Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Phytoremediation performance of floating treatment wetlands with pelletized mine water sludge for synthetic greywater treatment

Abed, Suhail N., Almuktar, Suhad A. and Scholz, Miklas 2019. Phytoremediation performance of floating treatment wetlands with pelletized mine water sludge for synthetic greywater treatment. Journal of Environmental Health Science & Engineering 17 (2) 10.1007/s40201-019-00372-z

Full text not available from this repository.


Purpose Buckets containing floating reed (Phragmites australis) simulated floating treatment wetlands (FTWs) and were used to improve the remediation performance of synthetic greywater (SGW). The aim of the study was to investigate the behaviour of FTWs for treatment of key contaminants within artificial greywater. Methods Pelletized ochre based on acid mine water sludge was introduced to selected FTWs, because of its capability in sequestration phosphorus and other trace elements. The impact of the following four operational variables were tested in the experimental set–ups of the FTWs (four replicates each): pollutant strength (high– (HC) and low– (LC) concentrations), treatment time (2– or 7–days of hydraulic retention time (HRT)), presence or absence of macrophytes (P. australis) and cement–ochre pellets. Results The results showed that 5 − day biochemical oxygen demand (BOD) and chemical oxygen demands (COD) were significantly (p < 0.05) reduced in all wetlands. Nitrate–nitrogen (NO3–N) concentrations were significantly (p < 0.05) higher, and those measurements for PO4–P were significantly (p < 0.05) lower than the corresponding ones determined for the influent. The existence of ochre pellets with P. australis significantly (p < 0.05) decreased B, Cd, Cr, Cu, Mg, Ni and Zn concentrations, but increased Al, Ca, Fe and K concentrations in the effluent, with the exception of sodium (Na). Conclusions The FTW performances can be improved by utilising ochre–cement pellets to increase the pH of greywater. The presence of P. australis acts as a buffer to neutralise the pH of SGW. Rhizomes and biofilms mitigate increases in turbidity, TSS and colour values.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Engineering
Publisher: Tehran University of Medical Sciences
ISSN: 2052-336X
Last Modified: 01 Aug 2022 11:15

Citation Data

Cited 7 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item