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SUMMARY
As theestablishmentof severeacute respiratorysyndromecoronavirus2 (SARS-CoV-2)-specificTcellmemory
in children remains largely unexplored, we recruited convalescent COVID-19 children and adults to define their
circulating memory SARS-CoV-2-specific CD4+ and CD8+ T cells prior to vaccination. We analyzed epitope-
specific Tcells directly ex vivousing sevenHLAclass I andclass II tetramerspresentingSARS-CoV-2 epitopes,
togetherwithSpike-specificBcells.UnvaccinatedchildrenwhoseroconvertedhadcomparableSpike-specific
but lower ORF1a- and N-specific memory T cell responses compared with adults. This agreed with our TCR
sequencing data showing reduced clonal expansion in children. A strong stem cell memory phenotype and
Immunity 55, 1299–1315, July 12, 2022 ª 2022 The Author(s). Published by Elsevier Inc. 1299
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common T cell receptor motifs were detected within tetramer-specific T cells in seroconverted children.
Conversely, childrenwhodid not seroconvert had tetramer-specificT cells of predominantly naive phenotypes
anddiverseTCRab repertoires.Our studydemonstrates thegenerationofSARS-CoV-2-specificTcellmemory
with common TCRabmotifs in unvaccinated seroconverted children after their first virus encounter.
INTRODUCTION

A paradox of the severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) pandemic is that the majority of children

develop less severe coronavirus disease 2019 (COVID-19)

(CDC COVID-Response Team, 2020; Chou et al., 2022; O’Dris-

coll et al., 2021) and have lower secondary attack rates

compared with adults and the elderly (Zhu et al., 2021). This is

in stark contrast with other respiratory viruses, which often cause

severe disease in children (Jansen et al., 2007; Short et al., 2018).

The rapid spread of the SARS-CoV-2 Omicron variant, in combi-

nation with vaccination of adults and the elderly, has increased

the risk of infections in unvaccinated children (Delahoy et al.,

2021; Mallapaty, 2021). Despite approvals of COVID-19 vac-

cines for children, global vaccination rates in children remain

low. As immunity to SARS-CoV-2 in children is greatly under-

studied, it is important to define immunological memory re-

sponses generated in SARS-CoV-2 infected, unvaccinated

children following their first antigenic encounter.

Children’s innate immunity contributes to the rapid resolution of

SARS-CoV-2 infection (Neeland et al., 2021a, 2021b). However,

children can develop relatively low Spike (S)1-specific immuno-

globulin G (IgG) and IgA antibody titers, mainly detected in saliva

(Tosif et al., 2020), and reduced seroconversion compared with

adults with mild COVID-19 (37% versus 76.2%), despite similar

viral loads (Toh et al., 2022). However, a recent large cohort study

demonstrated similar neutralization and S-specific antibodies in

children and adults (Dowell et al., 2022). Our previous study indi-

cated that children weremore likely to mount de novo humoral re-

sponses followingSARS-CoV-2 infection, in contrast to adults and

the elderly. Pre-pandemic children had encountered fewer sea-

sonal coronavirus exposures compared with elderly individuals,

resulting in less-experienced, polyreactive, and functionally

distinct humoral immunity (Selva et al., 2021).

A limited number of studies showed significantly reduced

CD4+ and CD8+ T cell responses following stimulation with over-

lapping SARS-CoV-2 peptide pools in children with mild COVID-

19 compared with adults (Cohen et al., 2021; Goenka et al.,

2021; Moratto et al., 2020; Pierce et al., 2020). Interferon-g

(IFN-g) ELISpot analysis with a mix of overlapping peptides to

S, nucleocapsid (N), and membrane (M) revealed relatively lower

cellular responses to N- and M-derived peptides in children but

2-fold increased responses against S-derived peptides (Dowell

et al., 2022). Similarly, stimulation with overlapping peptides in

an IFN-g intracellular cytokine secretion assay showed lower

CD8+ and CD4+ T cell responses to SARS-CoV-2 structural

and ORF1ab proteins in SARS-CoV-2-infected children

compared with adults, despite comparable T cell polyfunctional-

ity (Cohen et al., 2021). Asymptomatic and symptomatic children

display similar frequencies of antigen-specific CD8+ T cells, de-

tected by fluorescent intercellular adhesion molecule (ICAM)-1

multimers (Cotugno et al., 2021). Studies in children with multi-
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system inflammatory syndrome (MIS-C) and SARS-CoV-2

convalescent controls found similar CD4+ and CD8+ T cell re-

sponses using peptide megapools and activation-induced

marker (AIM) assay (Hsieh et al., 2022). However, importantly,

differential T cell responses between children and adults de-

tected by peptide stimulation and functional readouts can also

reflect differences in antigen presentation and/or functionality

of T cells. Concrete immunological data on the magnitude,

phenotype, underlying T cell receptor (TCR) features of SARS-

CoV-2 epitope-(peptide + human leukocyte antigen [HLA])-spe-

cific CD8+ and CD4+ T cells following the natural SARS-CoV-2

infection of children with asymptomatic or mild COVID-19 are

still missing.

Peptide (p)-HLAmultimers can accurately track SARS-CoV-2-

specific CD8+ and CD4+ T cells directly ex vivo during acute and

memory time points (Koutsakos et al., 2019; Nguyen et al.,

2021a, 2021b), without any in vitro manipulations, providing

core evidence on key features of virus-specific T cell immunity.

Using p-HLA tetramers, we previously demonstrated that pre-

pandemic children display a largely naive SARS-CoV-2-specific

CD8+ T cell phenotype directed at immunodominant HLA-B7/

N105 and subdominant HLA-A2/S269 epitopes, suggesting a

lack of pre-existing memory CD8+ T cell responses (Habel

et al., 2020; Nguyen et al., 2021b). However, when it comes to

the mild or asymptomatic clinical presentation of COVID-19 in

children, the immunological data on SARS-CoV-2 epitope-spe-

cific CD8+ and CD4+ T cell immunity are largely non-existent.

Our present study investigated circulating SARS-CoV-2-spe-

cific CD4+ and CD8+ T cells within peripheral bloodmononuclear

cells (PBMCs), aswell as B cell immune responses, in 53 children

at around one month after mild or asymptomatic SARS-CoV-2

infection or exposure, in comparison with convalescent adults’

immune responses. We analyzed SARS-CoV-2-specific T and

B cell responses directly ex vivo, using seven SARS-CoV-2

tetramers, including six prominent HLA class I (HLA-A*01:01,

-A*02:01, -A*03:01, -A*24:02, -B*07:02, and -B*40:01) and one

class II (HLA-DPB*04:01) alleles and S-specific B cell probes.

Those SARS-CoV-2 epitopes were highly conserved across

the major SARS-CoV-2 variants of concern (VOCs). We profiled

epitope-specific CD8+ and CD4+ T cell responses at quantita-

tive, phenotypic, and clonal levels to understand their memory

potential and found that seroconverted children had memory

T cell and B cell profiles, although lower in magnitude compared

with seroconverted adults. Additionally, children’s SARS-CoV-2-

specific T cells displayed similar TCR gene usage but fewer

clonal expansions and common motifs compared with adults.

Our study provides evidence that seroconverted children

generate circulating memory CD4+ and CD8+ T cells, albeit at

a lower magnitude compared with seroconverted adults. A

small population of mostly SARS-CoV-2-exposed seronegative

children had naive tetramer-specific T cells and diverse

TCRab usage.



Figure 1. SARS-CoV-2-specific antibody responses and B cell signatures detected in SARS-CoV-2 exposed children and adults

(A) Cohort of SARS-CoV-2 exposed children and adults.

(B) Number of participants who tested SARS-CoV-2 PCR positive, negative, or were undetermined or untested (ND).

(C) Age of SARS-CoV-2 exposed children (n = 53) and adults (n = 47). Data are shown as mean with SD.

(D) Number of children and adults with 2 or more symptoms between days �2 and +14 of PCR testing, no symptoms or were undetermined/untested (ND).

(E) Number of individuals with each HLA of interest (left) and number of simultaneous HLAs of interest (right).

(F) Distribution of days post PCR testing in children and adults (mean, SD).

(G) SARS-CoV-2 RBD- and N-specific IgG dilution curves with participants designated according to PCR and RBD IgG ELISA status (NA, not available).

(legend continued on next page)
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RESULTS

COVID-19 children and adult cohort and seroconversion
We recruited 53 children fromMelbourne (Australia) and Los An-

geles (USA), including 11 sets of siblings and 47 adults (Fig-

ure 1A; Table S1). 37 children and 30 adults were PCR positive

for SARS-CoV-2 (Figure 1B). 21 mothers were recruited from

the same households of which 5 were SARS-CoV-2 PCR posi-

tive. All donors were recruited prior to COVID-19 vaccination.

Children’s mean age was 5 years (range 4 months to 17 years;

42% female), whereas adults’ mean age was 40 years (range

23–91 years; 85% female) (Figure 1C; Table S1). 33 children

and 33 adults exhibited 2+ symptoms days �2–14 from PCR

testing (Figure 1D). None were hospitalized during their infec-

tious period. HLA typing revealed 7 prominent HLA alleles

where class I/II tetramers were available (Habel et al., 2020;

Minervina et al., 2022; Mudd et al., 2022; Nguyen et al., 2021b;

Peng et al., 2020; Rowntree et al., 2021b; Saini et al., 2021;

Schulien et al., 2021). High prevalence of class I HLA-A*01:01

(26%), HLA-A*02:01 (44%), HLA-A*24:02 (19%), HLA-B*07:02

(31%), and class II DPB1*04:01 (62%) was found, with 93/100

participants having R1 HLA of interest (Figure 1E). Blood was

collected at �62 days post PCR testing (range 21–180 days)

(Figure 1F).

We first measured receptor-binding domain (RBD)- and

N-specific IgG, IgM, and IgA antibody titers in COVID-19

convalescent children and adults, and 20 age-matched healthy

donors (Figure 1G). 36 children and 32 adults were positive for

RBD IgG, while 40 and 29, respectively, were positive for N IgG

(Figure 1H). Antibodies positively correlated with each other in

both children and adults (children: rs = 0.8042, p < 0.0001;

adults: rs = 0.9033, p < 0.0001) (Figure S1A). RBD IgG antibody

titers did not correlate with age or days post PCR testing in

children but weakly correlated with days post testing in adults

(rs = 0.3872, p = 0.0072) (Figure S1BC). 26 children and 29

adults were PCR+ and RBD IgG+. 10 children and 3 adults

were PCR-negative, inconclusive, or untested but were all

RBD IgG+ (Figure 1G). 11 children were PCR+ but RBD IgG�.
6 were PCR� and RBD IgG�. The remaining 14 adults were

PCR� and RBD IgG�. RBD-specific IgG titers significantly

correlated with IgM and IgA titers in children and adults (IgM

children: rs = 0.6995, p < 0.0001; adults: rs = 0.7777,

p < 0.0001; IgA children: rs = 0.7490, p < 0.0001; and adults:

rs = 0.7884, p < 0.0001) (Figure S1D). As anti-SARS-CoV-2-

S2 IgG can be more sensitive than anti-RBD IgG in identifying

asymptomatic COVID-19 patients (Liao et al., 2021), we

measured anti-S2 titers in our cohort. RBD IgG and S2 IgG

endpoint titers significantly correlated in children and

adults (children: rs = 0.7997, p < 0.0001; adults: rs = 0.8834,
(H) RBD- and N-specific IgG, IgM, and IgA antibody endpoint titers in children an

(I) Staining profile of class-switched B cells (CD19+IgD�) with Spike probe in se

viduals.

(J) Frequencies of Spike+ B cells as a proportion of CD19+IgD�B cells in PBMCs f

The statistical significance was determined with Kruskal-Wallis test.

(K) Isotype distribution of Spike+ B cells from RBD IgG+ or IgG� children and adult

comparisons test.

(L) Correlation of Spike+ B cells against RBD IgG endpoint titers in SARS-CoV-2 e

Spearman’s rank correlation (rs).

See also Figure S1.
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p < 0.0001); however, none of the IgG RBD� children or adults

were S2-seropositive (Figure S1E). Finally, IgG antibodies in

children and mothers bound the Delta variant RBD (Figure S1F),

indicating cross-protective immunity between ancestral and

Delta SARS-CoV-2 strains.

Spike-specific B cells in seroconverted children and
adults are predominantly IgG
Using Spike fluorescent probes (Juno et al., 2020; Nguyen et al.,

2021b) (Figures 1I and S1G), we found no difference in the fre-

quency of circulating Spike-specific B cells between RBD IgG+

children and adults (Figure 1J). Spike-specific B cells were

significantly higher in RBD IgG+ adults compared with RBD

IgG� adults (p = 0.0004), but they were not significantly higher

between children. Spike+ B cells from RBD IgG+ individuals

were mainly of IgG isotype compared with RBD IgG� individuals

(children p = 0.0115; adults p = 0.0011), with IgM significantly en-

riched in RBD IgG� adults (p = 0.0268) (Figure 1K). There were no

differences in the phenotype of Spike+ B cells betweenRBD IgG+

and RBD IgG� individuals (Figure S1H). Spike-specific B cells

positively correlated with RBD IgG titers in adults (rs = 0.4142,

p = 0.0042) (Figure 1L).

Overall, 68% of children and 68% of adults seroconverted at

convalescence, and these individuals established SARS-CoV-

2-specific B cell memory.

SARS-CoV-2 epitope-specific CD8+ and CD4+ T cell re-
sponses are lower in seroconverted children compared
with adults
To understand circulating SARS-CoV-2-specific T cell responses

in children versus adults, we used tetramer-associated magnetic

enrichment (TAME) to measure CD8+ T cells against 6 epitopes

ex vivo (A1/ORF1a1637, A2/S269, A3/N361, A24/S1208, B7/N105,

and B40/N322) (Ferretti et al., 2020; Habel et al., 2020; Nguyen

et al., 2021b; Rowntree et al., 2021b; Saini et al., 2021; Schulien

et al., 2021) and CD4+ T cells against 1 DPB4/S167 epitope

(Mudd et al., 2022; Figures 2A and S2A). TAMEs were performed

on 46 children and 61 adults (Nguyen et al., 2021b). These

SARS-CoV-2 epitopes are restricted by predominant HLA alleles

in our cohort and are highly conserved across SARS-CoV-2 VOC

(Figure S2B).

Circulating SARS-CoV-2-tetramer+ CD8+ and CD4+ T cells

had lower mean frequencies in RBD IgG+ children compared

with adults. When pooling all 7 epitopes, RBD IgG+ children

had �3.35-fold lower mean SARS-CoV-2-specific T cell fre-

quency (3.38 3 10�5) compared with adults (1.13 3 10�4,

p = 0.0478) (Figure 2B). The mean SARS-CoV-2-specific

T cell frequency in RBD IgG+ adults was significantly higher

than in RBD IgG� adults (1.08 3 10�5, p < 0.0001) and trended
d adults (mean, SD).

roconverted (RBD IgG+ from ELISA) and non-seroconverted (RBD IgG�) indi-

rom RBD IgG+ or IgG� children and adults; data are shown asmedian with IQR.

s (mean, SD). The statistical significance was determined with Sidak’s multiple

xposed children and adults. The statistical significance was determined using



Figure 2. Increased SARS-CoV-2 epitope-specific CD4+ and CD8+ T cells in SARS-CoV-2 exposed children and adults

Ex vivo analysis of A1/ORF1a1637-, B7/N105-, B40/N322-, A3/N361-, A2/S269-, and A24/S1208-specific CD8+ and DPB4/S167-specific CD4+ T cells from SARS-CoV-

2 exposed children and adults. Between one and four epitopes were examined per individual.

(legend continued on next page)

ll
OPEN ACCESSArticle

Immunity 55, 1299–1315, July 12, 2022 1303



ll
OPEN ACCESS Article
the same way in children (RBD IgG+: 3.38 3 10�5, RBD IgG�:
1.92 3 10�5). Lower frequencies in children suggest that

SARS-CoV-2 T cell responses may not have been fully acti-

vated/expanded to a similar extent as adults. SARS-CoV-2-

specific T cell frequencies weakly correlated with age (rs =

0.1966, p = 0.0190) in RBD IgG+ individuals (Figure S2C) but

not with days post infection (Figure S2D).

As reduced CD4+ and CD8+ T cell responses have been found

toward overlapping SARS-CoV-2 peptide pools derived from in-

ternal proteins but not Spike-derived peptides in children (Cohen

et al., 2021; Goenka et al., 2021; Moratto et al., 2020; Pierce

et al., 2020; Dowell et al., 2022), we analyzed T cell responses

according to Spike (A2/S269, A24/S1208, and DPB4/S167) or inter-

nal (A1/ORF1a1637, A3/N361, B7/N105, and B40/N322) epitopes.

RBD IgG+ children had �3.94-fold lower ORF1a- and

N-specific T cell mean frequency (5.39 3 10�5) than RBD IgG+

adults (2.1213 10�4, p = 0.0336) (Figure 2C). Mean frequencies

of Spike-specific T cells were lower than internal epitopes in chil-

dren and adults for both serogroups.

Individually, A1/ORF1a1637 and B7/N105 CD8+ T cell fre-

quencies were significantly lower in RBD IgG+ children than in

adults (Figure 2D). Conversely, RBD IgG� children and adults

had comparable CD8+ T cell frequencies for all epitopes.

DPB4/S167-specific CD4+ T cells were higher in RBD IgG+ adults

than in children (p = 0.0410), but this was reversed in RBD IgG�

individuals (p = 0.0309). A1/ORF1a1637 and B7/N105 CD8
+ T cell

responses were significantly immunodominant over A2/S269,

A24/S1208, and DPB4/S167 (p values < 0.0036) in RBD IgG+ chil-

dren (Figure 2E), which was similarly observed in adults, albeit at

higher frequencies.

Thus, seroconverted children had�3.9-fold lower ORF1a- and

N-specific CD8+ T cell responses compared with adults but

comparable Spike-specific T cell responses.

Lower Tcm-like and more Tscm SARS-CoV-2-specific
CD8+ T cells observed in seroconverted children
compared with adults
We characterized the ex vivo phenotype profiles of circulating

SARS-CoV-2 tetramer-specific T cells in children and adults

(Figure 3A). In pooled CD8+ T cell responses, RBD IgG+ chil-

dren had less Tcm (p = 0.0027) and more Tscm cells (p =

0.0004) than adults (Figure 3B). DPB4/S167-specific CD4+

T cell responses shared similar phenotypes in RBD IgG+ chil-

dren and adults (Figure 3B). Not surprisingly, RBD IgG� chil-

dren and adults had higher Tnaive and less Tcm cells than

RBD IgG+ groups for pooled CD8+ and CD4+ T cell epitopes

(Figure 3B).

Given that SARS-CoV-2-specific T cell frequencies increased

with age in RBD IgG+ individuals (Figure S4B), the predominance

of Tcm/Tem-like tetramer+ T cells in RBD IgG+ individuals also
(A) Representative flow cytometry plots of enriched tetramer+ T cells from RBD I

(B) Frequencies of enriched tetramer+ T cells when all 7 SARS-CoV-2 epitopes we

(C) by ORF1a/N or Spike epitopes.

(B and C) Statistical significance was determined with Kruskal-Wallis test.

(D) Individual frequencies per epitope from RBD IgG+ or IgG� children and adult

(E) Hierarchy of tetramer frequencies of individual epitopes in RBD IgG+ children

(B–E) Data are shown as mean with SD. 16 datasets are derived from our previo

See also Figure S2.
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significantly increased with age, whereas Tscm/naive cells

decreased (Figure 3C). Similar phenotypic profiles were

observed toward internal epitopes, with less Tcm-like but more

Tscm/naive ORF1a- and N-specific CD8+ T cells in RBD IgG+

children than adults (Figure 3D). RBD IgG+ children had more

Tcm-like Spike-specific T cells than adults. Per epitope, we

found fewer B7/N105- and A3/N361-specific Tcm-like cells in

RBD IgG+ children than in adults (p < 0.0001 and 0.0012, respec-

tively) and more Tscm A3/N361-specific T cells in children (p =

0.0003) (Figure 3E).

Thus, we provide evidence for SARS-CoV-2-specific adaptive

immune responses in SARS-CoV-2 unvaccinated, serocon-

verted children compared with adults at convalescence. Tcm

CD8+ T cells were lower in children than adults, but children

had increased Tscm cells following infection.

Lower SARS-CoV-2-specific T cell frequencies detected
in seroconverted children compared with matched
mothers
21 household families were recruited with at least one PCR+

and/or RBD IgG+ child, sibling, or mother to perform T cell an-

alyses for matched children-mother samples. Enriched

tetramer-specific CD8+ and CD4+ T cells were readily observed

in RBD IgG+ families compared with RBD IgG� (Figure 4A). Fre-

quencies and numbers (per million CD4+ or CD8+ T cells) of

SARS-CoV-2-specific T cells were similar between RBD IgG+

children and mothers, but RBD IgG+ children had lower mean

T cell frequency (3.98 3 10�5) than mothers (1.73 3 10�4)

(Figures 4B and 4C), reflecting those observed in the larger

children-adult cohort. A1/ORF1a1637- and/or B7/N105-specific

CD8+ T cell responses were most immunodominant in mothers

and children regardless of RBD IgG status, which resembled

the immunodominance hierarchy seen in the larger cohort

(Figure 2E). In households where both mothers and children ex-

pressed the dominant A1/ORF1a1637 and/or B7/N105 epitope,

the highest frequency was observed in mothers (RBD IgG+

family 46, 78, and 102; RBD IgG� family 25, 34, and 52). This

pattern was less obvious for subdominant epitopes. Mothers

of RBD IgG+ families (61, 78, and 88) displayed higher B40/

N322-, A2/S269-, A24/S1208-, and DPB4/S167-specific T cell fre-

quencies than children, whereas precursor frequencies in

RBD IgG� households were either higher in the mother (family

18 [A2/S269], 34, 52 [DPB4/S167], and 53) or in children (family

18 [DPB4/S167], 21, 36, 43, 52 [A2/S269], 57, and 75). A3/

N361-specific CD8+ T cell frequencies were higher in children

of RBD IgG+ household (family 97) and RBD IgG� household

(family 36). The mothers in households 58 and 80 did not

seroconvert, corresponding to lower CD4+ and CD8+ T cell

frequencies compared with their seroconverted children

(Figures 4B and 4C).
gG+ children and adults.

re pooled with individuals grouped by RBD IgG status in children and adults or

s. Statistical significance was determined with Mann-Whitney U test.

and adults.

us COVID-19 adult cohort (Nguyen et al., 2021b).



Figure 3. Ex vivo phenotypes of SARS-CoV-2-specific CD8+ and CD4+ T cells revealed in SARS-CoV-2-exposed children and adults

(A) Representative flow cytometry plots of unenriched CD8+ T cells and enriched B7/N105-specific CD8+ T cells from RBD IgG+ and RBD IgG� children and adults

representing Tnaive-like (CD27+CD45RA+CD95�), Tscm-like (CD27+CD45RA+CD95+), Tcm-like (CD27+CD45RA�), Tem-like (CD27�CD45RA�), and Temra-like

(CD27�CD45RA+) subsets. Phenotype gates were set on unenriched CD8+ or CD4+ T cells and applied to the enriched tetramer+CD8+ or CD4+ T cell population.

(B) Stacked plots of phenotype subset frequency for the pooled 6 CD8+ epitopes and DPB4/S167 CD4
+ epitope in RBD IgG+ or IgG� children and adults.

(C) Correlation of tetramer+ frequencies from RBD IgG+ individuals with age across the different phenotype subsets using Spearman’s rank correlation (rs).

(legend continued on next page)
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SARS-CoV-2-specific T cells of household-matched RBD

IgG+ children (n = 14) were mainly Tcm-like (Figure 4D),

except for a Tscm-dominated phenotype in selected siblings

(children 46.3 and 46.4, epitopes A3/N361 and B7/N105) or

selected epitopes within children (88.2: A1/ORF1a1636; 94.3:

A2/S269; 78.4: A2/S269 and B7/N105) and Temra phenotype in

1 child (61.5: B40/N322) (Figure 4B). In contrast, T cell re-

sponses in household-matched RBD IgG� children (n = 14)

were mainly Tnaive, except for 2 children (18.3 and 55.4)

who had Tscm phenotype toward A1/ORF1a1637 and Tnaive

phenotype for the other epitopes (Figure 4D). Similar pheno-

type patterns were observed among household-matched

mothers, where SARS-CoV-2-specific T cell responses from

RBD IgG+ mothers were mainly Tcm-like but mainly Tnaive

in RBD IgG� mothers (Figure 4D).

SARS-CoV-2-specific T cells in RBD IgG+ children
display prominent gene segment usage
TCRab repertoire determines the molecular signature underpin-

ning epitope-specific T cell responses and affects T cell immu-

nodominance, functionality, and protection (Messaoudi et al.,

2002; Ndhlovu et al., 2015; Price et al., 2009; van de Sandt

et al., 2019). To understand SARS-CoV-2-specific T cells at the

molecular level in children, we determined TCRab repertoires

for all 6 CD8+ and 1 CD4+ tetramer-specific T cell epitopes. Us-

ing direct ex vivo TAME and single-cell TCRabmultiplex RT-PCR

(Nguyen et al., 2018; Valkenburg et al., 2016), we dissected

SARS-CoV-2-specific TCRab clonal composition and diversity

in PBMCs from 32 children and 16 adults. This was compared

with previously published TCR datasets for B7/N105, A2/S269,

and A24/S1208 (Nguyen et al., 2021b; Rowntree et al., 2021b), re-

sulting in 1,579 SARS-CoV-2-specific TCRab clonotypes from

RBD IgG+ and IgG� children and adults (Table S2).

For pooled TCRab repertoire analyses, variable (Va and Vb)

and junction (Ja and Jb) gene usage were similar between

RBD IgG+ children and adults (Figures 5A and 5B). Principal-

component analyses (PCAs) of Va, Vb, Ja, and Jb gene

segments usage identified clustering segments specific to

tetramer+ T cells. TCRab clonotypes within RBD IgG+ SARS-

CoV-2-specific T cells closely clustered based on Va and Vb

signatures (Figure 5A), suggesting closely related TCRab clono-

types, indicative of an effective epitope-specific T cell response.

TCR repertoires in RBD IgG+ adults had clonal expansions of Va,

Ja, Vb, and Jb usage, which were not seen in children. For TCR

sequences identified more than once, 59.72% were from RBD

IgG+ adults, whereas only 34.72% were from RBD IgG+ children

(Table S2). However, RBD IgG+ children did exhibit TRAV35/

TRAJ42 clusters enriched by DPB4/S167-specific CD4+ T cell

repertoires, as seen in RBD IgG+ adults (Figure 5A). TCRab fea-

tures within RBD IgG� individuals were more diverse and

dispersed (Figure S3A), in accordance with their predominantly

naive phenotype (Figure 3B).

We further dissected correlations between V and J segment

usagewithin TCRa or TCRb chains (Va-Ja and Vb-Jb) and across

TCRab chains (Va-Vb, Va-Jb, and Vb-Ja). Repertoires in RBD
(D) Stacked phenotype plots based on ORF1a/N (A1/ORF1a1637, A3/N361, B7/N1

(E) per individual CD8+ epitope. Only individuals above the detection limit (R10 t

(B, D, and E) Mean with SD is shown, and statistical significance was determine
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IgG+ children and adults were biased and had 6-fold enrichment

of TRAV35, with the majority joined to TRAJ42 (children: 6-fold;

adults: 4-fold enrichment) and paired with 2-fold enrichment to

TRBJ1-2 (children) or TRBJ2-1 (adults), which joined a range of

different TRBV genes, mainly attributable to the DPB4/S167-spe-

cific CD4+ TCR repertoire (Figure 5B). TRBV27 was the most

frequent Vb gene segment (2-fold enrichment) in RBD IgG+ co-

horts; however, this gene paired with different TRBJ, TRAV,

and TRAJ segments, with the resulting TCRs restricted to several

different epitopes (Figures 5B, 5C, and S3C). TCRab repertoires

identified in RBD IgG+ children were comparable with repertoires

identified in RBD IgG+ adults, with similar V and J segment

usage. Conversely, there was a high degree of TCRab repertoire

diversity in RBD IgG� children and adults (Figure S3B), especially

within the pairing of TCRa and TCRb gene segments, consistent

with their naive T cell phenotype (Figure 3B).

To determine the overall TCRab diversity within each epitope

between RBD IgG+ children and adults, circos and bubble plots

revealed that SARS-CoV-2-specific TCRab repertoires were

quite diverse, with an average of 14 and 16 TCRab clonotypes

per donor/epitope in children and adults, respectively

(Figures 5C, 5D, S3C, and S4). In contrast, RBD IgG� children

and adults had an average of 9 TCRab clonotypes each

(Table S2). RBD IgG+ children and adults displayed a skewed

bias for selected TRAV and/or TRBV gene segments. For

example, the B7/N105-, A1/ORF1a1637-, and B40/N322-specific

repertoires had enrichments for TRBV27 gene usage in RBD

IgG+ children and adults compared with RBD IgG� individuals

(Figures 5C, 5D, and S3C; Table S2). In line with the previous

report (Mudd et al., 2022), DPB4/S167-specific CD4+ T cells dis-

played a heavy bias for TRAV35/TRAJ42 gene segments, which

accounted for the majority of the TCRa repertoire in RBD IgG+

children and adults (80.77% and 76.25%, respectively) but to a

lesser extent in RBD IgG� children and adults (50.00% and

40.00%, respectively). These TRAV35/TRAJ42 clonotypes

commonly paired with TRBVs 6-1, 6-2/3, 6-5, 6-6, 9, and 27,

which were observed among both RBD IgG+ children and adults,

suggesting common TCRab repertoire features between chil-

dren and adults for DPB4/S167-specific CD4+ T cells

(Figures 5C and 5D; Table S2).

Within several epitopes, CDR3a or CDR3b chains were shared

between multiple individuals (n = 2–17) (Table S3). The shared

CDR3a chains were detected for A1/ORF1a1637
+ (TRAV9-2/

TRAJ42 CALGGSQGNLIF), A2/S269
+ (TRAV12-2/TRAJ30 CAV-

NRDDKIIFandTRAV12-1/TRAJ43CVVNKGNDMRF/CVVNNNND

MRF/CVVNRNNDMRF), and B7/N105
+ CD8+ TCR repertoires

(TRAV8-2/8-4 with TRAJ48 CAVPNFGNEKLTF or TRAJ3 CAV-

PSYSSASKIIF). The shared CDR3b chains were observed for

A2/S269
+ (TRBV7-9 with TRBJ2-2 CASGEGNTGELFF or TRBJ2-

7 CASSLDIEQYF), B7/N105
+ (TRBV27/TRBJ1-5 CASSLSYRGN

QPQHF, TRBV27/TRBJ1-1 CASSLSYRGNTEAFF, and TRBV2/

TRBJ1-1 CASSEKTGGSTEAFF), and B40/N322
+ CD8+ T cells

(TRBV27/TRBJ1-4CASSFSNEKLFF) (Table S3). Thiswas particu-

larly observed in the DPB4/S167-specific CD4+ TCR repertoire,

where 16 diverse albeit prominent TRAV35/TRAJ42+ CDR3a
05, and B40/N322) and Spike epitopes (A2/S269, A24/S1208, and DPB4/S167) or

etramer+-enriched events) were included for analysis.

d using Tukey’s multiple comparisons test.



Figure 4. SARS-CoV-2-specific CD8+ and CD4+ T cells profiled in children and mothers

(A) Representative flow cytometry plots of enriched tetramer+ T cells from families with RBD IgG+ or RBD IgG� children, as depicted by RBD IgG dilution curves.

(B and C) Individual participant profiles of SARS-CoV-2 epitope-specific T cell (B) frequencies and (C) cumulative tetramer+ cells per million CD4+ or CD8+ T cells.

(legend continued on next page)
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chains (pairedwith a range ofCDR3b chains) were observed in 22/

31 individuals tested. Common CDR3 sequences were identified

across repertoires of at least 2 individuals, but each participant

used different variable gene segments. For instance, A1/OR-

F1a1637’s CDR3a CALNTGNQFYF was generated via arrange-

ments of TRAV9-2 or TRAV29/DV5, whereas A2/S269’s CDR3b

CASSLGGNQPQHF was generated by TRBV13 or TRBV27, and

DPB4/S167’s CDR3b CASSLRGDYGYTF was produced by

TRBV11-2 or TRBV6-2/6-3, suggesting that these CDR3b-loops

are preferentially selected in the general population post-COVID-

19 (Table S3).

Analyses of SARS-CoV-2-specific CD8+ and CD4+ T cells re-

vealed skewed biases for TRAV and/or TRBV gene segments in

RBD IgG+ children and adults, withRBD IgG+ adults displaying ex-

pansions across different gene segments that were not observed

in RBD IgG+ children. Meanwhile, highly diverse TRAV and/or

TRBV gene segment usage featured in RBD IgG� individuals.

Enriched SARS-CoV-2-specific TCRab motifs observed
in RBD IgG+ children and adults
The preferential recombination of CDR3-loopswas further inves-

tigated by analyses of TCR motifs with similar or near-identical

CDR3 regions within each TCRa or TCRb chain in RBD IgG+ in-

dividuals. This was quantified by a neighbor distance distribution

plot, where lower average values of the distance distribution

peak represented a more similar clustering of clonotypes

(Figures 6A and S5A). Distribution of A2/S269-specific TCRab se-

quences differed between RBD IgG+ children and adults, mainly

driven by an approximately bimodal distribution in the adult

TCRa chain compared with a single peak distribution in children

(children: a = 119.5, b = 96.3, ab = 245.5; adults: a = 76.0,

b = 75.3, ab = 169.4 average distance value). In contrast, differ-

ences in A24/S1208 TCRab repertoire distribution were driven by

the TCRb chain, with children displaying a lower distance distri-

bution than adults (children: a = 146.0, b = 80.5, ab = 237.9;

adults: a = 118.6, b = 137.6, ab = 269.9). DPB4/S167-specific

CD4+ TCRab sequences in both RBD IgG+ children and adults

had the lowest distance distribution, with clustering driven by

the TCRa chain (children: a = 10.6, b = 91.9, ab = 109.3; adults:

a = 13.7, b = 90.5, ab = 112.5) (Figure 6A). Conversely, DPB4/

S167-specific CD4+ TCRab sequences from RBD IgG� individ-

uals clustered into 2 peaks, the lower peak for the conserved

TCRa chain and the higher peak for the more diverse TCRb

chain (children: a = 56.2, b = 112.8, ab = 185.2; adults:

a = 63.4, b = 115.8, ab = 201.0) (Figure S5A).

TCRabsequences for eachepitopewereanalyzed for keymotifs

within children and adults, withmore TCRa and bmotifs identified

in adults than children (Figure 6B).Motifswere highly enriched and

more prevalent in RBD IgG+ individuals (children: 1xa, 6xb; adults

4xa, 8xb),withonly1weakmotif identified inRBD IgG�adults (1xb,

chi-squared 90.2) (Figure S5B). The only prominent TCRa motif

identified in children and adults was for DPB4/S167 dataset

(TRAV35/TRAJ42 chi-squared children: 1,733.2, adults: 637.1),

while TCRa motifs were also identified for A1/ORF1a1637-, B7/

N105-, and A2/S269-specific TCRs in the RBD IgG+ adults (Fig-
(D) Stacked plots display the proportion of each phenotype subset within epitope-

children and mothers by red (RBD IgG+) or blue (RBD IgG�) shading. The x ax

ORF1a1637, A2/S269, A3/N361, A24/S1208, B7/N105, B40/N322 and DPB4/S167.
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ure 6B). Prominent TCRb motifs for DPB4/S167 were identified in

children (4xb, chi-squared between 380.8 and 2,070.2) and adults

(3xb, chi-squared between 212.9–380.2), with multiple motifs

sharing TRBJ1-2 usage and ‘‘CASSXRG’’ CDR3b-loop. Similar

A1/ORF1a1637 TCRb motifs were identified in children and adults

(TRBV27/TRBJ2-2 children: 306.2, adults: 161.3), while the

B7/N105-specific motif was more varied between cohorts (chil-

dren: TRBV27 chi-squared 462.2; adults: TRBV25 chi-squared

462.2 and TRBV27 chi-squared 306.2), and the A2/S269-specific

motifs were only identified in adults.

The probability of generating (Pgen) TCRa or TCRb chains was

calculated for each epitope (Figure 6C). Within the TCRa

chain, the probability of generating a-chains specific for the

DPB4/S167
+CD4+ epitope in RBD IgG+ children and adults was

increased compared with the Pgen values across the 6 SARS-

CoV-2CD8+Tcell epitopes.Conversely, theprobability for recom-

bination of the TCRb chain specific to the DPB4/S167
+CD4+

epitope was comparable with the CD8+ epitopes, particularly

A1/ORF1a1637, A3/N361, and B7/N105. This lower Pgen for the

TCRb chain reflects an increased diversity in the TCRb repertoire

and suggests that any enrichment or skewed bias of particular

motifs did not result from fewer constraints for recombination.

Overall, our data on high frequency, Tcm phenotype, and

prominent TCRab motifs within SARS-CoV-2-specific T cells in

seroconverted COVID-19 children suggest recruitment of T cell

responses following SARS-CoV-2 infection and the subsequent

establishment of memory T cell pools.

DISCUSSION

The gradual opening of society due to the mass vaccination of

adults and the elderly together with the rapid spread of the

SARS-CoV-2 Omicron variant has increased the risk of COVID-

19 in children (Delahoy et al., 2021; Mallapaty, 2021). Despite

COVID-19 vaccination approval for children aged 5 and over in

most countries, vaccination rates in children globally are lagging.

Thus, it is of key importance to understand immunological re-

sponses to SARS-CoV-2 infection in unvaccinated children and

their potential to establish immunological memory. Our study pro-

vides in-depthex vivoprofiling of circulatingSARS-CoV-2-specific

epitope-specific T and B cell immunity in children and adults. Our

findings revealed lower ORF1a- and N-specific cellular responses

in seroconverted convalescent children compared with adults.

Spike-specific B cell responses were observed in seroconverted

children and adults. Exposed seronegative children had naive

T cells and diverse TCRab repertoires.

The lack of adaptive immunity in some children can be related

to stronger early antiviral innate and mucosal immune response

to SARS-CoV-2, likely contributing to rapid viral clearance and

potentially explaining milder disease outcomes (Loske et al.,

2022; Neeland et al., 2021a, 2021b; Pierce et al., 2020; Toh

et al., 2022; Tosif et al., 2020). Alternatively, those seronegative

childrenmay have been exposed to a lower viral load, insufficient

to induce adaptive immune responses. Reduced immune re-

sponses and lack of bystander T cell activation, resulting in
specific T cell responses for each individual. The families are linked between the

is depicts the participant and HLA restriction of the epitope examined; A1/
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less immunopathology and thus milder disease in children, has

also been suggested (Brodin, 2022).

Prior to our study, the ex vivo epitope-specific CD8+ and

CD4+ T cell responses following natural SARS-CoV-2 infection

of children were ill-defined. Our in-depth quantitative, pheno-

typic, and clonal profiling of ex vivo epitope-specific T cell re-

sponses found that seroconverted, unvaccinated children had

memory SARS-CoV-2-specific T cell profiles across 7 HLA

class I and II SARS-CoV-2 epitopes and S-specific B cells.

Lower SARS-CoV-2 tetramer+ T cell frequency and the pro-

portion of CD8+ Tcm cells were observed in seroconverted

children compared with adults, while the frequency of

SARS-CoV-2-specific CD8+ Tscm cells was increased in chil-

dren. Reduced CD4+ and CD8+ T cell responses in children

with mild COVID-19 compared with adults were also observed

following overlapping SARS-CoV-2 peptide pool stimulation

(Cohen et al., 2021; Goenka et al., 2021; Moratto et al.,

2020; Pierce et al., 2020). Diminished IFN-g-producing cellular

responses to N- and M-derived peptides and 2-fold increased

responses to S-derived peptides were previously observed

(Dowell et al., 2022). Our unbiased ex vivo analysis demon-

strates a higher magnitude of tetramer-specific T cells

directed at epitopes encompassing peptides derived from N

(A3/N361, B7/N105, and B40/N322) and ORF1a (A1/ORF1a1637)

compared with S-derived peptides (A2/S269, A24/S1208, and

DPB4/S167) in both children and adults and a �3.9-fold lower

frequency of internal protein-specific CD8+ T cells in children

compared with adults, which was reflected by their immuno-

dominance hierarchy. Differential peptide-stimulated T cell re-

sponses between children and adults could also, at least in

part, reflect differences in antigen presentation and/or func-

tionality of T cells.

Seroconverted children and adults displayed strong memory

phenotypes of circulating SARS-CoV-2-specific CD8+ and

CD4+ T cells. Tetramer+CD8+ T cells from seroconverted chil-

dren had a reduced Tcm but increased Tscm phenotype

compared with adults, while there was no difference in the

CD4+ DPB4/S167-specific phenotypic profiles. Previous studies

using in vitro peptide stimulation and IFN-g readout showed

reduced Tem phenotype within CD4+ T cells, with a substantially

increased Tcm phenotype in children compared with adults

(Cohen et al., 2021).
Figure 5. SARS-CoV-2-specific TCRab repertoires are comparable be

SARS-CoV-2-specific CD4+ and CD8+ T cells were enriched by TAME and then

(A) TCR landscapes displayed using kernel PCA projections of pooled SARS-CoV-

Jb usage are depicted for RBD IgG+ children and adults. Encoding clone size is

(B) V and J gene segment usage and covariation in SARS-CoV-2-specific respon

landscapes depicted by curved segments (thickness proportional to the number

gene segments relative to background frequencies, with each arrowhead indicati

data point for this analysis.

(A and B) Genes are colored based on frequency: red (most frequent), green (seco

for rare frequencies.

(C) Circos plots of TRAV and TRBV clonotype pairings for B7/N105, A2/S269, A24/S

segment color indicate TRAV usage, and the right outer arch color depicts TRBV

with the same V segment usage but different CDR3 sequences. The number of s

(D) Bubble plot showing the distribution (number of donors and frequency) of TRB

and adults. Previously published adult TCR datasets for B7/N105, A2/S269, and A24

et al., 2021b).

See also Figures S3 and S4.
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Our TCRab analysis revealed closely related TCRab clono-

types, with prominent SARS-CoV-2-specific TCR gene seg-

ments and motifs, within SARS-CoV-2-specific T cells in RBD

IgG+ children and adults cluster according to their Va, Vb, Ja,

and Jb signatures, indicating selective recruitment of epitope-

specific T cells following SARS-CoV-2 infection. These findings

agree with studies that reported a biased TRAV and TRBV

gene usage and prevalent motifs in adults during COVID-19

(Francis et al., 2022; Gangaev et al., 2021; Minervina et al.,

2022; Nguyen et al., 2021b; Rowntree et al., 2021b; Shomura-

dova et al., 2020). Prior to our study, ex vivo epitope-specific

TCR analysis in mildly infected children was non-existent. Bulk

TCR analysis in MIS-C patients reported enrichment of

TRBV11-2 in both the CD8+ and CD4+ TCR repertoire (Moreews

et al., 2021; Porritt et al., 2021; Ramaswamy et al., 2021).

Although we identified T cells expressing TRBV11-2 in our

cohort, these were not expanded or enriched in mildly infected

children. TRBV11-2 enrichment in MIS-C children may be spe-

cific for a different epitope or, as claimed by the authors,

TRBV11-2 may bind a superantigen (SAg)-like motif on the S1

trimer in a HLA-independentmanner (Porritt et al., 2021). Howev-

er, it is unknown whether repeated SARS-CoV-2 infections

and/or vaccinations in children and adults will skew the TCR

repertoire in favor of certain epitopes or clonotypes.

Conversely, circulating tetramer-specific CD4+ and CD8+

T cells in exposed, seronegative children and adults displayed

lower frequencies and a naive T cell phenotype, in accordance

with their overall more diverse and unbiased TCRab repertoire

observed across all T cell epitopes. Innate immune responses

in a small subgroup of PCR+ seronegative children may have

cleared the SARS-CoV-2 infection prior to eliciting circulating

adaptive immunity, as evidenced by low frequencies of predom-

inantly naive tetramer+ CD4+ and CD8+ T cells (Neeland et al.,

2021a; Neeland et al., 2021b). This may also explain the

observed diminished overlapping SARS-CoV-2 peptide pool

stimulated CD4+ and CD8+ T cell response in SARS-CoV-2-in-

fected children reported by others (Cohen et al., 2021; Goenka

et al., 2021; Moratto et al., 2020; Pierce et al., 2020). Further-

more, we only defined circulatingmemory SARS-CoV-2-specific

CD8+ and CD4+ T cells using children’s PBMCs, whereas a

recent report identified cross-reactive CD8+ T cells in children

only in the lymphoid tissue but not in blood (Niessl et al., 2021).
tween children and adults

single-cell sorted for TCRab analysis.

2-specific TCRswere generated by TCRdist for all TCRab pairs. Va, Ja, Vb, and

indicated by the symbol size.

ses. Gene segment usage is shown in vertical stacks, with gene-gene pairing

of TCRs with the gene pairing). Up or down arrows indicate the enrichment of

ng a 2-fold enrichment. The clonally expanded TCRs were reduced to a single

ndmost frequent), blue, cyan, magenta, and black, followed by assorted colors

1208, and DPB4/S167 epitopes in the RBD IgG+ children and adults; left arch and

usage. The segments shown by the same color represent TCRab clonotypes

equences considered for each Circos plot is shown at the bottom right.

V/TRAV gene usage for B7/N105 and DPB4/S167 epitopes in RBD IgG+ children

/S1208 were included in the adult TCR analysis (Nguyen et al., 2021b; Rowntree
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Hence, there is a possibility that adaptive immune responses in

the lymphoid tissue of these children was undetectable in the

blood. However, our study used a sensitive tetramer enrichment

technique to identify low-frequency SARS-CoV-2-specific CD8+

and CD4+ T cell populations. Even if transient SARS-CoV-2-spe-

cific T cell responses were only present early following SARS-

CoV-2 infection, the detected tetramer+ T cells had a predomi-

nantly naive phenotype within the circulating T cell compartment

in seronegative, exposed children. In contrast, SARS-CoV-2-

specific Tcm and Tscm phenotypes were identified in serocon-

verted children.

We may have missed the window of opportunity for PCR

testing in some families, like in seroconverted PCR-negative

family 78 that had a clear SARS-CoV-2-specific T cell memory

response, which is in accordance with previous studies that

demonstrated high frequencies of predominantly memory A2/

S269
+, A24/S1208

+, and B7/N105
+ CD8+ T cells in convalescent

SARS-CoV-2 PCR confirmed adults (Chaurasia et al., 2021; Ha-

bel et al., 2020; Nguyen et al., 2021b; Rowntree et al., 2021b).

However, the exposed, PCR�, seronegative children and mainly

adults from our cohort displayed low T cell frequencies and naive

phenotypes, which closely resembled those of pre-pandemic

adults, and were therefore likely not infected with SARS-CoV-2

(Francis et al., 2022; Gangaev et al., 2021; Habel et al., 2020;

Nguyen et al., 2021b; Rowntree et al., 2021b). In addition, chil-

dren are less likely to spread the virus to adult family members

in a household setting (Zhu et al., 2021). Finally, the small sub-

group of PCR+ seronegative children indicates that rapid viral

clearance may have precluded a select group of children from

generating adaptive immunological memory. As our number of

PCR+, seronegative children is small (n = 11), our data should

be verified in a larger cohort.

Our study provides clear evidence that children who serocon-

vert established memory CD8+ and CD4+ T cell responses to

SARS-CoV-2 epitopes, which are highly conserved across

VOC, including the Delta and Omicron, which together with their

cross-reactive antibody response can likely protect them from

severe COVID-19 when exposed to new variants. It is currently

uncertain whether children who failed to seroconvert during their

first SARS-CoV-2 infection can also benefit from rapid antiviral

innate immunity when they encounter new VOC, including the

Omicron strain. Hence, our study makes a case for why vaccina-

tion of children should be considered a major advantage, as

these vaccines specifically aim to induce adaptive B and T cell

memory responses in all children (Collier et al., 2021; Mudd

et al., 2022; Oberhardt et al., 2021; Sahin et al., 2021). Future

work understanding adaptive immune memory responses in

COVID-19 vaccinated children will provide important insights
Figure 6. RBD IgG+ children and adults have prominent TCRab motifs

(A) Epitope-specific populations from RBD IgG+ children and adults were quantifi

bution peak indicates a more clustered epitope-specific TCRab repertoire, and th

lyses for both single and paired chains are shown, as indicated in the plot labels

(B) TCR logo representations of CDR3a and b sequence motifs for RBD IgG+ child

gene frequencies, the CDR3 amino acid sequence (middle), and the inferred rearra

insertions, red; diversity (D)-region, black; and J-region dark gray). The motif sco

highly significant.

(C) Probabilities of generation (Pgen; log10 transformed) for all single TCRa and TCR

plots represent the median (middle bar), 75% quantile (upper hinge), and 25% qu

See also Figure S5.
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into whether SARS-CoV-2-specific T cell (and B cell) responses

induced by vaccination differ from those following SARS-CoV-2

infection.
Limitations of the study
Our COVID-19 patients originate from two countries (Australia

and the USA) and thus do not represent the global population.

In our study of 53 children, 37 were SARS-CoV-2 PCR+ of which

21% failed to seroconvert. Ct values could not be compared

across cohorts, as SARS-CoV-2 PCR testing was performed

across different locations, on different platforms, and for

different antigens. As previously described (Toh et al., 2022),

the majority of samples were tested using the LightMix Modular

SARS and Wuhan CoV E-gene kit (Procop et al., 2021; TIB

Molbiol, Berlin, Germany) with the RT-PCR performed on the

LightCycler 480 II Real-Time PCR System (Roche). A subset of

the Melbourne samples (family 102 and 104) was tested using

an Allplex SARS-CoV-2 assay (Seegene), which has 4 gene tar-

gets, E, RDRP/S, and N. Los Angeles samples were tested using

the CDCprotocol for RT-PCR (Procop et al., 2021), which targets

the SARS-CoV-2 N1/N2 genes, and the RT-PCR was performed

on QuantStudio 5 (Applied Biosystems, Carlsbad, CA). Ct values

were not available for the adult cohort.
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for defining features using a neighbor distance distribution. A lower distri-

verage distance values for each epitope are depicted within the plot. Ana-

F, probability density function.

and adults. Each TCR chain motif depicts the V (left side) and J (right side)

ment structure (bottom bars colored by source region; V-region, light gray;
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R v3.6.2 The Comprehensive R
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ggplot R package Wickham, 2016 https://ggplot2.tidyverse.org

TCRdist pipeline Dash et al., 2017 https://github.com/phbradley/tcr-dist
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Anti-PE MicroBeads Miltenyi Biotec Cat# 130-048-801, RRID: AB_244373

Anti-APC MicroBeads Miltenyi Biotec Cat# 130-090-855, RRID: AB_244367
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Katherine

Kedzierska (kkedz@unimelb.edu.au).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d TCR sequence data (Table S2) have been deposited into VDJdb [https://vdjdb.cdr3.net].

d The published article includes all datasets generated or analyzed during the study.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Families experiencing COVID-19 symptoms and their household contacts were recruited at the Murdoch Children’s Research Insti-

tute and Royal Children’s Hospital (Victoria, Australia) from June 2020 to October 2021. The cohort consisted of 36 children

(4 months-17 years) and 23 mothers (28-48 years). Due to HLA allele typing some families were excluded from the child-mother

matched tetramer+ T cell analysis (Figure 4). All but six children recruited into the household cohort were PCR+ for SARS-CoV-2

as listed in Table S1. An additional cohort of SARS-CoV-2 PCR+ children were recruited at the Children’s Hospital Los Angeles

(n=13, 1-14 years) between June 2020 and April 2021. SARS-CoV-2 PCR+ adults were recruited from the community at convales-

cence (23-91 years). Individuals were determined to be symptomatic if they displayed 2 or more symptoms between days -2

to +14 of PCR testing. Pre-pandemic SARS-CoV-2-unexposed children and adults were recruited as healthy controls from

Launceston General Hospital (Tasmania, Australia) and the University of Melbourne (Victoria, Australia). PBMCs were isolated

from heparinized peripheral blood by Ficoll-Paque separation, plasma was collected for serology and DNA isolated from

granulocytes was sent for HLA typing by VTIS (Victoria, Australia), essentially as described (Nguyen et al., 2021b). The demographics

of all participants are listed in Table S1.

All human experimental work was conducted according to the Declaration of Helsinki principles and the Australian National Health

and Medical Research Council Code of Practice. All blood donors or their legal guardians provided written informed consent. Ethics

approval was granted from the Human Research Ethics Committee (HREC) of The Royal Children’s Hospital (HREC/63666/RCHM-

2019) for household families, the Children’s Hospital Los Angeles (CHLA-20-00124) for the remaining COVID-19 exposed children,

and the Tasmanian Health and Medical (H0017479) for healthy children donors. Human ethics was also granted from the Royal Mel-

bourne Hospital HREC (HREC/66341/MH-2020) for COVID-19 exposed adults. Human ethics was also approved by the University of

Melbourne (Ethics ID #1443389.4, #1955465, 2020-20782-12450-1, 2022-23719-25217-1).

METHOD DETAILS

SARS-CoV-2-specific antibodies and B cells
Assessment of IgM, IgG and IgA antibodies against SARS-CoV-2 (ancestral) RBD and N proteins were performed in-house by ELISA

(Amanat et al., 2020; Nguyen et al., 2021b; Rowntree et al., 2021a). IgG antibodies were also assessed against S2 (Sino Biologicals)

and delta RBD. Recombinant SARS-CoV-2 proteins (ancestral RBD, delta RBD and N) were produced using a mammalian cell pro-

tein expression system as described by Amanat et al. (2020). Absorbance for IgM and IgG titres were read at 450nm, while IgA was at

405nm. End-point titres were determined as essentially as described (Nguyen et al., 2021b; Rowntree et al., 2021a). Seroconversion

of the children (0-17 years) and adults were defined when titres were above the mean plus 2 standard deviations of healthy non-

COVID-19 children and adults, respectively.

Cells remaining from the TAME-flow through fractions (described below) were used tomeasure Spike-specific B cell responses, as

described (Juno et al., 2020; Nguyen et al., 2021b), with Spike recombinant probes conjugated to PE fluorochromes. Stained cells

were washed and fixed before acquisition on a BD LSRII Fortessa.

SARS-CoV-2 tetramer+ T cell responses
HLA class I tetramers HLA-A*02:01/S269 (YLQPRTFLL), HLA-A*24:02/S1208 (QYIKWPWYI) and HLA-B*07:02/N105 (SPRWYFYYL)

have previously been generated and validated as previously described (Habel et al., 2020; Nguyen et al., 2021b; Rowntree et al.,

2021b). HLA-A*01:01/ORF1a1637 (TTDPSFLGRY), HLA-A*03:01/N361 (KTFPPTEPK) and HLA-B*40:01/N322 (MEVTPSGTWL) class I

tetramers were generated and validated using tetramer staining of T cell lines as described (Nguyen et al., 2021b). The HLA class

II tetramer HLA-DPA1*01:03/DPB1*04:01/S167 (TFEYVSQPFLMDLE) was generated and validated essentially as described (Mudd

et al., 2022).

One vial of cryopreserved PBMCs (5-10x106) were stainedwith a class I and/or class II SARS-CoV-2 tetramer on PE and/or another

class I tetramer on APC. Cells underwent tetramer-associated magnetic enrichment (TAME) as described (Nguyen et al., 2021a,

2021b). Both class I and class II tetramers on PE were exclusively stained on CD8+ or CD4+ T cells, respectively, with minimal to

zero non-specific binding. All flow-through fractions were negative for any remaining tetramer+ cells and were cryopreserved for

B cell analysis.

Following enrichment, tetramer+ T cells were indexed single-cell sorted on a BD FACSAria III for TCR analysis essentially as

described (Nguyen et al., 2021b). Multiplex-nested RT-PCR-amplified CDR3a and CDR3b regions from single cells (Nguyen et al.,

2021b; Valkenburg et al., 2016) were analyzed by IMGT/V-QUEST.

QUANTIFICATION AND STATISTICAL ANALYSIS

TCRab statistical analysis
Single-chain alpha and beta TCR sequences were paired through the TCRdist pipeline for modelling amino acid motifs, TCR

landscapes, neighbour distance distribution and probabilities of generation (Pgen) (Dash et al., 2017). Previously published TCR

datasets for B7/N105, A2/S269, and A24/S1208 were included in the analysis (Nguyen et al., 2021b; Rowntree et al., 2021b). Testing

for variations in Pgen across epitope specificities was performed essentially as described (Nguyen et al., 2021b) using linear mixed
e3 Immunity 55, 1299–1315.e1–e4, July 12, 2022
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models (Bates, 2014). Data visualization for circos plots was performed in R using a package for circular layout (Gu et al., 2014)and

graphics generation (Wickham, 2016). The subsampled and full repertoires are detailed in Table S2.

Amino acid sequence identity
Amino acid sequence identity of the viral peptides of the SARS-CoV-2 tetramers across the different VOCwas determined using out-

break.info (Mullen et al., 2020). Mutations were reported in Figure S2B when the mutation was detected in R0.5% of the total se-

quences in the database for a single VOC (Bates et al., 2014; Dash et al., 2017; Valkenburg et al., 2016).

Statistical analysis
Statistical significance of nonparametric datasets (two-tailed) were determined using GraphPad Prism v9 software. Mann-Whitney

U-test (unpaired) and Wilcoxon sign-rank test (paired) was used for comparisons between two groups. Kruskal-Wallis test (un-

matched) with Dunn’s multiple comparisons was used to compare more than two groups. Tukey’s multiple comparison test

compared row means between more than two groups, while Sidak’s multiple comparison test compared column means between

multiple groups.
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