k = 0 then the constraint is slack at location k;

thus (i) pkdk� > 
 (p). Furthermore the �rst order condition implies 
0k = 0; thus (ii) dk (1� pk)
2 =


(p) : (In the �rst order condition, the term 1�
Pn
i=1 �i cannot be equal to zero, because otherwise

(12) fails to hold at any location with a positive �i:)

Now by contradiction suppose �k+1 > 0: Since the constraint is assumed to bind at location

k+ 1 we have (iii) pk+1dk+1� = 
(p). Furthermore, since 
 is strictly concave and the constraint is

assumed to bind we have 
0k+1 < 0; thus (iv) dk+1 (1� pk+1)
2 < 
 (p) : Since dk+1 > dk, equations

(ii) and (iv) together imply that

dk (1� pk)2 > dk+1 (1� pk+1)2 ) pk+1 > pk:
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Notice, however, (i) and (iii) together imply that pk > pk+1; a contradiction. Thus �k+1 cannot be

positive; so, it must be zero. The second part of the Lemma is proved similarly. �

Proof of Proposition 1. In the unconstrained case (k = 0) prices satisfy (1� pi)2 di = 
 for all

i = 1; :::; n: (We omit the superscript 0 when understood.) It follows that pj = 1� (1� pi)
p
di=dj ;

hence


 =
(1� pi)

p
di

E�(
p
d)

[1� (1� pi)
p
diE�(

p
d)]:

Solving (1� pi)2 di = 
 for pi yields the expression in the body of the proposition. The equilibrium

commission rate can be obtained by substituting pi into (9). For this (interior) equilibrium to emerge

we need p1d1� > 
, i.e. the constraint at location 1 ought to be slack. After substituting for prices,

the condition is equivalent to

� > ��1 �
E2� (d)

2E�(
p
d)[2d1E�(

p
d)�

p
d1E� (d)]

: (19)

If the constraint is slack at location 1 then it is slack at every other location (Lemma 4); thus � > ��1

is su¢ cient. �

Proof of Proposition 2. In regime-k we have

(1� pkk)2dk < 
(pk) and pkk+1dk+1� > 
(p
k)

The �rst inequality is due to the fact that the constraint binds at location k; whereas the second

one obtains because the constraint is slack at location k + 1: Since constraints kick in in an orderly

fashion we do not need to worry about constraints prior to k or after k + 1. Furthermore, per (13),

pkk and p
k
k+1 satisfy

pkkdk� = dk+1(1� pkk+1)2 = 
(pk):

Substituting these relationships into the inequalities above reveals that both pkk and p
k
k+1 exceed pmin:

The inequalities pertaining to the other prices follow from the fact that di < di+1:�

Proof of Lemma 5. The commission vector c is incentive compatible if it satis�es (7), which, after

substituting for mi and xi is equivalent to

(1� p) p
nX
i=1

�idici = �w:
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Furthermore, recall that ri � xi , w � pcidi: Per our conjecture, under c we have pcidi > w for

i � k and pcidi = w for i � k+1.14 We will construct a new ĉ by marginally shaving o¤ the rates of

c at locations where the constraint is slack (but without rendering any of these constraints binding)

and marginally increasing the rates at locations where the constraint is binding. Let

ĉi = ci � "i for i � k and ĉi = ci + "i for i � k + 1;

where ("1; :::; "n) 2 (0; 1)n is an arbitrarily small tuple satisfying

kX
i=1

�idi"i =
nX

i=k+1

�idi"i:

Note that
nX
i=1

�idiĉi =
kX
i=1

�idi (ci � "i) +
nX

i=k+1

�idi (ci + "i) =
X

�idici;

thus ĉ is incentive compatible. In addition, since ("1; :::; "n) can be picked arbitrarily small, the

inequality piĉidi > w can be satis�ed for all i: �

Proof of Proposition 3. Ignoring the constraints, it is straightforward to show that the platform

sets p = 1=2: The constraints are slack if w < pcidi, i.e. if 2w < cidi for all i: The commission rates

must satisfy (16), which, after substituting for p = 1=2 becomes

nX
i=1

�idici = 4�w: (20)

There are n commission rates, a single equality constraint and n inequality constraints. Substituting

2w = cidi into (20) yields the lower bound ��2 = 0:5; thus if � > ��2 then there exists a continuum of

commission rates satisfying the system above, i.e. we have a continuum of equilibria, each with the

same (interior) price p = 1=2; but di¤erent commission rates. If � � 0:5 then all constraints must

bind, i.e. w = pcidi for all i: These equalities, together with (16), uniquely pin down the solution as

p = 1� � and ci = w= (1� �) di.�

Proof of Proposition 4. Suppose the constraints are slack. Then the platform�s problem is the

same as the unconstrained problem in model 1; thus pinteriori is the same as the interior price there.

14For ease of exposition, we assume that the constraints are slack at locations 1; :::; k and bind at k+1; ::; n; however,
this is without loss in generality. The proof can be recast when the constraints are slack/binding at some randomly
selected locations.
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Now suppose the constraints are active, i.e. suppose picidi = w; for all i: Substituting these equalities

into (18) yields h (p) = 1=�: The platform, therefore, solves

max
p


 (p)� �w s.t. h (p) = 1=�;

while the commission rates are uniquely pinned down via picidi = w; for all i: Letting � denote

the Lagrange multiplier, the �rst order condition with respect to pi is given by (recall that 
 (p) is

strictly concave and h (p) is strictly convex)

di (1� pi)2 = 
+ �h (p) ; for all i:

Since the right hand side is not indexed by i; we have

di (1� pi)2 = dj (1� pj)2 ) pi = 1� (1� pj)
q
dj=di:

Combining this relationship with the constraint h (p) = 1=� yields the expression for the corner price

in the body of the proposition. The commission rates can be recovered from picidi = w; whereas the

threshold ��3 can be obtained via � = 1=h
�
pinterior

�
.�

Proof of Proposition 5. First we show that E� (d) > E2�(
p
d): The inequality can be written as

X
�idi >

"
nX
i=1

�i
p
di

#2
:

Letting ti �
p
�idi and si �

p
�i and noting that

P
�i = 1; the inequality becomes

nX
i=1

t2i

nX
i=1

s2i >

"
nX
i=1

tisi

#2
:

The result follows from Cauchy-Schwarz. It is straightforward to show that the inequalities (i)

��1 > ��3 and (ii) ��3 > ��2 boil down to, respectively, (i) E2�(
p
d) > d1 and (ii) E� (d) > E2�(

p
d): The

�rst inequality holds because d1 < di whereas the second inequality is already established above. �

Proof of Proposition 6. Focus on M2 and M3 and suppose that � � ��2: Since ��3 > ��2; we

have M2 = M3 = �. Now suppose ��2 < � � ��3: In this region M3 = �; whereas M2 = 1=2: Since

� > ��2 = 0:5 we have M3 > M2. Finally, if � > ��3 then M3 = E� (d) =2E2�(
p
d) and M2 = 1=2: The

inequality M3 > M2 obtains because E� (d) > E2�(
p
d). �
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Proof of Proposition 7. We will show that �3 > �2: There are three cases to consider:

(i) Suppose � > ��3: In this region �3 > �2 obtains because E� (d) > E2�(
p
d):

(ii) Suppose ��2 < � � ��3: The inequality �3 > �2 holds if

�[E� (d)� �E2�(
p
d)] > E� (d) =4:

Since � > ��3 the left hand side is increasing in �; thus for a su¢ cient condition substitute � = ��2 and

note that inequality holds if E� (d) > E2�(
p
d); which is true (proof of Proposition 5)

(iii) Suppose ��2 � �: The inequality �3 > �2 holds if E� (d) > E2�(
p
d); which is true.

As for �1 note that if � � ��1 then �1 = �3; thus, per the arguments above �1 > �2: If, however,

� < ��1 then we need numerical simulations to establish the magnitude of �1.�

Proof of Proposition 8. Since di is independent of q, we have

dpinteriori
dq _ � d

dq

h
E�(d)
E�(

p
d)

i
and dpcorneri

dq _ � d
dqE�(

p
d);

where

E� (d) = 2q�+(1�q)~�
1+q

and E�(
p
d) =

q
p
�+
p
q�+(1�q)~�
1+q :

It is straightforward to show that if � < ~� then both E0�(
p
d) < 0 and [E� (d) =E�(

p
d)]0 < 0; thus pi

increases in q: Turning to pro�ts,

d�interior3
dq _ d

dq

h
E�(d)
E�(

p
d)

i
and d�corner3

dq _ d
dq

h
E� (d)� �E2�(

p
d)
i
:

From the previous step it is clear that if � < ~� then �interior3 falls in q. As for �corner3 observe that

d�corner3 =dq decreases in �. If � = ��3 then �interior3 = �corner3 ; thus d�corner3 =dq < 0: In the corner

equilibrium � � ��3; thus d�corner3 =dq < 0 whenever � < ��3: �

7 Appendix B�Transition and Distance Matrices
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