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Fig. 1. Our method, named DeepFaceVideoEditing, allows users to intuitively edit face video by sketches and masks. Given an input face video, users can
select multiple frames and draw sketches within selected mask regions to apply diverse editing operations. Our system supports two types of manipulations,
namely, Temporally Consistent Editing, which has significant influence on the entire video (blue boxes), and Temporally Variant Editing, which dynamically
changes in the timeline (orange boxes). The editing effects of these two types are propagated to all the video frames in different manners. The output video
fuses all input sketch editing effects and shows stable temporal consistency. Please refer to the accompanying video for various editing results with our
technique. Original videos courtesy of Vanessa Garcia.

Sketches, which are simple and concise, have been used in recent deep image
synthesis methods to allow intuitive generation and editing of facial images.
However, it is nontrivial to extend such methods to video editing due to
various challenges, ranging from appropriate manipulation propagation and
fusion of multiple editing operations to ensure temporal coherence and vi-
sual quality. To address these issues, we propose a novel sketch-based facial
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video editing framework, in which we represent editing manipulations in
latent space and propose specific propagation and fusion modules to gener-
ate high-quality video editing results based on StyleGAN3. Specifically, we
first design an optimization approach to represent sketch editing manipula-
tions by editing vectors, which are propagated to the whole video sequence
using a proper strategy to cope with different editing needs. Specifically,
input editing operations are classified into two categories: temporally con-
sistent editing and temporally variant editing. The former (e.g., change of
face shape) is applied to the whole video sequence directly, while the latter
(e.g., change of facial expression or dynamics) is propagated with the guid-
ance of expression or only affects adjacent frames in a given time window.
Since users often perform different editing operations in multiple frames,
we further present a region-aware fusion approach to fuse diverse editing
effects. Our method supports video editing on facial structure and expression
movement by sketch, which cannot be achieved by previous works. Both
qualitative and quantitative evaluations show the superior editing ability of
our system to existing and alternative solutions.

CCS Concepts: •Human-centered computing→ Graphical user interfaces;
• Computing methodologies→ Image processing.
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1 INTRODUCTION
While portrait image editing andmanipulation have been researched
extensively and achieved impressive editing results with different
interaction forms, facial video editing still remains a difficult task.
This is because video editing poses several key challenges. First,
although existing image editing methods generate good results on
individual key frames, it is hard to infer the manipulations of other
frames corresponding to input editing operations on key frames. Sec-
ond, certain editing effects are temporally variant and have a close
relationship with dynamic expressions, making the propagation of
such editing effects more difficult. Third, in order to edit a video
with detailed control, users often apply different editing operations
at multiple key frames. Fusing these diverse editing manipulations
appropriately is nontrivial since they might cause undesired interfer-
ence. Lastly, generating temporally coherent video results following
editing requirements also remains challenging, since human eyes
are sensitive to flickering artifacts.
Sketch, as a simple and effective interaction intermediary, has

been widely used in single facial image editing. Compared with
methods [Alaluf et al. 2021a; Bhat et al. 2004; Härkönen et al. 2020;
Shen et al. 2020; Wu et al. 2021] that control specific predefined
attributes (pose, age, expression, etc) with slider bars, sketching
provides users with more editing freedom and achieves more de-
tailed spatial control. Multiple facial editing methods [Jo and Park
2019; Portenier et al. 2018; Yang et al. 2020] have used sketch-based
interfaces to guide the generation of edited local parts via image
completion. DeepFaceEditing [Chen et al. 2021] further disentangles
the facial geometry and appearance with the help of sketch, achiev-
ing detailed editing of local and global components. Although these
methods generate attractive results for single face images, utilizing
sketches for video editing is highly nontrivial, since hand-drawn
sketches are sophisticated and it is difficult to propagate them rea-
sonably to an entire video sequence. Besides, when editing a single
facial image, users can flexibly modify both its expression and the
shape of facial components. Some editing operations (e.g., change
of face shape) influence the whole video sequence, while others im-
ply a one-off movement (e.g., blinking) or are only associated with
specific facial expressions (e.g., forehead wrinkles while smiling).
These differences require progressive propagation to specific frames,
making video editing with sketches more challenging.
To propagate sketch-based editing effects to a video sequence,

one possible solution is to first extract edge maps from individual
video frames, and then warp user-specified sketches according to
optical flow fields and paste them back into the edge map sequence.
Image translation methods [Isola et al. 2017; Yang et al. 2017] and
video translation methods [Wang et al. 2019] could be further uti-
lized to generate the edited video from the edge maps with the
warped sketches. However, this naïve sketch warping approach

often predicts unreasonable sketches, causing obvious artifacts on
edited regions, and it is hard to generate high-quality temporally
coherent video editing effects because of the complex processing
steps. Another possible solution is to first generate edited images by
applying sketch-based image editing to individual frames, and then
utilize an image animation approach (e.g., [Siarohin et al. 2019]) to
animate the edited frames with the motion driven by the original
frames. This method generates robust video results, but it is hard
to reconstruct the details only using single edited frames. Besides,
neither of the above possible solutions could generate temporally
variant editing results, such as adding blink in selected frames or
making eyes small when smiling.
In this work, we propose a sketch-based framework for editing

face videos, taking the temporal effects of single-frame editing into
consideration and enabling consistent fusion of multiple editing
operations. We utilize a StyleGAN-based generator to synthesize
high-resolution, temporally coherent video editing results. The orig-
inal video frames are first projected into the latent space by E4E
[Tov et al. 2021] and the generator is fine-tuned as done in [Roich
et al. 2021]. Then, we add a new branch to the original StyleGAN
generator to synthesize sketches, which are utilized in our carefully
designed optimization approach to find semantically meaningful
editing vectors representing input sketch-based edits. Observed that
a video sequence can be disentangled into facial identity and driv-
ing motion, we classify input sketches for two editing purposes:
temporally consistent editing and temporally variant editing. The
former includes editing operations on the facial base shape and is
directly applied to all frames. Temporally variant editing is further
propagated in two different ways: time window propagation that
generates a movement emerging and disappearing, and expression
guidance propagation that exhibits editing effects with respect to
specific expressions. Furthermore, since users often input editing
operations in multiple key frames of their choice, we further de-
sign a fusion technique to combine multiple editing operations in
different regions.
We perform extensive qualitative and quantitative experiments

and the results show effective sketch editing performance and rea-
sonable editing propagation results of our method. Compared with
the state-of-the-art methods, our approach generates better video
editing results and achieves novel temporally variant editing ma-
nipulations by sketch.

The main contributions of this work are summarized as follows.

• To the best of our knowledge, DeepFaceVideoEditing is the
first sketch-based human portrait video editing system, in
which the user-specified edits on key frames are represented
by latent editing vectors with optimization and propagated
into an entire video.

• Our system distinguishes the editing sketches into two cate-
gories: temporally consistent editing and temporally variant
editing. The latter is propagated with the guidance of expres-
sion, or transformed in a temporal window.

• We develop an editing fusion technique to combine the edits
of different regions in multiple frames, providing more free-
dom to add diverse editing operations in arbitrary selected
frames.
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2 RELATED WORK

2.1 Facial Image Editing
2.1.1 Editing via Conditional GANs. Generative Adversarial Net-
works (GANs) [Goodfellow et al. 2014] and conditional GANs [Mirza
and Osindero 2014] have enabled splendid approaches for users to
edit facial images via diverse user input forms, including sketches,
color strokes, semantic masks, and attribute-based sliders. Based
on general image-to-image translation [Isola et al. 2017; Yang et al.
2017] methods, Gu et al. [2019] learn facial features from a compo-
nent level by employing semantic masks, thereby achieving con-
vincing local editing results. Lee et al. [2020] further improve the
editing performance by modeling the user editing behavior with
geometry structure prior and present a more robust editing system.
As semantic masks contain no style information, Zhu et al. [2020]
design semantic region-adaptive normalization blocks and support
style control for local regions. On the other hand, sketch is yet
another user-friendly interaction intermediary and provides more
detailed control compared with label maps. FaceShop [Portenier
et al. 2018] and SC-FEGAN [Jo and Park 2019] both take mask, color
strokes, and sketches as inputs and generate local facial editing
results based on image completion frameworks. In order to control
hand-drawn sketches more robustly, Yang et al. [2020] present a
sketch refinement network, which generates realistic results even
for coarse input sketches. DeepFaceEditing [Chen et al. 2021] fur-
ther disentangles the facial geometry and appearance, allowing both
local geometry editing by sketches and global appearance editing
with reference images. Although previous works generate excellent
editing results for single images, it is hard to directly transfer them
into video editing for the following reasons. First, since the user-
specified editing is only imposed on a single frame, it is a nontrivial
task to infer corresponding edits for other frames. Second, some
editing effects are temporally dependent and entangled with expres-
sion and pose, bringing about additional challenges for the editing
propagation process.

2.1.2 Editing via GAN Latent Space Exploration. Pioneering GANs,
typically StyleGAN and its follow-up works [Karras et al. 2021,
2019, 2020], could generate high-resolution photo-realistic facial
images from a Gaussian distribution, by first projecting random
noise to an intermediate spaceW. The disentangled nature ofW
(or its extensionW+) further induces awesome discoveries that real
images could be projected back into the latent space for editing.
Therefore, the first problem is how to properly project real im-

ages into the latent space, and this has caught extensive attention
in the field. For example, pSp [Richardson et al. 2021] designs an
encoder to map real images, sketches and/or semantic masks to an
extended W+ space, defined by the concatenation of 18 different
512-dimensional vectors, and solves an image-to-image translation
problem. To make the inverse latent codes more robust for edit-
ing, E4E [Tov et al. 2021] further constrains different style vectors
in W+ to have low variance and utilizes an adversarial training
strategy to enforce the style vectors lying in the distribution of W.
Although these methods could generate results that maintain main
visual characteristics of input images, there still exist an identity
gap and they cannot reconstruct the input images precisely in detail

by using the pretrained generator. Considering the performance
of reconstruction is limited by the generator’s latent space, [Alaluf
et al. 2021b; Roich et al. 2021] utilize the latent codes (editable but
having construction distortion) of real images as pivot and fine-tune
parameters of the StyleGAN generator. The slight modification of
the generator is able to compensate for the discrepancy of invert-
ing real images and achieve unprecedented identity preservation
quality as a result. A few attempts have been made to extend the
projection idea to videos. For example, Tian et al. [2021] present a
motion generator to predict a latent code sequence, which is fed
into a pretrained image generator to synthesize videos. To process
real videos, Yao et al. [2021] utilize pSp [Richardson et al. 2021] to
encode frames and apply editing effects with a latent Transformer.
Compared with the above video generation methods, ours leverages
a more robust E4E [Tov et al. 2021] encoder to project all frames,
and then uniformly samples several frames to fine-tune the genera-
tor as [Roich et al. 2021] to reconstruct the input video. The video
projection approach further supports novel sketch-based editing.
After projecting real images into the latent space, the second

problem comes as how to manipulate the latent codes to achieve
desired editing effects. [Abdal et al. 2021; Härkönen et al. 2020; Shen
et al. 2020; Wu et al. 2021] utilize different methods to get linear
editing directions inW/W+ for controlling global attributes in a
disentangled manner. With the help of an age regression network
and a cycle-consistency strategy, [Alaluf et al. 2021a] further learns
a more disentangled, nonlinear path to solve the age transformation
problem. The underlying 3D property of human faces triggered
works on how to control the facial generation process with 3D
parameters. For example, StyleRig [Tewari et al. 2020b] designs a
rigging network to manipulate latent codes controlled by 3DMM
parameters, and trains it in a self-supervised way by utilizing a facial
reconstruction network with a differentiable render. PIE [Tewari
et al. 2020a] extends StyleRig to real facial images by adding an
identity preservation optimization approach to embed given images.
Instead of training with unrealistic 3D rendering results in a self-
supervised way, PhotoApp [Mallikarjun et al. 2021] directly utilizes
collected paired data to train a latent code manipulation network
and allows detailed control for lighting and view pose. Although
these works achieve interesting editing results, they can only edit
pre-defined attributes. In contrast, our method utilizes sketch as an
interaction tool and provides users more freedom for image/video
editing.
Lastly, the incorporation of multiple modalities spurs more in-

teresting editing methods operating on the latent space, such as
utilizing text as the interface via a large pretrained language encoder
of CLIP [Radford et al. 2021] and combining semantic masks for
latent optimization. One of the ground-breaking works in this direc-
tion, StyleCLIP [Patashnik et al. 2021], leverages CLIP [Radford et al.
2021] image/text encoders to measure the distance between text
specification and edited results, by assuming co-linearity between
the image latent space and the text latent space. It then iteratively
optimizes or trains a mapping network to generate text-guided edit-
ing results. With the guidance of semantic masks, Barbershop [Zhu
et al. 2021] uses a novel latent space to better encode spatial infor-
mation, and then aligns the spatial structure of the source image
to the target image to generate realistic image blending results for
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hair transfer and face swapping. Ling et al. [2021] further utilize
semantic masks as an interaction tool. Their approach models the
joint distribution of semantic masks and real images similar to ours,
and then performs latent code optimization with the semantic con-
straints in edited regions to synthesize edited images. Pandey et al.
[2021] also share a similar latent code optimization idea but project
a target sample into the manifold of source images for classification.
Although previous works achieve excellent single image editing
performance, it is nontrivial to apply them to video editing, where
temporal variance and editing fusion need to be heavily considered.
Besides, we leverage another simple but user-friendly interaction
form, sketch, which has never been used in previous video editing
works.

2.2 Video Editing
Video editing is a more complicated problem compared with single
image editing, since the editing should be propagated reasonably
from one or multiple frames to all the rest frames, and the synthe-
sized results should be temporally coherent. Some previous works
[Meyer et al. 2018; Vondrick et al. 2018; Zhang et al. 2019] have paid
attention to the problem of video colorization, where they propa-
gate the reference colors to the entire gray-scale video sequence.
Lei and Chen [2019] further present an automatic video colorization
approach to generate diverse colorized videos without any color ref-
erence. Although these works generate interesting video-to-video
translation results, their editing effects are limited to color transfor-
mation, rather than editing propagation. To generate editing results
beyond colorization, [Jamriska et al. 2019; Ruder et al. 2018; Texler
et al. 2020] extend style transfer methods [Gatys et al. 2016] to
videos by adding temporally consistent constraints and propagating
stylization manipulations into the video sequence. Despite the suc-
cess in video appearance/style modification, how to effectively edit
the content of target videos is yet another important topic, and this
problem is the main focus of this paper. Bhat et al. [2004] present a
traditional method to edit videoes of waterfalls, rivers, flames, and
smoke by analyzing and synthesizing texture motion and utilizing
user-specified flow lines. The approach in [Huang et al. 2016] gener-
ates object removal results by utilizing a temporally coherent video
completion approach. Kasten et al. [2021] represent videos into a
novel atlas space, composed of multiple semantically interpretable
layered 2D atlases, to edit videos more intuitively and creatively.
Then, diverse editing operations introduced to the atlases can be
mapped back into the original video and propagated reasonably.
Compared with previous works, we present the first sketch-based
facial video editing framework. Our method not only supports the
editing of facial base shape, but also allows the manipulation of
facial expression, therefore being more interactive while providing
users with more editing freedom.

3 METHOD
Figure 2 shows an overview of our novel video editing method,
which supports temporally consistent editing and temporally variant
editing both via sketches. Given a video sequence and correspond-
ing latent codes (projected by E4E [Tov et al. 2021]), for efficiency,
we sample an input video for every several frames and fine-tune the

StyleGAN3 [Karras et al. 2021] generator to reconstruct the original
video, using the training strategy of [Roich et al. 2021]. With the
user’s input editing mask and sketch, our optimization method (Sec-
tion 3.1) generates latent editing vectors that represent the sketch
structure editing. Then, we divide the sketch editing operations into
two categories: temporally consistent editing and temporally vari-
ant editing, and propagate the two categories of editing in different
ways (Section 3.2). Temporally consistent editing exerts modifica-
tion to the facial shape, which has significant influences on the
whole video sequence. Since the extracted editing directions are
semantically meaningful and disentangled, we directly apply the
editing vectors to all video frames. Temporally variant editing is fur-
ther classified into two sub-categories: expression guidance editing
and time window editing. Expression guidance editing is propa-
gated by calculating the expression similarity between the edited
key frame and the rest frames, while time window editing is applied
to a specific time window and generates facial movement results
within that time window. In order to combine different types of
editing at multiple key frames, we further design a region-aware
fusion method (Section 3.3), which warps the editing masks and
replaces the feature maps of the original frames with the edited
features in local regions. Finally, the synthesized faces are merged
into the original video while retaining the video background.

3.1 Sketch Editing Optimization
In this section, we describe our novel optimization method to gener-
ate editing vectors from the user-drawn sketches. Note that although
the proposed method is designed for editing video sequences, edit-
ing vectors are generated from a single image being edited by a
user. Similar to the recent image translation method [Lu et al. 2018]
and semantic segmentation editing method [Ling et al. 2021], we
model a joint distribution over real facial images and sketches by
an extended StyleGAN generator 𝐺 with two branches: 𝐺𝑥 that
generates photo-realistic images and 𝐺𝑠 that generates correspond-
ing sketches, as shown in Figure 3. Given a single key frame 𝑥 for
editing, we project it into theW+ space to generate a latent code
𝑤 , and then utilize𝐺 to synthesize the reconstruction image𝐺𝑥 (𝑤)
and the corresponding sketch 𝐺𝑠 (𝑤). By enforcing the sketch in
the region of interest to be consistent with the user-input sketch
while maintaining other regions unchanged, we optimize the latent
code 𝑤 to generate a new latent code 𝑤𝑒𝑑𝑖𝑡 . The editing vector is
obtained by calculating the difference between the two latent codes.
We describe this process in detail as follows.

The generator𝐺 is designed based on the StyleGAN3 [Karras et al.
2021] generator 𝐺 , where the real image branch 𝐺𝑥 has the same
network as the original generator and shares the same weights. We
add another branch𝐺𝑠 to synthesize sketches from the intermediate
feature maps of 𝐺𝑥 . Given the latent code 𝑤 , 𝐺𝑥 generates a set
of feature maps, denoted as {F𝑖 | 𝑖 = 1, . . . , 𝑀}, 𝑀 = 14 in our
network. F1 is utilized to generate initial sketch feature maps with
the resolution of 16 × 16 and 32 channels. {F𝑖 | 𝑖 = 2, . . . , 𝑀} are
further used to generate residual maps added on the initial sketch
feature maps. We leverage a progressive generation process similar
to StyleGAN3 and up-sample the sketch feature maps to have the
same resolution as F𝑖 . The sketch feature maps finally synthesize
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Fig. 2. An overview of our framework. Given an input video, we utilize E4E [Tov et al. 2021] to generate corresponding latent codes. Then, the Editing Vector
Generation module takes the original image, user-drawn sketch and mask as input, and generates editing vectors to represent editing manipulations. The
editing vectors are further propagated in different ways for each frame 𝑓𝑖 : Temporally Consistent Editing directly copies the original editing vectors, while
temporally variant editing (Time Window Editing and Expression Guidance Editing) use specific strategies to generate propagation weights for adjacent
frames. Finally, multiple editing operations are fused by the Region-aware Fusion to synthesize the edited video results. Original videos courtesy of cottonbro.
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Fig. 3. We apply the original StyleGAN generator to synthesize sketches
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images. Given an editing sketch and its corresponding mask, we propose
an optimization approach to obtaining the edited latent code 𝑤𝑒𝑑𝑖𝑡 , which
is then used to synthesize the edited image.

sketch 𝐺𝑠 (𝑤), which describes the structure of generated images
𝐺𝑥 (𝑤) and is used for further editing. StyleGAN3 generator has 10
pixel border padding for each feature map F𝑖 . We crop the feature
maps and only feed the center region for sketch synthesis since
the padding border does not have direct corresponding pixels in
synthetic sketches or images.
To train the sketch generation branch 𝐺𝑠 , we first utilize paired

data to train a sketch generation network 𝑆 based on the network
structure and training process of Pix2PixHD [Yang et al. 2017].
The sketch generation network 𝑆 takes real facial images as input

and generates corresponding sketches for training 𝐺𝑠 . Then, we
randomly sample a latent code 𝑤 and feed it into 𝐺 to generate
a synthetic facial image 𝐺𝑥 (𝑤) and a predicted sketch 𝐺𝑠 (𝑤). We
utilize the following losses to train 𝐺𝑠 :

𝐿(𝐺𝑠 ) = 𝛼1𝐿𝑉𝐺𝐺 (𝐺𝑠 (𝑤), 𝑆 (𝐺𝑥 (𝑤))) + 𝛼2𝐿𝐿2 (𝐺𝑠 (𝑤), 𝑆 (𝐺𝑥 (𝑤))),
(1)

where 𝐿𝑉𝐺𝐺 is the Perceptual loss used tomeasure the visual similar-
ity by the pretrained VGG-19 model, and 𝐿𝐿2 is a regular pixel-wise
L2 loss. In our experiments, we empirically set 𝛼1 = 𝛼2 = 1.0.

After learning the distribution of real facial images and sketches
by 𝐺 , we propose an optimization method to find the editing vec-
tor 𝛿𝑒𝑑𝑖𝑡 , from the user’s inputs of the real image 𝑥 , the editing
sketch 𝑠𝑒𝑑𝑖𝑡 and the mask𝑚𝑒𝑑𝑖𝑡 , which marks the editing region.
The real image 𝑥 is projected into the W+ space to generate the
original latent code𝑤 . Then, we propose to find a new latent code
𝑤𝑒𝑑𝑖𝑡 , which generates a synthetic facial image𝐺𝑥 (𝑤𝑒𝑑𝑖𝑡 ) and the
corresponding sketch𝐺𝑠 (𝑤𝑒𝑑𝑖𝑡 ), such that the generated sketch is
as close as possible to the user input in the mask region, and the
generated facial image retains the original facial image outside the
mask. To find𝑤𝑒𝑑𝑖𝑡 , we minimize the following losses:

𝐿𝑠𝑘𝑒𝑡𝑐ℎ (𝑤𝑒𝑑𝑖𝑡 ) = 𝐿𝐿𝑃𝐼𝑃𝑆 (𝐺𝑠 (𝑤𝑒𝑑𝑖𝑡 ) ⊙𝑚𝑒𝑑𝑖𝑡 , 𝑠𝑒𝑑𝑖𝑡 ⊙𝑚𝑒𝑑𝑖𝑡 ), (2)

𝐿𝑟𝑔𝑏 (𝑤𝑒𝑑𝑖𝑡 ) = 𝐿𝐿𝑃𝐼𝑃𝑆 (𝐺𝑥 (𝑤𝑒𝑑𝑖𝑡 ) ⊙ (1 −𝑚𝑒𝑑𝑖𝑡 ), 𝑥 ⊙ (1 −𝑚𝑒𝑑𝑖𝑡 )),
(3)

where 𝐿𝐿𝑃𝐼𝑃𝑆 is the LPIPS [Zhang et al. 2018] distance, and ⊙ de-
notes pixel-wise multiplication. 𝐿𝑠𝑘𝑒𝑡𝑐ℎ constrains the generated
image𝐺𝑥 (𝑤𝑒𝑑𝑖𝑡 ) with the editing effects determined by 𝑠𝑒𝑑𝑖𝑡 , while

ACM Trans. Graph., Vol. 41, No. 4, Article 167. Publication date: August 2022.



167:6 • Feng-Lin Liu, Shu-Yu Chen, Yu-Kun Lai, Chunpeng Li, Yue-Ren Jiang, Hongbo Fu, and Lin Gao

𝐿𝑟𝑔𝑏 avoids undesired changes in non-editing regions. Although
the LPIPS [Zhang et al. 2018] distance is specifically designed for
images, we find it is also effective for sketches, possibly due to its
sensitivity for edges. The final optimization loss is:

𝐿𝑒𝑑𝑖𝑡𝑖𝑛𝑔 (𝑤𝑒𝑑𝑖𝑡 ) = 𝛽1𝐿𝑠𝑘𝑒𝑡𝑐ℎ + 𝛽2𝐿𝑟𝑔𝑏 , (4)

where 𝛽1 and 𝛽2 are hyperparameters. The weights of networks are
fixed and the only parameter to optimize is𝑤𝑒𝑑𝑖𝑡 . Then, we obtain
the final editing vector 𝛿𝑒𝑑𝑖𝑡 as:

𝛿𝑒𝑑𝑖𝑡 = 𝑤𝑒𝑑𝑖𝑡 −𝑤. (5)

This represents the proposed sketch editing and is later propagated
to the entire video.

3.2 Temporal Editing Propagation
Given a sequence of video frames, 𝑓1, 𝑓2, ..., 𝑓𝑁 , where 𝑁 is the num-
ber of frames, we project all frames into the W+ space to generate
a sequence of latent codes,𝑤1,𝑤2, ...,𝑤𝑁 , using the E4E [Tov et al.
2021] encoder. After generating the editing vectors 𝛿𝑒𝑑𝑖𝑡 in Sec-
tion 3.1, we design a method to propagate the editing reasonably.
Specifically, the editing operations are classified into two categories:
temporally consistent editing and temporally variant editing. The
latter is further propagated in two different ways: expression guid-
ance propagation and time window transformation. Since these two
propagation methods are meant to generate different editing results,
users define specific editing operations beforehand.
Temporally consistent editing. Some sketch editing operations

have a significant influence on the entire video and show a limited
relationship with facial motion or expression. These operations
are mainly editing the basic shape, such as the shape of face and
facial components, haircut, etc. Since the editing vectors 𝛿𝑒𝑑𝑖𝑡 are
disentangled and semantically meaningful, we directly apply them
to all frames. For each frame 𝑓𝑖 , we generate editing vectors 𝛿𝑖 =
𝛿𝑒𝑑𝑖𝑡 , 𝑖 = 1, 2, ..., 𝑁 . They will be used to propagate the input edits
to the entire video and generate final edited frames.

Time window editing. Different from a single image, a face video
often exhibits different expressions or facial movements through
time. Users thus tend to edit the temporal facial movement, such
as adding blink or presenting smiling at some specific time. Given
an editing vector 𝛿𝑒𝑑𝑖𝑡 at a specific frame 𝑓𝑡 , users need to input
the duration time ℎ of the editing effects and the transition time 𝑙
to the editing effects. Then, for each frame 𝑓𝑖 , we generate smooth
propagation vectors 𝛿𝑖 by a piecewise linear function:

𝛿𝑖 = 𝛾 · 𝛿𝑒𝑑𝑖𝑡 , 𝑖 = 1, 2, ..., 𝑀 (6)

𝛾 =


0 𝑖 < 𝑡1 𝑜𝑟 𝑖 > 𝑡4
1 𝑡2 < 𝑖 < 𝑡3

𝑖−𝑡1
𝑙

𝑡1 ≤ 𝑖 ≤ 𝑡2
𝑡4−𝑖
𝑙

𝑡3 ≤ 𝑖 ≤ 𝑡4

(7)

𝑡1 = 𝑡 −ℎ/2−𝑙, 𝑡2 = 𝑡 −ℎ/2, 𝑡3 = 𝑡 +ℎ/2, 𝑡4 = 𝑡 +ℎ/2+𝑙 , where 𝑡 is the
time of the edited frame 𝑓𝑡 . Similarly, the new editing vectors will be
utilized to generate synthetic facial images. In this way, we can not
only generate editing effects within a specified time window, but
also ensure a smooth transition where the effects gradually appear
and disappear, e.g., from a neutral expression to smiling, and then
from smiling to a neutral expression.

Expression guidance editing. In some situations, users only want
to apply editing effects on a specific expression, while retaining the
original attributes or adding different editing effects on other ex-
pressions. These editing operations include some expression-driven
wrinkles (e.g., nasolabial wrinkles, dimples, etc.) and some shape
editing manipulations that only affect specific expressions (e.g.,
making eyes smaller during smiling). In order to propagate these ex-
pression guidance editing operations, we utilize a 3D reconstruction
method [Deng et al. 2019] to extract expression parameters. Specifi-
cally, given several key frames �̃�1, �̃�2, . . . , �̃�𝑀 , where𝑀 is the num-
ber of key frames, we extract expression parameters 𝒆𝒌1 , 𝒆

𝒌
2 , . . . , 𝒆

𝒌
𝑴

and generate the corresponding editing vectors 𝛿1
𝑒𝑑𝑖𝑡

, 𝛿2
𝑒𝑑𝑖𝑡

, . . . , 𝛿𝑀
𝑒𝑑𝑖𝑡

(obtained in Section 3.1). Notably, some key frames could exhibit
no editing operations (selected directly from the original sequence)
and just serve as key reference frames to emphasize that no editing
should be applied to the selected expressions. For these key frames,
the editing vectors are simply set as zeros. We utilize the following
strategy to propagate the expression guidance editing:

𝛿𝑖 =
1
𝐶

𝑀∑︁
𝑗=1

exp(cos(𝒆𝒊, 𝒆𝒌𝒋 )) · 𝛿
𝑗

𝑒𝑑𝑖𝑡
, 𝑖 = 1, 2, ..., 𝑁 (8)

where 𝒆𝒊 is an expression parameter of input frame 𝑓𝑖 and 𝐶 is
the normalization term calculated by 𝐶 =

∑𝑀
𝑗=1 exp(cos(𝒆𝒊, 𝒆𝒌𝒋 )). In

our experiments, key frame editing vectors 𝛿1
𝑒𝑑𝑖𝑡

, 𝛿2
𝑒𝑑𝑖𝑡

, ..., 𝛿𝑀
𝑒𝑑𝑖𝑡

are
generated for a specific mask region, which is assigned by users at
an arbitrary key frame and warped into other key frames with the
warp field generated by the method in [Siarohin et al. 2019].

3.3 Region-aware Fusion
During video editing, users can select and edit an arbitrary frame
and our system generates editing vectors which represent the modi-
fications indicated by the input sketches (Section 3.1). By utilizing
the propagation method (Section 3.2), we generate editing vectors
for all the frames in the video. However, the above method only sup-
ports a single editing operation in a specific mask region. In practice,
users often need to select multiple frames and edit different regions
within them for propagation. This would naturally generate multi-
ple editing vectors, thus requiring a robust method to consistently
fuse the editing effects in the latent space. A naïve method is to
directly add all the editing vectors to the original latent code and
generate edited frames from these modified latent codes. However,
this easily causes undesired artifacts (as shown in the ablation study
in Section 4.3). To address this issue, we design a novel approach to
fuse the editing operations in different mask regions.
Given a sequence of video frames, 𝑓1, 𝑓2, . . . , 𝑓𝑁 , users select 𝑀

key frames 𝑘1, 𝑘2, . . . , 𝑘𝑀 for editing in different regions, with the
corresponding 𝑀 input masks𝑚1,𝑚2, . . . ,𝑚𝑀 . Utilizing the opti-
mization and propagation methods in the above sections, for each
frame 𝑓𝑖 , we generate𝑀 editing vectors 𝛿1

𝑖
, 𝛿2

𝑖
, ..., 𝛿𝑀

𝑖
, representing

different sketch editing effects.We further need to generate𝑀 masks
for each predicted frame 𝑓𝑖 , denoted as𝑚1

𝑖
,𝑚2

𝑖
, ...𝑚𝑀

𝑖
, warped from

the input masks.𝑚 𝑗
𝑖
marks the same region as the input mask𝑚 𝑗

while considering the expression and head motion between frame
𝑓𝑖 and edited key frame 𝑘 𝑗 . We use the method of [Siarohin et al.
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Fig. 4. The results of temporally consistent editing and time window editing. In this example, we add beard and lower his hairline. The effects are propagated
to the entire sequence of video frames. Besides, an eyebrow-raising movement is added and propagated reasonably. The generated faces are merged into the
original video to get complete editing results. Original videos courtesy of Mikhail Nilov.

Fig. 5. The results of temporally consistent editing and expression guidance editing. In this example, we make her eyes smaller when this girl opens her
mouth (Key Frame 2), while retaining the original eyes when she has a neutral expressions (Key Frame 1). Key frame 1 has no editing manipulation and thus
its editing vectors are zeros. The results show that our editing effect has a close relationship with expression and the movement is modified progressively.
Temporally consistent editing is also added to make her nose thinner. Original videos courtesy of SHVETS production.

2019] to generate a warp field, which represents head motions and
propagates the input editing masks to the entire video. In order to
fuse different editing operations, we replace specific regions of the
original frame’s feature maps with the new edited features by using
the following formulation:

F 𝑗
𝑖
= F̃ 𝑗

𝑖
⊙ 𝑑𝑜𝑤𝑛(𝑚 𝑗

𝑖
) + F 𝑗−1

𝑖
⊙ (1 − 𝑑𝑜𝑤𝑛(𝑚 𝑗

𝑖
)), (9)

where F̃ 𝑗
𝑖
= 𝐺 (𝑤𝑖 + 𝛿

𝑗
𝑖
), with the initial feature maps being F 0

𝑖
=

𝐺 (𝑤𝑖 ) and 𝐺 being the StyleGAN3 generator. We down-sample
the mask 𝑚

𝑗
𝑖
to make sure it has the same resolution as feature

maps F 𝑗
𝑖
and F 𝑗−1

𝑖
. The feature map F 𝑗

𝑖
is updated step by step for

𝑗 = 1, 2, ..., 𝑀 , corresponding to𝑀 editing operations. As described
in Section 3.1, StyleGAN3 generates 14 intermediate feature maps,
from a low resolution to a high resolution in a progressive manner.
We manipulate the middle 5 feature maps from resolution 32 × 32
to 128 × 128, which are further modified by the original latent code

𝑤𝑖 in higher resolution to generate the final fusion frame with
multiple editing operations. We apply the fusion manipulation for
all frames 𝑓𝑖 , 𝑖 = 1, 2, .., 𝑁 and synthesize the aligned edited video.
The generated faces are merged into the original video to synthesize
final video with the edited results in the following way. We first
utilize a face parsing model [Yu et al. 2021] to generate face masks
for different facial regions, both for the input and edited frames,
and calculate the union of them. Then, the masks are dilated with
border pixels blurred to serve as pixel color composition weights for
merging. The images are further projected back to the original video
according to the alignment parameters to synthesize the final edited
video results. The intermediate results and more implementation
details can be found in the supplementary document.
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Fig. 6. The results of adding beard with different drawing styles. The 1st column shows the hand-drawn sketches and masks on a selected key frame and the
2nd column shows the corresponding editing results. The key frame before editing is given in the 1st row. For the remaining columns: the 1st row shows the
original frames and the rest are propagation results by setting the editing manipulation as temporally consistent editing. Our method generates high-quality
results under diverse drawing styles. Original videos courtesy of cottonbro.

Fig. 7. Our method can propagate editing manipulations across frames
involving pose changes. The 1st row shows the original frames and the 2nd
row presents the edited frames. The key frame highlighted with an orange
border is edited into the frame shown underneath with a green border.
Original videos courtesy of Tima Miroshnichenko.

4 EXPERIMENTS
In this section, we discuss the results of our approach and extensive
experiments that show the superiority of our method to existing or

Table 1. Statistical analysis of the relationship between editing vectors and
latent codes of different poses. For each rotation angle (1st row), the latent
codes of the front faces are subtracted from the projected latent codes to
generate pose vector differences. Then, the Pearson correlation coefficients
are calculated between editing vectors and vector differences. We use 10
videos and show the mean (2nd row) and maximum values (3rd row). All
values are less than 0.2, which supports that editing manipulations and pose
changes have low correlation.

5° 15° 25° 35° 45°
Mean -0.0250 0.0631 0.1139 0.1484 0.1714
Max 0.1551 0.1190 0.1502 0.1747 0.1962

alternative solutions. We first present the results of diverse video
editing operations, including the editing of base shape, time window
editing, and expression guided manipulation, corresponding to our
different propagation strategies. Then, we evaluate our approach
from three aspects, namely comparison with the state-of-the-art
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Fig. 8. Comparisons between our approach and existing sketch-based facial image editing methods. In each row, (a) is the original input image, (b) is the
user-specified sketch for editing in specific mask region(s). (c)∼(f) are the results generated by the existing methods and (g) shows our results. Compared
with (c)∼(e), our method generates more realistic results in local edited regions and fuses editing operations better for entire images. Compared with pSp
[Richardson et al. 2021], our method retains the identity of input images well, while the identity of pSp’s results is often changed dramatically.

approaches, ablation study, and perception study, to testify the better
performance of our method than alternative approaches.
Since our method first applies sketch editing on several key

frames and then propagates the manipulations to a sequence of
video frames, we compare our approach with the state-of-the-art
methods from two branches: 1) sketch facial editing methods for sin-
gle images, include SC-FEGAN [Jo and Park 2019], Deep-PS [Yang
et al. 2020], DeepFaceEditing [Chen et al. 2021] and pSp [Richardson
et al. 2021], each of which takes a user-input mask and/or a sketch
as input and utilizes different approaches to generate edited results
for single frames; 2) sketch editing propagation methods include
Few-Shot Vid2Vid [Wang et al. 2019] and First-Order [Siarohin et al.
2019]. They both propagate sketch editing manipulations or editing
effects to a whole video. Then, we conduct ablation studies to show
the necessity of our carefully designed components, especially the
latent code optimization module and the region-aware fusion strat-
egy. Finally, a perception study is conducted to further prove the
better performance of our method compared with alternatives.

All the above experiments were carried out on a PC with an Intel
i7-7700CPU, 64GB RAM, and two Nvidia RTX 2080Ti GPUs. The
DeepFaceVideoEditing is implemented with both Pytorch [Paszke
et al. 2019] and Jittor [Hu et al. 2020], and the source code is available

at this link1. To fine-tune the StyleGAN generator, we utilize the
default hyperparameters in PTI [Roich et al. 2021], where the ADAM
[Kingma and Ba 2014] optimizer with 0.0003 learning rate is used.
Unless otherwise stated, we perform the fine-tuning optimization
for 200 steps. When optimizing the latent editing vectors, we use
the ADAM optimizer with 0.0005 learning rate, while tuning other
hyperparameters to generate visually the best results. The sketch
generator is trained with the FFHQ dataset [Karras et al. 2019], with
the paired sketch-image data synthesized as in [Chen et al. 2020].
The test videos were collected from the pexels website2, which
contain high-resolution face videos that are free to use.

4.1 Results
Figure 4 shows an example of fusing multiple editing operations
using the fusion strategy described in Section 3.3 to generate edited
frames. The generated facial images are merged into the original
frames with a pretrained face parsing network [Yu et al. 2021]. The
temporally consistent editing controls the facial base shape (beard
and hairline in Figure 4), which has a significant influence on the en-
tire videos. The time window editing adds specific facial movements
and generates progressive modification results, e.g., the eyebrow

1https://github.com/IGLICT/DeepFaceVideoEditing
2https://www.pexels.com/
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raising in Figure 4. Another type of temporally variant editing has a
close relationship with expression. As shown in Figure 5, we make
her eyes smaller when she opens her mouth, while retaining the
original big eyes during a neutral facial expression. The proposed
editing is propagated reasonably to synthesize realistic results.
Our method is robust for diverse face videos and hand-drawn

sketch styles. Since the StyleGAN generator can randomly generate
faces with great diversity, our method inherits this advantage and
can handle diverse face videos. We have shown examples involving
the diversity of gender, age, ethical groups, and human face scales.
For example, Figs. 4, 10, and 12 show examples of diverse ethical
groups. An example with facial scale change is included in Figure
6. Please refer to the supplementary document for a child example
(Figure 8) and an old man example (Figure 9). Our method is also
robust for different drawing sketch styles. As shown in Figure 6,
diverse styles in sketches by different users without professional
training in drawing are well captured by our method. These users
were given a short training on how to use our system and then
instructed to add beard to a selected key frame in this example. In our
approach, the editing operations are represented as editing vectors,
and then added on the latent codes of the input frames. Since the
sketch optimization and editing propagation lie in the latent space
of StyleGAN, high-quality images/videos are generated for various
sketch styles. Our system is relatively insensitive to edits and makes
different drawing styles lead to broadly similar results. Nevertheless
the generated facial details are still somewhat influenced by different
drawing styles, as shown in Figure 6 where the thicker strokes would
produce the thicker breads. This phenomenon is evident by looking
at the third row and fifth row in Figure 6.
In Figure 7, we show that our method can propagate editing

manipulations even for a video involving large pose changes. To
explain the propagation robustness, we conducted a statistical anal-
ysis of the relationship between editing vectors and projected latent
codes. Specifically, we randomly selected 10 videos with large pose
changes and generated 10 editing vectors for propagation. For the
convenience of data analysis in specific angles, we first preprocessed
these videos to have the consistent rotation direction, from front
to right profile, by flipping some of the videos that have reverse
pose changes. The frames of different poses were projected by E4E
[Tov et al. 2021] into the latent space, and then subtracted from the
latent code of the front face to generate vector differences. Finally,
the Pearson correlation coefficients were calculated between the
editing vectors and the vector differences. As shown in Table 1, the
maximum values of coefficients are less than 0.2, supporting that the
editing vectors and pose vector differences have a low correlation.
So the editing manipulations and pose changes have a weak inter-
action and are generally disentangled, explaining the robustness of
our method for pose changes.

4.2 Comparisons
Sketch facial editing. In our framework, after users utilize sketches

and masks to edit selected key frames, the edits are propagated to
all the other frames. Since the editing sketch is first applied onto a
single key frame, we compare our method with sketch-based facial
editing methods for images, as shown in Figure 8. Since sketches

Fig. 9. The results of different propagation approaches for temporally con-
sistent editing. Few-Shot Vid2Vid [Wang et al. 2019] converts a sequence
of sketches to photo-realistic images. Since this method is trained on edge
maps, it is not robust for hand-drawn sketches and often generates artifacts
in edited regions. First Order [Siarohin et al. 2019] warps the single edited
image to other frames driven by the original video, and thus adds undesired
distortions according to the original frames and shows limited editing ef-
fects. It also generates fuzzy results in local details. Compared with these
methods, our approach generates more realistic results and propagates the
editing manipulations better. Original videos courtesy of Mikhail Nilov.

are user-drawn instead of edge maps extracted from images, we
use the pretrained models for all sketch-base editing methods in
our experiments. SC-FEGAN [Jo and Park 2019] was trained on
edge maps extracted from real images, so it is not robust enough
for hand-drawn sketches and generates fuzzy and disharmonious
results in local edited regions. Utilizing a sketch refinement net-
work to process input sketches, Deep-PS [Yang et al. 2020] is more
robust and synthesizes better results in local regions. However, it is
based on an image completion framework and thus often generates
artifacts on the boundaries of mask regions. Besides, although it
utilizes the sketch refinement module, it still generates undesirable
artifacts for some challenging cases, such as opening mouth in the
3rd row in Figure 8. DeepFaceEditing [Chen et al. 2021], a more
recent portrait editing method with complete sketches as inputs,
synthesizes edited results without boundary artifacts. However, it
is still not robust enough for hand-drawn sketches and generates
artifacts in edited components. pSp [Richardson et al. 2021] also
takes complete sketches as conditional inputs and synthesizes high-
quality facial images. However, the generated results are hard to
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Fig. 10. The results of different propagation approaches for temporally variant editing. Users apply eyebrow raising movement and blink in this example. The
editing operations are added to frames in the orange boxes and the editing effects are propagated to adjacent frames so as to achieve temporally smooth
changes. Few-Shot Vid2Vid [Wang et al. 2019] propagates the editing effects to the entire video, showing no temporal variance. First Order [Siarohin et al.
2019] drives the edited frames with the movement of the original frames, so it shows no movement editing effects. Compared with previous methods, our
approach generates better movement editing results and has no influence on the other frames. Original videos courtesy of ANTONI SHKRABA production.

retain the identity because pSp only utilizes sketches to infer coarse
structures and thus generates inaccurate reconstruction results. We
optimize the latent code with the constraints of user-drawn sketches
and the original input images, enabling our model to generate more
realistic results in local edited regions while retaining the identity
of the original faces. Besides, since the optimized latent codes are
on the distribution of real facial images, our method is more robust
for editing based on hand-drawn sketches.

Sketch editing propagation. Given a sequence of video frames,
users select several key frames and draw sketches and masks on
them. The editing manipulations should be propagated reasonably.
As no existing work achieves the same sketch-based facial video
editing as ours, we create the following baselines for comparison.

We compare our method with two possible video propagation ap-
proaches, namely, Few-Shot Vid2Vid [Wang et al. 2019] and First
Order [Siarohin et al. 2019]. We first compare the temporally con-
sistent editing effects on facial base shape, as shown in Figure 9.
Few-Shot Vid2Vid [Siarohin et al. 2019] extends an image transla-
tion framework to video translation and generates a photo-realistic
video from a sketch sequence. So for this method, we first extract
a sequence of sketches (edge maps) from input frames using the
sketch generation network in Section 3.1. To propagate the user-
specified editing manipulations, we warp the user-drawn sketches
and masks with a warp field generated from First Order [Siarohin
et al. 2019], and then paste the hand-drawn sketches back into the
original sketch sequence, only in masked regions. Finally, this new
sketch sequence is utilized to synthesize video translation results.
In our experiments, we train Few-Shot Vid2Vid network using its
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(a) Input Image (b) Input Sketch (c) Baseline1 (d) Baseline2 (e) Baseline3 (f) Ours

Fig. 11. The results of different sketch editing optimization approaches. Baseline1 optimizes the latent code only with the sketch loss and might change
entire images dramatically. Baseline2 adds the RGB loss but calculates the sketch loss directly with sketch generation network 𝑆 . It is hard to generate edited
wrinkles and easy to change the facial identity. Baseline3 utilizes the L2 loss to replace the LPIPS loss constrained on sketches, and shows limited editing
effects. Our method generates better results that maintain the facial identity well while being coherent to editing sketches.

Table 2. Quantitative comparisons between our method and existing image
editing methods.

SC-FEGAN Deep-PS DFE pSp Ours
FID↓ 17.87 18.32 18.62 19.34 17.36

KID×103 ↓ 1.62 1.86 2.72 2.50 1.71

Table 3. Our method outperforms the existing video propagation methods
in terms of both the FID and KID metrics.

Few-Shot Vid2Vid First Order Ours
FID↓ 27.41 27.82 13.25

KID×103 ↓ 13.31 15.26 3.57

original dataset, while the inputs are changed to sketches. Since
this method is trained on synthesized datasets, it is not robust for
hand-drawn sketches and often generates artifacts on edited re-
gions. The generated results are also worse than other methods.
First Order [Siarohin et al. 2019] drives the edited frame generated
by our method with the guidance of the original frames, and it pre-
dicts a warp field applied on the edited image and refines it with
another network. Because of the warping operation on the edited
frame, the editing effects are mixed with the original frames and are
less obvious and convincing compared with our method. Besides,
it generates fuzzy results in the mouth region due to the limited
generation ability of the refinement network. Compared with these
two methods, our approach generates more realistic results that
well possess propagated editing effects.

We also compare our method with the existing approaches for
temporally variant editing, as shown in Figure 10. Users apply eye-
brow raising and blink in this example, where the editing operations
are added to the frames in orange boxes and propagated to adjacent
frames utilizing the method described in Section 3.2 (time window

editing). Since the editing sketches are directly pasted onto the orig-
inal frames’ sketches, the results of Few-shot vid2vid [Wang et al.
2019] show no temporal variance and propagate the editing manip-
ulations in the whole video. As for First Order [Siarohin et al. 2019],
the expression and movement of the generated results are driven
by the original frames, so it shows no sketch movement editing
effects and synthesizes results similar to the original frames. Even
in the selected key frames where the editing operations are applied,
First Order shows limited editing effects. In contrast, our method
modifies the expression with the guidance of the editing sketches,
leading to results with smooth changes and having no influence on
the other non-edited frames.

Quantitative experiments. We report the Fréchet Inception Dis-
tance (FID) [Heusel et al. 2017] and Kernel Inception Distance (KID)
[Binkowski et al. 2018] in Tables 2 and 3. For the quantitative com-
parisons on the image editing task, 15 editing examples are synthe-
sized by each of the compared methods and local editing regions
are merged into original images for a fair comparison. As shown in
Table 2, our approach outperforms alternative methods except that
SC-FEGAN [Jo and Park 2019] and ours are comparable under KID.
More importantly, for existing image editing solutions, it is diffi-
cult to propagate the editing manipulations across video frames. As
shown in Table 3, our method outperforms other video propagation
methods both in FID and KID. 16 editing examples are synthesized
for video comparison. Although such quantitative evaluations sug-
gest our method is better, these metrics are not particularly suitable
for evaluation since they only measure the global image quality
effectively while many editing manipulations focus on local regions.
Since human eyes remain the most reliable measure, we will further
evaluate the performance of our method in comparison with the
existing methods through a perception study in Section 4.4.
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Fig. 12. The results of different fusion approaches. Users apply diverse editing operations in multiple frames for editing propagation. A naïve approach
is to directly add the editing vectors generated by optimization. This approach is hard to retain image details and shows unrealistic fusion results (2nd
row). Compared with this baseline, our method (last row) generates realistic fusion results while retaining the original frames’ features. In this example, the
temporally variant editing operation adds smiling facial movement and the two temporally consistent editing operations change the hair and face shape.
Original videos courtesy of Vanessa Garcia.

4.3 Ablation Study
We conduct ablation studies to show the necessity of the key com-
ponents of our system. Since the editing vectors are generated by a
carefully designed optimization strategy, we first show the results of
other possible optimization baselines in Figure 11. We optimize the
latent code with both the sketch loss and the RGB loss. As shown in
Figure 11 (c), using only the sketch loss (Baseline1) achieves edited
effects but changes whole images dramatically. We utilize an ex-
tended StyleGAN generator to model the joint distribution over real
facial images and sketches and train it by leveraging a pretrained
sketch generator network. So another possible approach is to di-
rectly utilize the sketch generator network to extract sketches from
generated images, and then calculate the distance between it and
the edited sketch to optimize the latent code (Baseline2). As show
in Figure 11 (d), this baseline approach changes the facial identity
when applying large edits, such as adding beard, possibly due to un-
reasonable structure constraints. It also could not generate forehead
wrinkles, which are challenging to represent. We utilize the LPIPS
loss [Zhang et al. 2018] in our framework to calculate the distance
between generated sketches and user-drawn sketches. Although the
LPIPS loss is designed for measuring the similarity of real images,
it also works well for sketches. As shown in Figure 11 (e), adding
the L2 loss on sketches generates limited editing effects (Baseline3).
Compared with these baselines, our method generates high-quality

editing results that are consistent with the input sketches while
retaining the facial identity.
Since users often apply different editing operations in multiple

frames, we also present an effective editing region-aware fusion
approach in Section 3.3. Taking the editing sketches in multiple
frames as inputs, we can generate corresponding editing vectors
by utilizing the optimization method in Section 3.1. Then, a naïve
approach is to directly add them together on the original latent
code and feed the fused latent code into the StyleGAN generator
to synthesize results. As shown in Figure 12, temporally consistent
editing1 and editing2 change the face and hair shape, respectively,
and a temporally variant editing operation adds smiling movement
on a generally still video. Directly adding the latent vectors shows
artifacts on the jaw and changes the global facial appearance, espe-
cially when smiling is driven by a user-drawn sketch. Compared
with this baseline, our method fuses multiple editing operations
well and generates realistic results retaining the features of the orig-
inal frames, proving the effectiveness of our region-aware fusion
approach.

4.4 Perception Study
For the tasks of sketch-based facial editing and propagation, we
have reported the FID and KID results in Tables 2 and 3. It can be
seen from Figures 8, 9, and 10 that the results by the alternative
methods exhibit artifacts in local regions. However, since such visual
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Table 4. T-test results for perceptual study on the realism, faithfulness,
and identity preservation scores in the case of image editing. Under the
significance 𝛼 = 0.001, our method stands out from other methods with a
lower mean value, further showing that our method performs significantly
better than SC-FEGAN [Jo and Park 2019], Deep-PS [Yang et al. 2020], Deep-
FaceEditing (abbreviated as DFE) [Chen et al. 2021] and pSp [Richardson
et al. 2021].

Realism Faithfulness Identity
𝑚𝑒𝑎𝑛 𝑡 𝑚𝑒𝑎𝑛 𝑡 𝑚𝑒𝑎𝑛 𝑡

SC-FEGAN 4.10 -11.79 4.09 -11.66 3.99 -11.31
Deep-PS 2.87 -9.44 2.86 -9.57 2.79 -9.35
DFE 3.22 -12.22 3.16 -11.85 3.09 -12.28
pSp 3.27 -10.70 3.34 -11.04 3.56 -12.71
Our 1.54 1.54 1.56

Table 5. T-test results for perceptual study on the realism, faithfulness, and
identity preservation scores in the case of sketch editing propagation. Under
the significance 𝛼 = 0.001, our method stands out from other methods with
a lower mean value, further showing that our method performs significantly
better than First Order [Siarohin et al. 2019] and Few-Shot Vid2Vid (abbre-
viated as Fs-Vid2Vid) [Wang et al. 2019] .

Realism Faithfulness Identity
𝑚𝑒𝑎𝑛 𝑡 𝑚𝑒𝑎𝑛 𝑡 𝑚𝑒𝑎𝑛 𝑡

First Order 1.99 -11.14 2.13 -10.69 1.99 -9.23
Fs-Vid2Vid 2.73 -20.21 2.63 -17.85 2.75 -20.02

Our 1.28 1.25 1.25

differences are subtle, it is difficult for existing general image quality
measures to effectively capture such differences. Besides, another
important aspect to evaluate is the faithfulness of generated results
to user-drawn sketches. This is more difficult to measure for existing
metrics. Since the most reliable criterion is human eyes, we conduct
a perception study to compare the results by different methods from
the perspective of human viewers.
The evaluation was done through two questionnaires. The first

perception study compared our method with the existing sketch-
based facial image editingmethods.We synthesized 15 image editing
examples (the same as those used in Sec. 4.2). Then for each edited
example in the questionnaire, we showed the input images, drawn
sketches and masks, and edited facial results of five facial editing
methods (SC-FEGAN [Jo and Park 2019], Deep-PS [Yang et al. 2020],
DeepFaceEditing [Chen et al. 2021], pSp [Richardson et al. 2021]
and ours), placed side-by-side in a random order. Participants in
our perception study were required to evaluate the results in three
criteria: the realism of generated edited images, the faithfulness
to the input editing sketch, and the maintenance of the original
identity, by sorting all the methods from best to worst. Then, the
score for each method was assigned according to its sorted posi-
tion (1=strongly positive, 5=strongly negative). 40 participants (23
males and 17 females; most of them have no professional training in
drawing) participated in the study, leading to 40 (participants) × 15
(sketches) = 600 subjective evaluations for each method. Figure 13(a)
plots the statistics of the evaluation results. We performed one-way
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Fig. 13. Box plots of the average realism, faithfulness and identity preserva-
tion perception scores for each of the compared approaches. (a) The compar-
ison of sketch editing for single images with five methods: DeepFaceEditing
(DFE) [Chen et al. 2021], DeepPS [Yang et al. 2020], pSp [Richardson et al.
2021], SC-FEGAN [Jo and Park 2019], and ours. (b) The comparison of sketch
editing propagation with three methods: First Order [Siarohin et al. 2019],
Fs-Vid2Vid [Wang et al. 2019], and ours.

ANOVA tests on the realism, faithfulness, and identity preservation
scores and found significant effects for all three criteria: realism
(𝐹 (4,70) = 64.32, 𝑝 < 0.05), faithfulness (𝐹 (4,70) = 62.74, 𝑝 < 0.05),
and identity preservation (𝐹 (4,70) = 68.24, 𝑝 < 0.05). As shown in
Table. 4, paired T-test is also performed to further verify that our
method performs significantly better than SC-FEGAN [2019], Deep-
PS [2020], DeepFaceEditing [2021] and pSp [2021] in the same three
terms.
The second perception study was conducted to evaluate the re-

sults of sketch editing propagation. Similarly, we prepared 16 video
editing examples (also used in Sec. 4.2) and showed the original key
frames, input sketches and masks, edited video results generated by
three methods: First Order [Siarohin et al. 2019], Few-Shot Vid2Vid
[Wang et al. 2019], and ours. We also evaluated our method in the
above three criteria. The same group of participants were invited and
sorted all the methods for each criteria. The score of each method
was generated according to its sorted position (1=most positive,
3=most negative). In total, this study led to 40 (participants) × 16
(sketches) = 640 subjective evaluations for each method. Figure 13(b)
plots the statistics of the evaluation results. We performed one-way
ANOVA tests on the realism, faithfulness and identity preserva-
tion scores and got the values: realism (𝐹 (2,45) = 327.91, 𝑝 < 0.05),
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(a) Input (b) Sketch (c) result

Fig. 14. An example of a failure case. When users want to add a flower
ornament to the face via a sketched flower, our method generates a less
successful result, since these examples are rare in StyleGAN’s training
dataset. Original videos courtesy of Marta Wave.

Fig. 15. An unsuccessful merging result. (a) is the selected frame for editing.
(b) and (c) are hand-drawn sketch and fusion result, respectively. (d) shows
another frame and (e) shows the corresponding propagation and fusion
result. The corner of the coffee mug disappears in the fusion frame (e)
because of the face merging manipulation. Original videos courtesy of
Mikhail Nilov.

faithfulness (𝐹 (2,45) = 247.66, 𝑝 < 0.05) and identity preservation
(𝐹 (2,45) = 264.96, 𝑝 < 0.05). We also performed T-tests to further
confirmed that our method lead to significantly better results than
First Order [Siarohin et al. 2019] and Few-Shot Vid2Vid [Wang et al.
2019]. Results are shown in Table 5.

5 DISCUSSION AND LIMITATIONS
Although our suggested approach is effective for sketch-based video
editing, there are still some limitations that should be considered.
Since we utilize the pretrained StyleGAN generator to synthesize
video results, the sketch editing results are limited in the StyleGAN’s
domain, making it hard to generate too personalized editing results.
As shown in Figure 14, a flower ornament is added on the face by
sketch, while our method generates an undesired scar since most of
human portraits do not have the desired decoration. Furthermore,
as shown in the supplementary document (Figure 2), our method
cannot handle side faces well mainly because of the restriction of
StyleGAN. Collecting a new dataset with more side faces to retrain
StyleGAN might alleviate or address this issue. Besides, when de-
signing our region-aware fusion, we assume that editing operations
are likely to be applied to non-overlapping regions. When input
sketches in different key frames have overlaps, our method may
generate discontinuous results on the boundary of mask regions,
especially for editing operations with conflicting effects in the same
region (see such examples in the supplementary document, Figure 3).
An appropriate mechanism needs to be devised to resolve conflicts,
which we leave for future work. Moreover, when synthesized faces
are realigned and merged into original videos, if some objects lie in
the face boundary, the fusion strategy sometimes causes artifacts

due to the restriction of facial segmentation, as shown in Figure 15.
Moreover, when drawing teeth with sketches, the optimized results
sometimes lead to a non-symmetric shape and position of teeth
(e.g. session 4 in the video). In-depth research on the latent space of
StyleGAN3 is needed to address this issue.

Our method promotes a new path to editing face video by sketch-
ing and it can be improved from various perspectives. First, with our
unoptimized implementation, optimizing a single frame by sketch
consumes 12 seconds on average. How to support real-time sketch
editing is a future work and it is nontrivial since the predicted edit-
ing vectors should be disentangled and should not influence other
unedited regions. Besides, although sketches provide much freedom
for human portrait editing, it is hard to edit the pose or view point
only by sketches. Some other attribute-based editing approaches
[Abdal et al. 2021; Shen et al. 2020; Tewari et al. 2020b] might be
combined into our method for more intuitive control. Furthermore,
although our method achieves a detailed control of facial shape, fa-
cial appearance has not been considered in our implementation. In
the future work, color strokes could be introduced to edit the color
and texture of facial video. This is a promising research direction in
the future but it remains challenging, since color strokes provide
limited information to find editing vectors and it is not simple to
generate temporally coherent propagation results for videos.

6 CONCLUSION
This work has presented a novel sketch-based framework for intu-
itively editing faces in videos. The sketch-based edits are applied to
multiple key frames and propagated to the whole video reasonably.
We extend the original StyleGAN by adding a sketch generation
branch, and then design an optimization approach to represent
sketch editing operations with editing vectors. The proposed edit-
ing operations are further classified into two categories: temporally
consistent editing and temporally variant editing, which are propa-
gated to whole videos in different ways. During the video editing
process, users often apply different editing operations in multiple
frames, so we propose a region-aware approach to fuse different
types of editing effects, by warping the input masks and replacing
the corresponding region’s feature maps with edited ones. Through
extensive experiments, we prove that our method generates more
realistic and faithful editing results compared with other possible
solutions.
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