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Abstract
Discussions of the issue of iterated belief revision are commonly accompanied by the
presentation of three “concrete” operators: natural, restrained and lexicographic. This
raises a natural question: What is so distinctive about these three particular methods?
Indeed, the common axiomatic ground for work on iterated revision, the AGM and
Darwiche-Pearl postulates, leaves open a whole range of alternative proposals. In this
paper, we show that it is satisfaction of an additional principle of “Independence of
Irrelevant Alternatives”, inspired by the literature on Social Choice, that unites and
sets apart our three “elementary” revision operators. A parallel treatment of iterated
belief contraction is also given, yielding a family of elementary contraction operators
that includes, besides the well-known “conservative” and “moderate” operators, a
new contraction operator that is related to restrained revision.

Keywords Belief revision · Belief contraction · Iterated belief change ·
Irrelevant alternatives · Social choice

1 Introduction

One key unresolved question in the theory of belief dynamics is the proper handling
of iterated revision: the computation of the impact on an agent’s total set of beliefs
of a sequence of successive local revisions.

There now exist a number of approaches to the issue (see for instance Section 5.2
of [14]). These are typically consistent with two popular sets of baseline principles,
respectively proposed by Alchourrón, Gärdenfors and Makinson [1] and by Darwiche
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& Pearl [13], which we shall henceforth call the “AGM” and the “DP” postulates.
Quite strikingly, however, one finds, in the case of iterated revision at least, which is
the most widely considered question, that a particular trio of proposals is ubiquitous
in presentations of the issue: the lexicographic, restrained and natural revision opera-
tors respectively associated with Nayak et al. [22], Booth & Meyer [7] and Boutillier
[9]. These notably make up three of the four iterated revision operators mentioned in
Rott’s influential survey [24]. (The remaining operator that he discusses, the irrevoca-
ble revision operator of [25], has the unusual and arguably undesirable characteristic
of ensuring that the inputs to any revision are retained in the belief set after any
subsequent revision).

It is not immediately obvious what the distinctive appeal of these particular three
possibilities might be. For instance, they do share the feature of satisfying the AGM
and DP postulates. But they are not alone in doing so. They are also alike in ensur-
ing that the result of any future sequence of revisions is determined by a prior total
preorder (TPO) over the set of propositional worlds, a property that we shall call
“TPO-Reductionism”. But again, so do other possible ways of proceeding, includ-
ing some that satisfy the AGM and DP postulates. In this paper we identify precisely
what it is that sets these three operators apart from the rest, by providing an addi-
tional principle that, in the presence of the AGM and DP postulates, is satisfied by
them, and them alone.

In what follows, we first offer, in Section 2, some technical preliminaries that
recapitulate some existing work on iterated belief change. There, we also introduce a
novel tabular presentation of TPO-based belief dynamics, which simplifies both the
subsequent exposition and its associated proofs. In Section 3, we then introduce a new
property of “Independence of Irrelevant Alternatives”, inspired by the literature on
Social Choice. We show that this property, against the backdrop of the AGM and DP
postulates, unites and sets apart the “elementary” lexicographic, restrained and nat-
ural revision operators. In the process, we also prove the soundness, for elementary
revision, of a number of interesting further principles, including “Zero Symmetry”
and “Representation Invariance”. In Section 4, we consider what happens when these
various principles are strengthened in obvious ways, noting that, in each case, the
resulting strengthening leave us with lexicographic revision as a sole candidate. In
Section 5 we offer a parallel discussion regarding the other main type of belief change
operation discussed in the literature: belief contraction. As with revision, there exist
a number of proposals that have been made, which typically satisfy a set of analogues
of the DP postulates, initially proposed by Chopra et al. [12]. Here we consider an
analogous characterisation of a family of elementary contraction operators. It turns
out that this family includes the well known “conservative” and “moderate” contrac-
tion operators, as well as a new “restrained” contraction operator, for which we offer
both semantic and syntactic characterisations. We close the section on contraction
with a brief discussion of the relation between elementary revision and contraction
operators from the vantage point of recent work on extensions of the Levi and Harper
identities to the iterated case. Finally, we wrap up the paper with some comments on
the possible weakening of one key characteristic principle of elementary revision.
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With the exception of the proof of the main result, as well as that of Proposition 14,
the proofs of the various propositions, lemmas and theorems have been relegated to
a substantial technical Appendix A.1

2 Preliminaries

The beliefs of an agent are represented by a belief state Ψ . The latter determines
a belief set [ ], a deductively closed set of sentences, drawn from a propositional,
truth-functional language L, generated by a finite set of n atomic sentences. The
set of classical logical consequences of Γ ⊆ L will be denoted by Cn(Γ ). When
Γ = {C}, we write Cn(C). We write A ≡ B for A ↔ B ∈ Cn(∅) and A ≡C B for
A ↔ B ∈ Cn(C). We shall say that A ∈ L is complete iff it is a maximally strong
consistent sentence, i.e. such that A ≡ ⊥ and, for any B ∈ L such that A ∈ Cn(B),
if B /∈ Cn(A), then B ≡ ⊥. The set of 2n propositional worlds or valuations will be
denoted by W , and the set of models of a given sentence A by [[A]]. Where x ∈ W ,
we will occasionally abuse notation and use x to denote an arbitrary sentence that has
x as its unique model. This usage will be clear from context and occurs only in the
proofs.

It will be useful in what follows to define, for every sentence A ∈ L an associated
total preorder (i.e. a connected and transitive binary relation; henceforth a “TPO”)

A over W , with asymmetric and symmetric parts denoted by ≺A and ∼A respec-
tively, such that x ≺A y iff x ∈ [[A]] and y /∈ [[A]] and x ∼A y iff x, y ∈ [[A]] or
x, y /∈ [[A]]. In other words, A is the “two-level” TPO whose lower level is given by
[[A]]. For S ⊆ W and TPO , we define min( , S) as {w ∈ W | ∀w ∈ W, w w }.

We consider the two classic belief change operations mapping a prior state and
consistent input sentence A in L onto a posterior state. The operation of revision ∗
returns the posterior state ∗A that results from an adjustment of to accommodate
the inclusion of A, in such a way as to maintain consistency of the resulting belief set
when ¬A ∈ [ ]. The operation of contraction ÷ returns the posterior state ÷ A

that results from an adjustment of to accommodate the retraction of A.
When considering a revision or contraction by A, we call the “prior” TPO,
∗/÷A the “posterior” TPO and A the “input sentence” TPO.

2.1 Single-step Change

In terms of single-step change, revision and contraction are assumed to satisfy the
postulates of Alchourrón, Gärdenfors and Makinson outlined in [1]. The AGM pos-
tulates for revision ensure a useful order-theoretic representability of the single-shot
revision dispositions of an agent, given in [16], such that each is associated with a
TPO over W , such that [[[ ]]] = min( , W) and:

1This paper is a substantially extended and updated version of a portion of [11], presented at the LORI-
19 conference. Among other things, it corrects a mistake found in the proof one of its key results, namely
Theorem 1, which also provided unnecessarily strong characteristic principles for the class of elementary
revision operators.
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(KM∗ ) min( ∗A, W) = min( , [[A]])
The AGM postulates for contraction allow for an entirely analogous representation

result, given in [10], in which the associated TPO is required to satisfy:

(KM÷ ) min( ÷A, W) = min( , W) ∪ min( , [[¬A]])
We denote by TPO(W ) the set of all TPOs over W and shall assume the following

“Unrestricted Domain” condition:

(UD ) For every ∈ TPO(W), there exists a state such that =
For ease of exposition, it will be useful to help ourselves to the following concept

and notation:

Definition 1 Where i is a TPO, we define the corresponding relative rank function
as follows

ρi(x, y) =

⎧
⎪⎨

⎪⎩

1, if x ≺i y

0, if x ∼i y

−1, if y ≺i x

We note in passing that ρi(y, x) = −ρi(y, x) and, for A ∈ L, ρA(x, y) =
−ρ¬A(x, y). The requirement that be a TPO translates into the following
constraints on ρ :

– Reflexivity: ρ (x, x) = 0
– Completeness: Dom(ρ ) = W × W

– Transitivity: If {ρ (x, y), ρ (y, z)} = {−1, 1}, then, for S x, y , y, z ,
ρ (x, z) = ρ (arg max|ρ |)

S

The transitivity condition tells us, for example, that, if ρ (x, y) = 1 and ρ (y, z) =
0, then ρ (x, z) = 1, or again, if ρ (x, y) = −1 and ρ (y, z) = 0, then ρ (x, z) =
−1. It remains silent, when ρ (x, y) = 1 and ρ (y, z) = −1, or ρ (x, y) = −1
and ρ (y, z) = 1. It can be more straightforwardly represented in tabular form. See
Table 1.

Following convention, we shall call principles couched in terms of belief sets “syn-
tactic”, and call “semantic” those principles presented in terms of TPOs, denoting the
latter by subscripting the corresponding syntactic principle with “ ”. The bulk of our
discussion will focus on semantic principles, although we will also provide syntactic
counterparts of a number of these.

Table 1 Transitivity of
represented as a matrix of
constraints on values of
ρ (x, z), depending on the
values of ρ (x, y) and ρ (y, z)

ρ (x, y)

ρ (y, z)
1 0 −1

1 1 1 {−1, 0, 1}
0 1 0 −1

−1 {−1, 0, 1} −1 −1
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2.2 Iterated Change

In terms of iterated revision, we focus our attention on the three “concrete” operators
most commonly found in the literature: the lexicographic revision operator ∗L [22],
the restrained revision operator ∗R [7] and the natural revision operator ∗N [9]. They
can be defined as follows (Fig. 1):

Definition 2 If x ∈ min( , [[A]]) or y ∈ min( , [[A]]), then:

ρ ∗R/∗N/∗LA(x, y) =

⎧
⎪⎨

⎪⎩

1, if x ∈ min( , [[A]]), y /∈ min( , [[A]])
0, if x, y ∈ min( , [[A]])
−1, if x /∈ min( , [[A]]), y ∈ min( , [[A]])

If x, y /∈ min( , [[A]]) , then:

ρ ∗LA(x, y) = ρA(x, y), if ρA(x, y) = 0

ρ (x, y), if ρA(x, y) = 0

ρ ∗RA(x, y) = ρ (x, y), if ρ (x, y) = 0

ρA(x, y), if ρ (x, y) = 0

ρ ∗NA(x, y) = ρ (x, y)

Fig. 1 Revision by A according to the operators ∗L, ∗R and ∗N. The boxes represent states and associated
TPOs. The lower case letters, which represent worlds, are arranged in such a way that the lower the letter,
the lower the corresponding world in the relevant ordering. The columns group worlds according to the
sentences that they validate. So, for example, in the initial ordering, we have w ≺ y ≺ x ∼ z, with
y, z ∈ [[A]] and x,w ∈ [[¬A]] and then, after lexicographic revision by A, y ≺ z ≺ w ≺ x
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Table 2 Mappings from ρ (x, y) and ρA(x, y) to ρ ∗A(x, y) for the operators ∗N, ∗R and ∗L, where
x, y /∈ min( , [[A]])

These operators can be conveniently presented in the form of matrices that rep-
resent, for all states , sentences A and worlds x, y /∈ min( , [[A]]), the value of
the posterior rank ρ ∗A(x, y) as a function of the values of the prior relative rank
ρ (x, y) and input sentence relative rank ρA(x, y). (Indeed, (KM∗ ) takes care of
the posterior relative rank when x or y ∈ min( , [[A]]): If x (respectively y) alone
is in that set, then ρ ∗A(x, y) = 1 (respectively = −1) and if both are in it, then
ρ ∗A(x, y) = 0.) See Table 2.

All three suggestions operate on the assumption that, for the purposes of iterated
revision, a state can essentially be identified with its corresponding TPO and
that belief change functions effectively map pairs of TPOs and sentences onto TPOs.
In other words, they entail:

(TPOR∗ ) If = Θ , then, for any A, ∗A= Θ∗A

We note, however, that this assumption is not uncontroversial and has been
criticised at some length in [4].

Beyond this, the proposals all ensure that ∗ satisfies the postulates of Darwiche
& Pearl [13]. Semantically, framed in terms of the ρ-notation, these are given as
follows:2

2In the standard presentation of the Darwiche-Pearl axioms in terms of the -notation, (C1, 2∗ ) is broken
down into two parts that cannot be expressed in terms of ρ:

(C1∗ ) If x, y ∈ [[A]] then x ∗A y iff x y

(C2∗ ) If x, y ∈ [[¬A]] then x ∗A y iff x y

This is worth noting, since (C2∗ ), but not (C1∗ ), has been the subject of some controversy (see, for
instance, [12]).
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(C1, 2∗ ) If ρA(x, y) = 0 then ρ ∗A(x, y) = ρ (x, y)

(C3∗ ) If ρA(x, y) = 1 and ρ (x, y) = 1, then ρ ∗A(x, y) = 1
(C4∗ ) If ρA(x, y) = 1 and ρ (x, y) ≥ 0, then ρ ∗A(x, y) ≥ 0

As such, they can be presented in the form of a matrix of constraints on the relation
between the prior relative rank ρA(x, y) and input sentence relative rank ρ (x, y)

and the posterior relative rank ρ ∗A(x, y), for all states , sentences A and worlds
x, y /∈ min( , [[A]]). (Indeed, as noted above, (KM∗ ) takes care of the posterior
relative rank when x or y ∈ min( , [[A]]).) See Table 3.

Regarding ÷, we assume that it satisfies the postulates of Chopra et al [12], given
semantically by:

(C1, 2÷ ) If ρA(x, y) = 0 then ρ ÷A(x, y) = ρ (x, y)

(C3÷ ) If ρA(x, y) = −1 and ρ (x, y) = 1, then ρ ÷A(x, y) = 1
(C4÷ ) If ρA(x, y) = −1 and ρ (x, y) ≥ 0, then ρ ÷A(x, y) ≥ 0

Again we can present these principles in the form of a matrix of constraints,
this time on the relation between the prior relative rank ρA(x, y) and input sen-
tence relative rank ρ (x, y) and the posterior relative rank ρ ÷A(x, y), for all
states , sentences A and worlds x, y /∈ min( , W) ∪ min( , [[¬A]]) (with
(KM÷ ) handling the case in which x or y ∈ min( , W) ∪ min( , [[¬A]])). See
Table 4.

2.3 From Revision to Contraction and Back Again

The operations ∗ and ÷ are assumed to be related in the single-shot case by the Levi
and Harper identities, given semantically by:

(LI ) min( ∗A, W) = min( ÷¬A, [[A]])
(HI ) min( ÷A, W) = min( , W) ∪ min( ∗¬A, W)

Concerning the relations between the belief revision and contraction operators in
the iterated case, a proposal for extending (HI) to the two-step case was recently
floated in [3]. It involved the characterisation of a particular binary TPO combination
operator (a “TeamQueue combinator”) ⊕, such that ÷A= ⊕ ∗¬A:

Table 3 Mapping from
ρ (x, y) and ρA(x, y) to
ρ ∗A(x, y), as constrained by
(C1, 2∗ ) − (C4∗ )

ρ

ρA 1 0 –1

1 1 1 {−1, 0, 1}
(C3∗ ) (C1, 2∗ )

0 {0, 1} 0 {−1, 0}
(C4∗ ) (C1, 2∗ ) (C4∗ )

–1 {−1, 0, 1} –1 –1

(C1, 2∗ ) (C3∗ )
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Table 4 Mapping from
ρ (x, y) and ρA(x, y) to
ρ ÷A(x, y), as constrained by
(C1, 2÷ )-(C4÷ ). This matrix is
obtained from the one depicted
in Table 3 by simply flipping the
values across the middle column

ρ

ρA 1 0 –1

1 {−1, 0, 1} 1 1

(C1/2÷ ) (C3÷ )

0 {−1, 0} 0 {0, 1}
(C4÷ ) (C4÷ ) (C4÷ )

–1 –1 –1 {−1, 0, 1}
(C3÷ ) (C1/2÷ )

Definition 3 ⊕ is a TeamQueue (TQ) combinator iff, for each ordered pair 1, 2
of TPOs, there exists a sequence a 1, 2(i) i∈N such that:

(a1) ∅ = a 1, 2(i) ⊆ {1, 2} for each i

(a2) a 1, 2(1) = {1, 2}
and the ordered partition T1, T2, . . . , Tm of indifferences classes corresponding to

1⊕2 is constructed inductively as follows:

Ti =
j∈a 1, 2 (i)

min( j ,

k<i

T c
k )

where “T c” denotes the complement of set T and m is minimal such that i≤m

Ti = W .

Informally, the procedure takes the TPOs respectively associated with and
∗ ¬A and processes them step by step to form a new TPO. At the first step, it

removes the minimal elements of both TPOs and places them in the minimal rank of
the output TPO, before deleting any copies of these elements that might remain in
the input TPOs. At each step, it then repeats the process with the minimal elements
of one or both of the remaining pruned input TPOs (depending on the specifics of the
procedure, i.e. on the value(s) in a 1, 2(i) for the relevant step i), until both input
TPOs have been processed entirely.

Among the particular proposals considered was an extension of (HI ) obtained by
a specific TQ combinator, ⊕STQ, that takes a 1, 2(i) = {1, 2} for all ordered pairs

1, 2 and all i. This suggestion was partly syntactically motivated by an appeal
to the notion of “rational closure”, introduced in [17].

Example 1 Suppose that W = {x, y, z, w}, that 1 is the TPO represented by the
ordered partition z}, {w}, {x, y and 2 is represented by x, z}, {y}, {w . Then
the ordered partition corresponding to 1⊕STQ2 is T1, T2 x, z}, {w, y .

There are of course other possible TQ combinators. One example would be the
combinator ⊕TQ2, such that a 1, 2(1) = {1, 2} but a 1, 2(i) = {2} for all i ≥ 2.
This method yields an extension of the Harper Identity that maximally prioritises

∗¬A, so that with the exception of the resulting minimal worlds, ÷A is simply
given by ∗¬A.
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Example 2 Let 1 and 2 be given as in Example 1 above. Then 1⊕TQ22= 2.

In [11], two extensions of (LI ) were considered, the first essentially due to [21]
and the second motivated syntactically, again via the notion of rational closure:

(iLI∗ ) ρ ∗A(x, y) = ρ ÷¬A)∗A(x, y)

(iLIRC ) ρ ∗A(x, y) = ρ ÷¬A)∗NA(x, y)

We note that, while the second proposal effectively allows one to define two-step
revision from two-step contraction, the first does not, since the very same revision
operator appears on both sides of the equality (Fig. 2).

3 A Characterisation of Elementary Revision

3.1 Semantic Characterisation

3.1.1 Introducing Independence of Irrelevant Alternatives

We define elementary revision operators semantically as follows:

Definition 4 ∗ is an elementary revision operator iff it satisfies (KM∗ ), (C1, 2∗ )-
(C4∗ ) and the following principle of “Independence of Irrelevant Alternatives”:

Fig. 2 Illustration of the construction of 1⊕2 in Example 1 (left) and Example 2 (right). This construction
in each case is illustrated chronologically from top to bottom
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(IIA∗ ) If x, y /∈ min( , [[A]]) ∪ min( Θ, [[B]]), then, if ρ (x, y) = ρΘ(x, y)

and ρA(x, y) = ρB(x, y), then ρ ∗A(x, y) = ρΘ∗B(x, y)

We have already introduced (KM∗ ) and (C1, 2∗ )-(C4∗ ). The new principle
(IIA∗ ) is named after a well known analogous precept in Social Choice [2]. In the
presence of (KM∗ ), it tells us that that the posterior relative rank ρ ∗A(x, y) of a pair
of worlds {x, y} is determined by the prior relative rank ρ (x, y) and input sentence
relative rank ρA(x, y) (although this mapping may be different for different pairs
of worlds). Its prima facie appeal is similar to that of its Social Choice counterpart,
substituting a doxastic interpretation of the ordering for a preferential one.

It can be easily checked that, given (KM∗ ), (IIA∗ ) and (C1, 2∗ )-(C4∗ ) are logi-
cally independent, so that these principles play a non-redundant part in the definition:

Proposition 1 Given (KM∗ ), (IIA∗ ) does not imply any of (C1, 2∗ )-(C4∗ ).

Proposition 2 Given (KM∗ ), (C1, 2∗ )-(C4∗ ) do not jointly imply (IIA∗ ).

(IIA∗ ) is a very strong principle and indeed turns out to ensure that elementary
operators identify states with TPOs. We can more precisely pinpoint the locus of
blame for this implication by breaking (IIA∗ ) down into two “halves”:

Proposition 3 Given (UD ), (IIA∗ ) is equivalent to the conjunction of the following
principles of “Independence of Irrelevant Alternatives” with respect to the “Prior”
and the “Input”, respectively:

(IIAP∗ ) If x, y /∈ min( , [[A]]) ∪ min( Θ, [[A]]), then, if ρ (x, y) = ρΘ(x, y),
then ρ ∗A(x, y) = ρΘ∗A(x, y)

(IIAI∗ ) If x, y /∈ min( , [[A]]) ∪ min( , [[B]]), then, if ρA(x, y) = ρB(x, y),
then ρ ∗A(x, y) = ρ ∗B(x, y)

These sub-principles are demonstrably independent, even in the presence of the
remainder of the principles that characterise elementary revision:

Proposition 4 (IIAI∗ ) does not imply (IIAP∗ ) or vice versa, even in the presence of
(KM∗ ) and (C1, 2∗ )-(C4∗ ).

It is the first of the sub-principles, (IIAP∗ ), that forces the identification of states
with TPOs:

Proposition 5 Given (KM∗ ), (IIAP∗ ) entails (TPOR∗ ).

The second sub-principle does not have this implication. Indeed, although it is new
to the literature in the form in which it is presented, it can be shown to be equivalent,
under our assumptions, to the conjunction of a pair of principles that were recently
defended in [6] and which relate the prior TPO and pairs of posterior TPOs obtained
by revisions by different sentences:
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Proposition 6 Given (KM∗ ), (C1, 2∗ )–(C4∗ ), (IIAI∗ ) is equivalent to the conjunc-
tion of:

(β1∗ ) If x ∈min( , [[C]]), ρA(x, y)=1, and ρ ∗A(x, y)≤0, then ρ ∗C(x, y)≤0
(β2∗ ) If x ∈ min( , [[C]]), ρA(x, y) = 1, and ρ ∗A(x, y) = −1, then

ρ ∗C(x, y) = −1

These principles are known to be satisfied by a range of operators that is broad enough
to include, beyond ∗N, ∗R and ∗L, the entire family of so-called “proper ordinal
interval” (POI) revision operators, which do not generally satisfy (TPOR∗ ) (see [6]).

3.1.2 Some Derived Principles of Elementary Revision

We now prove a series of lemmas that demonstrate the soundness, for elementary
operators, of a number of useful principles which we will later make use of in the
derivation of our main technical contribution.

We first note without proof that (C1, 2∗ ) trivially entails the following principle of
“Pareto Indifference” (so-named by analogy with a corresponding principle in Social
Choice) which will make an appearance in some of the subsequent results:3

Lemma 1 (C1, 2∗ ) entails:

(PI∗ ) If ρ (x, y) = ρA(x, y) = 0, then ρ ∗A(x, y) = 0

Given this weak principle, (IIA∗ ) has some surprisingly strong consequences.
First we can show that:

Lemma 2 The conjunction of (KM∗ ), transitivity of ∗A, (PI∗ ) and (IIA∗ ) implies
the following principle of “Zero Symmetry”:

(ZS∗ ) If x, y /∈ min( , [[A]]) ∪ min( Θ, [[B]]), ρ (x, y) = −ρΘ(x, y) and
ρA(x, y) = −ρB(x, y), then ρ ∗A(x, y) = −ρΘ∗B(x, y)

3Some other “Paretian” principles of possible interest, with analogues in Social Choice, are the conditions
of “Pareto Weak Preference”, “Weak Pareto” and “Strict Pareto”, respectively given by:

(PWP∗ ) If ρ (x, y), ρA(x, y) ≥ 0, then ρ ∗A(x, y) ≥ 0
(WP∗ ) If ρ (x, y) = ρA(x, y) = 1, then ρ ∗A(x, y) = 1
(SP∗ ) If ρ (x, y) + ρA(x, y) ≥ 1, then ρ ∗A(x, y) = 1

Clearly, (PWP∗ ) entails (PI∗ ), while (SP∗ ) entails (WP∗ ). (WP∗ ) just is (C3∗ ) and so is sound
for elementary operators. Besides (WP∗ ), a large further chunk of (SP∗ ) does hold for all three oper-
ators. Indeed, the following is sound for elementary revision: if ρ (x, y) = 1 and ρA(x, y) ≥ 0, then
ρ ∗A(x, y) = 1. The remaining part of (SP∗ ) is the following: if ρ (x, y) = 0 and ρA(x, y) = 1, then
ρ ∗A(x, y) = 1. This is simply the so-called principle (P) (see [7]) that holds for ∗R and ∗L but not for
∗N. Indeed, let x, y /∈ min( , [[A]]), ρ (x, y) = 0 and ρA(x, y) = 1. Then ρ ∗NA(x, y) = 0, in contra-
diction with this principle. Finally, it is easy to show that (C1, 2∗ )-(C4∗ ) jointly entail (PWP∗ ). Indeed:
If ρ (x, y) = 1 and ρA(x, y) = 1, then ρ ∗A(x, y) = 1, by (C3∗ ). If ρ (x, y) = 1 and ρA(x, y) = 0,
then ρ ∗A(x, y) = 1, by (C1, 2∗ ). If ρ (x, y) = 0 and ρA(x, y) = 1, then ρ ∗A(x, y) ≥ 0, by (C4∗ ).
Finally, if ρ (x, y) = 0 and ρA(x, y) = 0, then ρ ∗A(x, y) = 0, by (C1, 2∗ ).
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Like (IIA∗ ), (ZS∗ ) is analogous to a principle of Social Choice, namely the prin-
ciple of “Neutrality” introduced in [19]. It can arguably be read as saying that the
revision process does not “favour” any world over another, in the sense that reversing
the orders of preference corresponding to both the prior state and the input to revision
simply yields a reversal of the ordering corresponding to the posterior state.

The proof of the preceding result can be co-opted to establish the derivation of a
second principle. To introduce the latter, we need the following definition:

Definition 5 π is an order isomorphism from to Θ iff it is a 1:1 mapping from
W onto itself such that ρ (x, y) = ρΘ(π(x), π(y)).

We can extend π to sentences in L in such a way that [[π(A)]] = {x ∈ W | ∃y ∈
[[A]], such that x = π(y)}. With this in hand, we can then offer:

Lemma 3 The conjunction of (KM∗ ), transitivity of ∗A, (PI∗ ) and (IIA∗ ) implies
the following “Representation Invariance” principle:

(RI∗ ) ρ ∗A(x, y) = ρΘ∗π(A)(π(x), π(y)), for any order isomorphism π from
to Θ

4

(ZS∗ ) turns out to be rather strong, and could in fact have been used in our
characterisation instead of (IIA∗ ). Indeed, the following holds:

Proposition 7 In the presence of (UD ), (ZS∗ ) implies (IIA∗ ).

(RI∗ ), however, does not share this implication:

Proposition 8 (RI∗ ) does not imply either (IIAI∗ ) or (IIAP∗ ), even in the presence
of (KM∗ ) and (C1, 2∗ )-(C4∗ ).

In spite of this, we do note that it still trivially retains (TPOR∗ ) as a consequence:

Proposition 9 (RI∗ ) entails (TPOR∗ ).

3.1.3 Main Result

With Lemmas 1, 2 and 3 in hand, we can now offer our main result, which we prove
in the main body of the article rather than the Appendix A:

Theorem 1 The only elementary revision operators are lexicographic, restrained
and natural revision.

4In Theorem 1 of [11], the set of operators {∗L, ∗R, ∗N} was characterised by (KM∗ ), (C1, 2∗ )-(C4∗ ) and
(IIA∗ ), supplemented with a weakening of (RI∗ ) that requires the isomorphism π to be “A-preserving”.
As Lemma 3 shows, this principle was simply derivable from the remainder of the postulates (since
(RI∗ ) was).
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Proof We decompose the result into its two obvious parts. The soundness result,
which states that lexicographic, restrained and natural revision operators are elemen-
tary operators, does not require much commentary. Indeed, it is well known that these
operators satisfy (C1, 2∗ )-(C4∗ ), as well as (KM∗ ). We have also, in noting their
matrix representability as per Table 2, pointed out that they satisfy (IIA∗ ).

We now establish the completeness part, which tells us that, if an operator is
elementary, then it is a lexicographic, restrained or natural revision operator.

As we have seen, in the presence of (KM∗ ), (IIA∗ ) tells us that the posterior
relative rank ρ ∗A(x, y) of a pair x, y of worlds is determined by the prior relative
rank ρ (x, y) and input sentence relative rank ρA(x, y). By virtue of (KM∗ ), the
mappings for pairs x, y such that x or y ∈ min( , [[A]]) are the same for all
operators, so that any differences between them occur at the level of the matrices for
the various pairs x, y such that x, y /∈ min( , [[A]]).

Although (KM∗ ) and (IIA∗ ) allow this mapping to be different for different non-
minimal pairs of worlds, we know from Lemma 3 that the addition of (PI∗ ), which
is a consequence of (C1, 2∗ ) (see Lemma 1) gives us (RI∗ ), which does secure the
identity of the matrices for different non-minimal pairs.

We have seen that (C1, 2∗ )-(C4∗ ) constrain the range of values for the matrix for
non-minimal pairs to the values specified in Table 3 above. Since we also know from
Lemma 2 that, given our assumptions, (ZS∗ ) holds, we are left with 6 matrices to
consider. Three of these are the ones associated with the operators ∗N, ∗R and ∗L and
depicted in Table 2.

We now show that the remaining three are inconsistent with the transitivity of
∗A. These are given in Table 5.

Since we assume A to be consistent and hence that min( , [[A]]) is non-empty,
we must have strictly more than two, and therefore (since |W | = 2n) at least four,

Table 5 Mappings from prior relative rank and input sentence relative rank to posterior relative rank for
the three new operators referenced in the proof of Theorem 1
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worlds. Let these worlds be x, y, z and w, and A be such that y ∈ [[¬A]] and x, z, w ∈
[[A]]. We then have ρA(x, y) = 1 and ρA(x, z) = 0.

Regarding the operators associated with (e) and (f), assume that w ≺ y ≺
z ≺ x. Note that x, y, z /∈ min( , [[A]]). On the one hand, since ρ (x, z) = −1
and ρA(x, z) = 0, we have ρ ∗A(x, z) = −1. However, on the other hand, since
ρ (x, y) = −1 and ρA(x, y) = 1, we have ρ ∗A(x, y) = 0 and, since ρ (y, z) = 1
and ρA(y, z) = −1, we have ρ ∗A(y, z) = 0. It then follows, by transitivity of

∗A, that ρ ∗A(x, z) = 0, contradicting our finding that ρ ∗A(x, z) = −1.
Regarding the operator associated with (d), assume w ≺ {x, y} ≺ z. Again,

note that x, y, z /∈ min( , [[A]]). On the one hand, since ρ (z, x) = −1 and
ρA(z, x) = 0, we have ρ ∗A(z, x) = −1. However, on the other hand, since
ρ (y, x) = 0 and ρA(y, x) = −1, we have ρ ∗A(x, y) = 0 and, since ρ (z, y) =
−1 and ρA(z, y) = 1, we have ρ ∗A(z, y) = 1. By transitivity of ∗A, it then
follows that ρ ∗A(z, x) = 1, contradicting our finding that ρ ∗A(z, x) = −1.

3.2 Syntactic Characterisation

In the following section we provide syntactic counterparts for the various semantic
principles introduced above. The syntactic versions of the definitions of our opera-
tors ∗N, ∗R and ∗L are well known (see [24]) and are given as follows, against the
background assumption of AGM:

[ ∗N A) ∗N B] = [ ∗N A ∧ B], if ¬B /∈ [ ∗N A]
[ ∗N B], otherwise

[ ∗R A) ∗R B] = [ ∗R A ∧ B], if ¬A /∈ [ ∗R B] or ¬B /∈ [ ∗R A]
[ ∗R B], otherwise

[ ∗L A) ∗L B] = [ ∗L A ∧ B], if [ ∗L A ∧ B] is consistent

[ ∗L B], otherwise

The same applies to (C1, 2∗ )-(C4∗ ), whose counterparts are well known to be,
respectively:

(C1, 2∗) If A ∈ Cn(B) or ¬A ∈ Cn(B), then [ ∗ A) ∗ B] = [ ∗ B]
(C3∗) If A ∈ [ ∗ B], then A ∈ [ ∗ A) ∗ B]
(C4∗) If ¬A ∈ [ ∗ B], then ¬A ∈ [ ∗ A) ∗ B]
Regarding (TPOR∗ ), we have:

(TPOR) If, for all A, [ ∗ A] = [ ∗ A], then, for all A, B, [ ∗ A) ∗ B] =
[ ∗ A) ∗ B]

The Pareto Indifference condition (PI∗ ) can also be given a fairly straightforward,
if admittedly not particularly enlightening, syntactic formulation:

Proposition 10 Given AGM, (PI∗ ) is equivalent to:

(PI∗) If [ ∗ B] = Cn(B), then [ ∗ A) ∗ A ∧ B] = [ ∗ A ∧ B] and [ ∗ A) ∗
¬A ∧ B] = [ ∗ ¬A ∧ B]
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Matters are a little less straightforward regarding (IIA∗ ) (as well as the similar
(IIAP∗ ) and (IIAI∗ )), (ZS∗ ) and (RI∗ ). We handle these in what follows.

3.2.1 Independence of Irrelevant Alternatives

We first offer the following definitions of the syntactic notion of “agreement”
between states, modulo a sentence:

Definition 6 States and Θ agree modulo C iff [ ∗B∧C] = [Θ ∗B∧C] for all B

With this in hand, it is easy to show:

Proposition 11 Given AGM and (C1, 2∗ ), (IIA∗ ), (IIAP∗ ) and (IIAI∗ ) are respec-
tively equivalent to:

(IIA∗) If ¬C ∈ [ ∗ A] ∩ [Θ ∗ B], A ≡C B and and Θ agree modulo C, then
so do ∗ A and Θ ∗ B

(IIAP∗) If ¬C ∈ [ ∗ A] ∩ [Θ ∗ A], then, if and Θ agree modulo C, so do ∗ A

and Θ ∗ A

(IIAI∗) If ¬C ∈ [ ∗ A] ∩ [ ∗ B] and A ≡C B, then ∗ A and ∗ B agree
modulo C

3.2.2 Zero Symmetry

Here we have a similar, if somewhat more complicated, syntactic formulation to the
one given in the previous subsection. We first define:

Definition 7 A sentence B ∈ L is quasi-complete iff for all A ∈ L, if A B and
B A, then A is either inconsistent or complete.

With this in hand, we can offer the following syntactic definition of two states
being in “opposition”, modulo a sentence:

Definition 8 States and Θ are in opposition modulo C iff, for all B, D ∈ L such
that B is quasi-complete and B ∧C D, if D ∈ [ ∗B ∧C], then ¬D ∈ [Θ ∗B ∧C]

While and Θ’s being in agreement modulo C requires the belief sets obtained
by revision by B ∧ C, for all B, to be identical, their being in opposition modulo the
same sentence requires the sets obtained by revision by B ∧ C, for certain specific
B’s, to be antithetical.

The requirement that B ∧ C D is obviously imposed to circumvent the risk of
the concept of being in opposition modulo C’s being inapplicable for consistent C.
Indeed, assume this caveat were not in place. Since, for any consistent C, we have
both C ∈ [ ∗ B ∧ C] and ¬C /∈ [Θ ∗ B ∧ C], it follows that and Θ would not be
classified as being in opposition modulo C. The requirement of quasi-completeness
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of B is admittedly less immediately intuitive. It plays a fairly obvious and critical
role, however, in the proof of the next proposition.

With this in hand, we can now state:

Proposition 12 Given AGM and (C1, 2∗ ), (ZS∗ ) is equivalent to:

(ZS∗) If ¬C ∈ [ ∗ A] ∩ [Θ ∗ B], A ≡C ¬B and and Θ are in opposition
modulo C, then so are ∗ A and Θ ∗ B

3.2.3 Representation Invariance

Regarding (RI∗ ), we first define:

Definition 9 ι is a c-belief isomorphism from to Θ iff it is a 1:1 mapping from L

onto itself such that:

(i) ι( ) and ι(⊥) = ⊥
(ii) for any connective c of arity m, ι(c(A1, . . . , Am)) = c(ι(A1), . . . , ι(Am))

(iii) if A is complete, then so is ι(A)

(iv) B ∈ [Ψ ∗ A] iff ι(B) ∈ [Θ ∗ ι(A)]

In other words, the conditional beliefs of an agent in state Θ are obtained by ι

from those in state by a permutation of formulae that maps complete sentences
onto complete sentences. In the terminology of [18], ι is a special case of a “belief
amount preserving symbol translation” from L onto itself: (i) and (ii) ensure that it
is a “symbol translation” and (iii) that is satisfies their constraint of “Belief Amount
Preservation”, with (iv) imposing an additional constraint.

With this in hand, we then can show that:

Proposition 13 Given AGM, (RI∗ ) is equivalent to

(RI∗) B ∈ [ ∗A)∗C] iff ι(B) ∈ [(Θ ∗ ι(A))∗ ι(C)], for any c-belief isomorphism
ι from to Θ

4 Strengthening the Characteristic Postulates?

(IIAP∗ ) significantly weakens a principle introduced under the name of “(IIA)”
in [15], which simply corresponds to the embedded conditional: If ρ (x, y) =
ρ (x, y), then ρ ∗A(x, y) = ρ ∗A(x, y). (IIAI∗ ) amounts to a similar weakening
of a condition found in [8]. An interesting question, therefore, arises as to why the
stronger principles do not figure in our characterisation.

One first observation is that it can be shown, as a corollary of Arrow’s famous
impossibility result in Social Choice [2], that the following holds:

Proposition 14 Lexicographic revision is the only elementary revision operator that
satisfies the conjunction of the following two principles
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(IIAP+∗ ) If ρ (x, y) = ρΘ(x, y), then ρ ∗A(x, y) = ρΘ∗A(x, y)

(IIAI+∗ ) If ρA(x, y) = ρB(x, y), then ρ ∗A(x, y) = ρ ∗B(x, y)

or equivalently

(IIA+∗ ) If ρ (x, y) = ρΘ(x, y) and ρA(x, y) = ρB(x, y), then ρ ∗A(x, y) =
ρΘ∗B(x, y)

A central question in Social Choice is the aggregation, into a group-level pref-
erence ordering, of the preference orderings of a set of n individuals. The formal
framework is specified as follows: a set of alternatives W , a tuple P P 1
, . . . , Pn of TPOs over that set, representing the individual-level preferences (a
preference profile) and a social welfare function f mapping preference profiles onto
TPOs representing aggregate, group-level preferences. We write x Pf y to denote
x, y f (P ). Arrow famously showed that the following conditions of “Weak

Pareto” (aka “Unanimity”), “Independence of Irrelevant Alternatives” and “Non-
Dictatorship” on f are jointly inconsistent, on the further “Unrestricted Domain”
assumption that the domain of f is the set TPOWn of all preference profiles:

(WPn∗ ) For all P and x, y ∈ W , if, for all 1 ≤ i ≤ n, ρP i(x, y) = 1, then
ρPf (x, y) = 1

(IIAIn∗ ) For all P, P and x, y ∈ W , if ρP i(x, y) = ρP i(x, y), then ρPf (x, y)

= ρP f (x, y)

(ND∗ ) There does not exist 1 ≤ i ≤ n, such that for all P and x, y ∈ W , if
ρP i(x, y) = 1, then ρPf (x, y) = 1

Formally-speaking, our problem of interest is a special two-person case of this one.
The set of alternatives is W , the preference profile is , A , with the prior state
and input sentence playing the role of the individuals, and the aggregate preference
ordering is ∗A. It is easy to see, furthermore, that our condition (IIA∗ ) is simply
the Arrovian condition (IIAIn∗ ) for our group of two individuals and that (C3∗ )

similarly corresponds to a two-person version of the Arrovian condition (WPn∗ ).
Given all this, Arrow’s result then tells us that we have a dictatorship: Either (a)

for all , A ∈ L and x, y, ∈ W , if ρ (x, y) = 1, then ρ ∗A(x, y) = 1 or (b) for all
, A ∈ L and x, y, ∈ W , if ρA(x, y) = 1, then ρ ∗A(x, y) = 1. But only option (b)

is consistent with the AGM condition of Success, which translates semantically into
min( ∗A, W) ⊆ [[A]]: the “dictator” here must be the input A rather than the prior
state . (Indeed, assume that is such that min( , W) ⊆ [[¬A]]. If were the
dictator, we would have min( ∗A, W) ⊆ [[¬A]], contradicting Success.)

But (b), i.e. dictatorship by the input, is none other than the principle of “Recal-
citrance” of [22], which, given (KM∗ ), (C1∗ ) and (C2∗ ), which are sound for
elementary operators, is known to characterise lexicographic revision. Hence lexico-
graphic revision is the only elementary revision operator that satisfies the unqualified
version of (IIA∗ ).

This result, however, still leaves open the question of whether at least one of the
two “component” principles of (IIA∗ ) could have been involved in its unqualified
version. This question can be answered in the negative:
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Proposition 15 Lexicographic revision is the only elementary revision operator that
satisfies (IIAP+∗ ).

Proposition 16 Lexicographic revision is the only elementary revision operator that
satisfies (IIAI+∗ ).

Moving from (IIA∗ ) to (ZS∗ ), we note that the latter is extremely strong in its
unqualified form, namely:

(ZS+∗ ) If ρ (x, y) = −ρ (x, y) and ρA(x, y) = −ρB(x, y), then ρ ∗A(x, y) =
−ρ ∗B(x, y)

Indeed, we can show that:

Proposition 17 Lexicographic revision is the only elementary revision operator that
satisfies (ZS+∗ ).

We note in passing that, in [15], Glaister implicitly offers a further characterisation
of ∗L in a similar ballpark. His result involves (KM∗ ), (IIAP+∗ ) and what one
might call a “holistic” weakening of (ZS+∗ ). Assuming a principle of irrelevance of
syntax, according to which, if A ≡ B, then ∗A= ∗B , this condition, which he
calls “Reversal”, can be presented as follows:

(Rev∗ ) If ∀x, y ∈ W , ρ (x, y) = −ρΘ(x, y) and ρA(x, y) = −ρB(x, y), then
∀x, y ∈ W , ρ ∗A(x, y) = −ρΘ∗B(x, y)

However, as we have just seen in Proposition 15, (IIAP+∗ ) is really quite a strong
principle and it turns out that the effective contribution of (Rev∗ ) to Glaister’s result
is simply to derive (C2∗ ), which we already assume as part of the characteristic
properties of elementary operators.5

5 Elementary Contraction Operators

5.1 Semantic Characterisation

Just as we have discussed elementary revision operators, one can also consider elemen-
tary contraction operators, whose characteristic properties are obtained by swapping
(KM÷ ) for (KM∗ ), substituting the postulates of Chopra et al. for the DP postulates
(see Section 2.2) and adapting, in the obvious manner, our principle (IIA∗ ):

5Indeed, Glaister notes that, in the presence of AGM, (IIAP+∗ ) entails (C1, 2∗ ) (see his Fact 2.2 (b)).
He also remarks, as we do in the proof of Proposition 15, that in the presence of the AGM postulates,
(IIAP+∗ ) gives us Recalcitrance (see his Fact 2.2 (a)). Furthermore, given (C1, 2∗ ) and Recalcitrance,
(Rev∗ ) entails (C2∗ ) (this is a consequence of his Facts 2.3 and 2.4). Finally, as we note in the proof of
Proposition 15, Recalcitrance characterises ∗L against the backdrop of (C1, 2∗ ).
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(IIA÷ ) If x, y /∈ min( , W) ∪ min( , W) ∪ min( , [[¬A]]) ∪ min(

, [[¬B]]), then, if ρ (x, y) = ρ (x, y) and ρA(x, y) = ρB(x, y), then
ρ ÷A(x, y) = ρ ÷B(x, y)

One can show, adjusting the proof of Theorem 1, that these are limited to: (1) the
natural, aka “conservative”, contraction operator ÷N, (2) the priority, aka “moder-
ate”, contraction operator ÷P (see Nayak et al. [20] for both varieties of operator)
and (3) a contraction operator ÷R that stands to restrained revision as priority con-
traction stands to lexicographic revision, which, to the best of our knowledge, is new
to the literature (accordingly, we shall call this operator the “restrained contraction”
operator). The relevant definitions are given as follows:

Definition 10 If x ∈ or y ∈ min( , W) ∪ min( , [[¬A]]), then:

ρ ÷N/R/PA(x, y) =

⎧
⎪⎨

⎪⎩

1, if x ∈ and y /∈ min( , W) ∪ min( , [[¬A]])
0, if x ∈ and y ∈ min( , W) ∪ min( , [[¬A]])
−1, if x /∈ and y ∈ min( , W) ∪ min( , [[¬A]])

If x /∈ and y /∈ min( , W) ∪ min( , [[¬A]]), then:

ρ ÷PA(x, y) = ρ¬A(x, y), if ρ¬A(x, y) = 0

ρ (x, y), if ρ¬A(x, y) = 0

ρ ÷RA(x, y) = ρ (x, y), if ρ (x, y) = 0

ρ¬A(x, y), if ρ (x, y) = 0

ρ ÷NA(x, y) = ρ (x, y)

See Fig. 3 for a graphic representation. If we compare Definition 10 to Definition 2,
we can see that, for x /∈ and y /∈ min( , W) ∪ min( , [[¬A]]), elementary con-
traction by A simply behaves like elementary revision by ¬A. More specifically:
for such x and y, where i, j L, P , N, N , R, R , we have ρ ÷A(x, y) =
ρ ∗¬A(x, y).

As with ∗N, ∗R and ∗L, we can also provide characteristic matrices giving us, for all
states , sentences A and worlds x, y /∈ min( , W)∪min( , [[¬A]]), the value of
the posterior relative rank ρ ÷A(x, y) as a function of the values of the prior relative
rank ρ (x, y) and input sentence relative rank ρA(x, y). (Again, (KM÷ ) takes care
of the posterior relative rank when x or y ∈ min( , W) ∪ min( , [[¬A]]).) See
Table 6.

5.2 Syntactic Characterisation

Syntactic characterisations for ÷N and ÷P were provided in [23]. They are given as
follows, against the background assumption of AGM:

[ ÷N A)÷N B] =

⎧
⎪⎨

⎪⎩

[ ÷N A] ∩ [ ÷N ¬A ∨ B], if A ∨ B ∈ [ ÷N B]
[ ÷N A] ∩ [ ÷N A ∨ B], if ¬A ∨ B ∈ [ ÷N B]
[ ÷N A] ∩ [ ÷N ¬A ∨ B] ∩ [ ÷N A ∨ B], otherwise
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Fig. 3 Elementary contraction by A

[ ÷P A) ÷P B] = [ ÷P A] ∩ [ ÷P ¬A ∨ B], if A ∨ B ∈ Cn(∅)

[ ÷P A] ∩ [ ÷P A ∨ B], otherwise

Regarding ÷R, which is new to the literature, we can offer the following result:

Proposition 18 Given AGM, ÷R is characterised by the following property:

[ ÷R A) ÷R B] = [ ÷R A] ∩ [ ÷R ¬A ∨ B], if A ∨ B ∈ [ ÷R B]
[ ÷R A] ∩ [ ÷R A ∨ B], otherwise

Interestingly, while we can see from the syntactic presentation of the elementary
revision operators that, for any pair of inputs A and B, there exists an input C such
that [ ∗ A) ∗ B] = [ ∗ C], an analogous result does not appear to hold for their
counterparts for contraction. And indeed, this suspicion turns out to be correct:

Proposition 19 Where i ∈ {P, R, N}, it is not the case that for any state and
sentences A, B ∈ L there exists C ∈ L such that [ ÷i A) ÷i B] = [ ÷i C].
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Table 6 Mappings from prior and input sentence relative ranks to posterior relative rank for the operators
÷N, ÷R and ÷P

These matrices are simply obtained from the corresponding ones in Table 2 by flipping the values across
the middle column

In [12], we find syntactic counterparts for (C1, 2÷)–(C4÷), involving one contrac-
tion step followed by a revision step:

(C1, 2÷) If ¬A ∈ Cn(B) or A ∈ Cn(B), then [ ÷ A) ∗ B] = [ ∗ B]
(C3÷) If ¬A ∈ [ ∗ B], then ¬A ∈ [ ÷ A) ∗ B]
(C4÷) If A ∈ [ ∗ B], then A ∈ [ ÷ A) ∗ B]

Finally, a syntactic version of (IIA÷ ) can be straightforwardly given as follows, on
the assumption that we can help ourselves to AGM and (C1, 2÷ ):

(IIA÷) If ¬C ∈ [ ÷ A] ∩ [ ÷ B], A ≡C B and and agree modulo C, then
so do ÷ A and ÷ B

We note that, although agreement modulo C is defined in terms of revision, we
can simply use the syntactic counterpart of (LI ), given as

(LI) [ ∗ A] = Cn([ ÷ ¬A] ∪ {A})
to frame the concept in terms of contraction. We then have:

Proposition 20 Given (HI), states and Θ agree modulo C iff Cn([ ÷ ¬B ∨
¬C] ∪ {B ∧ C}) = Cn([Θ ÷ ¬B ∨ ¬C] ∪ {B ∧ C}) for all B

5.3 From Elementary Revision to Elementary Contraction and Back

We now consider the relation between elementary revision operators and elementary
contraction operators, in the light of the recent work on extending the Harper and
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Levi identities, (HI ) and (LI ), to the iterated case (see Section 2.2). The obvi-
ous question of interest here is whether or not the members of the pairs L, ÷P ,

N, ÷N and R, ÷R of elementary revision and contraction operators might turn
out to be interdefinable, moving (a) from contraction to revision by means of a
plausible extension of (LI ) and (b) from revision to contraction by means of a
plausible extension of (HI ).

Regarding (a) and the issue of moving from elementary contraction to elementary
revision, the answer to our question is unfortunately mitigated. Indeed, while one can
show that:

Proposition 21 Let i, j N, N , R, R . Then, if ∗ is defined from ÷j using
(iLIRC ), then ∗ = ∗i .

it remains the case that:

Proposition 22 If ∗ is defined from ÷P via (iLIRC ), then ∗ = ∗L.

So it is not the case that we can generally recover the elementary revision operators
from their corresponding elementary contraction operators in the manner proposed
in (iLIRC ). Having said this, we note in passing that these revision/contraction
operator pairs do nevertheless satisfy the non-reductive extension of (LI ) that we
mentioned, namely (iLI∗ ):

Proposition 23 If i, j L, P , N, N , R, R , then ∗i and ÷j jointly satisfy
(iLI∗ ).6

Turning now to (b) and the issue of the definability of elementary contraction from
elementary revision, matters yet again do not look all that promising. The elementary
contraction operators can be recovered from their corresponding elementary revision
operators using a particular instance of the TeamQueue approach to extending (HI ).
Indeed, they can be so recovered by means of ⊕TQ2 TPO combination:

Proposition 24 Let i, j L, P , N, N , R, R . Then, if ÷ is defined from ∗i

by ÷A= ⊕TQ2 ∗i¬A, then ÷ = ÷j .

However, as we have noted in Section 2.3, in [5], it was not ⊕TQ2 but an alterna-
tive TQ combinator, ⊕STQ, that was flagged out as being the most promising. What,
then, would the ramifications of the use of ⊕STQ be on the relation between elemen-
tary contraction and elementary revision? Well, first, neither ÷P nor ÷R can be at all
defined from any revision operator using ⊕STQ. Indeed, Booth & Chandler [5, sec.
5.2] show that ÷P “cannot be recovered by combination of with any other order-
ing, by any combination method that satisfies” a condition that they call (PAR⊕),

6In [11], it was suggested that the conjunction of (iLI∗ ) and (iLIRC ) entails that ∗ = ∗N. This was
incorrect, however, as evidenced by propositions 21 and 23: ∗R and ÷R jointly satisfy both principles and
yet ∗R = ∗N.
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Fig. 4 Failure of (IIAP÷ ) for ÷STQL. The top diagram depicts and associated belief changes, while
the second one pertains to Θ . While ρ (w1, w2) = 0 and ρ ÷STQLA(w1, w2) = 0, we also have
ρΘ(w1, w2) = 0 but ρΘ÷STQLA(w1, w2) = −1
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which is satisfied by the proposal. It can be verified that their comments carry over
to ÷R.7 Second, in using ⊕STQ, both ∗N and ∗R end up being mapped onto ÷N (see
[5, Proposition 12]). Third, and finally, ∗L gives us which they call the STQ-lex con-
traction operator (÷STQL) which is not elementary, since it violates (IIAP÷ ). See
Fig. 4.8

In our view, the above observations do point to somewhat of a quandary. Indeed,
on the one hand, the plausibility of the principle of Independence of Irrelevant Alter-
natives for revision seems on par with that of its counterpart for contraction: those
who find the one to be reasonable, would presumably have to find the other so too.
So, assuming the compelling postulates of AGM, DP and Chopra et al., this then
leaves elementary revision and elementary contraction on an equal footing in terms
of plausibility. However, it would appear that some prima facie reasonable extensions
of (LI ) and (HI ) make the coexistence of elementary revision and contraction
problematic.

6 Concluding Comments

In this paper, we have notably shown how the three most popular “concrete” revision
operators–natural, restrained and lexicographic revision–can be collectively charac-
terised by supplementing the standard Darwiche-Pearl postulates with a principle
of “Independence of Irrelevant Alternatives”, (IIA∗ ), inspired by the Social Choice
literature. A similar family of operators was found to be definable for iterated
contraction.

As we have noted a number of times, however, elementary revision operators all
satisfy the principle (TPOR∗ ), which problematically, in our view, forces an identi-
fication of doxastic states with TPOs. In the course of our brief discussion of (IIA∗ ),
we saw, in Proposition 5, that the culprit here is the principle (IIAP∗ ). A natural
question, then, is whether the latter can be weakened in a sensible manner, so as to
avoid the problematic implication.

One promising avenue might be to investigate how much of (IIAP∗ ) is retained
in the family of “basic ordinal interval” (BOI) revision operators, which includes the
elementary operators among its members. BOI revision generalises the POI revision
of [6], by relaxing a particular condition on its semantic representation.9 The family
of POI revision operators includes restrained and lexicographic revision but unfortu-
nately excludes natural revision. POI revision violates (IIAP∗ ), while retaining the

7Indeed, they note that (PAR⊕) gives us the following principle: If x ≺ ÷A y for every x ∈ Sc , y ∈ S, then
min( , S) ⊆ min( ÷A, S). But this condition isn’t satisfied by ÷R. Suppose that W = {w, x, y, z}
and x ≺ z ≺ {y,w}. Let [[A]] = {x, y}. Then, {x, z} ≺ ÷RA w ≺ ÷RA y. Let S = {y,w}. Then
u ≺ ÷RA v for every u ∈ Sc , v ∈ S, y ∈ min( , S) but y /∈ min( ÷RA, S).
8The same comments apply, incidentally, to the lexicographic contraction operator ÷L [20], which also
violates (IIAP÷ ).
9In POI revision, doxastic states are associated with a binary relation ≤ over W± = {wi | w ∈ W and i ∈
{−,+}} that is notably required to satisfy the condition that x+ < x−. For BOI revision, this condition is
relaxed to x+ ≤ x−.
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remaining properties of elementary revision, namely (KM∗ ), (C1, 2∗ )-(C4∗ ) and
(IIAI∗ ). We conjecture that these properties will also be retained in BOI revision.

Appendix A: Proofs

Proposition 1 Given (KM÷), (IIA∗ ) does not imply any of (C1, 2∗ )-(C4∗ )

Proof Let ∗ be defined in such a way that, for all states , x, y ∈ W and A ∈ L:

– min( ∗A, W) = min( , [[A]])
– If x, y /∈ min( , [[A]]), then

– If ρ (x, y) = 1, then ρ ∗A(x, y) = −1
– If ρ (x, y) = 0, then ρ ∗A(x, y) = 0

Essentially, this operator will set the -minimal A-worlds as ∗A-minimal (thus
satisfying AGM) and simply “flip” the remainder of the ordering.

It is easy to see that ∗ satisfies (IIA∗ ): Assume that x, y /∈ min( , [[A]]) ∪
min( Θ, [[B]]), that ρ (x, y) = ρΘ(x, y) and that ρA(x, y) = ρB(x, y). We need to
show that ρ ∗A(x, y) = ρΘ∗B(x, y). For this, we consider two cases:

(a) Assume ρ (x, y) = ρΘ(x, y) = 1. Then ρ ∗A(x, y) = ρΘ∗B(x, y) = −1.
(b) Assume ρ (x, y) = ρΘ(x, y) = 0. Then ρ ∗A(x, y) = ρΘ∗B(x, y) = 0.

In either case, ρ ∗A(x, y) = ρΘ∗B(x, y), as required.
Clearly, however, each of (C1∗ ) to (C4∗ ) will be violated. A counterexample is

provided in Fig. 5. There, (C1∗ ) fails because, for instance, y ≺ x but x ≺ ∗A y.
Regarding (C2∗ ), we have t ≺ s but s ≺ ∗A t . Regarding (C3∗ ) and (C4∗ ), we
have z ≺ s but s ≺ ∗A z.

Proposition 2 Given (KM∗ ), (C1, 2∗ )-(C4∗ ) do not jointly imply (IIA∗ )

Proof Consider the operator ∗ defined as follows: for all states and A ∈ L, ∗A =
∗L A if is a chain (i.e. an antisymmetric TPO, such that, for all x, y ∈ W , if

x ∼ y, then x = y), and ∗ A = ∗R A otherwise.
It is easily verified that ∗ satisfies (KM∗ ) and (C1, 2∗ )-(C4∗ ). But ∗ does not sat-

isfy (IIA∗ ), as can be seen from the following countermodel: Let W = {x, y, z, w},
[[A]] = {z, x}, z ≺ w ≺ x ≺ y and {z, w} ≺Θ x ≺Θ y, so that, notably,

∗A = ∗L A but Θ ∗A = Θ ∗R A. Then w, x /∈ min( , [[A]])∪min( Θ, [[A]]),
ρ (w, x) = ρΘ(w, x) = 1, but ρ ∗A(w, x) = −1 and ρΘ∗A(w, x) = 1.

Proposition 3 Given (UD ), (IIA∗ ) is equivalent to the conjunction of the following
principles of “Independence of Irrelevant Alternatives” with respect to the “Prior”
and the “Input”, respectively:

(IIAP∗ ) If x, y /∈ min( , [[A]]) ∪ min( Θ, [[A]]) then, if ρ (x, y) = ρΘ(x, y)

then ρ ∗A(x, y) = ρΘ∗A(x, y)
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Fig. 5 Model demonstrating the fact that the conjunction of (KM∗ ) and (IIA∗ ) does not imply any of
(C1, 2∗ ) to (C4∗ )

(IIAI∗ ) If x, y /∈ min( , [[A]]) ∪ min( , [[B]]) then, if ρA(x, y) = ρB(x, y)

then ρ ∗A(x, y) = ρ ∗B(x, y)

Proof From (IIA∗ ) to (IIAP∗ ) and (IIAI∗ ): simply set = Θ in the former case
and A = B in the latter.

From (IIAP∗ ) and (IIAI∗ ) to (IIA∗ ): Suppose x, y /∈ min( , [[A]]) ∪ min( Θ

, [[B]]), ρ (x, y) = ρΘ(x, y) and ρA(x, y) = ρB(x, y). We need to show
ρ ∗A(x, y) = ρΘ∗B(x, y). Consider a state such that, for all z /∈ {x, y}, z ≺
x, z ≺ y and ρ (x, y) = ρ (x, y) = ρΘ(x, y). Such a state exists by (UD ).
Since x, y /∈ min( , [[A]]), by the construction of , we must have x, y /∈
min( , [[A]]). Hence, by (IIAP∗ ), we have (1) ρ ∗A(x, y) = ρ ∗A(x, y). Sim-
ilarly, since x, y /∈ min( Θ, [[B]]), we have x, y /∈ min( , [[B]]) and so, by
(IIAP∗ ), we have: (2) ρΘ∗B(x, y) = ρΘ∗B(x, y). Finally, from the fact that x, y /∈
min( , [[A]]) ∪ min( , [[B]]) and ρA(x, y) = ρB(x, y), by (IIAI∗ ), we have: (3)
ρ ∗A(x, y) = ρ ∗B(x, y). The required result then follows from (1), (2) and (3).

Proposition 4 (IIAI∗ ) does not imply (IIAP∗ ) or vice versa, even in the presence of
(KM∗ ) and (C1, 2∗ )-(C4∗ ).
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Proof For an operator satisfying (KM∗ ), (C1, 2∗ )-(C4∗ ), and (IIAI∗ ) but not
(IIAP∗ ), we can consider the operator ∗ introduced in the proof of Proposition 2
above. It was defined as follows: for all states and A ∈ L, ∗ A = ∗L A if
is a chain (i.e. an antisymmetric TPO, such that, for all x, y ∈ W , if x ∼ y, then
x = y), and ∗ A = ∗R A otherwise.

We’ve already noted above that it satisfies (KM∗ ) and (C1, 2∗ )-(C4∗ ). (IIAI∗ ) is
also satisfied, since, for any given state, the same method (i.e. ∗L or ∗R) is used for
all sentences and this method satisfies (IIAI∗ ). But ∗ does not satisfy (IIAP∗ ), as
can be seen from the countermodel given in the proof of Proposition 2 above. For
convenience, we repeat it here. Let W = {x, y, z, w}, [[A]] = {z, x}, z ≺ w ≺
x ≺ y and {z, w} ≺Θ x ≺Θ y, so that, notably, ∗ A = ∗L A but Θ ∗ A =
Θ ∗R A. Then w, x /∈ min( , [[A]]) ∪ min( Θ, [[A]]), ρ (w, x) = ρΘ(w, x) = 1,
ρA(w, x) − 1, but ρ ∗A(w, x) = −1 and ρΘ∗A(w, x) = 1.

For an operator that satisfies (KM∗ ), (C1, 2∗ )-(C4∗ ), and (IIAP∗ ) but not
(IIAI∗ ), consider the operator ∗ defined as follows: For all states and A ∈ L,

∗ A = ∗L A if |[[¬A]]| = 1, and ∗ A = ∗R A otherwise.
Again, as for the previous operator, it is easily verified that ∗ satisfies (KM∗ ), and

(C1, 2∗ )-(C4∗ ). (IIAP∗ ) is also satisfied, since, , for any given sentence, the same
method (i.e. ∗L or ∗R) is used for all states and this method satisfies (IIAI∗ ). But
∗ does not satisfy (IIAI∗ ), as can be seen from the following countermodel: Let
W = {x, y, z, w}, [[A]] = {x, z, w}, [[B]] = {x, w} and w ≺ y ≺ x ≺ z.
Then x, y /∈ min( , [[A]]) ∪ min( , [[B]]) and ρA(x, y) = 1 = ρB(x, y), but
ρ ∗A(x, y) = 1, whereas ρ ∗B(x, y) = −1.

Proposition 5 Given (KM÷ ), (IIAP∗ ) entails (TPOR∗ )

Proof Assume that = Θ . Consider arbitrary x, y ∈ W . If either x or y is
in min( , [[A]]) ∪ min( Θ, [[A]]), then ρ ∗A

(x, y) = ρ
Θ∗A

(x, y) by virtue of
(KM∗ ). If x, y /∈ min( , [[A]])∪min( Θ, [[A]]), then ρ ∗A

(x, y) = ρ
Θ∗A

(x, y)

by virtue of (IIAP∗ ). Hence ∗A= Θ∗A, as required.

Proposition 6 Given (KM∗ ), (C1, 2∗ )-(C4∗ ), (IIAI∗ ) is equivalent to the conjunc-
tion of:

(β1∗ ) If x /∈ min( , [[C]]), ρA(x, y) = 1 and ρ ∗A(x, y) ≤ 0, then
ρ ∗C(x, y) ≤ 0

(β2∗ ) If x /∈ min( , [[C]]), ρA(x, y) = 1 and ρ ∗A(x, y) = −1, then
ρ ∗C(x, y) = −1

Proof The proof of this claim closely resembles the proof of Proposition 3 of [8]. For
ease of comparison, we use the -notation, rather than the ρ-notation, so that (β1∗ )

and (β2∗ ) are presented as follows:

(β1∗ ) If x ∈ min( , [[C]]), x ≺A y, and y ∗A x, then y ∗C x

(β2∗ ) If x ∈ min( , [[C]]), x ≺A y, and y ≺ ∗A x, then y ≺ ∗C x
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We first establish the following lemma:

Lemma 4 Given (C1, 2∗ )–(C4∗ ),

(a) If x ≺A y and ρA(x, y) = ρC(x, y), then, if y ∗A x, then y ∗C x.
(b) If x ≺A y and ρA(x, y) = ρC(x, y), then, if y ≺ ∗A x, then y ≺ ∗C x.

We simply derive (a), since the proof of (b) is analogous. Assume that x ≺A y

and ρA(x, y) = ρC(x, y). In other words: x ∈ [[A]], y ∈ [[¬A]], and either (i)
x ∈ [[C]], y ∈ [[C]], (ii) x ∈ [[¬C]], y ∈ [[¬C]] or (iii) x ∈ [[¬C]], y ∈ [[C]]. Assume
that y ∗A x. From this and x ∈ [[A]], y ∈ [[¬A]], it follows, by (C3∗ ), that
y x. From this, if either (i), (ii) or (iii) hold, then, by (C1, 2∗ ), (C2∗ ), and (C4∗ ),
respectively, we have y ∗C x, as required. This completes the proof of Lemma 4.

With this in hand, we can derive each direction of the equivalence:

(a) From (IIAI∗ ) to (β1∗ ) and (β2∗ ): Regarding (β1∗ ), assume x ∈ min(

, [[C]]), x ≺A y, and y ∗A x. We need to show that y ∗C x. If
ρA(x, y) = ρC(x, y), then the required result follows by principle (a) of
Lemma 4. So assume ρA(x, y) = ρC(x, y), and hence that x ≺C y. We
now establish that x, y /∈ min( , [[A]]) ∪ min( , [[C]]). We already have
x ∈ min( , [[C]]). Since, by x ≺C y, it follows that y ∈ [[¬C]], we there-
fore have y ∈ min( , [[C]]). Furthermore, by x ≺A y, it follows that
y ∈ [[¬A]] and so y ∈ min( , [[A]]). Finally, assume for contradiction that
x ∈ min( , [[A]]). Then x ∈ min( ∗A, W), by (KM∗ ). Since y ∈ [[¬A]],
by (KM∗ ), y /∈ min( ∗A, W). Hence x ≺ ∗A y, contradicting y ∗A x.
So we can infer that x /∈ min( , [[A]]). With this in hand, we can apply
(IIAI∗ ) to derive y ∗C x, as required. The derivation of (β2∗ ) is analogous,
but using principle (b) of Lemma 4.

(b) From (β1∗ ) and (β2∗ ) to (IIAI∗ ): Assume that x, y /∈ min( , [[A]]) ∪
min( , [[C]]) and that ρA(x, y) = ρC(x, y). We want to show that x ∗A y

iff x ∗C y. By symmetry, it suffices for this to show that x ∗A y implies
x ∗C y. So assume x ∗A y. Since ρA(x, y) = ρC(x, y), we have three
cases to consider:

(i) ρA(x, y) = ρC(x, y) = 1: Assume for contradiction that y ≺ ∗C x.
From this, x ∈ min( , [[A]]) and x ≺C y, it follows by (β2∗ ) that
y ≺ ∗A x, contradicting x ∗A y. Hence x ∗C y, as required.

(ii) ρA(x, y) = ρC(x, y) = 0: It follows from this, via (C1, 2∗ ), that
x ∗A y iff x y iff x ∗C y. Hence x ∗C y, as required.

(iii) ρA(x, y) = ρC(x, y) = −1: By (β1∗ ), it follows, from x ∈ min
( , [[A]]), y ≺A x, and x ∗A y, that x ∗C y, as required.

Lemma 2 The conjunction of (KM∗ ) transitivity of ∗A, (PI∗ ) and (IIA∗ )

implies the following principle of “Zero Symmetry”:

(ZS∗ ) If x, y /∈ min( , [[A]]) ∪ min( Θ, [[B]]), ρ (x, y) = −ρΘ(x, y) and
ρA(x, y) = −ρB(x, y) then, ρ ∗A(x, y) = −ρ ∗B(x, y)
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Proof (KM∗ ) and (IIA∗ ) jointly tell us that that, for a pair of worlds {x, y}, the
posterior relative rank ρ ∗A(x, y) is determined by the prior relative rank ρ (x, y)

and input sentence relative rank ρA(x, y) (although this mapping may be different
for different pairs of worlds). With the case in which x or y ∈ min( , [[A]]) being
taken care of by (KM∗ ), the behaviour of ∗ with respect to {x, y} can therefore be
represented in the form of a matrix giving us, for x, y /∈ min( , [[A]]), the values
of ρ ∗A(x, y) as a function of those of ρ (x, y) and ρA(x, y).

Since we assume A to be consistent and hence that min( , [[A]]) is non-empty,
we must have strictly more than two, and therefore (since |W | = 2n) at least four,
worlds. Let these worlds be x, y, z and w. We will consider the matrices for the pairs
x, y , y, z and z, x in Table 7.

(PI∗ ) tells us that the value of the central cell in each matrix is 0. To establish
(ZS∗ ), we then just need to show that ai = −bi , for 1 ≤ i ≤ 4. We shall simply
show that a1 = −b1, since the proof strategy is identical for other values of i.

Let be such that ρ (x, z) = ρ (x, y) = ρ (y, z) = 0. Let A be such that
x, z ∈ [[A]] but y /∈ [[A]] (with x, z /∈ min( , [[A]]); this can be ensured by des-
ignating the fourth world w to be the sole member of that set) and so ρA(x, z) = 0.
Since ρ (x, z) = 0, we therefore have ρ ∗A(x, z) = 0. We also have ρA(x, y) = 1
and ρA(y, z) = −1. Therefore ρ ∗A(x, y) = a1 and ρ ∗A(y, z) = d1. Assume a1 =
−d1 for reductio (so that a1, d1 is equal to either 1, 0 , 0, 1 , 1, 0 , 0, −1 ,
1, 1 , or 1, −1 ). It then follows, by transitivity of ∗A, that ρ ∗A(x, z) = 1 or

−1. But this contradicts our earlier finding that ρ ∗A(x, z) = 0. Hence a1 = −d1.
By similar reasoning, we can establish that e1 = −d1 (let A be such that y, x ∈ [[A]]
but z /∈ [[A]], with y, x /∈ min( , [[A]]) and hence ρA(y, x) = 0) and e1 = −b1
(let A be such that z, y ∈ [[A]] but x /∈ [[A]], with z, y /∈ min( , [[A]]), and hence
ρA(z, y) = 0) and hence that a1 = −b1, as required.

Table 7 Matrices for proof of Lemma 2
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Lemma 3 The conjunction of (KM∗ ), transitivity of ∗A, (PI∗ ) and (IIA∗ )

implies the following “Representation Invariance” principle:

(RI∗ ) ρ ∗A(x, y) = ρΘ∗π(A)(π(x), π(y)), for any order isomorphism π from
to Θ

Proof We consider 3 cases, depending on x and y’s membership of min( , [[A]]):
(a) one of x or y is in the set, (b) both x and y are in the set and (c) neither x nor y

are in the set.
For each case, we shall prove the identity of the matrices relating to the pair

x, y and revision by A on the one hand, and the pair π(x), π(y) and revision
by π(A), on the other. Since, if π is an order isomorphism from to Θ , then
ρ (x, y) = ρΘ(π(x), π(y)) and ρA(x, y) = ρπ(A)(π(x), π(y)), it then follows that
ρ ∗A(x, y) = ρΘ∗π(A)(π(x), π(y)), as required.

Assume (a), so that, for example, x ∈ min( , [[A]]), y /∈ min( , [[A]]) (the
other case in analogous). Since we then have ρA(x, y) ≥ 0, it must be the case that
either (i) ρA(x, y) = 1, or (ii) ρA(x, y) = 0. Furthermore, if (ii) is the case, it
must be the case that ρ (x, y) = 1. The relevant matrix is then given in Table 8a,
with impossible combinations of values indicated by “×”. Since, for all x ∈ W ,
A ∈ L and order isomorphisms π from to Θ , we have x ∈ min( , [[A]]) iff
π(x) ∈ min( , [[π(A)]]), the same matrix characterises the pair π(x), π(y) under
revision by π(A). Assume (b). The reasoning is analogous to the one provided in
relation to (a) above, this time with reference to the matrix given in Table 8b. Assume
(c). Again, as we have noted above, since we assume A to be consistent and hence
that min( , [[A]]) is non-empty, we must have at least 4 worlds. Here we make use
of the transitivity of ∗A, much as we did in the proof of Lemma 2, and consider,
in addition to x, y , the pairs y, z and z, x . The matrices for these pairs are given
in Table 7 above.

Using the strategy applied in relation to the same case in the proof of Lemma 2,
we can show that, for 1 ≤ i ≤ 4, not only ai = −bi and ci = −di , but also ai = −di

and so ai = ci . So the matrix for all sentences is the same for all pairs of worlds. In
particular, the matrix relating to the pair x, y and revision by A on the one hand, is
identical to that relating the pair π(x), π(y) and revision by π(A), on the other.

Table 8 Matrices for cases (a) and (b) in proof of Lemma 2
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Proposition 7 In the presence of (UD ), (ZS∗ ) implies (IIA∗ ).

Proof Assume x, y /∈ min( , [[A]]) ∪ min( Θ, [[B]]), ρ (x, y) = ρΘ(x, y) and
ρA(x, y) = ρB(x, y). We need to show that ρ ∗A(x, y) = ρΘ∗B(x, y). By (UD ),
there will exist a state and sentence C such that x, y /∈ min( , [[A]]) ∪ min(

, [[C]]), ρ (x, y) = −ρ (x, y) and ρA(x, y) = −ρC(x, y). By (ZS∗ ), we then
have ρ ∗A(x, y) = −ρ ∗C(x, y). But since ρ (x, y) = ρΘ(x, y) and ρA(x, y) =
ρB(x, y), we also have ρΘ(x, y) = −ρ (x, y) and ρB(x, y) = −ρC(x, y).
Since x, y /∈ min( Θ, [[B]]) ∪ min( , [[C]]), we can reapply (ZS∗ ), to obtain
ρΘ∗B(x, y) = −ρ ∗C(x, y). Hence ρ ∗A(x, y) = ρΘ∗B(x, y), as required.

Proposition 8 (RI∗ ) does not imply either (IIAI∗ ) or (IIAP∗ ) even in the presence
(KM∗ ) and (C1, 2∗ )-(C4∗ )

Proof We simply need to show that both the operators introduced in the proof of
Proposition 4 satisfy (RI∗ ). Indeed, both satisfy (KM∗ ) and (C1, 2∗ )-(C4∗ ), but the
first does not satisfy (IIAP∗ ) and the second does not satisfy (IIAI∗ ).

Regarding the first operator: If π is an order isomorphism between and Θ ,
then is a chain if and only if Θ is. So we have ρ ∗A(x, y) = ρ ∗LA(x, y)

if and only if we have ρΘ∗π(A)(π(x), π(y)) = ρΘ∗Lπ(A)(π(x), π(y)) and simi-
larly regarding ∗R. But we have also noted that ∗L and ∗R both satisfy (KM∗ ) and
(C1, 2∗ )-(C4∗ ). Furthermore, since they also satisfy (PI∗ ) (because they satisfy
(C1, 2∗ ); see Lemma 1) and (IIA∗ ), we know from Lemma 3 that they also satisfy
(RI∗ ).

Regarding the second operator: If π is an order isomorphism between and
Θ , then |[[¬A]]| = 1 iff |[[π(¬A)]]| = 1. So we have ρ ∗A(x, y) = ρ ∗LA(x, y)

iff ρ ∗π(A)(π(x), π(y)) = ρ ∗Lπ(A)(π(x), π(y)) and similarly regarding ∗R. The
reasoning to establish (RI∗ ) then proceeds as above.

Proposition 9 (RI∗ ) entails (TPOR∗ ).

Proof Let = Θ and the order isomorphism π be such that π(x) = x. It follows
by (RI∗ ) that ρ ∗A(x, y) = ρΘ∗π(A)(π(x), π(y)) = ρΘ∗A(x, y).

Proposition 10 Given AGM, (PI∗ ) is equivalent to:

(PI∗) If [ ∗ B] = Cn(B), then [ ∗ A)∗A∧B] = [ ∗ A ∧ B] and [ ∗ A)∗
¬A ∧ B] = [ ∗ ¬A ∧ B]

Proof From (PI∗ ) to (PI∗): Assume that [ ∗ B] = Cn(B) but, for reduc-
tio, [ ∗ A) ∗ A ∧ B] = [ ∗ A ∧ B] (the case of [ ∗ A) ∗ ¬A ∧ B] =
[ ∗ ¬A ∧ B] is analogous). We consider two cases:

(i) [ ∗ A ∧ B] [ ∗ A) ∗ A ∧ B], so [[[ ∗ A) ∗ A ∧ B]]]
[[[ ∗ A) ∗ A ∧ B]]]: Then, since we assume A ∧ B to be consistent, ∃x ∈
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min( ∗A, [[A ∧ B]]) \ min( , [[A ∧ B]]). Let y ∈ min( , [[A ∧ B]]).
On the one hand, since x, y ∈ [[B]] and [ ∗ B] = Cn(B), we have
x, y ∈ min( , [[B]]), by (KM∗ ), and so x ∼ y. On the other hand, since
y ∈ min( , [[A ∧ B]]), and x ∈ [[A ∧ B]] but x /∈ min( , [[A ∧ B]]), we
have y ≺ x. Contradiction.

(ii) [ ∗ A) ∗ A ∧ B] [ ∗ A ∧ B] and so [[[ ∗ A ∧ B]]] [[[ ∗ A) ∗ A ∧
B]]]: Then, since we assume A∧B to be consistent, ∃x ∈ min( , [[A ∧ B]])\
min( ∗A, [[A ∧ B]]). Let y ∈ min( ∗A, [[A ∧ B]]). As above, since x, y ∈
[[B]] and [ ∗ B] = Cn(B), we have x ∼ y. Since x, y ∈ [[A]], it follows
from this, by (PI∗ ), that x ∼ ∗A y. But since y ∈ min( ∗A, [[A ∧ B]]),
and x ∈ [[A ∧ B]] but x /∈ min( ∗A, [[A ∧ B]]), we also have y ≺ ∗A x.
Contradiction.

From (PI∗) to (PI∗ ): Assume x ∼ y. Then min( , [[x ∨ y]]) = [[x ∨ y]] and
so [ ∗ x ∨ y] = Cn(x ∨ y). By (PI∗), letting B = x ∨ y, we then have:

(a) [ ∗ A) ∗ A ∧ (x ∨ y)] = [ ∗ A ∧ (x ∨ y)]
(b) [ ∗ A) ∗ ¬A ∧ (x ∨ y)] = [ ∗ ¬A ∧ (x ∨ y)]
We consider two cases:

(i) Assume x, y ∈ [[A]]. Then A∧(x ∨y) ≡ x ∨y. So by (a), [ ∗ A) ∗ x ∨ y] =
[ ∗ x ∨ y] = Cn(x ∨y). Since x ∼ ∗A y iff [ ∗ A) ∗ x ∨ y] = Cn(x ∨y),
it then follows that x ∼ ∗A y, as required.

(ii) Assume x, y ∈ [[¬A]]. Then we obtain x ∼ ∗A y by the same reasoning as
above, this time using (b).

Proposition 11 Given AGM and (C1, 2∗ ), (IIA∗ ),(IIAP∗ ) and (IIAI∗ ) are respec-
tively equivalent to:

(IIA ) If ¬C ∈ [ ∗ A] ∩ [Θ ∗ B], A ≡C B and and Θ agree modulo C, then
so do ∗ A and Θ ∗ B

(IIAP ) If ¬C ∈ [ ∗ A] ∩ [Θ ∗ A], then, if and Θ agree modulo C , so do
∗ A and Θ ∗ A

(IIAI ) If ¬C ∈ [ ∗ A] ∩ [ ∗ B] and A ≡C B, then ∗ A and ∗ B agree
modulo C

Proof We simply prove the equivalence of (IIA∗) and (IIA∗ ), since the remaining
equivalences are established in an analogous manner. We first note that (C1, 2∗ )

gives us the result that, if ρ (x, y) = ρΘ(x, y) and x, y ∈ [[A ∧ ¬B]] or x, y ∈
[[¬A ∧ B]], then ρ ∗A(x, y) = ρΘ∗B(x, y). “Removing” these two cases from the
condition ρA(x, y) = ρB(x, y) leaves us with four cases: (i) x ∈ [[A ∧ B]] and
y ∈ [[¬A ∧ ¬B]], (ii) y ∈ [[A ∧ B]] and x ∈ [[¬A ∧ ¬B]], (iii) x, y ∈ [[A ∧ B]], or
(iv) x, y ∈ [[¬A ∧ ¬B]]. In view of this, (IIA∗ ) is equivalent to the following weaker
principle in the presence of (C1, 2∗ ):

If x, y /∈ min( , [[A]]) ∪ min( Θ, [[B]]), then, if ρ (x, y) = ρΘ(x, y) and (i)
x ∈ [[A ∧ B]] and y ∈ [[¬A ∧ ¬B]], (ii) y ∈ [[A ∧ B]] and x ∈ [[¬A ∧ ¬B]], (iii)
x, y ∈ [[A ∧ B]], or (iv) x, y ∈ [[¬A ∧ ¬B]], then ρ ∗A(x, y) = ρΘ∗B(x, y)
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We first show that this weaker principle can alternatively be presented as follows:

If [[C]] ∩ (min( , [[A]]) ∪ min( Θ, [[B]])) = ∅ and, for all x, y ∈ [[C]],
ρ (x, y) = ρΘ(x, y) and either (i) x ∈ [[A ∧ B]] and y ∈ [[¬A ∧ ¬B]], (ii) y ∈
[[A ∧ B]] and x ∈ [[¬A ∧ ¬B]], (iii) x, y ∈ [[A ∧ B]], or (iv) x, y ∈ [[¬A ∧ ¬B]],
then, for all x, y ∈ [[C]], ρ ∗A(x, y) = ρΘ∗A(x, y)

Going from the second principle to the first, the entailment is obvious, since
the latter is just the special case in which [[C]] = {x, y}. Going the other way,
assume that [[C]] ∩ (min( , [[A]]) ∪ min( Θ, [[B]])) = ∅ and, for all x, y ∈ [[C]],
ρ (x, y) = ρΘ(x, y) and (i) x ∈ [[A ∧ B]] and y ∈ [[¬A ∧ ¬B]], (ii) y ∈ [[A ∧ B]]
and x ∈ [[¬A ∧ ¬B]], (iii) x, y ∈ [[A ∧ B]], or (iv) x, y ∈ [[¬A ∧ ¬B]]. Assume
further that x, y ∈ [[C]], for arbitrary x, y ∈ W . From these assumptions, we have
x, y /∈ min( , [[A]]) ∪ min( Θ, [[B]]), ρ (x, y) = ρΘ(x, y) and (i) x ∈ [[A ∧ B]]
and y ∈ [[¬A ∧ ¬B]], (ii) y ∈ [[A ∧ B]] and x ∈ [[¬A ∧ ¬B]], (iii) x, y ∈ [[A ∧ B]],
or (iv) x, y ∈ [[¬A ∧ ¬B]]. Given this, by (IIA∗ ), it follows that ρ ∗A(x, y) =
ρΘ∗B(x, y), as required.

Next we establish syntactic equivalents for the various semantic properties figur-
ing in this principle.

Clearly [[C]]∩(min( , [[A]])∪min( Θ, [[B]])) = ∅ iff ¬C ∈ [ ∗ A]∩[Θ ∗ B].
Furthermore, it is easy to see that conditions (i) to (iv) hold for all x, y ∈ [[C]] iff
A ≡C B.

Finally, we can show that ρ (x, y) = ρΘ(x, y) for all x, y ∈ [[C]] iff and Θ

agree modulo C (and obviously similarly regarding ∗ A and Θ ∗ B).
Indeed, assume that (1) ∀B ∈ L, [ ∗ B ∧ C] = [Θ ∗ B ∧ C], but, for reduc-

tio, that (2) ∃x, y ∈ [[C]], such that ρ (x, y) = ρΘ(x, y). Where B ∈ L is such
that [[B ∧ C]] = {x, y}, it follows from (2) that min( , [[B ∧ C]]) = min( Θ,

[[B ∧ C]]). But from (1), we have min( , [[B ∧ C]]) = min( Θ, [[B ∧ C]]).
Contradiction.

Going the other way, assume that (1) ∀x, y ∈ [[C]], ρ (x, y) = ρΘ(x, y), but,
for reductio, that (2) ∃B ∈ L such that [ ∗ B ∧ C] = [Θ ∗ B ∧ C]. From (2),
min( , [[B ∧ C]]) = min( Θ, [[B ∧ C]]). From this, either there exists x ∈ W

such that x ∈ min( , [[B ∧ C]]) but x /∈ min( Θ, [[B ∧ C]]), or exists x ∈ W such
that x ∈ min( Θ, [[B ∧ C]]) but x /∈ min( , [[B ∧ C]]). Assume the former (the
other case is analogous). Let y ∈ min( Θ, [[B ∧ C]]). From this, we have y ≺Θ x

but x y and hence ρ (x, y) = ρΘ(x, y). However, since x, y ∈ [[C]], this
contradicts (1).

Proposition 12 Given AGM and (C1, 2∗ ), (ZS∗ ) is equivalent to:

(ZS∗) If ¬C ∈ [ ∗ A] ∩ [Θ ∗ B], A ≡C ¬B and and Θ are in opposition
modulo C, then so are ∗ A and Θ ∗ B

Proof The proof is somewhat similar to the one given in relation to Proposition 11.
We first note that (C1, 2∗ ) gives us the result that, if ρ (x, y) = −ρΘ(x, y) and
x, y ∈ [[A ∧ B]] or x, y ∈ [[¬A ∧ ¬B]], then ρ ∗A(x, y) = −ρΘ∗B(x, y). Note that
in these two cases, we have ρA(x, y) = −ρB(x, y) = 0. “Removing” the cases from
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the condition ρA(x, y) = −ρB(x, y) leaves us with two cases: (i) x ∈ [[A ∧ ¬B]]
and y ∈ [[¬A ∧ B]] and (ii) y ∈ [[A ∧ ¬B]] and x ∈ [[¬A ∧ B]].

In view of this, (ZS∗ ) is equivalent to the following weaker principle in the
presence of (C1, 2∗ ):

If x, y /∈ min( , [[A]]) ∪ min( Θ, [[B]]), ρ (x, y) = −ρΘ(x, y) and (i) x ∈
[[A ∧ ¬B]] and y ∈ [[¬A ∧ B]] or (ii) y ∈ [[A ∧ ¬B]] and x ∈ [[¬A ∧ B]], then
ρ ∗A(x, y) = −ρΘ∗B(x, y)

We first show that this weaker principle can alternatively be presented as follows:

If [[C]] ∩ (min( , [[A]]) ∪ min( Θ, [[B]])) = ∅ and, for all x, y ∈ [[C]],
ρ (x, y) = −ρΘ(x, y) and (i) x ∈ [[A ∧ ¬B]] and y ∈ [[¬A ∧ B]] or (ii)
y ∈ [[A ∧ ¬B]] and x ∈ [[¬A ∧ B]], then, for all x, y ∈ [[C]], ρ ∗A(x, y) =
−ρΘ∗B(x, y)

Going from the second principle to the first, the entailment is obvious, since the
latter is just the special case in which [[C]] = {x, y}. Going the other way, assume
that [[C]] ∩ (min( , [[A]]) ∪ min( Θ, [[B]]) = ∅ and, for all x, y ∈ [[C]], (i) x ∈
[[A ∧ ¬B]] and y ∈ [[¬A ∧ B]] or (ii) y ∈ [[A ∧ ¬B]] and x ∈ [[¬A ∧ B]], and
ρ (x, y) = −ρΘ(x, y). From these assumptions, we have x, y /∈ min( , [[A]]) ∪
min( Θ, [[B]]), ρ (x, y)= −ρΘ(x, y) and ρA(x, y) = −ρB(x, y). Given this, by
(ZS∗ ), it follows that ρ ∗A(x, y) = −ρΘ∗B(x, y), as required.

Next we establish syntactic equivalents for the various semantic properties figur-
ing in this principle.

As we have noted above, in the proof of Proposition 11, [[C]] ∩ (min( , [[A]]) ∪
min( Θ, [[B]])) = ∅ iff ¬C ∈ [ ∗ A] ∩ [Θ ∗ B]. Furthermore, (i) and (ii) hold for
all x, y ∈ [[C]] iff A ≡C ¬B.

Finally, we can show that ρ (x, y) = −ρΘ(x, y) for all x, y ∈ [[C]] iff and Θ

are in opposition modulo C (and obviously similarly regarding ∗ A and Θ ∗ B).
From left to right: Assume that (1) ∀x, y ∈ [[C]], ρ (x, y) = −ρΘ(x, y)

but, for reductio, that ∃B, D ∈ L such that B is quasi-complete, B ∧ C D,
D ∈ [ ∗ B ∧ C] but ¬D /∈ [Θ ∗ B ∧ C]. Since B ∧ C D, there exists
x ∈ [[B ∧ C ∧ ¬D]]. Let y ∈ min( , [[B ∧ C]]) (we can assume that such a y

exists, since B ∧ C D and hence [[B ∧ C]] = ∅). Since D ∈ [ ∗ B ∧ C] and
x ∈ [[B ∧ C ∧ ¬D]], we have y ≺ ∗B∧C x. Therefore, since x, y ∈ [[B ∧ C]],
by (C1, 2∗ ), it follows that y ≺ x, so that ρ (x, y) = −1. Given our assump-
tion that ρ (x, y) = −ρΘ(x, y), we then recover ρΘ(x, y) = 1. From this, given
that x, y ∈ [[B ∧ C]], we have ρΘ∗B∧C(x, y) = 1, by (C1, 2∗ ). Since B is quasi-
complete and x, y ∈ [[B ∧ C]], we also have [[B ∧ C]] = {x, y}. It then follows that
¬D ∈ [Θ ∗ B ∧ C]. Contradiction.

From right to left: Assume that (1) for all B, D ∈ L such that B is quasi-complete
and B ∧ C D, if D ∈ [ ∗ B ∧ C], then ¬D ∈ [Θ ∗ B ∧ C], but, for reductio,
that (2) ∃x, y ∈ [[C]], such that ρ (x, y) = −ρΘ(x, y). Where B ∈ L is such that
[[B]] = {x, y}, and D ∈ L is such that x ∈ [[D]] but y /∈ [[D]], it follows from (1) that
x ≺ ∗B∧C y and y ≺Θ∗B∧C x. By (C1, 2∗ ), since x, y ∈ [[B ∧ C]], we then have
x ≺ y and y ≺Θ x and hence ρ (x, y) = −ρΘ(x, y). Contradiction.
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Proposition 13 Given AGM (RI∗ ) is equivalent to

(RI∗) B ∈ [ ∗ A)∗C] iff ι(B) ∈ [(Θ ∗ ι(A))∗ι(C)], for any c-belief isomorphism
ι from to Θ

Proof For convenience, we first recall the definition of (RI∗ ):

(RI∗ ) ρ ∗A(x, y) = ρΘ∗π(A)(π(x), π(y)), for any order isomorphism π from
to Θ

Let I be the set of all c-belief isomorphisms between and Θ and the set of
all order isomorphisms between the corresponding TPOs. We will show that there
exists a bijection f between and I such that if ι = f (π), then the biconditional of
(RI∗) holds for ι iff the equality of (RI∗ ) holds for π . It then follows from this that
the biconditional holds for all ι in I iff the equality holds for all π in .

We divide the proof into two lemmas. The first establishes that a particular relation
f is a bijection. The second shows that f has the required property stated above. The
first lemma, then, is:

Lemma 5 The relation f ⊆ × I , such that, ∀A ∈ L, ∀π ∈ , ∀ι ∈ I , f (π, ι) iff
[[ι(A)]] = {x ∈ W | ∃y ∈ [[A]], such that x = π(y)}, is a bijection from to I .

In other words f maps π onto the unique ι (modulo logical equivalence) such that
the set of models of the image, under ι, of a sentence A is the set of images, under π ,
of the models of A. Since f is a bijection, we write f (π) for the unique ι (modulo
logical equivalence) such that f (π, ι).

To establish Lemma 5, we first note that [18, Proposition 6.2] already prove the
following first of two sublemmas, where ⊇ I is the set of all belief amount pre-
serving symbol translations (i.e. permutations of L satisfying properties (i)–(iii) of
Definition 9) σ on L and Γ ⊇ is the set of all permutations γ of W :

Sublemma 1 The relation g ⊆ × Σ , such that, ∀A ∈ L, ∀γ ∈ Γ , ∀σ ∈ Σ ,
f (γ, σ ) iff [[σ(A)]] = {x ∈ W | ∃y ∈ [[A]], such that x = γ (y)}, is a bijection from
Γ to Σ .

In view of this, it therefore simply remains to be shown that ι is in I iff its pre-
image under g is in , since it then follows from this, and the fact that g is a bijection
between Γ and , that f is a bijection between and I :

Sublemma 2 Where ι = g(π), the following are equivalent

(1) For all x, y ∈ W , ρ (x, y) = ρΘ(π(x), π(y))

(2) For all A, B ∈ L, B ∈ [ ∗ A] iff ι(B) ∈ [Θ ∗ ι(A)]

From (1) to (2): Assume ι = g(π) and (1). We need to establish (2), which,
given (KM∗ ), we can reformulate in terms of minimal sets as: min( , [[A]]) ⊆
[[B]] iff min( Θ, [[ι(A)]]) ⊆ [[ι(B)]]. We simply derive the left to right direction
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of (2), since the other direction is established in an analogous manner. Assume that
min( , [[A]]) ⊆ [[B]] but, for reductio, that min( Θ, [[ι(A)]]) [[ι(B)]], so that
∃x ∈ min( Θ, [[ι(A)]]) ∩ [[¬ι(B)]]. By the definitions of ι and g, it follows that
π−1(x) ∈ [[A]] ∩ [[¬B]]. Let y ∈ min( , [[A]]). Since min( , [[A]]) ⊆ [[B]],
we then have y ≺ π−1(x). By (1), we then have π(y) ≺Θ x. Since y ∈ [[A]], it
follows by the definition of g that π(y) ∈ [[ι(A)]] and so, given π(y) ≺Θ x, that
x /∈ min( Θ, [[ι(A)]]) after all: contradiction.

From (2) to (1): Assume that ι = g(π) and that (2) holds. Given (KM∗ ), we
can again reformulate (2) in terms of minimal sets as: min( , [[A]]) ⊆ [[B]] iff
min( Θ, [[ι(A)]]) ⊆ [[ι(B)]]. Where [[A]] = {x, y}, this gives us, in view of the
definition of g:

min( , {x, y}) ⊆ [[B]] iff min( Θ, {π(x), π(y)}) ⊆ [[ι(B)]]
By the definition of g, for all x ∈ W , x ∈ [[B]] iff π(x) ∈ [[ι(B)]]. Hence
ρ (x, y) = ρΘ(π(x), π(y)), i.e. (1). This completes the proof of Sublemma 2 and
hence of Lemma 5.

We finally derive our second lemma towards the proof of our main result, which
tells us that f has the required property, namely that, if ι = f (π), then the
biconditional in (RI∗) holds for ι, iff the equality in (RI∗ ) holds for π :

Lemma 6 Where ι = f (π), the following are equivalent

(1) For all x, y ∈ W and A ∈ L, ρ ∗A(x, y) = ρΘ∗π(A)(π(x), π(y))

(2) For all A, B, C ∈ L, B ∈ [ ∗ A) ∗ C] iff ι(B) ∈ [(Θ ∗ ι(A)) ∗ ι(C)]
The proof of this is identical to that of Sublemma 2, save for the fact that we need

to note that, as we defined the extension of π to L, Θ ∗ π(A) = Θ ∗ ι(A).
The conjunction of Lemmas 5 and 6 then establishes the required result.

Proposition 15 Lexicographic revision is the only elementary revision operator that
satisfies (IIAP+∗ )

Proof We show that, given (KM∗ ) and (UD ), (IIAP+∗ ) entails Recalcitrance
(i.e. if ρA(x, y) = 1, then ρ ∗A(x, y) = 1), which characterises lexicographic
revision in the presence of (C1, 2∗ ). This was already established as Fact 2.2 (a)
in [15]. Let ρA(x, y) = 1, so that x ∈ [[A]] and y ∈ [[¬A]]. Then, by (UD ),
for any state , there will exist a state Θ such that ρΘ(x, y) = ρ (x, y) and
x ∈ min( Θ, [[A]]) (and, since y ∈ [[¬A]], y /∈ min( Θ, [[A]])). But by (KM∗ ),
if x ∈ min( Θ, [[A]]) but y /∈ min( Θ, [[A]]), then x ≺Θ∗A y. So, by (IIAP+∗ ),
x ≺ ∗A y, as required.

Proposition 16 Lexicographic revision is the only elementary revision operator that
satisfies (IIAI+∗ )

Proof (IIAI+∗ ), in conjunction with (C1, 2∗ )–(C4∗ ), can be shown to entail a prin-
ciple that we have called “(β1+∗ )” in previous work [6]. Indeed, in the proof of
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Proposition 6 above, we established the equivalence between (IIAI∗ ) and the con-
junction of (β1∗ ) and (β2∗ ) using only (C1, 2∗ )–(C4∗ ). This proof can be adapted
to establish a strengthening of Proposition 3 in [8], in which, unlike in the original,
the principle of “Independence” (P∗ ) is not appealed to. This yields the following:
In the presence of (KM∗ ) and (C1, 2∗ )–(C4∗ ), Booth & Meyer’s strengthening of
(IIAI∗ ) is equivalent to the conjunction of what [6] call “(β1+∗ )” and “(β2+∗ )”.

Furthermore, we also showed in [6] (see Corollary 1 there) that (β1+∗ ) charac-
terises lexicographic revision, given (KM∗ ) and (C1, 2∗ )-(C2∗ ).

Proposition 17 Lexicographic revision is the only elementary revision operator that
satisfies (ZS+∗ )

Proof We show that, given (KM∗ ) and (C3∗ ), (ZS+∗ ) entails Recalcitrance (i.e. if
ρA(x, y) = 1, then ρ ∗A(x, y) = 1), which characterises lexicographic revision in
the presence of (C1, 2∗ ). Assume for reductio that Recalcitrance fails, so that there
exists , x, y ∈ W , A ∈ L such that

(1) ρA(x, y) = 1
(2) ρ ∗A(x, y) = 1

From (1) and (2), by (C3∗ ), we must have:

(3) ρ (x, y) = 1

From (1), we have:

(4) ρ¬A(x, y) = −1

From (1), it follows that y ∈ [[¬A]] and x = y, and so by (UD ) there exists a state
Θ such that:

(5) y ∈ min( Θ, [[¬A]])
(6) ρΘ(x, y) = −ρ (x, y)

From (1), (4), (3) and (6), by (ZS+∗ ):

(7) ρΘ∗¬A(x, y) = −1

However, by AGM, given (4) and (5), we have ρΘ∗¬A(x, y) = −1, directly
contradicting (7).

Proposition 18 Given AGM ÷R is characterised by the following property:

[ ÷R A) ÷R B] = [ ÷R A] ∩ [ ÷R ¬A ∨ B], ifA ∨ B ∈ [ ÷R B]
[ ÷R A] ∩ [ ÷R A ∨ B], otherwise

Proof We first recall the definition of ÷R:

If x ∈ or y ∈ min( , W) ∪ min( , [[¬A]]), then:

ρ ÷RA(x, y) =

⎧
⎪⎨

⎪⎩

1, if x ∈ and y /∈ min( , W) ∪ min( , [[¬A]])
0, if x ∈ and y ∈ min( , W) ∪ min( , [[¬A]])
−1, if x /∈ and y ∈ min( , W) ∪ min( , [[¬A]])
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If x /∈ and y /∈ min( , W) ∪ min( , [[¬A]]), then:

ρ ÷RA(x, y) = ρ (x, y), if ρ (x, y) = 0

ρ¬A(x, y), if ρ (x, y) = 0

Next, with the help of (KM÷ ), we translate the two conditionals on the right
hand side of the equality of the characteristic syntactic property into the following
statements about minimal sets:

(1) If min( , W) ∪ min( , [[¬B]]) ⊆ [[A ∨ B]], then min( ÷A)÷B, W) =
min( ÷A, W) ∪ min( ÷A, [[A ∧ ¬B]])

(2) If min( , W) ∪ min( , [[¬B]]) [[A ∨ B]], then min( ÷A)÷B, W) =
min( ÷A, W) ∪ min( ÷A, [[¬A ∧ ¬B]])

From the semantic characterisation to the syntactic one: We first note that, given
(KM÷ ), the consequent of (1) is equivalent to min( ÷A, [[¬B]]) − min( ÷A

, W) = min( , [[A ∧ ¬B]]) − min( ÷A, W), while the consequent of (2) is
equivalent to min( ÷A, [[¬B]]) − min( ÷A, W) = min( , [[¬A ∧ ¬B]]) −
min( ÷A, W). We then split the proof into two obvious parts:

(A) If ÷ = ÷R, then (1): Assume min( , W) ∪ min( , [[¬B]]) ⊆ [[A ∨ B]],
so that there does not exist x ∈ min( , [[¬B]]) ∩ [[¬A]]. Assume for reduc-
tio that min( ÷A, [[¬B]]) − min( ÷A, W) [[A]], so that there exists x ∈
min( ÷A, [[¬B]])∩[[¬A]] and x /∈ min( ÷A, W). As we have noted, from
our initial assumption, it must be the case that x /∈ min( , [[¬B]]) ∩ [[¬A]]
and hence, since x ∈ [[A]], x /∈ min( , [[¬B]]). So, since x ∈ [[¬B]], there
exists y ∈ [[¬B]] such that ρ (y, x) = 1. Given the semantic definition of ÷R,
the fact that x /∈ min( ÷A, W) then suffices to ensure that ρ ÷A(y, x) = 1
(indeed, if y ∈ min( ÷A, W), then this follows from the first conditional
of the definition, and if y /∈ min( ÷A, W), then, since ρ (y, x) = 0, the
second conditional tells us that ρ ÷A(y, x) = ρ (y, x) = 1), and hence,
since y ∈ [[¬B]], x /∈ min( ÷A, [[¬B]]) ∩ [[¬A]]. Contradiction. We can
therefore conclude that min( ÷A, [[¬B]]) − min( ÷A, W) ⊆ [[A]]. From
this, it follows that min( ÷A, [[¬B]]) − min( ÷A, W) = min( ÷A

, [[A ∧ ¬B]]) − min( ÷A, W). Since ÷R satisfies (C1, 2÷ ), it follows that
min( ÷A, [[A ∧ ¬B]]) = min( , [[A ∧ ¬B]]) and hence we finally have
min( ÷A, [[¬B]]) − min( ÷A, W) = min( , [[A ∧ ¬B]]) − min( ÷A

, W), as required.
(B) If ÷ = ÷R, then (2): We first note that, like ÷P, ÷R satisfies the follow-

ing property, which could be considered the analogue for contraction of the
property (P∗ ), satisfied by ∗L and ∗R:

(wP÷ ) If y /∈ min( , W), ρ¬A(x, y) = 1 and ρ (x, y) ≥ 0, then
ρ ÷A(x, y) = 110

10This principle is given as follows:

(P∗ ) If ρA(x, y) = 1 and ρ (x, y) ≥ 0, then ρ ∗A(x, y) = 1
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Now assume min( , W) ∪ min( , [[¬B]]) [[A ∨ B]], so that there
exists x ∈ min( , W) ∪ min( , [[¬B]]), such that x ∈ [[¬A ∧ ¬B]].
If x ∈ min( , W), since x ∈ [[¬B]], we have x ∈ min( , [[¬B]]).
So, either way, x ∈ min( , [[¬B]]). Assume for reductio that min( ÷A

, [[¬B]]) − min( ÷A, W) [[¬A]], so that there exists y ∈ min( ÷A

, [[¬B]])−min( ÷A, W), such that y ∈ [[A]] and therefore, since x ∈ [[¬A]],
ρ¬A(x, y) = 1 . Since x ∈ min( , [[¬B]]) and y ∈ [[¬B]], we have
ρ (x, y) ≥ 0. Since, by assumption, y /∈ min( ÷A, W), it follows, by
(KM÷ ), that y /∈ min( , W). Given, y /∈ min( , W), ρ¬A(x, y) = 1,
and ρ (x, y) ≥ 0, we can now apply (wP÷ ), to obtain ρ ÷A(x, y) = 1.
Since x, y ∈ [[¬B]], we then have y /∈ min( ÷A, [[¬B]]). Contradiction. We
can therefore conclude that min( ÷A, [[¬B]]) − min( ÷A, W) ⊆ [[¬A]].
From this, it follows that min( ÷A, [[¬B]])−min( ÷A, W) = min( ÷A

, [[¬A ∧ ¬B]]) − min( ÷A, W). Since ÷R satisfies (C1, 2÷ ), it follows that
min( ÷A, [[¬A ∧ ¬B]]) = min( , [[¬A ∧ ¬B]]) and hence we finally
have min( ÷A, [[¬B]]) − min( ÷A, W) = min( , [[¬A ∧ ¬B]]) −
min( ÷A, W), as required.

From the syntactic characterisation to the semantic one: Assume x ∈ or y ∈
min( , W)∪min( , [[¬A]]). Then the required result follows simply by (KM÷ ).
So assume that x /∈ and y /∈ min( , W) ∪ min( , [[¬A]]). We divide the
remainder of the proof into two obvious parts:

(A) Proof that, if ρ (x, y) = 0, then ρ ÷A(x, y) = ρ (x, y): It suffices to show
that, if ρ (x, y) = 1, then ρ ÷A(x, y) = 1 (establishing that, if ρ (x, y) =
−1, then ρ ÷A(x, y) = −1, is analogous). So assume that ρ (x, y) = 1.
We first note that the required conclusion that ρ ÷A(x, y) = 1 holds iff y /∈
min( ÷A)÷¬x∧¬y, W): Indeed, by (KM÷ ), we have min( ÷A)÷¬x∧¬y

, W) = min( ÷A, W) ∪ min( ÷A, {x, y}). Since {x, y} ⊆ W , it then fol-
lows from this that y ∈ min( ÷A)÷¬x∧¬y, W) iff y ∈ min( ÷A, {x, y}).
Since, trivially, we have ρ ÷A(x, y) = 1 iff y /∈ min( ÷A, {x, y}), the
required result then follows. We then split the proof into two cases:

(a) Assume min( , W) ∪ min( , {x, y}) ⊆ [[A ∨ (¬x ∧ ¬y)]].
Then, by (KM÷ ) and the syntactic characteristic principle (setting
B = ¬x ∧ ¬y) we have:

min( ÷A)÷¬x∧¬y, W)

= min( ÷A, W) ∪ min( ÷¬A∨(¬x∧¬y), W)

By assumption, y /∈min( ÷A, W). So it remains to be shown that
y /∈ min( ÷¬A∨(¬x∧¬y), W). By (KM÷ ), min( ÷¬A∨(¬x∧¬y),

W) = min( , W) ∪ min( , [[A ∧ (x ∨ y)]]). Since we have
already also assumed that y /∈ min( , W), we are just left with

It was noted, in [3], that, in its unqualified form (there called “(P÷ )”), without the requirement that
y /∈ min( ,W), this principle would lead to trouble.
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verifying that y /∈ min( , [[A ∧ (x ∨ y)]]). So assume for reduc-
tio that y ∈ min( , [[A ∧ (x ∨ y))]], so that y ∈ [[A]] and, if
x ∈ [[A]], then ρ (x, y) ≤ 0. From min( , W) ∪ min(

, {x, y}) ⊆ [[A ∨ (¬x ∧ ¬y)]] and ρ (x, y) = 1, it follows that
x ∈ [[A]]. Hence ρ (x, y) ≤ 0. But this contradicts our assump-
tion that ρ (x, y) = 1. So y /∈ min( , [[A ∧ (x ∨ y))]] and we
therefore have y /∈ min( ÷A)÷¬x∧¬y, W), as required.

(b) Assume min( , W) ∪ min( , {x, y}) [[A ∨ (¬x ∧ ¬y)]].
Then the reasoning is similar to the above, except that we proceed
by showing that y /∈ min( , [[¬A ∧ (x ∨ y)]]).

(B) Proof that, if ρ (x, y) = 0, then ρ ÷A(x, y) = ρ¬A(x, y): Assume that
ρ (x, y) = 0. We again split the proof into two cases:

(a) Assume min( , W) ∪ min( , {x, y}) ⊆ [[A ∨ (¬x ∧ ¬y)]].
Then x, y ∈ [[A]] and so ρ¬A(x, y) = 0. So we need to establish that
ρ ÷A(x, y) = 0, or equivalently x, y ∈ min( ÷A)÷¬x∧¬y, W).
It also follows, by (KM÷ ) and the syntactic characteristic principle
(setting B = ¬x ∧ ¬y), that:

min( ÷A)÷¬x∧¬y, W)

= min( ÷A, W) ∪ min( ÷(¬A∨(¬x∧¬y), W)

As we have already noted, by (KM÷ ), min( ÷(¬A∨(¬x∧¬y)

, W) = min( , W) ∪ min( , [[A ∧ (x ∨ y))]]. Furthermore,
it follows from x, y ∈ [[A]] and ρ (x, y) = 0 that x, y ∈
min( , [[A ∧ (x ∨ y))]]. Hence x, y ∈ min( ÷A)÷¬x∧¬y, W),
as required.

(b) Assume min( , W) ∪ min( , {x, y}) [[A ∨ (¬x ∧ ¬y)]].
Then, by (KM÷ ) and the syntactic characteristic principle (setting
B = ¬x ∧ ¬y):

min( ÷A)÷¬x∧¬y, W)

= min( ÷A, W) ∪ min( ÷A∨(¬x∧¬y), W)

From the fact that min( , {x, y}) [[A ∨ (¬x ∧ ¬y)]] and
hence, since ρ (x, y) = 0, that {x, y} [[A]], we are left with two
possibilities to consider:

(i) Assume x, y ∈ [[¬A]]. Then ρ¬A(x, y) = 0. So
we need to establish that ρ ÷A(x, y) = 0, or equiv-
alently x, y ∈ min( ÷A)÷¬x∧¬y, W). By (KM÷ ),
it follows that we have min( ÷A∨(¬x∧¬y), W) =
min( , W)∪min( , [[¬A ∧ (x ∨ y)]]). Since x, y ∈
[[¬A]] and ρ (x, y) = 0, we have x, y ∈ min(

, [[¬A ∧ (x ∨ y)]]) and so, finally, we recover x, y ∈
min( ÷A)÷¬x∧¬y, W), as required.

(ii) Assume x ∈ [[A]], y ∈ [[¬A]] (the other case, in which
y ∈ [[A]], x ∈ [[¬A]] is analogous). Then ρ¬A(x, y) =
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−1. So we need to establish that ρ ÷A(x, y) = −1, or
equivalently x /∈ min( ÷A)÷¬x∧¬y, W). We already
know that x /∈ min( ÷A, W). So it remains to
be established that x /∈ min( ÷A∨(¬x∧¬y), W). By
(KM÷ ), min( ÷(A∨(¬x∧¬y), W) = min( , W) ∪
min( , [[¬A ∧ (x ∨ y)]]). We have already assumed
that x /∈ min( , W) and, since x ∈ [[A]], x /∈
min( , [[¬A ∧ (x ∨ y)]]). We therefore recover x /∈
min( ÷A)÷¬x∧¬y, W), as required.

Proposition 19 Where i ∈ { P, R, N }, it is not the case that for any state and
sentences A, B ∈ L there exists C ∈ L such that [ ÷i A) ÷i B] = [ ÷i C]

Proof We shall say that a rank associated with is an equivalence class generated
by the indifference relation ∼ . All three operators are such that, if A ∈ [ ], then
the number of ranks associated with ÷A is equal to n − 1, where n is the number
of ranks associated with (and equal to n if A /∈ [ ]). We can then find a coun-
termodel by considering and A, B ∈ L such that A ∈ [ ] and B ∈ [ ÷ A]:
we will then have n − 2 ranks associated with ÷A)÷B and therefore no C ∈ L

such that ÷C= ÷A)÷B . Figure 6 depicts a countermodel relating to all three
operators.

Proposition 21 Let i, j N, N , R, R . Then, if ∗ is defined from ÷j using
(iLIRC ), then ∗ = ∗i .

Proof Let i, j N, N , R, R . We need to show that the following equality
holds: ρ ∗iA(x, y) = ρ ÷j ¬A)∗NA(x, y).

We first note that our operators satisfy certain preservation conditions for strict
preference. In particular ∗N and ∗R satisfy:

(SPPres∗ ) If y /∈ min( , [[A]]) and x ≺ y, then x ≺ ∗A y

Fig. 6 Countermodel establishing Proposition 19
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whereas ÷N and ÷R satisfy:

(SPPres÷ ) If y /∈ min( , [[A]]) and x ≺ y, then x ≺ ÷¬A y

We divide the proof into two main cases:

(1) Assume x ∈ or y ∈ min( , [[A]]). By (KM∗ ), it follows that min( ∗iA

, W) = min( , [[A]]). By (C1, 2÷ ), we have min( , [[A]]) = min( ÷j ¬A

, [[A]]). Finally, again by (KM∗ ), we recover the result that min( ÷j ¬A

, [[A]]) = min( ÷j ¬A)∗NA, W). These 3 equalities then yield min( ∗iA

, W) = min( ÷j ¬A)∗NA, W). By (KM∗ ), again, we also have min(

, [[A]]) = min( ∗iA, W). Hence:

min( , [[A]]) = min( ∗iA, W) = min( ÷j ¬A)∗NA, W)

With this in hand: ρ ∗iA(x, y) = ρ ÷j ¬A)∗NA(x, y) = 1, if x ∈ and y /∈
min( , [[A]]), ρ ∗iA(x, y) = ρ ÷j ¬A)∗NA(x, y) = 0, if x, y ∈ min(

, [[A]]), and ρ ∗iA(x, y) = ρ ÷j ¬A)∗NA(x, y) = −1, if x /∈ and y ∈ min(

, [[A]]).
(2) Assume x, y /∈ min( , [[A]]).

(a) Assume x ∈ or y ∈ min( , W).

(i) Assume x, y ∈ min( , W). Then ρ (x, y) = 0. Since
x, y /∈ min( , [[A]]), we must also have x, y ∈ [[¬A]]
and hence ρA(x, y) = 0. By (C1, 2∗ ), it then follows that
we have ρ ∗iA(x, y) = ρ ÷j ¬A)∗NA(x, y) = 0.

(ii) Assume that x ∈ and y /∈ min( , W) (the remaining
case is analogous). Then ρ (x, y) = 1. Furthermore,
since y /∈ min( , [[A]]), by (SPPres∗ ) and (SPPres÷ ),
ρ ∗iA(x, y) = ρ ÷j ¬A(x, y) = 1. By reapplying
(SPPres∗ ) again, we then obtain ρ ÷j ¬A)∗NA(x, y) = 1
and we are done.

(b) Assume x /∈ and y /∈ min( , W). We know from the definitions
of these operators that, for x, y /∈ min( , W)∪min( , [[A]]), we
have ρ ÷j ¬A(x, y) = ρ ∗iA(x, y). Therefore ρ ÷j ¬A)∗NA(x, y) =
ρ ∗iA)∗NA(x, y). But, since, by (KM∗ ), ρ ∗iA)∗NA(x, y) ⊆ [[A]],
it follows, by the definition of ∗N, that ρ ∗iA)∗NA(x, y) =
ρ ∗iA(x, y). We can therefore conclude that ρ ∗iA(x, y) =
ρ ÷j ¬A)∗NA(x, y), as required.

Proposition 22 If ∗ is defined from ÷P via (iLIRC ) then ∗ = ∗L.

Proof We provide a countermodel in Fig. 7.

Proposition 23 If i, j L, P , N, N , R, R then ∗i and ÷j jointly satisfy
(iLI∗ ).
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Fig. 7 Countermodel establishing Proposition 22

Proof Let i, j L, P , N, N , R, R . We need to show that ρ ∗iA(x, y) =
ρ ÷j ¬A)∗iA(x, y).

Regarding the case in which i, j L, P : Assume ρA(x, y) = 1. Then, since
it is a property of lexicographic revision that, if ρA(x, y) = 1, then ρ ∗LA(x, y) = 1,
it follows that ρ ∗LA(x, y) = ρ ÷P¬A)∗LA(x, y) = 1. Assume ρA(x, y) = 0. Then,
by (C1, 2∗ ), ρ ∗LA(x, y) = ρ ÷P¬A)∗LA(x, y) = ρ (x, y).

Regarding the case in which i, j N, N , R, R , we divide the proof into
two main cases:

(1) Assume x ∈ or y ∈ min( , [[A]]). The proof proceeds as in the corresponding
case in the proof of Proposition 21 above.

(2) Assume x, y /∈ min( , [[A]]).
(a) Assume x ∈ or y ∈ min( , W). Again, the proof proceeds as in

the corresponding case in the proof of Proposition 21.
(b) Assume x /∈ and y /∈ min( , W). We know from the definitions

of these operators that, for x, y /∈ min( , W) ∪ min( , [[A]]),
we have ρ ÷j ¬A(x, y) = ρ ∗iA(x, y). Since ∗R and ∗N both satisfy
(KM∗ ) and (IIA∗ ) and the latter tell us that ρ (x, y) and ρA(x, y)

jointly determine ρ ∗A(x, y), it follows that ρ ÷j ¬A)∗iA(x, y) =
ρ ∗iA)∗iA(x, y). For the final step, we note that ∗R and ∗N both
satisfy:

(Idem∗ ) ρ ∗A)∗A(x, y) = ρ ∗A(x, y)
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Indeed, in the presence of (KM∗ ), (IIAP∗ ) tells us that the posterior relative
rank ρ ∗A(x, y) of a pair x, y of worlds is determined by the prior relative
rank ρ (x, y), with the nature of this mapping depending, for non-minimal
A-worlds, on the relevant proposition and pair of worlds. (Idem∗ ) is then the
requirement that, for any given value of ρA(x, y), if the row for value v points
to value w, then the row for w also points to w. That this condition holds for
∗R and ∗N can be seen from Table 2. (Note, in passing, that (Idem∗ ) can more
generally be shown to be derivable from (KM∗ ), (IIAP∗ ) and (C1, 2∗ )–(C4∗ )

and is hence also satisfied by ∗L.)
Hence ρ ∗iA)∗iA(x, y) = ρ ∗iA(x, y) and we can conclude that

ρ ∗iA(x, y) = ρ ÷j ¬A)∗NA(x, y), as required.

Proposition 24 Let i, j L, P , N, N , R, R . Then if ÷ defined from ∗i by
÷A= ⊕TQ2 ∗i¬A, then ÷ = ÷j .

Proof The result is obvious from the definitions of the various elementary contrac-
tion operators in Definition 10 and elementary revision operators in Definition 2.
⊕TQ2 combination of and ∗i¬A yields the result that the minimal equivalence
class under ÷A, is given by min( , W) ∪ min( ∗i¬A, W), which is equal to
min( ÷j ¬A, W). Regarding the subsequent equivalence classes, ⊕TQ2 combina-
tion gives us the result that, for x /∈ and y /∈ min( , W) ∪ min( ∗i¬A, W),
ρ ÷A(x, y) = ρ ∗i¬A(x, y). But as we noted in Section 5.1, for the same x and y,
we have ρ ÷j A(x, y) = ρ ∗i¬A(x, y) and so ρ ÷A(x, y) = ρ ÷j A(x, y).
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