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Abstract

The global prevalence of diabetes mellitus was estimated to be 463 million people in 2019 and 

is predicted to rise to 700 million by 2045. The associated financial and societal costs of this 

burgeoning epidemic demand an understanding of the pathology of this disease, and its 

complications, that will inform treatment to enable improved patient outcomes. Nearly two 

decades after the sequencing of the human genome, the significance of noncoding RNA 

expression is still being assessed. The family of functional noncoding RNAs known as microRNAs 

regulates the expression of most genes encoded by the human genome. Altered microRNA 

expression profiles have been observed both in diabetes and in diabetic complications. These 

transcripts therefore have significant potential and novelty as targets for therapy, therapeutic 

agents and biomarkers.

Keywords: microRNA; diabetes; fibrosis; chronic kidney disease, noncoding RNA; 

nanotechnology, microRNA-based therapeutics

Abbreviations: AAV, adeno-associated virus; ACE, angiotensin-converting enzyme; Ad, 

adenovirus; ADPKD, autosomal dominant polycystic kidney disease; AGE, advanced glycation 

end-product; AKI, acute kidney injury; AKT2, RAC-beta serine/threonine-protein kinase; APC, 

activated protein C; ARB, angiotensin II receptor blocker; ASO, antisense oligonucleotide; CDP, 

cyclodextrin-containing polycations; CKD, chronic kidney disease; DKD, diabetic kidney disease; 

DPP-4, dipeptidyl peptidase-4; ECM, extracellular matrix; EGF, epidermal growth factor; ER, 

endoplasmic reticulum; ERBB4, ERB-B2 receptor tyrosine kinase 4; EV, extracellular vesicle; 

FOXO, forkhead box transcription factor; GFR, glomerular filtration rate; GLP-1 RA, glucagon-like 

peptide-1 receptor agonist; HCV, hepatitis C virus; IL, interleukin; JAK/STAT, janus kinase/signal 

transducer and activator of transcription; LNA, locked nucleic acids; LV, lentivirus; mRNA, 

messenger RNA; miRNA, microRNA; MMP, matrix metalloproteinase; MRA, mineralocorticoid 
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receptor antagonist; mTOR, mammalian target of rapamycin; NF-kB, nuclear transcription factor-

kappa B; NOX4, nicotinamide adenine dinucleotide phosphate oxidase 4; NP, nanoparticle; NRF2, 

nuclear factor erythroid 2-related factor 2; PAR, protease-activated receptor; PEG, polyethylene 

glycol; PI3K, phosphoinositide 3-kinase; PKD, polycystic kidney disease; PLGA, polylactide-co-

glycoside; PTEC, proximal tubular epithelial cells; PS, phosphorothioate; RAAS, renin-

angiotensin-aldosterone system; RISC, RNA-induced silencing complex; ROS, reactive oxygen 

species; RT-qPCR, real time - quantitative polymerase chain reaction; siRNA, short interfering 

RNAs; SGLT2i, sodium-glucose co-transporter-2 inhibitor; T2DM, type 2 diabetes mellitus; TGF-

β1, transforming growth factor-beta 1; TLR, toll-like receptor; TNF, tumour necrosis factor; UTR, 

untranslated region, UUO, unilateral ureteric obstruction; VEGF, vascular endothelial growth 

factor.
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1. Introduction

1.1. Fibrosis

A common complication of diabetes mellitus, the pathological process of fibrosis leads to loss of 

homeostasis and subsequent dysfunction of tissues and organs. Fibrosis is frequently likened to 

aberrant wound healing, where excessive deposition of extracellular matrix (ECM) components 

and subsequent tissue remodeling lead to scarring and perturbation of tissue and organ function. 

The fundamental and complex mechanisms driving fibrosis [1], are becoming clearer via the 

application of techniques including single-cell RNA and assay for transposase-accessible 

chromatin sequencing [2, 3]. Fibrosis may affect the eyes, heart, liver, lungs and kidney, as 

described in more detail below and elsewhere in this volume. 

1.2. Regulation of gene expression in pathology and treatment of diabetic fibrosis 

1.2.1. The human genome

The diploid human genome is composed of approximately 6 giga base-pairs of DNA [4]. The 

median and mean sizes of a human protein coding gene have been calculated as 22.6 and 66.7 

kilo base-pairs, respectively [5]. Prior to the completion of the Human Genome Project [6], 

predictions of the number of protein coding genes encoded by the human genome often reached 

100,000 or more [4, 7]. The subsequent identification of around 20,000 such functional 

messenger (m)RNA sequences [5, 7] has emphasized the importance of the regulation of gene 

expression in both human susceptibility to disease (e.g. [8, 9]) and definition of closely related 

species that share a high percentage of primary DNA sequence identity, such as humans and 

higher primates [10].

The sequencing of the human genome and development of technologies for high-throughput 

sequencing of its RNA outputs provide critical genetic components for systems biology [11]. 

Systems biology uses computational analysis of data from multiple omics approaches and clinical 
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analyses to deliver the goal of personalized medicine: focused, individual-specific treatment to 

optimize patient outcomes [11-14].

1.2.2. Noncoding RNAs

It is now clear that while less than 2% of the human genome sequence encodes protein coding 

mRNAs, more than 95% is processed into RNA transcripts, the majority being noncoding RNAs 

[7, 8]. Many laboratories are now investigating the biological and clinical significance of this 

pangenomic noncoding RNA transcription [8]. Conventionally divided into “long” and “short” 

noncoding RNAs, some functional transcripts have been grouped into families, and these include 

the microRNAs [15].

1.2.3. MicroRNAs

In eukaryotes, the regulation of gene expression by small RNAs is mediated by argonaute 

proteins [16]. MicroRNAs (miRNAs) are endogenous RNA transcripts that regulate the expression 

of most genes encoded by the human genome. MiRNAs are transcribed by RNA polymerase II as 

primary (pri)-miRNAs that are then processed to pre-miRNAs, exported from the nucleus and 

elicit their effects as short, single-stranded mature miRNAs between 18-24 nucleotides in length 

(Fig. 1). MiRNAs interact with argonaute proteins and other key factors in the RNA-induced 

silencing complex (RISC) to destabilise and/or repress translation of target mRNA sequences [17-

19].

Fig. 1 – Key stages of miRNA biogenesis.

1.2.4. MiRNA repression of mRNA translation 

MiRNAs bind imperfectly with miRNA-specific recognition sequence motifs in the 3'-untranslated 

regions (3’-UTRs) of target mRNAs [20]. The part of the miRNA sequence most important for 
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target recognition, the seed sequence, spans nucleotides 2-8 at the 5’ end of the miRNA. Based 

on seed sequence similarity, miRNAs can be subdivided into families. In mammals, the 90 most 

evolutionarily conserved miRNA families each have hundreds of conserved mRNA targets, and 

most of these miRNAs are required for normal development or physiology [19, 20].

The process of target recognition by miRNAs is complex, and combined experimental molecular 

biological and modelling approaches are revealing further details. In one recent study, McGeary 

and colleagues adapted RNA Bind-n-Seq [21] (a computational method to characterize sequence 

and structural specificity of RNA binding proteins) and a convolutional neural network to the 

study of miRNA-target interactions [20]. Analyses of mammalian miRNAs miR-1, let-7a, miR-7, 

miR-124 and miR-155, and the nematode transcript lys-6, identified specific noncanonical target 

sites and differences in canonical target-site affinities for each transcript [20]. Since 3’-UTR length 

is typically orders of magnitude greater than that of miRNA seed sequences, these UTRs 

frequently bear multiple putative binding motifs for one or more miRNAs, which can result in 

cooperative action of multiple miRNAs [22]. MiRNAs also function in transcriptional 

autoregulation systems, modulating expression of transcription factor and other mRNAs [23].

1.3. MiRNAs in diabetic fibrosis

MiRNAs play key roles in major organ fibrosis [24-26]. More specifically, miRNAs have been 

implicated in the fibrosis of organ systems covered in more detail elsewhere in this volume 

including diabetic retinopathy [27-29], diabetic cardiomyopathy [30, 31], diabetic liver fibrosis 

[32, 33] and diabetic pulmonary fibrosis [34]. Key miRNA functions also modulate kidney 

development and maintenance of homeostasis, as well as driving the pathology of numerous 

renal diseases including diabetic kidney disease (DKD) [35-42].
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While identification of general patterns of miRNA disease associations is not straightforward, 

numerous studies have now presented evidence for association of miR-21 with profibrotic 

pathologies including DKD [37, 43-45]. By contrast, numerous studies have posited anti-fibrotic 

functions and/or protection against rapid disease progression for members of the miR-29 family 

[37, 46, 47]. Specific instances of the effects of these miRNAs in the pathology and treatment of 

DKD appear in later sections of this review.

1.4. MiRNAs as biomarkers and therapeutic targets

Biomarkers are characteristics that are measured objectively and evaluated as indicators of 

normal biological processes, pathogenic processes, or pharmacological responses to therapeutic 

intervention [48]. Biomarkers play important roles in drug development through their use as 

surrogates in early phase clinical trials, and potentially also via their use in enrichment of trial 

populations for those who stand to benefit from the therapy. Lack of effective biomarkers has 

hampered DKD therapy development and here recent studies highlight a potential role for 

miRNAs.

Urinary miRNAs are suitably robust for routine biomarker analysis, since these transcripts are 

stabilized by association with argonaute 2 protein and /or extracellular vesicles (EVs) including 

exosomes [49]. Indeed, miRNAs can be quantified precisely using RT-qPCR-based methods in 

liquid biopsies including urine, peritoneal dialysis effluent and renal transplantation perfusate 

[49-52]. These techniques have been used to demonstrate elevated urinary miR-29b, miR-126 

and miR-155 in DKD [53] as well as increased abundance of miR-223 in bacterial peritonitis [50], 

miR-21 in peritoneal fibrosis [54] and six miRNAs in delayed graft function following kidney 

transplantation [55]. A miRNA signature of protective kidney ischemic preconditioning from the 

renal proximal tubule has also been described recently [56].
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Identification of aberrant miRNA expression profiles in disease not only identifies potential 

biomarkers but, in combination with data on the physiological distribution of miRNAs (e.g. in 

EVs) and their mechanism of action in the repression of gene expression, provides clues to 

disease mechanisms, potential therapeutic targets and means of drug delivery [40, 57-61].

The subject of this review is the therapeutic delivery of miRNAs in the context of DKD. This is a 

young field, and much remains to be elucidated in transitioning from understanding the roles of 

miRNAs in DKD pathology to their use as therapy. We have already discussed the significance of 

noncoding RNAs and the place of miRNAs within this wider family of noncoding genomic 

transcripts. We will now delineate the particularities of DKD within the context of diabetes and 

its fibrotic complications, consider the rationale and practicalities for miRNAs as a DKD 

therapeutic, and survey the challenges that remain to be overcome.

2. The clinical need for miRNA delivery as an antifibrotic therapy 

2.1. The clinical impact of diabetic fibrosis

The complications of diabetes may be described as macrovascular or microvascular in origin. 

Manifestations of macrovascular disease include coronary artery disease, stroke and peripheral 

vascular disease, which generally occur as a result of underlying obstructive atherosclerotic 

diseases affecting larger arteries. These frequently catastrophic events represent the 

commonest causes of death in patients with type 2 diabetes mellitus (T2DM) [62]. Microvascular 

complications encompass retinal, renal and neuropathic disease and are widely considered to be 

consequences of hyperglycemia, with several landmark studies demonstrating improved 

outcomes of microvascular complications with adherence to strict glycemic control [63-65]. 

Estimated healthcare costs associated with diabetes amount to over 400 billion dollars per year 

in the USA [66], while the UK national health service (NHS) spends 10% of its entire budget on 

complications of diabetes, over 14 billion pounds per year [67].
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In addition to these established diabetic target organs, increasing evidence of diabetes-related 

pathology in other major organs including liver and lung means that it can be considered as a 

true multi-system disease characterized by chronic inflammation [68, 69]. Target organs 

demonstrate structural alterations in ECM deposition and thickening of basement membranes 

that reflect aberrant wound healing which ultimately leads to fibrosis [70, 71]. Detailed 

mechanisms of organ fibrosis are described elsewhere in this volume. The clinical manifestations 

and impact of this central pathophysiology are discussed briefly below.

2.1.1. Diabetic retinopathy

Hyperglycemia, inflammation and hypoxia are established drivers of diabetic retinopathy, the 

clinical progression of which correlates with accumulation of ECM components such as collagens, 

laminin and fibronectin [72, 73]. The combination of fibrotic tissue scarring and 

neovascularisation of the retina create irregular tractional forces that may result in retinal 

detachment and visual loss [74]. This fibrotic end-stage complication of diabetes is the leading 

cause of preventable blindness worldwide [75]. 

2.1.2. Diabetic cardiomyopathy

Hyperglycemia-induced diabetic myocardial fibrosis is characterized by increased type III 

collagen accumulation that predisposes to myocardial stiffness and loss of contractile function 

[76, 77]. Histopathology studies have demonstrated the presence of diabetic cardiac fibrosis 

independent of coronary atherosclerosis and hypertension, which frequently co-exist in patients 

with diabetes [78]. Heart failure carries significant prognostic implications, and these patients 

are at two-fold increased risk of death and 33% more likely to be hospitalized [79, 80].
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2.1.3. Non-alcoholic fatty liver disease

T2DM-driven progression of liver cirrhosis independent of other metabolic risk factors such as 

hypertriglyceridemia, obesity and insulin resistance remains controversial [81]. Nevertheless, 

meta-analyses show that over 50% of prevalent patients with T2DM have a diagnosis of non-

alcoholic fatty liver disease [82], and that these patients are twice as likely to develop the 

inflammatory histological phenotype non-alcoholic steatohepatitis, which is characterized by 

stellate cell activation and transformation into ECM-producing myofibroblasts [83, 84]. This pro-

fibrotic state confers risk of progression to advanced liver cirrhosis and hepatocellular carcinoma 

[85], and is the most rapidly increasing indication for liver transplantation in the USA [86] .

2.1.4. Diabetic pulmonary fibrosis

Not traditionally considered a diabetic target organ, mounting evidence from epidemiological 

studies suggests that diabetes is an independent risk factor for idiopathic pulmonary fibrosis, 

manifesting as reduced lung capacity, compliance and diffusing capacity [87, 88]. It is postulated 

that the hyperglycemic milieu initiates inflammatory and fibrotic lung changes mediated by, for 

example, advanced glycation end-product (AGE) accumulation, oxidative stress and transforming 

growth factor-beta (TGF-β)-activated epithelial-to-mesenchymal transition [89, 90]. Diabetes-

related pulmonary fibrosis may therefore represent a considerable underappreciated burden on 

the quality of life of patients with diabetes.

2.2. The clinical impact of DKD

DKD is a complication of both T1DM and T2DM, and is characterized by an increase in urinary 

albumin excretion and progressive decline in renal function. DKD develops in 15-40% of patients 

with T1DM with peak incidence at approximately 15-20 years disease duration [91]. The 

prevalence and progression of DKD in T2DM is more variable, with 5-20% of patients developing 



ADDR: Diabetes Associated Fibrosis and Therapeutic Targets

13

this complication. Non-modifiable risk factors for DKD development include aging and 

genetic/ethnic susceptibility [92]. Well-established modifiable risk factors include the often-

interrelated existence of obesity, hyperglycemia, dyslipidemia and hypertension. More recently, 

there has been a focus on insulin resistance as an independent risk factor for the development 

of DKD [93]. Individuals with DKD are also at greater risk of acute kidney injury (AKI) episodes, 

and architectural changes to the renal glomerulus associated with recovery and repair, 

particularly to the podocytes, may accelerate DKD progression [94, 95]. 

The natural history of DKD usually begins with glomerular hyperfiltration, followed by 

progressive leakage of albumin into the urine that manifests initially as microalbuminuria (30-

300 mg/24 hours) before progressing to macroalbuminuria (>300 mg/24 hours). These changes 

are associated with progressive reduction in kidney function and glomerular filtration rate (GFR), 

suggesting that diabetes initially affects the glomerular compartment of the kidney. 

Histologically, this hypothesis is supported by the classic glomerular observations of thickening 

of the glomerular basement membrane, mesangial hypercellularity, podocyte loss and hyaline 

Kimmelstiel-Wilson nodules depicted in Fig. 2. If unchecked, this pathology will progress to 

interstitial fibrosis throughout the kidney, supporting the hypothesis that earlier interventions 

are more effective in treating and/or slowing the progression of DKD.

Nevertheless, considerable heterogeneity in DKD pathophysiology means that some patients 

exhibit a more variable disease course. For example in non-albuminuric chronic kidney disease 

(CKD), 0.6-28.4% of patients with diabetes develop GFR decline before the occurrence of, or in 

the absence of, albuminuria [96]. This occurs most often in patients with T2DM, in whom varying 

contributions of normal aging, hypertension and arteriosclerosis may modulate disease 

progression and pathophysiology [96]. This heterogeneity may complicate prediction of the rate 
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of disease progression, necessitating frequent blood and urine monitoring in primary and 

secondary care facilities, and is a key consideration in drug development for DKD. 

Kidney failure (formerly end-stage kidney disease) is defined by a GFR of <15 ml/min/1.73m2, or 

treatment with renal replacement therapy [97]. Global glomerulosclerosis, interstitial fibrosis 

and tubular atrophy are key correlative histological findings. While not specific to DKD, these 

observations represent a final common CKD endpoint, irrespective of etiology [98]. DKD is, 

however, the leading cause of kidney failure and indication for commencement of renal 

replacement therapies (i.e. kidney dialysis and transplantation) in the developed world [99, 100]. 

Kidney failure, and hemodialysis therapy in particular, accelerate cardiovascular risk, which 

accounts for a significant proportion of excess dialysis-associated mortality [101].

Fig. 2 – The effect of the diabetic environment on the kidney and key features of DKD.

2.3. Management strategies for DKD

DKD management has traditionally centred on a non-targeted, non-individualized approach 

where the only significant deviation from blanket proteinuric CKD management has been the 

optimization of glycemic control. Earlier referral for transplantation work-up in eligible patients 

is sometimes preferred, in appreciation of the increased likelihood of requiring pre-operative 

cardiac/vascular optimization [102]. Consequently, considerable research efforts have focused 

on understanding the underlying mechanisms driving DKD progression, to direct novel 

therapeutic targeting. Modulating maladaptive immune responses using anti-inflammatory and 

anti-fibrotic mediators has been one approach, while there is increasing awareness that the anti-

fibrotic actions of established diabetic medications contribute to their renoprotective effects, as 

summarized below.
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2.3.1. Traditional management

The cornerstone of DKD management is risk factor modification to prevent disease progression. 

Many measures are common to general diabetes management, including lifestyle modifications 

to avoid obesity, cessation of smoking and regular exercise. Pharmacological intervention is 

often required to maintain strict blood pressure and glycemic control. Other treatments target 

the kidney more directly, including the use of angiotensin-converting enzyme inhibitors (ACEis) 

and angiotensin II receptor blockers (ARBs) to retard albuminuric progression. For the last two 

decades, this regimen has represented the gold standard treatment in minimizing loss of renal 

function and progression to kidney failure [103, 104]. In addition to the beneficial reduction of 

intraglomerular hypertension achieved from blockade of the renin-angiotensin-aldosterone 

system (RAAS), ACEis and ARBs reduce circulating TGF-1 levels [105] and confer anti-fibrotic 

effects. This has predominantly been attributed to the blockade of angiotensin II, a central 

effector in promoting mononuclear cell infiltration, ECM protein deposition and fibroblast 

differentiation [106]. 

However, long-term use of ACEis/ARBs in CKD may lead to angiotensin-II and aldosterone-

escape, which can exacerbate salt and water retention and result in adverse cardiac effects such 

as myofibrosis, arrhythmias and congestive cardiac failure [107]. To overcome these effects, dual 

blockade of the RAAS with combinations of ACEis, ARBs, direct renin inhibitors and 

mineralocorticoid receptor antagonists has been investigated. However, clinical trials have 

concluded that additional risks including hyperkalemia and AKI outweigh any benefits [108-110]. 

Even when effective RAAS blockade is achieved, the risk of kidney failure can remain high and 

correlates with residual levels of albuminuria [111]. 
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2.3.2. Next generation glucose-lowering medication 

Sodium-glucose co-transporter-2 inhibitors

Following a long period of stagnation in DKD management, the advent of new glucose-lowering 

therapies with additional renoprotective effects has generated considerable excitement in the 

field. Sodium-glucose co-transporter-2 inhibitors (SGLT2is) promote renal glucose excretion 

(glycosuria) from the proximal tubule, leading to reduced plasma glucose, weight loss and 

reduced blood pressure. Initial cardiovascular outcome trials of SGLT2is demonstrated apparent 

renoprotective effects, which prompted dedicated renal phase 3 outcome studies. In 2019 and 

2020, two large multicentre randomized trials, CREDENCE and DAPA-CKD, were stopped early, 

having both demonstrated overwhelming clinical efficacy in pre-specified endpoints including 

reduction in doubling of serum creatinine, kidney failure, renal death or cardiovascular death 

with use of Canagliflozin and Dapagliflozin, respectively [112, 113]. 

Mechanisms of SGLT2i-induced renoprotection are hypothesized to go beyond reducing obesity 

and improving glycemic control, and include favourable systemic and glomerular hemodynamics, 

altered tubuloglomerular feedback mechanisms and natriuretic peptide effects [114, 115]. 

SGLT2 inhibition may also ameliorate oxidative stress [116] and confer anti-inflammatory/anti-

fibrotic effects [117, 118]. These effects may be mediated via angiotensin-II suppression (as 

above), attenuation of the hypoxia inducible factor pathway and reduction in inflammatory and 

fibrotic mediators such as tumour necrosis factor (TNF) receptor-1, interleukin (IL)-6, and 

fibronectin-1 [119-121]. 

SGLT2is are increasingly used in mainstream DKD therapy in patients with estimated (e)GFR> 30 

ml/min/1.73m2, and ongoing clinical trials may lower this eGFR initiation threshold. The unique 

mechanism of SGLT2i action confers adverse effects including increased incidence of genital 

infections and euglycemic diabetic ketoacidosis. Increased amputation and fracture risk have 
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also been reported, albeit infrequently [122], thus longer and larger analyses will be needed to 

confidently assign causality and to determine if such effects will preclude SGLT2i use in a minority 

of patients.

Incretin-based therapy

Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) improve glycemic control by stimulating 

glucose-dependent insulin release from pancreatic -cells and suppressing glucagon release. 

Clinical trials of GLP-1 RAs have demonstrated reduction in major cardiovascular events and a 

variable, though consistent, reduction in albuminuria [123]. The mechanism of this effect is 

unclear, but reduced albuminuria and improved tubulointerstitial architecture in GLP-1 RA-

treated rats was associated with reduction in markers of inflammation and fibrosis such as TNF-

 and fibronectin [124]. GLP-1 RAs also normalise oxidative stress markers in the renal tissues of 

diabetic rats, independently of glucose-lowering action [125]. It is therefore likely that 

renoprotective effects are mediated via a combination of extra-renal hemodynamic and glucose-

lowering effects in conjunction with the GLP-1R-independent effects on renal inflammation [126-

129]. 

Blocking the enzymatic degradation of GLP-1 using dipeptidyl peptidase-4 (DPP-4) inhibitors has 

demonstrated similar anti-fibrotic renoprotective effects in diabetic mouse models. Inhibition of 

endothelial-to-mesenchymal transition and restoration of anti-fibrotic miR-29 family members 

ameliorated kidney fibrosis, implicating these miRNAs as potential regulators of DPP-4 in the 

kidney [130]. Clinical trials have demonstrated cardiovascular safety and reduced albuminuria in 

patients with T2DM and renal dysfunction, but offer no protection against decline in eGFR and/or 

kidney failure [131, 132].
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2.3.3. Endothelin receptor antagonists

Endothelin-A receptor activation has been implicated in glomerular inflammation, oxidative 

stress, podocyte damage and vasoconstriction of the afferent vessels, resulting in increased 

albumin permeability [133]. Endothelin also promotes collagen deposition and ECM remodelling 

in experimental models, independently of hemodynamic modularity effects [134, 135]. Clinical 

trials of endothelin receptor antagonists have been dogged by serious adverse effects and low 

event rates resulting in premature termination, obscuring reports of delayed onset of kidney 

failure, renal replacement therapy and death in pre-selected albuminuric-responders using 

Atrasentan [136, 137]. 

2.3.4. Mineralocorticoid receptor antagonists

Mineralocorticoid receptor antagonists (MRAs) have demonstrated pleiotropic renoprotective 

effects in pre-clinical studies, including hemodynamic alterations and reduction in oxidative 

stress, inflammation and fibrosis [138]. Animal models of DKD show improvements in histological 

and biochemical markers of fibrosis in response to MRAs [139, 140]. Clinical use of steroidal-MRA 

agents has, to date, been limited by consequential hyperkalemia. It was anticipated that this 

would be overcome using the novel non-steroidal MRA agent, Finerenone. However, FIDELIO-

DKD reported modest renoprotective effects that remained offset by significant hyperkalemia in 

the treatment group [141]. 

2.3.5. Anti-inflammatory and anti-fibrotic mediating treatments trialed in DKD

Numerous other non-glucose-lowering pharmacological agents targeting inflammatory and 

fibrotic mediators in DKD have been trialed with limited success, and notable examples are 

described briefly below. 
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AGE inhibitors

AGEs are established drivers of oxidative stress and renal inflammation, and maybe generated 

in response to hyperglycemia [142]. Blocking AGE synthesis using vitamin B6 derivative 

Pyridoxamine retarded DKD progression in animal studies [143], and showed marginal 

improvements in serum creatinine in limited subgroups of patients with diabetes [144, 145].

Anti-inflammatory agents

Anti-inflammatory DKD targets trialed in preclinical studies range from specific inhibition of 

inflammatory mediators including cell adhesion molecules, chemokines and cytokines, to 

broader targeting of intracellular signaling pathways like the Janus kinase/signal transducers and 

activators of transcription (JAK/STAT), the nuclear transcription factor-kappa B (NF-κB) and the 

nuclear factor erythroid 2-related factor 2 (NRF2) pathways [146, 147], but few have completed 

clinical trials and none are currently in routine use.  

Targeting of overactive JAK/STAT pathway signaling with Barcitinib reduced albuminuria and 

biomarkers of inflammation including intercellular adhesion molecule 1, TNFR 1 and 2, serum 

amyloid A, and (urinary) monocyte chemoattractant protein-1 in a phase 2 clinical trial, but it 

remains unknown if this will reduce long-term DKD progression: no change in renal function was 

observed during the 24-week study period [148].

Bardoxolone Methyl, an NRF2 activator and hence potent anti-oxidant was initially reported to 

increase eGFR in DKD [149], but the larger BEACON trial was terminated due to increased heart 

failure [150]. However, advocates believe it may prove clinically useful in selected patient groups 

with low pre-existing susceptibility, and its role is being reassessed in further clinical trials [151]. 
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Extra-renal effects of anti-inflammatory therapies may also have a significant impact on mortality 

in patients with CKD and diabetes, as demonstrated in the CANTOS trial of IL-1β inhibitor 

Canakinumab, which resulted in significant reduction in major cardiovascular events [152]. 

Anti-fibrotic agents

Targeting of the TGF-β superfamily retards DKD progression and protects against renal fibrosis 

in some animal studies [153, 154], but contradictory findings showing increased renal 

inflammation have also been reported [155]. In clinical trials, Pirfenidone, an inhibitor of TGF-β1 

production and activity, restored eGFR in individuals with DKD without significant attenuation of 

albuminuria [156]), suggesting that Pirfenidone ameliorates tubulointerstitial fibrosis without 

affecting glomerular injury. A phase 2 trial of TGF-β1-specific humanized neutralizing monoclonal 

antibody demonstrated neither benefit in eGFR nor albuminuria in DKD [157]. 

The PREDAIN trial showed a reduction in albuminuric DKD progression with the use of RAAS 

blockers in addition to Pentoxifylline, a phosphodiesterase inhibitor that decreases TGF-β1 and 

TNF- activity, and two further phase 4 trials of this drug are currently in recruitment [158].

2.4. Common themes in clinical translation of DKD therapeutics

The current mechanistic understanding and implementation of DKD therapeutic agents can be 

summarized thus: 

1. Well-established treatments of proven clinical efficacy in DKD are increasingly 

recognized as having anti-inflammatory and anti-fibrotic effects, especially those 

targeting the RAAS. 
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2. The mechanistic continuum from the maladaptive, chronic inflammatory state through 

to the development of established fibrosis presents multiple target options in DKD. 

However, success in experimental models infrequently translates, with many high-

profile clinical trials abandoned due to adverse side effects or lack of clinical efficacy. 

3. Many molecular pathways exert complex pleiotropic effects that can be simultaneously 

deleterious and protective in the progression of DKD. For example, systemic TGF-β 

suppression may ameliorate fibrotic effects, but may also block beneficial anti-

inflammatory functions. Such contradictory effects may contribute to the failure of these 

agents in clinical trials. 

3. Mechanisms of DKD and target identification

3.1. Pathogenetic mechanisms of DKD

The underlying mechanisms that drive DKD pathology remain unknown, but experimental data 

suggest the diabetic environment results in multiple signaling pathway dysregulation and 

contribute to fibrosis and decline in renal function. Since miRNAs regulate at least 60% of 

mammalian protein coding genes [159], it is highly probable that aberrant miRNA expression 

plays a significant role in determining the diabetic phenotype, and an increasing body of evidence 

points toward the critical action of miRNA regulators in numerous established diabetic 

processes. We describe below pathogenetic pathways experimentally implicated in DKD 

progression and prominent examples of associated regulatory miRNAs.

3.2. Altered insulin signaling

Cellular insulin resistance appears to be a key factor in the development of DKD. With time, 

cellular insulin resistance develops in patients with T1DM [160, 161] or T2DM [162]. 

Furthermore, those who develop kidney disease are more likely to have a family history of insulin 
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resistance [163, 164], require higher doses of insulin to control their disease [165] and have 

elevated homeostatic model assessment of insulin resistance scores [166]. Additionally, recent 

evidence from a large Scandinavian diabetic population study of over 30,000 patients showed 

that at diagnosis, severely insulin resistant patients were significantly more likely to develop 

nephropathy [93]. These findings have since been replicated in a German cohort [167].

MiRNAs are long-established mediators of insulin resistance in classical peripheral target organs. 

In the livers of patients with diabetes, and in mouse models, miR-103 and miR-107 upregulation 

and subsequent repression of target caveolin-1 prevents insulin receptor stabilization at the cell 

membrane [168]. Members of the miR-29 family are recognized to be master modulators of 

glucose utilization in skeletal muscle via multiple targeting effects on insulin receptor substrate 

1, hexokinase 2, glucose transporter 1, phosphoinositide-3-kinase regulatory subunit 3 and RAC-

beta serine/threonine-protein kinase (AKT2) [169, 170]. 

In models of obese mice, adipose tissue miR-181b levels are reduced, leading to increased 

expression of pleckstrin homology domain leucine-rich repeat protein phosphatase-2, 

inactivation of AKT and impaired insulin signaling. MiR-181b rescue improved glucose tolerance 

through enhanced insulin-mediated AKT phosphorylation at Ser473 and induction of endothelial 

nitric oxide synthase, nitric oxide activity and forkhead box O1 (FOXO1) phosphorylation. These 

effects were seen specifically in white adipose tissue, and not in liver or in skeletal muscle, 

highlighting the cell specificity of miRNA action in the regulation of insulin responses [171]. 

The importance of kidney-specific insulin sensitivity has come to light only recently. Insulin 

signaling in the glomerular podocyte is of particular interest (see Fig. 3). This cell type is critical 

in preventing albuminuria, and more than 50 genetic mutations affecting the podocyte result in 

nephrotic syndrome [172]. The human podocyte is insulin-responsive and expresses many of the 
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key components of classically insulin-responsive cell types such as adipocytes and muscle cells, 

including glucose transporter type 4 [173]. A podocyte-specific insulin receptor knockout 

transgenic mouse has been engineered to elucidate the importance of insulin signaling in these 

cells [174]. These animals developed albuminuric kidney disease with a number of features 

replicating DKD including thickened glomerular basement membrane, podocyte loss and 

glomerulosclerosis. Significantly, kidney disease developed in a normoglycemic environment, 

supporting the hypothesis that cellular insulin resistance is a major driver of kidney disease.

Further podocyte studies modulating other downstream elements of the insulin signaling 

pathway have shown severely detrimental effects on kidney function. These include loss of AKT2 

in the phosphoinositide 3-kinase (PI3K) pathway, which is a critical determinant of podocyte 

survival after nephron loss [175], and activation of the mammalian target of rapamycin (mTOR) 

complex 1 resulting in aberrant localisation of slit diaphragm proteins and enhanced podocyte 

endoplasmic reticulum (ER) stress that manifests in the recapitulation of DKD changes in non-

diabetic mice [176]. Loss of glycogen synthase kinase 3 results in podocyte apoptosis due to loss 

of the differentiated phenotype [177]. Finally, recent work suggests that insulin resistant 

environments cause dysregulation of other important signaling pathways in the podocyte and 

throughout the kidney that could be beneficially modulated in DKD, including the neuropeptide 

Y axis [178].

Differential expression of podocyte miRNAs in DKD (Fig. 3) has been well documented in a variety 

of experimental models [179]. The miRNA-specific mechanisms in the regulation of podocyte-

specific insulin signaling remain incompletely defined, but gathering evidence suggests that the 

pleiotropic nature of miRNA function might be exploited to therapeutic effect via a “multi-target 

hit” approach. For example, miR-217 is upregulated in sera from patients with T2DM, and miR-

217 levels correlate positively with albuminuria [180]. In podocytes, miR-217 directly targets the 
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phosphatase and tensin homologue, a negative regulator of PI3K/AKT/mTOR signaling, and 

inhibition of miR-217 restores defective autophagy pathways, inhibits reactive oxygen species 

(ROS) and apoptosis, and increases nephrin expression and glucose uptake [181].

Fig. 3 – Altered signaling pathways implicated in DKD, and differentially expressed podocyte 

miRNAs.

3.3. Glycocalyx regulation

Diabetes results in loss of the glycocalyx layer lining the luminal aspect of the systemic [182] and 

glomerular endothelium [183]. This loss takes place at an early stage in the development of DKD, 

and is evident in mouse models and human biopsy studies. In diabetic conditions endothelial cell 

damage occurs as the glycocalyx is lost via shedding of the heparan sulfate proteoglycan 

syndecan-4, which is mediated by matrix metalloproteinase (MMP) 2 and MMP9 [184]. 

Regulation of MMP expression by miRNAs thus represents a potential therapeutic avenue. MiR-

21 promotes MMP2 and MMP9 expression while simultaneously repressing endogenous 

metalloproteinase inhibitor 3 [185]. This mechanism has been posited to explain the reduction 

in pro-inflammatory IL-1β, TNF-α and alleviated kidney damage seen in diabetic rats treated with 

anti-miR-21 [186]. Other miRNAs that regulate MMP9 expression include miR-129 and miR-335, 

which act indirectly by inhibiting specificity protein 1-driven MMP9 expression [187].

External growth factors also modulate the glycocalyx and thus represent potential miRNA 

targets, including vascular endothelial growth factor (VEGF)-C [188] and VEGF-A165b, the 

inhibitory isoform of VEGF-A [183], as described further below.
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3.4. TGF-1 signaling

The pro-inflammatory multi-functional cytokine TGF-1 is widely acknowledged as a key 

modulator of DKD, and is involved in the development of glomerulosclerosis and the evolution 

of interstitial fibrosis. TGF-1 controls an array of biological processes, these include 

upregulating both the synthesis and cross-linking of key ECM components that is a major driver 

of DKD pathology. Inhibition of TGF-1 activity in the kidney is therefore a potentially attractive 

therapeutic approach for DKD, and some favorable renal outcomes have been observed using 

neutralizing TGF- antibodies in mouse models of T1DM [189] and T2DM [190]. Manipulation of 

miRNAs that mediate TGF-1 signaling, such as miR-21 and miR-29b (see section 1.3) represent 

one of the most clinically advanced applications of miRNA-based therapeutics; the mechanics 

and delivery of these are detailed later in this review.

However, global targeting of TGF-1 in DKD is not straightforward since inhibition of this cytokine 

has detrimental effects elsewhere in the body including primary aldosteronism and impaired 

natriuresis, processes which themselves would be detrimental in DKD [191]. MiRNA regulation 

of TGF-1 signaling introduces a further dimension of complexity: even at the glomerular-specific 

level there is evidence that the same miRNA family, despite possessing identical seed sequences, 

may exert anti- and pro-fibrotic effects on different cells under diabetic conditions. In mesangial 

cells, and in db/db mouse renal cortex, miR-29b is downregulated, leading to upregulation of 

collagen matrix deposition via a TGF-β/Smad3-dependent mechanism [192]. Expression of miR-

29c is upregulated in the diabetic podocyte, leading to repression of target sprouty homolog-1 

and resultant podocyte apoptosis, with anti-miR-29c treatment resulting in attenuated 

proteinuria and reduced ECM deposition in db/db mice [193]. These nuances of miRNA 

regulation represent one of many challenges to be overcome in the development of miRNA-

based therapeutics (see section 5).
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3.5. Inflammatory pathways 

There is increasing recognition of the importance of the role of chronic inflammation, and by 

extension of those miRNAs that regulate these inflammatory pathways, in the pathogenesis of 

DKD. Systems biology approaches have identified JAK/STAT signaling as a potentially important 

pathway in the progression of DKD [194]. In both early and late DKD, there is increased 

expression of numerous JAK/STAT genes in several renal cell types. Furthermore, enhancing JAK2 

selectively in glomerular podocytes of diabetic mice has detrimental effects [195], and the 

aforementioned trial of JAK1/JAK2 inhibitor Baricitinib in patients with DKD has shown beneficial 

effects in albuminuria reduction [148]. MiR-150b is recognized as a modulator of this pathway 

via direct targeting action of suppressor of cytokine signaling 1, although evidence of the 

beneficial effects of anti-miR-150b in reducing interstitial fibrosis in vivo is predominantly from 

non-diabetic models [196].

MiR-34b targets both the IL-6 receptor and downstream JAK2/STAT3 signaling, with miR-34b 

overexpression shown to inhibit apoptosis and the expression of TNF-α, IL-1β, IL-6 and caspase-

3 in tubular epithelial cells [197].

NF-κB pathway activation also represents an important stimulus for DKD propagation. MiR-451 

regulates this pathway via repression of large multifunctional protease 7, an activator of NF-κB 

signaling. Intraperitoneal injection of miR-451 mimic resulted in attenuation of 

microalbuminuria, glomerular damage and blood glucose levels in db/db mice [198], supporting 

a role for this miRNA in modulating the inflammatory response in DKD.

MiR-146a is frequently dysregulated in the context of chronic inflammatory states, where it acts 

as an anti-inflammatory mediator by down-regulating components of the NF-κB pathway such 

as toll-like receptor (TLR)4, IL-1 receptor-associated kinase 1 (IRAK1) and TNF-receptor-

associated factor [199]. MiR-146a knockout in streptozotocin-induced diabetic mice results in 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/tumor-necrosis-factor
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accelerated histological and biochemical progression, and upregulation of proinflammatory and 

profibrotic genes, supporting a protective role for miR-146a in DKD [200]. The role of miR-146a 

has been further delineated at a podocyte-specific level, where loss of this miRNA de-represses 

notch homolog 1 and ERB-B2 receptor tyrosine kinase 4 (ERBB4) targets, inducing a podocyte 

injury which was counteracted by the use of ERBB4/ epidermal growth factor (EGF) receptor 

inhibitors in vitro [201]. Approaches to the delivery of miR-146a to protect the podocyte against 

noxious inflammatory stimuli are discussed later in this review.

3.6. Oxidative and ER stress

Several studies have reported dysregulated expression of cytoprotective genes that provide 

defence against oxidative stress in DKD. NRF2 activation protects against hyperglycemia-induced 

glomerular changes and attenuates mesangial hypertrophy, due in part to inhibitory effects on 

TGF-β1 and subsequent reduction in ECM production [202]. NRF2 is a direct target of miR-27a 

[203] and the adipokine omentin-1 has been used to down-regulate miR-27a expression, 

relieving NRF2 repression thus decreasing oxidative stress and improving renal function in db/db 

mice.

Other miRNA targets in oxidative stress pathways include miR-125b, which contributes to 

hyperglycemia-induced ROS generation and apoptosis in renal tubular epithelial cells by 

targeting ACE2 [204], and miR-25 has been proposed to modulate mitochondrion-derived 

oxidative stress in experimental DKD models via validated targets cell division control protein 42 

homolog and nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) [205, 206].

Recent experimental data suggest that miRNA-based therapeutics may be used to manipulate 

podocyte responses to both oxidative and ER stress. Xu et al. reported that miR-423 expression 

is reduced in biopsy tissue of patients with DKD, and in podocytes treated with high glucose in 
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vitro. Enforced expression of miR-423 inhibits ROS generation by targeting NOX4 and is thereby 

protective against hyperglycemia-induced podocyte damage [207]. MiR-27a upregulation 

induces ER stress in podocytes via FOXO1 repression [208] and downregulation of miR-27a 

inhibits ER stress and ER-associated apoptosis in the renal cortex of db/db mice [209].

Mitochondrial dysfunction and oxidative stress are involved in a variety of human disorders, and 

may be central to the development of DKD. Brownlee’s original observation that the 

microvascular diabetic target organs share a common reliance on mitochondrial energy 

production [210], coined the “unifying hypothesis”, laid the foundation for investigating 

mechanisms of mitochondrial dysfunction in DKD. While the precise mechanisms remain hotly 

debated [211], increased mitochondrial ROS production, changes in mitochondrial morphology 

and decreased mitochondrial biogenesis/ATP depletion have all been implicated in DKD 

pathogenesis [212, 213]. Mitochondrial miRNAs, whether imported from the cytosol or 

transcribed from the mitochondrial genome itself [214], have been implicated in the dynamic 

regulation of these mitochondrial responses to the diabetic milieu. Kato et al. recently described 

the role of miR-379 in DKD by disabling adaptive mitophagy via direct target mitochondrial 

fission-1 protein, and showed that miR-379 knockout mice protected against DKD development 

[215]. The widely and highly expressed miRNA, miR-21, has also been implicated in dysregulation 

of mitochondrial fatty acid oxidation by targeting peroxisome proliferator activated receptor-α, 

and this mechanism contributes to miR-21-induced fibrosis [216].

3.7. Coagulation pathway

Coagulation proteases are key elements in hemostasis and blood clotting. They are also 

intimately associated with inflammation, a prominent feature of DKD, and have important roles 

in disease development [217]. Coagulation proteases signal through protease-activated 

receptors (PARs). These receptors are expressed in multiple kidney cell types, and their 
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expression alters dynamically during diabetes. There is compelling evidence that activation of 

components of the clotting cascade can slow the development of DKD. This includes activated 

protein C (APC) signaling through the PAR-1 receptor. This signaling is modulated by endothelial 

thrombomodulin, which prevents diabetic-induced apoptosis and mitochondrial dysfunction in 

the podocytes and glomerular endothelial cells of the renal glomerulus [218]. Protective effects 

have been reported for maintenance of high APC levels during long-term diabetes, and recent 

data show that protein S, an essential cofactor for APC, is highly expressed in the glomeruli of 

diabetic rats early in disease development but is lost at later stages [219]. Indeed, maintaining 

protein S levels protects against longer term DKD progression. Expression of the protein S1 gene 

is regulated by miR-155 and miR-494 [220, 221], thus highlighting these miRNAs as potential 

therapeutic targets for DKD. 

3.8. Other potential therapeutic targets 

Several physiological processes involving crosstalk between the cells that maintain kidney 

function in homeostasis are dysregulated in DKD, and could potentially be therapeutically 

targeted. These include the VEGFs produced by the podocyte and which signal to glomerular 

endothelial cells. Experimental evidence suggests that under homeostasis VEGF-A expression is 

tightly regulated to maintain kidney function, since either too much [222, 223], or too little [224, 

225], is detrimental. Both miR-16 and miR-93 [226] target VEGF-A in hyperglycemic conditions, 

and injection of miR-16-packaged exosomes attenuates podocyte injury in diabetic rats [227].

However, VEGF-A is challenging to target in a therapeutic context, and a more detailed 

understanding of the pathways regulating VEGF-A secretion and its actions in DKD will be 

required to determine if miRNA-based therapeutics might be used to “fine-tune” the VEGF-A 

response in DKD. A number of other “growth factors” that signal to kidney, such as growth 

hormone, insulin-like growth factors, and EGF have been identified as potential DKD initiators, 
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the full details of which are beyond the scope of this review, but are described in detail elsewhere 

[228-230]. Manipulation of the complex regulatory relationships between miRNAs and growth 

factors is a burgeoning field in cancer therapeutics, including the potential to modulate the 

efficacy of existing cancer treatments [231], and success here may inform future developments 

in DKD treatment.

4. The mechanics of miRNA delivery to the kidney 

To exploit the power of miRNAs as master regulators of gene expression, several key factors must 

be considered. Current strategies of manipulating miRNA levels involve either i) decreasing the 

abundance of the selected miRNA(s), thus restoring the activity of suppressed target mRNAs, or 

ii) increasing the abundance of the selected miRNA(s) to suppress key mRNA targets. The ability 

of miRNAs to target multiple points in the same pathway may increase their potency.

However, for successful therapy, it is vital to ensure that miRNA targeting observes appropriate 

precautions. MiRNAs are expressed in multiple cell types and may be critical in the maintenance 

of homeostatic cellular phenotypes, thus alteration of miRNA expression may result in 

unexpected and unwanted off-target effects that may lead to harmful side-effects. Only around 

30% of miRNAs in murine kidney cells maintain consistent cell-specific enrichment in normal and 

injured states [232], and certain miRNAs have the potential to modulate the expression of many 

mRNA targets. While this might be a positive feature in specific therapeutic contexts, it might 

also increase the likelihood of off-target effects, and miRNA delivery vectors must be designed 

with these caveats in mind.

4.1. MiRNA-based therapeutics

To increase the abundance of a selected miRNA, “miRNA mimics” can be used. These mimics are 

chemically-synthesized double-stranded RNA molecules which imitate the naturally occurring 
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mature miRNA duplexes produced via miRNA biogenesis [17]. By contrast, miRNA antagonists, 

which are also known as “anti-miRs”, “antagomiRs”, or miRNA-specific antisense 

oligonucleotides (ASOs), reduce the ability of miRNAs to bind to their mRNA targets [233, 234]. 

Anti-miRs have complementary sequences to their corresponding target miRNAs, with which 

they hybridize via Watson-Crick base-pairing within the miRNA seed sequence or beyond this 

region [235].

4.2. Optimization of miRNA-based therapeutics

Local delivery of miRNA therapeutics to the kidney in mouse models has been achieved by renal 

vein delivery [236, 237] and tissue selectivity improved using kidney-specific promoters [236]. 

However, given its invasive nature, direct application to the kidney is not the most realistic option 

for clinical application, and systemic administration is a more attractive method. One key issue 

is the exclusion limit of the glomerulus of approximately 50 kDa. Since the average mass of a 

nucleotide is 325 Da, DNA/RNA molecules greater than 150 base-pairs may be excluded by the 

glomerular filtration barrier on the basis of size alone. The passage of anti-miRs and miRNA 

mimics may also be inhibited by other factors including charge, the addition of bulky conjugates, 

and unfavourable nanoparticle (NP) technology. Further considerations include the sensitivity of 

exogenous RNAs to i) degradation by host ribonuclease enzymes and ii) escape from the 

endosomal compartment during cellular internalization, which also leads to degradation. Indeed, 

unmodified oligonucleotides have a half-life of only a few minutes [238], and are therefore not 

suitable for the treatment of renal disorders such as DKD via systemic administration.

Fig. 4 – Chemical modification of miRNAs and delivery modalities of miRNA-based 

therapeutics.
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Various chemical modifications have been used to improve miRNA stability, including the 

addition of a 2ʹ-O-methyl group, incorporation of phosphorothioate (PS) modifications where 

the non-bridging oxygen atom is replaced by a sulphur atom, or the replacement of RNA 

nucleotides with locked nucleic acids (LNAs) [239, 240] (Fig. 4). The addition of PS modifications 

makes miRNAs more resistant to degradation by plasma nucleases, increasing their circulating 

half-life to up to 30 minutes and the clearance half-life to hours [241]. Modifications also affect 

biodistribution. Studies in rat using gallium-radiolabelled oligonucleotides showed the highest 

uptake in bone marrow, kidney, liver, spleen and urinary bladder, with high kidney uptake 

observed specifically for those with PS or 2’-O-methyl conjugation [242]. 

Kidney fibrosis is a feature of DKD, and the natural propensity for the kidney to accumulate 

oligonucleotides is potentially advantageous in the context of miRNA-based therapy. Indeed, 

studies using an ASO to miR-214 with PS modification demonstrated anti-fibrotic effects in mice, 

and biodistribution data showed a kidney:liver uptake ratio of 5:1 [243]. LNA oligonucleotides 

have higher binding affinity for their target nucleotide sequences than unmodified sequences 

[244]. The effectiveness of anti-miR LNAs complementary to the target miRNA seed region alone 

has been demonstrated, and this approach can be used to target miRNA families [234]. 

4.3. Delivery systems for miRNA-based therapeutics to the kidney

Fig. 5 – The nephron, the functional unit of the kidney.

The nephron is the functional unit of the kidney (Fig. 5). One kidney possesses approximately 1.3 

million nephrons, each consisting of a series of functional domains from the glomerulus, where 

blood filtration occurs, to the proximal renal tubule, loop of Henle and distal renal tubules, where 
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much of the secretion and reabsorption activity pivotal to renal function takes place, and then 

the collecting duct where final concentration of urine occurs. To date, regional targeting delivery 

of miRNA therapeutics to different functional regions of the nephron has been relatively poorly 

explored, but there is potential to combine different technologies to achieve this aim.

The ideal delivery vehicle to achieve specific targeting of the kidney with miRNA-based therapies 

would be administered systemically and have efficient cellular uptake in the desired region of 

the kidney, be stable under physiological conditions, have minimal immunomodulatory effects, 

and would effectively and specifically interact with its target(s).

For efficient uptake of miRNA-based therapies, numerous vector technologies have been 

employed to overcome poor cellular uptake, including viral and synthetic delivery systems. Viral 

delivery of synthetic miRNAs is very efficient using adenovirus (Ad), adeno-associated virus (AAV) 

and lentivirus (LV) vector systems [245]. However, none of these vectors has natural tropism for 

the kidney, and this limits their utility when optimizing a delivery system. 

The goal of systemic delivery is complicated by the outcomes of numerous studies indicating that 

vector delivery to the kidney via this route is inefficient, in contrast to other organs where Ads 

and AAVs permeate into many tissues [246]. Furthermore, the kidney has evolved highly specific 

permeability mechanisms to control solute and protein entry into the parenchymal cells. Local 

delivery of AAVs has shown selective kidney uptake with AAV9 inducing expression in medullary 

and cortical regions whilst AAV6 and AAV8 only induce medullary expression [236], but local 

delivery is unlikely to be clinically viable.

Viruses can be genetically modified and engineered with targeting moieties expressed on 

capsid/envelope to increase specific kidney uptake [247, 248], and renal-specific expression can 

be conferred by putting the target transcripts under the control of kidney-specific promoters 
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[236]. Phage display technology [249] has been used to identify sequences that are enriched in 

the kidney and their display on the Ad capsid allowed improved kidney uptake. However, the 

presence of the targeting moiety did not overcome the natural tropism of Ad for the liver [248, 

250]. The addition of cell-specific promoters would add a further layer of selectivity, restricting 

miRNA expression to the specified cell type, e.g. podocyte-specific expression under the nephrin 

promoter. Further hurdles facing viral-based delivery systems include Ad immunogenicity, the 

transient nature of AAV expression, and safety concerns regarding the genomic integration of 

LVs. Synthetic delivery systems which take advantage of the continuing developments in 

nanotechnology remain the most attractive for kidney-specific miRNA therapy.

Nanotechnology has provided several platforms with which it is possible to target the kidney 

selectively for the delivery of therapeutic agents. NPs, multifunctional nanocarriers which may 

be inorganic or organic, can be engineered to deliver drugs and oligonucleotides to the kidney 

[251] (Fig. 4). NPs are composed of a core that contains the therapeutic agent, encapsulated in 

a protective layer which can be modified to protect the NP from degradation in the circulation. 

In addition to the NP surface, targeting ligands including antibodies, proteins, peptides and 

aptamers may be added. For example, a liposome-polycation-hyaluronic acid NP formulation 

was modified using a tumour-targeting single-chain antibody fragment, which allowed specific 

delivery of miR-34a to the lung in vivo [252]. NP size can also be adjusted to enhance 

accumulation in specific organs, and size-dependent NP retention by the kidney means that the 

mesangium can be targeted with gold-based polyethylene glycol (PEG) NPs of 75 nm diameter 

[253].

The combination of focused ultrasound combined with gas-filled microbubbles (e.g. the 

clinically-approved SonoVue) has proved effective in enhancing non-invasive renal-specific 

administration of miRNA-based therapeutics. In the presence of gas microbubbles, ultrasound 
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causes plasma membrane pore formation in a process called sonoporation, increasing cellular 

permeability and thus miRNA uptake [254].

Lan and colleagues have successfully used this method to target the kidney. Initially a miR-21 

knockdown plasmid was administered in a mouse model of unilateral ureteric obstruction (UUO), 

which attenuated miR-21 abundance by 20% and resulted in reduced renal collagen expression 

[255]. This group also significantly reduced fibrosis post-UUO by delivering a miR-29 plasmid 

under tetracycline-controlled transcription using ultrasound and microbubbles [256]. Depletion 

of miR-29b following AGE treatment of rat mesangial cells in vitro has also been shown by these 

researchers, and the fibrotic effects resulting from AGE treatment were attenuated by miR-29b 

replacement in this model [192]. Similarly, loss of miR-29b was associated with inhibited DKD 

progression in db/db mice, and miR-29b therapy inhibited renal injury and microalbuminuria 

[192].

This ultrasound and microbubbles combination was used recently to co-deliver ASOs to miR-21 

and miR-10b to deep pig tissues, including kidney, using poly lactic acid-co-glycolic acid (PLGA)-

PEG NPs [257]. At 4 hours post treatment, histological investigation for hemorrhage, 

inflammation and edema attributable to the treatment showed no damage, suggesting that this 

treatment was safe [257].

Extracellular vesicles (EVs), including exosomes, have also been used to deliver miRNA cargoes, 

and encapsulation within exosomes or microparticles stabilises miRNAs. Recovery post-AKI was 

induced in kidney cells by the miRNA cargo of mesenchymal stromal cell-derived EVs [258].

As noted above, miR-29 loss has been observed in DKD progression and its replacement 

attenuated fibrosis [192]. Recently, Jahangard et al. generated a stable rat bone marrow 

mesenchymal stem cell line that overexpressed miR-29b, and this increased expression was also 
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seen in the exosomes produced by these cells [259]. Stem cell exosomes enriched in miR-29b 

were then transplanted into the hippocampal CA 1 region of rats in an Alzheimer’s disease 

model, and showed positive effects on deficits in spatial learning and memory [259]. These 

findings present the possibility that a combination of ultrasound and microbubbles with miR-

29b-enriched exosomes could be used for specific restoration of miR-29b in DKD.

The generation of “targomiRs”, EGF receptor-targeted bacterial minicells loaded with miRNA 

mimic, represents another potential delivery system for miRNA-based therapeutics. Testing in 

clinical trial showed an acceptable safety profile as well as some early signs of activity in patients 

with malignant pleural mesothelioma [260]. The identification of a suitable targeting ligand in 

the kidney could extend the use of this delivery system for DKD.

4.4 Kidney targeted miRNA-based therapy

Podocytes are critical in the pathogenesis of DKD. Podocyte loss correlates with 

glomerulosclerosis and proteinuria [261-263], and a series of elegant studies in 2008 established 

that miRNA expression is crucial to podocyte homeostasis [264-266]. Subsequent transcriptional 

profiling of mRNAs and miRNAs, in combination with quantitative proteomic analyses, has 

provided further insights into the molecular interactions via which the healthy podocyte 

phenotype is maintained [267].

Numerous podocyte-linked miRNAs have been implicated in DKD pathogenesis. These include 

the highly expressed miR-146a, which is lost in preclinical models of DKD and in the glomeruli of 

patients with T2D, the latter loss is associated with increased albuminuria and glomerular 

damage [201]. Strategy designs to replace this lost miR-146a expression are informed by the 

knowledge that podocytes express the neonatal Fc receptor, which NPs can be modified to target 

[268], after which they are taken up via endocytosis and deliver their cargo directly to these cells. 
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Podocytes also express integrin αvβ3, allowing podocyte-specific use of NPs modified with αvβ3-

specific ligand cyclo-(Arg-Gly-Asp-D-Phe-Cys) [269]. Podocyte-specific targeting has been 

achieved previously for short interfering RNAs (siRNA), synthetic RNA duplexes that represent 

an alternative to miRNA-based therapeutics for manipulation of target gene expression in an 

anti-fibrotic context [270, 271], and therefore podocyte-specific delivery of miRNA mimics or 

anti-miRs is likely to be a feasible approach for miRNA-based therapy.

Under homeostasis mesangial cells play a role in glomerular hemodynamics and clearance of 

immune complexes, and produce a plethora of ECM proteins to support the glomerular 

capillaries. Mesangial expansion is a feature of early DKD, during which a combination of cell 

growth and increased ECM deposition leads to glomerulosclerosis and reduced renal capacity. 

Uniquely, NPs of specific size can target the mesangium [253]. In addition, efficient mesangial 

delivery of siRNAs encapsulated in cyclodextrin-containing polycations NPs (CDP/NPs) has been 

observed [272]. This mesangium-specific delivery can be further augmented by addition of a 

targeting ligand for the mannose receptor to the CDP/NP, since renal mannose receptor 

expression is restricted to the mesangial cells. Delivery of encapsulated siRNAs was successful as 

both mouse and human mesangial cells internalized siRNA/CDP-NPs, and in vitro delivered 

encapsulated siRNAs were shown to knockdown green fluorescent protein in a reporter mouse 

strain following intravenous administration [272]. These strategies offer further alternatives to 

target mesangial miRNAs.

Renal proximal tubular epithelial cells (PTECs) preferentially take up ASOs, providing clear 

opportunities to target the tubules with miRNA-based therapies. Several studies have shown 

renal accumulation of ASO-based anti-miRs following systemic administration [216, 243, 273, 

274]. Tubular uptake of LNA-miR-214 post systemic delivery decreases renal tubular autophagy 

in DKD, reducing renal hypertrophy and albuminuria [275], and a chitosan derivative-based gene 
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delivery system has successfully been used to target tubular cells [276]. N, N-diethyl N-methyl 

and N-triethyl chitosan were synthesized from chitosan polymer, these derivatives were 

complexed with fluorescein isothiocyanate-dextran green/red fluorescent protein plasmid 

vectors and fluorescently-labelled miRNAs, and successfully transfected renal epithelial cells 

[276]. Protein uptake into PTECs is mediated by 2 receptors, megalin and cubilin. The 

megalin:cublin complex is expressed on the apical PTEC membrane and Gao et al. found that 

chitosan polyplex NPs containing an siRNA against aquaporin 1 accumulated in vitro in PTECs and 

in vivo were exclusively found in cells expressing megalin, suggesting that a megalin-dependent 

endocytic pathway was responsible for uptake [277].

Delivery of an anti-miR-21 to mouse kidney in vivo has been achieved using small-sized cationic 

low molecular weight chitosan-modified PLGA NPs. This inhibitor showed antifibrotic effects in 

TGF-1-treated rat kidney epithelial cells from cell-line NRK-52E in vitro, and in kidneys from a 

UUO mouse model in vivo [278]. This delivery system showed high cell uptake and renal-

targeting characteristics, as well as excellent biocompatibility [278]. 

4.5 Safety of miRNA-based therapeutics

Off-target effects are a key consideration in the development of effective miRNA-based 

therapies. Oligonucleotides and their means of delivery can trigger an inflammatory response 

through activation of cell surface TLRs [279, 280]. PS ASOs containing CpGs are potent 

stimulators of the innate immune system, but can also activate innate immunity in the absence 

of these sequence motifs, albeit at much higher doses [280]. This immunostimulatory effect is 

induced by binding to TLR9 for both CpG- and non-CpG-containing PS ASOs, in a myeloid 

differentiation protein-dependent manner [281]. However, commonly used chemical 

modifications such as LNAs, or the incorporation of 2ʹ-O-methyl uridine or guanosine nucleosides 

[282] mitigate some of these effects by mimicking endogenous capped mRNAs, and have the 
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added benefit of decreased immunogenicity [283]. Anti-miRs with 2ʹ-O-methyl residues also 

inhibit TLR7 sensing in a sequence-dependent manner, suggesting that potential for off-target 

effects on TLR7/8 function should be taken into account in the therapeutic development and in 

vivo application of these anti-miRNA oligonucleotides [284].

Since increased abundance of key miRNAs has been implicated in DKD and subsequent renal 

fibrosis, the use of anti-miRs to decrease miRNA abundance offers a potential avenue for 

therapy. Data on over 2,400 patients from 32 phase 2 and phase 3 clinical trials using anti-miRs 

with typical 2’-O-methoxyethyl conjugation revealed no evidence of clinically significant renal 

impairment, and no significant incidence of AKI, which held true in sub-populations of patients 

with diabetes and those with renal dysfunction at baseline [285]. Human pharmacokinetic 

studies have shown that the kidney accumulates the highest concentration of 2’-O-methoxyethyl 

conjugated ASOs following systemic administration [285]. This accumulation in the renal cortex 

is first order and saturates, therefore significantly increased ASOs or metabolite concentrations 

do not result from long-term treatment [285]. Comparative toxicological studies of high dose 

ASO use in healthy human volunteers and non-human primates have shown a number of 

toxicities in macaques with no class safety effects noted in healthy human volunteers, but 

nonhuman primates are thought to be more sensitive to these ASO-driven toxic effects than 

humans [286].

It is beneficial for the delivery of miRNA-mediated therapeutics that the kidney is a key site of 

ASO accumulation, but cellular distribution within the kidney is also vitally important. 

Distribution of 2’-O-methoxyethyl ASOs is altered in pre-clinical models of CKD, with a decrease 

to the renal cortex observed together with increased medullary accumulation [287]. Analyses in 

which 5’-Cy3-labelled-miR-21 ASOs, chemically modified ASOs to mature miR-21 containing PS 

linkages and modified sugar moieties including 2’-O-methoxyethyl were administered 
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subcutaneously to Col4a3-/- mice that develop renal disease, anti-miR-21 was highly 

concentrated in the proximal tubule, but was also observed in distal tubules, endothelial cells, 

fibroblasts and F4/80+ macrophages [216, 274]. However, ASO-associated vasculitis and 

glomerulosclerosis have been observed in monkeys, apparently due to complement activation 

and endothelial injury [288], but may be a species effect [286].

5. Integration of miRNA therapy into renal patient treatment

5.1. Current state of miRNA clinical trials 

Lifestyle modification, glycemic control, treatment of hyperlipidemia and other cardiovascular 

risk mitigation therapies are mainstays of treatment for patients at risk of DKD. The current 

epidemic of diabetes and DKD risk, and the limited success of the above treatment approaches 

in ameliorating its consequences, make the need for new therapies pressing. After many prior 

failures, the effects of the current generation of antidiabetic agents on renal and cardiovascular 

risks in this population are impressive. There remains, however, a significant shortfall of residual 

morbidity and mortality in those affected by DKD. MiRNAs have potential as contributors to 

redressing this gap in DKD treatment, as therapeutic targets, as therapeutic agents, and as 

biomarkers.

Moving RNA-based therapy into the clinic has proved challenging. In the past this has been due 

largely to the problem of safe and effective delivery of siRNAs to target cells. Various strategies 

are in development to address this, including a multiplicity of proposed chemical modifications 

to stabilize RNA molecules, systemic delivery systems, and local strategies including direct 

injection [289].
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The challenge of delivery may be unequal in different tissues, with particularly high levels of 

uptake in liver and kidney following systemic administration [290]. This suggests that this 

therapeutic modality may be useful for kidney diseases, including DKD. Much of the initial clinical 

effort has focused on liver disease, and the field has received a major boost with the first RNAi-

based therapy receiving US and European regulatory approval in 2018: Patisiran, an siRNA to 

transthyretin, reduces abnormal hepatic transthyretin production in people affected by 

hereditary transthyretin amyloidosis [291].

There are several candidate miRNA-based therapeutics in early phase clinical trials, including 

miRNA mimics and anti-miR sequences, some of which have progressed to phase 2 studies. 

Miravirsen, a miR-122 LNA anti-miR has shown potential for the treatment of hepatitis C virus 

(HCV) genotype 1. MiR-122 is essential for the completion of the life cycle of HCV expressed in 

the liver [292]. In phase 1 clinical trials, in some patients receiving high doses of Miravirsen 

monotherapy, HCV RNA was undetectable [293]. Due to its chemical modifications Miravirsen 

accumulates naturally in the liver, and therefore does not require a special delivery strategy. 

Multiple phase 2 clinical trials are currently underway.

Kidney-directed miRNA-therapies include the targeting of miR-21, which is associated with 

kidney injury and renal fibrosis [216, 294], in people with Alport Syndrome. This X-linked disorder 

is characterized by kidney disease and caused by mutations in the gene sequences encoding 

type-IV collagen [295]. RG-012 is a miR-21-specific anti-miR with PS, 2’-O-methoxyethoxy and 

constrained ethyl modifications. When tested in a mouse model of Alport Syndrome, RG-012 

demonstrated improved survival and a reduction of kidney disease progression [274], and it is 

currently under evaluation, as Lademirsen, in patients with Alport syndrome [296].
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MiR-17 has also been targeted in the kidney for the treatment of autosomal dominant polycystic 

kidney disease (ADPKD). Extensive preclinical studies demonstrated that miR-17 is upregulated 

in human and murine forms of polycystic kidney disease (PKD), and deletion or inhibition of miR-

17 attenuates cyst growth in mouse PKD models [273, 297, 298]. RGLS4326, a first-in-class 

oligonucleotide inhibitor of miR-17, is preferentially taken up in the kidney and collecting duct-

derived cysts [299]. Furthermore, RGLS4326 displaces miR-17 from translationally active 

polysomes, and de-represses multiple miR-17 mRNA targets [299]. Despite a pause in a phase 1 

multiple ascending dose study for RGLS432 in healthy volunteers, due in part to unexpected 

observations in a 27-week mouse chronic toxicity study, the study completed in July 2020. A first 

cohort of nine patients with ADPKD has been enrolled in a phase 1 clinical trial and received 1 

mg/kg of RGLS4326 subcutaneously every other week for four doses (Clinical Trial Identifier 

NCT04536688). No serious adverse events have been reported, but a longer half-life in plasma 

for RGLS4326 was observed.

5.2. Challenges to miRNA-based therapeutics

Accumulation of miRNA-based therapies in the kidney suggests that these drugs will be useful 

for the treatment of kidney disease. However, selective cell uptake remains a key hurdle to 

ensure prevention of off-target effects. As discussed above, various strategies for targeting 

podocytes, mesangium and tubular cells have been demonstrated, but a crucial missing step is 

to combine these methodologies to target the most appropriate miRNA targets.

Ongoing work into the chemical modification of oligonucleotides will continue to improve these 

drugs, and to reduce their immune effects and toxicities. The Oligonucleotide Safety Working 

Group [300] has published extensive guidelines for assessing the various aspects of safety [301, 

302]. Oligonucleotide-mediated toxicity falls under two main categories: (i) hybridization-

dependent effects, including on- and off-target effects, and (ii) hybridization-independent effects 



ADDR: Diabetes Associated Fibrosis and Therapeutic Targets

43

which are mostly caused by protein-binding properties [303]. MiRNA-based therapies represent 

a new class of drugs. Currently, there is an abundance of data from preclinical models, but very 

limited clinical data. We must therefore remain conscious that toxicity/off-target effects are 

potential problems that must be borne in mind when designing potential therapeutic agents.

5.3. Acceleration of therapy development

We still await the first miRNA-based drug to reach pharmaceutical breakthrough, but several are 

currently in clinical trials, and more are entering this stage of development [304]. There is now 

increased industrial interest, with numerous examples of large pharmaceutical companies 

acquiring small miRNA therapy companies.

MiR-132 has recently been targeted in studies on heart failure using an LNA anti-miR which was 

effective in preventing and reversing heart failure in preclinical models, including demonstration 

of efficacy in large animal models [305]. These findings have recently been translated to the clinic 

with the first-in-human phase 1b randomized, double-blind, placebo-controlled study of 

CDR132L, a first-in-class miR-132-specific ASO (Clinical Trial Identifier NCT04045405). Results 

from the study, in which 20 patients were randomized to CDR132L and 8 to placebo, found that 

CDR132L was safe and well tolerated, confirmed linear plasma pharmacokinetics with no signs 

of accumulation, and although underpowered, there was a suggestion of improved cardiac 

function. To address the previous safety concerns with first-generation ASOs, thrombocytopenia 

was pre-specified as a potential side effect, but platelet counts remained normal throughout 

[306]. Importantly, liver and kidney function showed no signs of toxicity at the doses used [306].

These important new studies targeting miR-17 and miR-132 suggest that robust preclinical 

studies, including testing with larger animal models combined with screening compounds for 

optimal pharmacological features, will increase the translation potential of miRNA-based 
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therpeutics. The field of miRNA biology remains young, and as we gain better insight into the 

mechanisms of action of specific miRNAs, more rational selection of the best candidates will 

facilitate advancement towards effective translation.

6. Conclusions and future perspectives

From the above it is apparent that miRNAs have highly significant potential both as biomarkers 

and therapeutic agents for fibrotic kidney disorders including DKD. With respect to their use as 

biomarkers, mindfulness of practical considerations will be essential if these transcripts are to 

fulfil their potential to improve patient outcomes. Interactions with industry on the detection of 

miRNA biomarkers from liquid biopsies consistently emphasizes the desirability of sensitivity, 

cost, speed and simplicity that avoids the need for end-user expertise. MiRNA biomarker 

detection methodologies that can be integrated as cost-effective, high-throughput protocols into 

existing care pathways include a recently described electrochemical method that is more 

sensitive than RT-qPCR. This technology is currently under development for use in the 

biochemistry laboratory and / or at the point of care [307, 308].

Analysis of global gene expression has recently undergone profound methodological 

transformations for laboratory and computational analyses that can inform approaches to 

identify and deliver miRNA-based therapeutics [309]. Single-cell RNA sequencing is a particularly 

powerful method that offers the opportunity to analyze organs at much higher resolution than 

previous bulk sequencing methods.

In the case of the kidney, each nephron comprises the glomerulus, proximal and distal 

convoluted tubules, loop of Henle and collecting duct (Fig. 5), discrete functional regions 

populated by resident cells with different morphological and functional phenotypes. Single-cell 

RNA sequencing has identified rare cell types and previously unknown fibrosis-specific cell states 
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[310]. This technology has been used to log infiltrating cell populations in progression and 

regression of fibrotic disease [311] and single-nucleus RNA sequencing has identified new classes 

of PTECs in renal fibrosis [312]. Non-invasive robust data have also been generated from urine 

samples [313]. Regrettably, single-cell RNA sequencing has not yet been adapted for analysis of 

miRNAs. Nevertheless, recent publication of an atlas of cell-enriched miRNA expression including 

proximal tubular cells, endothelial cells, macrophages and fibroblasts is the closest yet to single-

cell resolution in the kidney [232].

Particularly, perhaps, for those of us who devoted many hours to manual Sanger nucleic acid 

sequencing, it is hugely encouraging that the resources now at our disposal generate detailed 

data allowing thorough investigation into human gene expression and its relationships with 

health and illness. In addition to single-cell sequencing approaches, the application of genomic 

sequencing to precision medicine promises to improve patient stratification and maximise 

healthcare resource allocation [314-316].

In closing, the emergence of miRNAs and other noncoding RNAs, and the interaction of these 

transcripts with protein-coding mRNAs and their products, has provided new dimensions to the 

way we think about gene products [317]. The human genome can no longer be interpreted as a 

static linear sequence. An appreciation of macro-level genome configuration should also inform 

our analyses [318, 319] including copy number variation and dosage effects [320-322]. Indeed, 

an awareness of the time axis that our findings inevitably reflect [323] remains pivotal to a full 

and meaningful appreciation of the data which we can now access and its influence on complex 

processes including the regulation of gene expression [324] and human health [325]. As 

Dobzhansky put it so succinctly “nothing makes sense in biology except in the light of evolution” 

[326]. 
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FIGURE LEGENDS

Fig. 1 – Key stages of miRNA biogenesis. In the nucleus, each miRNA is transcribed from its 

specific genomic locus by RNA polymerase II as a primary miRNA or pri-miR transcript. 

Intracellular editing follows to produce the pre-miRNA (or pre-miR) that is then exported to the 

cytoplasm where it is edited further to the mature miRNA duplex. Following this, the selected 

mature miRNA strand of the RNA, an argonaute protein and other factors combine to form the 

RNA-induced silencing complex (RISC) via which the miRNA elicits its effects on mRNA 

translation. DGCR8 = DiGeorge syndrome critical region 8, TRBP = transactivation response 

element RNA-binding protein, AGO = argonaute (I-IV).

Fig. 2 – The effect of the diabetic environment on the kidney and key features of DKD. The 

diabetic environment (DE) can result in kidney damage with widespread sclerosis and fibrosis 

evident in periodic acid shiff (PAS) stained kidney biopsy tissue from a patient with diabetic 

kidney disease shown bottom left. Comparison of the “normal” and “diabetic” glomerulus, when 

stained with Jones silver stain, shows nodular matrix accumulation, Kimmelstiel-Wilson lesions 

and sclerosis. In response to the diabetic environment podocytes are injured, and may become 

hypertrophic, foot process fusion occurs and cells may detach; mesangial cells become activated, 

proliferate and produce increasing amounts of extracellular matrix proteins, resulting in the 

development of glomerulosclerosis; and tubular cells become injured and undergo atrophy. This 

injury results in immune cell infiltration, fibroblast activation, and increased production and 

deposition of extracellular matrix by myofibroblasts, leading to tubulointerstitial fibrosis.
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Fig. 3 – Altered signaling pathways implicated in DKD, and differentially expressed podocyte 

miRNAs. The diabetic environment (DE) results in aberrant kidney cell signaling. There is 

increased signaling via the AGEs, JAK/STAT and TGF- pathways, and decreased insulin signaling. 

Podocyte to endothelial cell signaling of VEGF and nitric oxide is also affected. Podocyte injury 

by the DE results in altered miRNA expression profiles. Examples of mechanistic roles for the key 

miRNAs listed are given in the text. Further details on the podocyte-specific roles of each miRNA 

in DKD are summarized elsewhere [179].

Fig. 4 – Chemical modification of miRNAs and delivery modalities of miRNA-based 

therapeutics. A) Formulation of miRNA therapeutics can be altered by chemical modifications 

that result in improved pharmacokinetic properties such as nuclease resistance and improved 

target binding. B) MiRNA-based therapy delivery platforms include the use of nanoparticles (NPs) 

in which the miRNA mimic or anti-miR are encapsulated. NPs can be coated in polyethylene 

glycol (PEG), in a process referred to as PEGylation, to improve systemic circulation time and 

reduce immunogenicity. These drug delivery platforms can be further modified to include 

conjugation with specific ligands.

Fig. 5 – The nephron, the functional unit of the kidney. Blood arrives in the glomerulus from 

which the urinary filtrate is filtered into the lumen of the tubule. Ions are excreted and absorbed, 

and water is retrieved, through the different segments of the tubule, which are intimately linked 

to peritubular capillaries. This filtration process forms concentrated urine. The different 

functional regions of the nephron are shown together with the renal cortex, and inner and outer 

medulla.
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