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A B S T R A C T   

The nano-to-micro mesoscale is crucial for cementitious materials; here reactions and interactions between 
molecules produce complex mechanisms that determine the behavior of cement minerals, especially C-S-H. This 
manuscript reviews the current state of the art in coarse-grained and mesoscale simulations of C-S-H. These 
simulations leverage a rigorous statistical mechanical framework, linking atomistic description with coarse- 
grained modelling through several pivotal concepts: potential of mean force, ion-ion correlations between 
charged surfaces, and grand canonical reactive ensemble. The second part of the manuscript discusses the 
effective interaction potentials between C-S-H particles that are currently used, followed by methods to simulate 
C-S-H formation. Structural, physical and mechanical properties predicted by the existing simulations are then 
presented. Finally the manuscript highlights opportunities for future research, which are driving the multi-scale 
modelling of C-S-H but also of other mesostructured materials.   

1. Introduction 

Production of cement and concrete has a high environmental impact, 
with concerns linked to consumption of raw materials and global CO2 
emissions [1]. To mitigate these issues, new cements are being 
researched and tested, featuring large and sometimes complete substi-
tution of traditional Portland cement with supplementary cementitious 
materials [2]. Predicting the properties of concretes with new chemis-
tries is challenging, especially long-term performance for which there 
are scarce experimental data. Multi-scale modelling is being increasingly 
recognised for its potential to complement the experiments and accel-
erate innovation in cement and concrete science and technology [3]. 

Multiscale modelling [4] typically starts with ab-initio and atomistic 
simulations, which leverage first principles to predict thermodynamic, 
structural, mechanical, and kinetic data for various cement phases at the 
nanoscale. The effects of these fundamental properties are transferred 
across length and time scales to eventually inform macroscale engi-
neering models, through constitutive laws that describe the properties of 
individual phases, interfaces, and mixtures. Atomistic and macroscale 
models of concrete and its phases are quite established and reviewed 
elsewhere [5–7]. However, there is clearly a need to connect the 
nanoscale with the macroscale. Such connection spans multiple scales in 

length and time: from the nanometre and nanosecond of atomic pro-
cesses, to at least millimetres and seconds at the engineering scales. This 
cover a wide range of mesoscales, and indeed different sub-communities 
within concrete science interpret the term differently. For example, in 
concrete modelling, the mesoscale of interest is typically in the 10− 3 −

10− 1 m range, where aggregates, cementitious matrix, and interfacial 
zones interact [6,7]. Instead, in the cement hydration community, the 
mesoscale is that of microstructure development: 10− 7 − 10− 3 m [8]. 
Our manuscript focuses on a mesoscale that is particularly important in 
the upscaling of properties from atomistic simulations: the nano-to- 
micro mesoscale, 10− 9 − 10− 6 m: see Fig. 1. This range of scales is 
implied whenever the word “mesoscale” appears in this manuscript 
without any further specification. 

The nano-to-micro mesoscale is important because it is the first scale 
above atomistic simulations, so it is the first step in the upscaling effort. 
At this scale the (nano-) particles are still small enough for thermal 
fluctuations and thus for entropy to play an important role [9]. The use 
of statistical mechanics allows to rigorously describe the equilibrium 
state of mesoscale systems (resulting from the balance between internal 
energy and entropy) but also to coarse-grain and upscale information 
from the molecular scale below [10,11]. At larger scales, the motion of 
large particles (supermicronic) induced by thermal fluctuation is 
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negligible at room temperature; moreover intergrain dissipation and 
friction quickly drain the kinetic energy from the system. The nano-to- 
micro mesoscale is challenging too; at larger scales, one often assumes 
soft coupling between chemical transformations and mechanical defor-
mation [12–14]. However, at the nano-to-micro mesoscale, these pro-
cesses contribute rather commensurately to the same free energy 
landscape, which governs the evolution and properties of the material. 
In other words, chemistry and mechanics are fully coupled at the 
mesoscale [15]. 

This manuscript focuses on mesoscale simulations of calcium- 
silicate-hydrate (C–S–H) only. The reason is that almost all the exist-
ing mesoscale simulations of cementitious systems focus indeed on 
C–S–H, which is the main binding phase in traditional Portland cement. 
However, the techniques and results that will be presented here for 
C–S–H can be extended and applied to other phases too. Indeed, one of 
the objectives of this review is to stimulate a broader uptake of meso-
scale simulations, to encompass other cement phases and processes as 
well as possibly other materials beyond concrete. The manuscript is 
structured as follows:  

• Section 2 focuses on solid-solution interfaces, starting with the 
charging process of silica and C–S–H. This is followed by a presen-
tation and discussion of the adsorption of inorganic ions and large 
organic molecules (e.g. superplasticizers) at the interface between 
C–S–H and cement pore solution. The section then illustrates the 
application of the grand canonical reactive ensemble to the liquid 
and solid speciation of the SiO2-CaO-H2O system. This provides the 
starting physico-chemical properties to model and rationalize the 
effective interaction potentials, or Potentials of Mean Force (PMF), 
between C–S–H nanoparticles used in particle-based mesoscale 
simulations.  

• Section 3 builds on the knowledge on the interface between C–S–H 
and pore solution, showing how these translate into PMF between 
neighboring C–S–H surfaces and particles. The PMF determined from 
atomic force microscopy experiments and coarsed grained simula-
tions are presented first, and their limitations are discussed. Results 
from full atomistic simulations are presented next. The main effec-
tive potentials currently in use in particle-based mesoscale simula-
tions are then presented, discussed, and compared. 

• Section 4 presents the techniques to simulate the mesoscale forma-
tion of C–S–H using interacting nano-particles. These techniques are 
based on variations of the Monte Carlo approach, including Grand 
Canonical and Kinetic Monte Carlo. Results from the literature are 
presented, focusing in particular on the experimental hydration rate 
curve of cement from calorimetry tests. The section also features an 
initial introduction on previous models and simulations to describe 

the same curve based on geometric rules, without mechanical 
interactions.  

• Section 5 collects literature results from mesoscale simulations of 
C–S–H and cement paste. The results encompass structural, physical, 
and mechanical properties. In detail, these include: (i) volume frac-
tion, cluster, connectivity, and local order analyses, (ii) spatial cor-
relations as measured in small angle scattering; (iii) characterization 
of the pore network and, related to it, vapor sorption isotherms and 
capillary stress; (iv) formation eigenstresses; (v) elastic moduli; (vi) 
mechanical strength; (vii) plasticity and fracture; (viii) creep 
behavior. The presentation is accompanied by brief explanations of 
the main methods employed and discussion of the relevance and 
limitations of the current results. 

The manuscript ends with a summary of main achievements and 
conclusions to date, as well as an outlook on some open challenges in the 
field of coarse grained and mesoscale simulations of C–S–H and other 
cement hydrates. The manuscript is accompanied by a brief introduction 
to the statistical mechanics background and tools used in the various 
mesoscale simulations presently reviewed, see the supplementary ma-
terial S1. In particular, it is shown how the essential features of the free 
energy landscape of a complex molecular system can be coarse-grained 
using Potentials of Mean Force (PMF) between interacting species or 
nanoparticles. The statistical mechanical description of systems whose 
evolution is dictated by chemical reactions used in Sections 2 and 4 is 
introduced too. 

2. Solid–solution interfaces 

Solid-solution interfaces play a central role in many physico- 
chemical processes. In particular, adsorption and transport of solutes, 
interparticle interactions, paste rheology and microstructure, and pre-
cipitation and dissolution of solids, all fundamentally depend on the 
physico-chemical properties of solid-solution interfaces. In this section, 
we review the key features and principles of solid-liquid interfaces and 
illustrate their relevance to adsorption. The aim is to introduce funda-
mental concepts that are pivotal to interparticle interactions and pre-
cipitation of hydrates described in later sections. 

Most minerals present an electric charge on their surface when in 
contact with an aqueous solution. The surface charge is either perma-
nent/structural, originating from the isomorphic ionic substitution in 
the mineral structure, like in the case of ettringite [16], or amphoteric 
(pH dependent), that is due to the ionisation of surface groups, like e.g. 
C–S–H particles [17]. On top of this, due to electrostatic forces and 
thermal agitation, the ions in the solution form a cloud at the solid- 
solution interface. At equilibrium, this ionic cloud neutralizes the min-
eral surface charge. The electrostatic interactions in the ionic cloud, best 
known as the electrical double layer (EDL), control the properties of 
individual mineral particles, such as their precipitation mechanisms and 
rates, as well as the interactions between different particles. We shall 
illustrate this in Sections 3 and 4.1. It is therefore essential to understand 
and accurately model charge formation at mineral surfaces, the focus of 
this section. 

The Gouy-Chapman-Stern model (GCSM) is the most used approach 
to describe the EDL; it dates back to the beginning of the last century and 
it is based on experimental observations with a mercury drop electrode 
in aqueous solutions (see Refs. [18,19] and also the work of Grahame 
[20]). In this model, the EDL is described as two adjacent layers, a 
compact (Stern) layer close to the surface and a diffuse layer that ex-
tends into the bulk solution. The GCSM is based on the Poisson- 
Boltzmann equation, a mean field approximation of the primitive 
model (PM) where ions, considered as point charges within an implicit 
solvent, interact with each other and with charged surfaces through a 
mean electrostatic potential, used as an approximation for the PMF. In 
other words, calling ψ(x) the mean electrostatic potential at a normal 
distance x from a charged surface, the PMF of an ion i of charge zie with 

Fig. 1. Multiscale modelling of C–S–H, from full atomistic simulations to 
coarse-grained and particle-based simulations, spanning length scales from 
nano to micro. Figures adapted with permission (a) Ref. [74] from the Royal 
Society of Chemistry (b) Ref. [72] from the American Chemical Society and 
(c) Ref. [90]. 
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the surface is approximated within the GCSM as wiS(x) = zieψ(x), and its 
concentration profile as ci(x) = ci

bulk exp [− βwiS(x)]. The ion and po-
tential profile in the diffuse layer are obtained by solving the Poisson- 
Boltzmann equation, see e.g. [21] The charging mechanism at mineral 
surfaces is self consistently described by the pK Stern model. Let us 
illustrate this taking silica as an example, starting with some 
generalities. 

The surface charge of silica, like C–S–H, arises from the deprotona-
tion of the silanol groups according to the reaction: 

Si − OH⇌Si − O− +H+ (1)  

governed by the intrinsic mass balance constant Ka, defined by the ac-
tivity product: 

Ka =
aSi− O− aH+

aSi− OH
(2) 

Introducing the chemical potential of the surface sites μ as well as the 
definition for pH (pH = − log aH) and pK, Eq. (2) can be rewritten as: 

ln(10)pKa = ln(10)pH − ln
α

1 − α − β
(
μex

Si− O− − μex
Si− OH

)
(3)  

where α is the fraction of deprotonated silanols. Recognizing that the 
excess chemical potential term β(μSi− O−

ex − μSi− OH
ex ) in Eq. (2), is nothing 

but the excess free energy change (PMF) to ionize a silanol group, wsS
ex(0), 

one can then write the change in Gibbs free energy for charging up a 
silanol group as 

ΔG = kTln
α

1 − α = kTln(10)(pH − pKa) − wex
sS(0) (4)  

from which the surface charge density is obtained from the relation 

σ0 = αzseΓs (5)  

where Γs is the total number per unit area of silanol groups and zse their 
charge in the deprotonated state, zse = − 1e here. So far, no approxi-
mations have been used: Eqs. (3), (4) are general and exact. Within the 
GCSM, the PMF for the surface groups is approximated by the mean 
electrostatic potential, here the surface potential, i.e. wsS(0) = − eψ(0). 
The drawback of this approximation is that the ion-ion correlations 
between charged species (ions as well as surface groups) are neglected. 
Nevertheless, the GCSM has been successful in predicting the surface 
charging process and the colloidal stability of many experimental sys-
tems, but limited to weakly charged surfaces in contact with electrolyte 
solutions of monovalent ions at low concentrations [22]. For highly 
coupled systems (high concentration, multivalent ions, and high surface 
charge), where ion-ion correlations are important, the GCSM leads to 
quantitatively and qualitatively wrong results [23,24]. This is typically 
the case for cementitious systems and C–S–H in particular, as we shall 
see in the next section. 

2.1. Surface charge 

Starting with the charging process of minerals, Labbez et al. in their 
work on silica [25] found that both ion–ion and ion–surface-site corre-
lations are important. This is illustrated in Fig. 2, which compares pre-
dictions from Monte Carlo (MC) simulations and GCSM with 
experimental measurements of the charging process of silica in sodium 
and calcium salt solutions, varying the pH and salt concentrations. The 
MC simulations were performed in the grand canonical reactive 
ensemble (see Ref. [17] and Supplement S1.4) and provide an exact 
solution of Eqs. (3), (4). The silica-solution interface was modelled in the 
framework of the PM as an infinite surface featuring explicit sites 
(silanol groups) next to an electrolyte solution, made of explicit ions 
embedded in a dielectric continuum, see Ref. [25] for more details. Both 
the GCSM and the MC simulations considered only electrostatic in-
teractions. Identical parameters and calculation approaches were used 

for both the Na-silica and Ca-silica systems. Fig. 2 shows that both the 
GCSM and the MC simulations reproduce the qualitative trend of the 
experimental data. The surface charge density σ0 is found to increase 
with pH, as expected from Eq. (1), but it is always smaller than in the 
ideal case due to strong electrostatic repulsion between neighboring 
sites. A change in the salt concentration modulates the screening of the 
electrostatic interactions which, in turn, changes σ0. Fig. 2 further shows 
that the predictions from the GCSM are only accurate at low pH (< <

pKa) and salt concentration, where σ0 is small. This gets more pro-
nounced when considering divalent Ca2+ instead of monovalent Na+

ions. On the other hand, the MC simulations describe very well the 
charging process of silica also at high pH and for both monovalent and 
divalent counterions. This shows that ion-ion correlations can be pivotal 
in the generation of electrostatic charge at mineral surfaces. 

The combination of high pH and calcium concentration in the pore 
solution of a typical Portland cement paste is thus expected to create a 
strong negative charge on the C–S–H surface. We recall here that the 
surface charge of C–S–H, like silica, arises from the ionisation of silanol 
groups. Using the same simulation strategy as above Labbez et al. 
showed, indeed, that the surface silanol groups of C–S–H are fully 
ionized in saturated and supersaturated lime solutions. These simula-
tions used the structure of Tobermorite as a model for C–S–H, thus 
featuring a surface site density of 4.82 / nm2, and pKa = 9.8 for the Si- 
OH ⇌ Si–O− + H+ reaction: see Ref. [17,27] for more details. In these 
conditions, C–S–H particles possess negative charge density as strong as 
− 772 mC/m2, see Fig. 3. To date, this is the strongest charge (in absolute 
value) ever reported for a mineral surface in aqueous solutions. The MC- 
simulated charge densities, arising from the deprotonation of the silanol 
groups, are in line with those calculated by Nonat et al. [28] using a 
classical surface complexation model. Unlike Monte Carlo simulations, 
however, the classical complexation model necessitates the use of four 
complexation reactions of the calcium ions with the C–S–H silanol 
groups in addition to the ionisation reaction in Eq. (1). This is due to the 
neglect of the ion–ion correlations [27]. 

Fig. 2. Surface charge density of silica as a function of pH, obtained from 
potentiometric titration experiments [26], mean field GCSM, and Monte Carlo 
simulations in the reactive ensemble [25], see also Supplement S1.4.2. For the 
calculations, the intrinsic dissociation constant and the surface density of the 
silanol groups were set to pKa = 7.7 and Γs = 4.8 sites/nm2, respectively. In the 
MC simulations, where ions and surface sites are explicit, the minimum sepa-
ration between an ion and a surface site was set to dis = 3.5Å. In the GCSM, 
where ions are point charges and the surface sites are smeared out, a gap be-
tween the surface and the solution (Stern layer) of thickness comparable to dis 
was introduced to facilitate the comparison with the MC simulations. 
Figure adapted from Ref. [17]. Copyright 2009 American Chemical Society. 
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All these modelling results illustrate the prominent role played by the 
divalent calcium ions in the understanding of the charging process of 
C–S–H and, more generally, that played by the ion–ion and site–ion 
correlations. In the following, we will further illustrate the importance 
of these correlations in the understanding of electrokinetic behavior and 
ion adsorption. 

2.2. Electrokinetic potential 

Electrokinetic measurements, like electrophoresis, are simple and 
rapid methods to gather qualitative information on the adsorbed state 
and amount of chemical species (e.g. ions and polyelectrolytes) at par-
ticle surfaces. They provide the electrostatic potential (electrokinetic 
potential or zeta potential) a few angströms away from the particle 
surface, resulting from the bare surface charge modulated by the 
adsorbed species (in its close vicinity) but also by the ionic strength of 
the solution. A clear example of the impact of ions is the continuous raise 
and change in sign, from negative to positive, of the electrokinetic po-
tential of C–S–H particles, when equilibrated with a solution containing 
an increasing amount of Ca(OH)2. This experimental behavior is 
perfectly reproduced by the primitive model of electrolyte solution and 
titrating surfaces, see Fig. 4. It can thus be explained on the basis of 
electrostatic interactions and correlations. Upon increasing both pH and 
calcium concentration, the negative bare charge of C–S–H becomes 
stronger and is compensated by an increasing amount of Ca2+ at the 
C–S–H/aqueous-solution interface. Simultaneously, the surface/solu-
tion calcium ion concentration profile deviates progressively from a 
classical diffuse layer (Poisson-Boltzmann distribution); see Fig. 5. The 
calcium ions accumulate in a thin layer close to the C–S–H surface and as 
much so as the ion-ion (and ion-site) correlations strengthen and, thus, 
as the charge of C–S–H becomes important. Above a threshold value of ≈
2 mM of Ca(OH)2 (pH 11.7) the build-up of the divalent calcium ions in 
this layer is so important that it more than compensates the bare charge 
and reverses the sign of the electrokinetic potential. In these conditions, 
a charged species more than a few angströms away from the surface, 

perceives an apparent charge whose sign is opposite to the bare charge of 
C–S–H. A process that is strongly impacted by this, and that we shall 
develop below, is the adsorption of anionic species by C–S–H, see e.g. the 
OH− profile in Fig. 5. 

Multivalent cations such as cationic oligomers and polymers as well 
as metal complexes, were also found to overcompensate the surface 
charge of C–S–H. Conversely, addition of monovalent cations, e.g. 
alkalies (Na2SO4, NaOH, KCl, etc…), decrease the zeta potential of 
C–S–H [17,27,29–31]. The electrokinetic behavior of C–S–H in the 
presence of cationic oligomers and alkalies were shown to be well pre-
dicted by MC simulations at the level of the primitive model, see 
[17,27,29]. All these results confirm the generalities of the mechanisms 
described above and, in particular, the prevalence of ion-ion 

Fig. 3. Simulated surface charge density of C–S–H and solution pH as a func-
tion of the equilibrium calcium concentration in the bulk solution for the pure 
CaO-SiO2-H2O system. The simulations were performed with Reactive Monte 
Carlo (RMC) in the grand canonical ensemble in the framework of the primitive 
model, see Supplement S1.4.2, taking the Tobermorite as a model for C–S–H. 
The surface density of the silanol groups was set accordingly to 4.82 sites/nm2. 
Their intrinsic dissociation constant was adjusted to pKa = 9.8 based on a 
combination of independent experimental data including potentiometric titra-
tion, Na+ adsorption and electrokinetic potential. The minimum separation 
between an ion and a surface site was set to dis = 2Å, see main text and Ref. [17] 
for more details. Figure adapted from Ref. [27]. Copyright 2011 with permis-
sion from Elsevier. 

Fig. 4. Comparison between experimental (points) and simulated (lines) elec-
trokinetic potentials (ζ) of C–S–H dispersions in equilibrium with various 
electrolyte solutions. The experimental and simulation data are from [17]. Ca 
(OH)2: pure CaO-SiO2-H2O system where pH is increased with Ca(OH)2; Ca 1 
mM: pH raised with NaOH starting from a C–S–H dispersion at C/S 0.7; Ca 20 
mM: pH increased with Ca(OH)2 and Ca2+ concentration adjusted to 20 mM 
with CaCl2. The simulations were performed with Reactive Monte Carlo in the 
grand canonical ensemble, see Supplement S1.4.2. Figure adapted from 
Ref. [17]. Copyright 2006 American Chemical Society. 

Fig. 5. Simulated ion profiles at the C–S–H/solution interface for increasing 
equilibrium bulk concentration of calcium (and pH) in the pure CaO-SiO2-H2O 
system. Note, that above 2.5 mM of Ca2+ (C/S 0.8) the surface charge of C–S–H 
is overcompensated by the calcium ions and the co-ions, here mainly OH− , start 
to adsorb as a second layer. 

K. Ioannidou et al.                                                                                                                                                                                                                              



Cement and Concrete Research 159 (2022) 106857

5

correlations in explaining the charge reversal of C–S–H, which has sig-
nificant impact on interactions at the mesoscale. 

2.3. Ion and polyelectrolyte adsorption 

Adsorption of ions on cement hydrates is one of the key factors which 
controls the ion composition of the pore solution and, thus, the satura-
tion index of the different phases which dissolve and precipitate during 
cement hydration. It is also a determinant factor for the understanding 
of ion transport, pollution leakage, durability of the material and of 
inter-particle interactions. Due to its large specific surface area and 
ubiquity in hydrated cement paste, a large number of ion adsorption 
studies has been reported on C–S–H, with particular emphasis on alkaly, 
sulfate and chloride ions. 

Classical modelling of ion sorption based on the GCSM and/or 
geochemical modelling have been unsatisfactory so far, despite using 
numerous complexation constants. By contrast, the PM for electrolyte 
solutions and titrating surfaces was shown to provide accurate pre-
dictions for the adsorption isotherm of a number of charged solutes, 
including Na+, K+, Ca2+, SO4

2− and small cationic oligomers, see e.g. 
[17,27,29]. 

As an example, Fig. 6 compares experimental and simulated 
adsorption isotherms of sodium and sulfate ions on C–S–H. The mea-
surements were performed on C–S–H dispersions, with different initial 
calcium to silicon stoichiometric ratios, and an increasing amount of 
Na2SO4 salt added to the equilibrium solution [32,33]. The simulations 
used a short-range attractive potential between calcium and sulfate ions, 
wCa, SO4, in addition to the Coulomb pair potential, to accurately 
describe the Ca2+–SO4

2− ion pair formation.1 wCa, SO4 was adjusted to 
reproduce experimental conductivities and chemical activities of pure 
CaSO4 aqueous solutions. The following functional was used: 

βwCa,SO4 (r) = ACaSO4 exp( − r/τ)udisp(r) (6)  

where ACaSO4 = 2.15kT and τ = 2Å are parameters that regulate the 
magnitude and range of the ion-pair potential and: 

βudisp(r) = 2π
[
2
/

45(σ/r)9
− 1
/

3(σ/r)3
]

(7)  

where σ = 4Å is the ion diameter. w(r) may be regarded as an effective 
potential of mean force, including dispersion forces and solvent-induced 
effects. 

As shown in Fig. 6, the simulations perfectly capture the simulta-
neous increase in the sulfate adsorption and drop of the sodium 
adsorption upon increasing the Ca/Si stoichiometric ratio, or equiva-
lently, upon raising the equilibrium calcium concentration and pH of the 
bulk solution. The adsorption of sulfate ions on the negatively charged 
surface of C–S–H is found to be mediated by the Ca2+ ions. It is a 
consequence of the build up of the overcompensating Ca2+ layer 
covering the C–S–H surface, see e.g. Figs. 4 and 5, promoted by the 
strong (negative) surface charge of C–S–H. The sulfate adsorption is 
further found to be strengthened by the Ca–SO4 ion pair formation. 

On the other hand, the behavior of sodium adsorption is the result of 
the Ca2+/Na+ competition with the negatively charged surface of 
C–S–H, which, for electrostatic reasons, largely favors the divalent cal-
cium ion. In a similar way, Viallis et al. [34] observed an increased so-
dium adsorption when decreasing the C/S ratio. More interestingly, 
using NaCl instead of NaSO4 to raise the bulk sodium concentration up 
to 1 M, the measured adsorption isotherm was not observed to saturate, 
but instead to increase linearly in logΓNa - logcNa

bulk plot (Freundlish type). 
Simulations at the level of PM were shown to perfectly predict this 
behavior which again is explained by the electrostatic competition 

between Ca2+ and Na+ ions with the C–S–H surface [27]. 
The identified mechanism (ion pairing) for the adsorption of SO4

2− on 
the negatively charged C–S–H surface provides the basis for the under-
standing of the anion affinity with C–S–H but also the link between the 
ionic interactions in bulk solutions and at solid/liquid interfaces. In 
practice, this means that the affinity of anions with C–S–H can be 
directly inferred from measurements or databases of thermodynamic 
properties of CaxAniony salt solutions, e.g. solubility, complexation 
constant or ion activity. As an example, based on the solubility of cal-
cium salts (the magnitude of the Ca–anion pair potential being inversely 
proportional to the calcium salt solubility) the following order of anion 
affinity with C–S–H can be deduced: CO3

2− >> SO4
2− and OH− > IO3

− >>

I− > Cl− > NO3
− > Br− > MnO4

− , in good agreement with experimental 
observations. The implication of this finding is further illustrated below 
for anionic polymer/superplasticizer. 

Organic admixtures are commonly used in the formulation of con-
crete and other cement-based construction materials for different pur-
poses, from adjusting reactivity (e.g. retarders, accelerators) to 
controlling workability and mechanical performance (e.g. super-
plasticizers). Despite their common usage and the important empirical 
knowledge acquired, the understanding of the mechanisms involved is 
still in its infancy, in particular when it deals with reactivity (see 
Ref. [36] for a recent review on molecular modelling of admixtures). 
During the last decade, however, Turesson and co-workers [35,37] 
brought an important contribution to the rationalization of the cement- 
hydrate-superplasticizer interactions, starting with the adsorption 
mechanism. The primitive model for polyelectrolyte solutions was used 
to simulate bulk solution mixtures of polyelectrolyte and ions in contact 
with a planar charged surface, as depicted in Fig. 7a. Building on the 
knowledge acquired on simple ions, Turesson el al. generalized the 
concept of ion-paring to bulky superplasticizers and polyanions. They 
showed that the strength of ion-pairing between calcium ions and pol-
yanion functions is a key parameter to characterize the affinity of 
superplasticizers with C–S–H (or hydroxylated allite) and by extension 
their sulfate tolerance. This is illustrated in Fig. 7b which shows the 
increased adsorption of a comb copolymer model on a negatively 
charged surface (C–S–H or hydroxylated allite) upon deepening the 
attraction of the Ca2+–organic-function pair potential. 

In line with experimental observations, the model predicts a lower 
adsorption for comb polyanions having longer neutral side chains (PEO), 
higher PEO grafting density and smaller polymerization degree for the 
charged backbone. This behavior is best explained by the balance be-
tween attractive surface energy (ion pairing, overcharging) and the 
repulsive contribution of the internal entropy of side chains. Similarly to 
simple coions, polyanion adsorption is also found to increase with the 
magnitude of negative charge density of C–S–H. 

From a practical point of view, Turesson et al. proposed a simple 
experimental method of evaluating ion pairing and thus to explain and 
predict the marked difference observed in adsorption isotherms of 
superplasticizers with different geometries and functionalities. The ion 
pairing was quantified from measurements of potentiometric titration 
and calcium binding isotherms of superplasticizers. Although a proper 
quantification of ion-pairing also requires the use of simulations, it 
should be noted that a qualitative evaluation of the ion pairing strength 
can easily be obtained from the slope of the calcium binding isotherm at 
low Ca2+ concentrations. Such strategy was successfully used by Nalet 
et al. [38] to rationalize the adsorption of various negatively charged 
organic molecules onto C–S–H surface. 

The adsorption of polyanions on C–S–H was also predicted to deviate 
from the common Langmuir isotherm characterized by a plateau when 
saturation is reached. The adsorption isotherm was, instead, found to 
first rise, reach a maximum, and then decrease upon further increasing 
the polymer content, as exemplified in Fig. 8. This non-Langmuir type of 
adsorption is in fact quite general for ion-mediated adsorption of poly-
electrolytes and simple molecules/ions. This has been observed for 
various systems [39–45]. Turesson et al. further showed that a typical 

1 The latter is, in part, responsible for the low solubility of CaSO4 (18 mM in 
pure water and at room temperature) 
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Langmuir adsorption isotherm is, however, recovered when the solution 
is buffered with an excess of lime. These conditions, which are typical of 
cement pastes, are equivalent to having a very large reservoir of calcium 
wih constant chemical potential, see Fig. 8. The experimental demon-
stration of this behavior was recently obtained by Bouzouaid et al. [46], 
studying the adsorption of gluconate on C–S–H. 

2.4. Speciation of C–S–H 

Modelling the speciation of solid and liquid phases allows predicting 
phase assemblage, which is key for the long-term durability of cemen-
titious materials and for the development of new cement blends with 
lower CO2 impact. Despite lot of efforts, there are still remaining issues 
due to the complexity of the cementitious systems, but also due to the 
limitations of thermodynamic models (geochemical models) based on 

solid-solution or on surface complexation approaches. 
The system complexity can be illustrated by the main hydrate phase, 

namely C–S–H. Its composition, expressed in terms of Ca/Si and H2O/Si 
stoechiometric ratio, varies with the composition (ion concentrations) of 
the pore solution with which it is in equilibrium. Due to its charge, 
C–S–H particles can physically adsorb both anions and cations, see 
Section 2.3. Furthermore, C–S–H can incorporate aluminate ions in its 
structure through a Si/Al substitution reaction. Those variations are 
accompanied by changes in the silicate chain length of C–S–H and in the 
ion concentrations of the pore solution (silicate from few mM to a few 
μM, 1 mM < Ca < 30 mM, 10 < pH < 13). 

The limitations of the classical geochemical models have in part been 
discussed in the previous Section 2. They are principally due to the need 
of introducing a large number of surface complexation constants (for the 
surface complexation models) or end-members (for the solid solution 
models) to compensate for the many microscopic physical interactions 
which are not explicitly accounted for at this level of approximation. For 
example, the overcompensation of the C–S–H surface charge by calcium 
ions is modelled by a surface complexation constant or, equivalently, by 
a new end-member, whereas it appears naturally as the result of ionic 
correlations when the latter are taken into account, c.f. Section 2.2. 
Furthermore, the activity calculation of electrolyte solutions is generally 

Fig. 6. Experimental (points) and simulated 
(lines) adsorption isotherms of sodium (a) 
and sulfate ions (b) on C–S–H, of various 
initial calcium to silicon stoechiometric ratio 
(C0/S), as a function of the equilibrium 
concentration in the bulk solution. In the 
experiments sodium and sulfate were added 
in the form of Na2SO4 to C–S–H dispersions 
with a weight liquid to solid ratio of 10. In 
the simulations, the formation of Ca–SO4 ion 
pairs was adjusted with an effective short 
range potential to reproduce the chemical 
activity and conductivity of CaSO4 solutions, 
not shown here. Note that the SO4 adsorp-
tion is mediated by the calcium ions for 
which the Ca–SO4 ion pair formation plays 
an important role. The simulations were 
performed with Reactive Monte Carlo in the 
grand canonical ensemble, see Supplement 
S1.4.2.   

Fig. 7. (a) Simulation snapshot of the calcium mediated adsorption of comb 
copolyanions onto a liked-charged mineral surface (C–S–H or hydroxylated 
allite). The polyelectrolyte salt solution was described at the level of the 
primitive model while the C–S–H (or hydroxylated allite) was modelled by a 
uniformly charged planar surface, see [35] for more details. (b) Simulated 
monomer density profile (full line: charged backbone monomers, dashed line: 
neutral side chain monomers) at the C–S–H/solution interface for a model 
superplasticizer (comb copolyanion) varying the specific calcium–charged- 
monomer pair potential, βw = C/r6. βwmin indicates the maximum strength of 
this non-electrostatic potential at the minimum separation (4 Å) between 
charged backbone monomers and calcium ions. The bulk concentration of 
charged monomers and calcium was ≈30 mM and 20 mM, respectively. The 
charge of C–S–H was set to − 4e/nm2. The polymerization degree of the comb 
polyanion backbone was set to 13 and that of the PEO side chains to 8 with a 
grafting density of 23%. Reprinted from Ref. [35]. Copyright 2011 American 
Chemical Society. 

Fig. 8. Simulated adsorption isotherm of comb-polyanion on a negatively 
charged surface (C–S–H or allite) under conditions of constant calcium content 
and constant calcium chemical potential (solution buffered with portlandite). 
σ=-4 e.nm2 and βwmin = 0. The same comb polyanion model and simulations as 
in Fig. 7 was used. Reprinted from Ref. [35]. Copyright 2011 American 
Chemical Society. 
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performed with extended Debye-Huckel theories whose range of validity 
in ionic strength is relatively small, typically up to 100 mM. 

Alternatively, the speciation calculation can be performed at the 
level of the PM with RMC simulations, see Supplement S1.4.2. As an 
illustration, Fig. 9 compares experimental and simulated variation of the 
Ca/Si ratio and silicate mean chain length of C–S–H in the pure 
CaO–SiO2–H2O system. In the simulations the same model as in Section 
2 was used to which was added the reaction of depolymerization of the 
silicate chains at the C–S–H surface and the two main speciation re-
actions of the silicates in solution (namely the first and second ionisation 
of the Si(OH)4 species). In other words, beside the solubility constant of 
C–S–H, the speciation of C–S–H is completely described by two surface 
reactions: the ionisation of the surface silanols and the depolymerization 
of the silicate chains. For comparison, the classical surface complexation 
model for C–S–H of Nonat [28] requires the use of five surface 
complexation reactions. The RMC was also employed by Churakov et al. 
[51] to simulate with an equal success the aluminum incorporation in 
C–S–H. 

3. Interactions between C–S–H particles 

The previous sections have provided the fundamental concepts to 
understand the physical interactions between C–S–H surfaces and 
cement pore solution. This section applies those concepts to the quan-
tification and modelling of effective interaction between coarse-grained 
units of C–S–H, viz. nanoparticles. The main concept to develop such 
interactions is the Potential of Mean Force (PMF) between C–S–H sur-
faces and particles. Such PMF is pivotal in mesoscale simulations as it 
allows to reduce a complex molecular system to a one-component sys-
tem featuring only coarse-grained particles in a rigorous manner; see the 
Supplemental Information S1.3 for more details on the derivation and 
description of PMF. In the field of cement modelling, the development of 
PMFs from molecular simulations has progressed in parallel with the 
development of first coarse-grained nanoparticle models. As a result, 
most of the existing particle models of C–S–H use simplified interaction 
potentials that have been built using the emerging information from 
atomistic simulations, but without being constructed around a complete 
PMF. Ref. [56] was indeed the first work using a PMF derived from 
atomistic simulations as an effective interaction potential in mesoscale, 
particle-based simulations. Applications and results of particle-based 
simulations of C–S–H, using both simplified interaction potentials and 
those directly derived from a full PMF, are reviewed in Sections 4 and 5. 

The section is structured as follows. Experimental data from atomic 
force microscopy (AFM) on the interaction between C–S–H surfaces are 
presented first, and compared to simulation results that consider slit 

pores between infinite flat surfaces of C–S–H. Meaningful quantities, 
such as adhesive force and interfacial tension, are computed and dis-
cussed. The limitations of the AFM experiments in quantifying pairwise 
particle-particle interactions are discussed next. Results from molecular 
simulations are then presented and various effective interaction poten-
tials currently in use are reviewed and discussed. 

3.1. Interactions from AFM experiments and slit-pore simulations 

Interactions between C–S–H particles in various solutions represen-
tative of cement pore solutions were measured experimentally by atomic 
force microscopy (AFM). The force measurement was performed be-
tween an AFM silica tip covered with C–S–H particles and a large and 
atomically flat surface of C–S–H, grown by Ostwald ripening on the 
surface of a calcite monocrystal. A medium-range attractive force was 
observed, see negative values in Fig. 10-a. The adhesion force (pull-off 
force) was further observed to increase in magnitude with the pH and 
calcium content of the solution [52], see Fig. 10-b, that is with the 
charge (in absolute value) of the C–S–H particles, c.f. Section 2. These 
results show that C–S–H surface forces are essential components of 
cement cohesion, highlighting also the fundamental role played by the 
physico-chemical properties of the C–S–H/solution interface in con-
trolling those forces. 

Before discussing the physical origin of the cohesive interaction be-
tween C–S–H particles in solutions, let us address the relationship be-
tween the measured force, F(h), and the interaction free energy per unit 
area, W(h), between two infinite flat surfaces, as well as their link to the 
surface tension, γσ. W(h) is a PMF, in that it measures the change in free 
energy when two surfaces approach each other from infinity down to a 
distance h, see Supplement S1.3. W can be estimated from the measured 
force between the C–S–H single crystal and the AFM tip covered with 
C–S–H, whose effective curvature is 1/Reff; applying the Dejarguin 
approximation: 

W(h) =
F(h)

2πReff
(8) 

The relation between the surface tension (C–S–H/solution) and the 
adhesion free energy Wadh then follows from the contact theorem, γσL =

− 1/2Wadh which when applied to Eq. (8) provides an estimation of the 
surface tension of C–S–H in aqueous solution, 

γσL ≈
Fadh

4πReff
(9)  

where Fadh is the measured adhesion force. Fig. 10-b gives the C–S–H/ 
solution surface tension estimated from AFM force measurements with 

Fig. 9. (a) Comparison of the simulated (lines) and 
experimental (points) stoechiometric calcium to silicon 
ratio (C/S) of C–S–H as a function of the equilibrium 
calcium concentration in the pure CaO-SiO2-H2O system. 
Experimental points from Haas et al. [28] as obtained 
from the difference method which provides a measure-
ment encompassing both structural and adsorbed calcium. 
The simulations distinguish the structural calcium in the 
octahedral sites of the C–S–H layers from the physically 
adsorbed calcium ions at the surfaces of the layers. (b) 
Simulated (lines) and experimental (points) mean length 
of the silicate chains of C–S–H. The experimental data are 
from [47–50]. The simulated mean chain length is 
calculated for both an infinite C–S–H crystal (black line) 
and a finite C–S–H crystallite with a maximum mean 
chain length of 40 silica units. In the simulations, the 
speciation of the silicate species in solution is accounted 
for and an equilibrium constant of pK = 6.9 is assumed for 
the depolymerization of the silicate chains. The simula-
tions were performed with Reactive Monte Carlo in the 

grand canonical ensemble, see Supplement S1.4.   

K. Ioannidou et al.                                                                                                                                                                                                                              



Cement and Concrete Research 159 (2022) 106857

8

Reff = 20 ± 10 nm. Reff was evaluated independently from AFM force 
measurements in dry air using various substrates of reference, see [52] 
for more details. The C–S–H/solution surface tension is observed to in-
crease from 1 to 13 mJ/m2 with the Ca(OH)2 concentration of the 
equilibrium solution; higher Ca(OH)2 concentrations also imply higher 
absolute values of the surface charge density of C–S–H, c.f. Fig. 3. γσL of 
C–S–H was also estimated from measurements of nucleation rates and 
applying the classical nucleation theory [53]; this gave a similar value of 
12 mJ/m2, see Fig. 10-b. It should be noted that the obtained surface 
tension in water γσL for C–S–H is significantly lower than the surface 
tension measured, also by AFM, in dry air, γ0= 185 mJ/m2 [52], and 
than that determined from atomistic simulations, see e.g. [56] and 
Section 3.4 thereafter. Similar values of surface tension were obtained 
for mica in water (γσL = 3–11 mJ.m2) and in dry air (γ0 = 130–160 mJ. 
m2) from force measurements, see e.g. [57]. The great difference in 
values of the C–S–H surface tension as obtained from AFM measure-
ments in solutions and atomistic simulations may indicate that the free 
energy of interaction between C–S–H particles (or mica surfaces) in 
water is composed of two free energy minima separated by a sharp free 
energy barrier induced by hydration forces, i.e. the work needed to 
partially dehydrate the adsorbed calcium ions. In other words, this dif-
ference may indicate the presence of two regimes, i.e. the colloidal and 
the crystalline regimes [58]. We will further develop this point in the 
next sections. 

W(h) (and γσL) was also calculated with MC simulations in the 
framework of the primitive model and compared with experiments 
[54,55,59] using a slit geometry formed by two infinite and parallel 
C–S–H surfaces separated by an aqueous solution in equilibrium with a 
bulk. With this geometry, W(h) is obtained by integrating the osmotic 
pressure of the interstitial solution, posm(h), with respect to h 

W(h) = −

∫ h

∞

(
posm(h

′

) − pbulk
osm

)
dh′ (10)  

where posm
bulk is the osmotic pressure of the bulk solution. In the framework 

of the primitive model, we can write posm(h) as the sum of three 
contributions, 

posm(h) = kBT
∑

i

{
ρi(h/2)+ phc

i + pcorr
i

}
(11)  

where ρi is the ideal contribution to the osmotic pressure (repulsive), phc 

is the contribution from the hard core (repulsive), and pcorr accounts for 
the electrostatic correlations. The latter, generically called ion-ion cor-
relations, arises from the ion interactions induced by the fluctuation of 
ion densities over the mid-plane which, when strongly correlated, gen-
erates a net attraction, posm(h) − posm

bulk < 0 [60–62]. The ion correlations 
grow with the magnitude of the surface charge, with the counterion 
valence, and with decreasing dielectric permittivity of the solvent. In 
some cases, low salt concentration and monovalent counterions or small 
surface charge densities, phc (>0) and pcorr (<0) compensate each other 
and the mean field Poisson-Boltzmann equation is recovered. That is, the 
osmotic pressure of the slit solution reduces to posm(h) = kBT

∑
iρi(h/2). 

In this case, the osmotic pressure is always found to be repulsive [63]. 
Conversely, ion-ion correlations prevail in the presence of multivalent 
ions and relatively high surface charge densities; this generates a me-
dium range attraction which increases with the magnitude of the surface 
charge density, as observed in the experiments. The predicted adhesion 
forces of C–S–H modelled in the framework of the primitive model are 
indeed found to compare well with those measured by AFM as illustrated 
in Fig. 10b. 

Goyal et al. developed a primitive model for C–S–H based on the slit 
geometry with explicit water molecules interacting with SPC/E potential 
[64] in salt free conditions. This semi-atomistic model highlighted the 
importance of water-ions interlocking in reducing the dielectric 
screening and enhancing the ionic correlations in the confinement of the 
interfoliar space of charged C–S–H sheets. This provided net cohesive 
forces in very good agreement with molecular simulations, but much 
stronger than measured by AFM in model experimental systems. 

Within the framework of the primitive model, Turesson et al. were 
able to study the interaction free energy between C–S–H particles in 
various anionic co-polymer solutions, including superplasticizers [37]. 
In the presence of superplasticizers, a long range repulsion was found as 
due to overlapping brushes of neutral side chains supplemented with a 
short range attractive ion-ion correlation interaction. Unlike comb- 
copolymers, block copolymers were found to intercalate in between 
charged C–S–H nanoplatelets, forming hybrid tactoids, as due to a 
bridging mechanism. In these conditions, the interaction free energy 
shows two free energy minima separated by a strong free energy barrier. 
These simulations successfully helped in the development of hybrid 
C–S–H mesocrystals [65], with highly aligned C–S–H nanoplatelets 
interspaced with polymers. This hybrid C–S–H material has been shown 
to have a bending strength similar to nacre, outperforming all C–S–H- 

Fig. 10. (a) Measured attractive force between an AFM tip covered with C–S–H particles and an atomically flat C–S–H single crystal in equilibrium with aqueous 
solutions at various amount of Ca(OH)2 (b) Adhesion free energy (Wadh) between C–S–H flat surfaces in aqueous solutions of Ca(OH)2 at various concentrations. Wadh 
was determined from MC simulations in the framework of primitive model, green triangles, as well as from the adhesion force (Fadh) measured by AFM, normalized by 
the effective radius of the AFM tip using Eq. (8), black squares. Each point is the average of 100 measurements, see [52] for more details. The right hand scale gives 
the C–S–H/solution surface tension γσL calculated using Eq. (9). The red circle provides the surface tension as obtained from homogeneous nucleation of C–S–H, see 
[53]. Figure (a) reprinted from Refs. [52,54]. Copyright 2004 American Chemical Society. Figure (b) was produced with Monte Carlo simulations in the grand 
canonical simulations as in Ref. [55] including the charge formation of C–S–H following Refs. [17,27], that is using the reactive method, see Supplement S1.4. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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based materials known to date. 

3.2. Limitations of AFM in measuring particle-particle interactions 

AFM experiments helped clarifying the nature and the evolution with 
the solution composition of the interaction potential between C–S–H 
particles. However, they may not provide a quantitative measurement of 
the PMF between pairs of interacting, anisotropic C–S–H particles within 
a concentrated cement paste. 

A first issue is that the pair PMF between charged particles in a 
dispersion (or paste) depends on the particle density. In the AFM setup, 
the interactions are measured between two single C–S–H surfaces 
immersed in a large solution bath. In a concentrated paste, instead, each 
particle is surrounded by neighbours, a situation which can greatly 
affect the pair particle PMF due to multi-body interactions [66,67]. In 
this case, the solution surrounding each of the particles (solvent and 
ions) is not solely under the influence of electric fields generated by 
themselves but also by their near neighbours. Therefore, the mean ionic 
concentration of a concentrated aqueous particle paste is very different 
from that of the reservoir solution with which it is in equilibrium, and 
strongly depends on the particle density. In the strong coupling regime 
(high surface charge density and multivalent counterions), literature 
results [68,69] showed, indeed, that the cohesion forces from ion-ion 
correlations increase with the density of particles. This strengthening 
of the cohesion force with the particle density was however found to be 
altered with increasing the equilibrium calcium salt concentration (or 
calcium activity) [70,71]. Indeed, in the limit of very large salt con-
centrations in the bulk solution, the mean ion concentrations of the paste 
pore solution becomes equal to that of the bulk. 

A second issue is that the pair PMF between particles depends on the 
size and shape of the particles [73]. As an example, Fig. 11 shows the 
simulated PMF between two charged C–S–H platelets of various sizes, 
immersed in a 10 mM calcium salt solution. The simulations were run in 
the framework of the primitive model [72]. Attraction from ion-ion 
correlations is only observed for sufficiently large platelets, and it 
grows with the size of the platelets. The minimum in the PMF scales 
approximately with the surface area. This becomes more precise for 
large platelets. A long range repulsion is also observed, which increases 
with the platelet size. The repulsion is purely entropic in origin and is 
due to the restricted rotation of the platelets at close contact. Two freely 
rotating platelets with their centers of mass at some fixed separation will 
possess a rotational entropy Srot. As the platelets approach, this entropy 
decreases and leads a repulsive interaction free energy (A = U − TS). For 
platelets with very large radius Rp, this entropic contribution becomes 
negligible. Indeed, it can be shown that 

Srot
(
r
/

Rp
)
≈ Srot(r) − Srot

(
2Rp
)

for r < 2Rp (12) 

Therefore, increasing the radius of the platelet decreases the rota-
tional entropy by a constant amount for all center of mass separations r, 
whereas the attraction grows as the surface area of the platelet, i.e. ~Rp

2. 
Finally, as already addressed in the previous section, the measured AFM 
force may not be representative of the cohesion energy of a C–S–H 
crystal [58], that is the interaction free energy between inner layers of 
C–S–H at very small separations, but rather of the colloidal behavior of 
C–S–H particles at medium-range separations. 

3.3. Interaction potentials from molecular simulations of C–S–H particles 

The previous sections presented experimental and theoretical results 
on interactions between C–S–H surfaces from AFM and MC simulations 
in the framework of the primitive model. The contribution and limita-
tions of these measurements have been discussed, also in relation to 
simulation results for slit-pore geometries and for interacting platelets. 
The next step in model accuracy is to perform atomistic simulations of 
C–S–H particles with full atomistic details interacting within an aqueous 
solution also described at the molecular level. 

Bonnaud et al. [74] applied this method first, considering prismatic 
C–S–H nano-blocks of size ~5 nm at 10% relative humidity, causing a 
few layers of water to be adsorbed on their surfaces and filling the space 
between interacting blocks. The resulting potentials, computed in 
various relative orientations of the blocks, returned a set of curves of 
grand potential energy Ω vs. interparticle distance. Curve-fits using 
orientation-dependent functions were proposed too: see green curves in 
Fig. 12. However these results and fitted potentials have not been used 
yet in particle-based simulations at the larger mesoscale, and their 
computed values of interaction forces and energy may be affected by 
capillary pressure due to the low relative humidity imposed. 

The first adoption of a PMF from molecular simulations into meso-
scale particle-based simulations is more recent (Masoumi et al. [56]) and 
will be presented in the next section. This PMF was obtained using a free 
energy perturbation approach from a previous article [75]. The same 
method was also used to compute tangential components of the in-
teractions [76], viz. shear forces due to sliding between C–S–H particles 
and nanolayers. The importance of shear forces in determining the 
strength of C–S–H at the molecular scale has been appreciated in various 
works, e.g. [77–79], however to date a rigorous inclusion of tangential 
interaction components in mesoscale models is still missing. Atomistic 
simulations have also investigated how the Ca/Si ratio of C–S–H [80] 
and how temperature and pressure [81], all impact the PMF between 
C–S–H nanoparticles; also these effects, however, are still to be consid-
ered in the effective interaction potentials for mesoscale simulations. 

3.4. Interaction potentials used in mesoscale simulations 

The first mesoscale simulations of C–S–H using interacting particles 

Fig. 11. (a) Schematic picture of two C–S–H platelets in a 
salt solution and confined to a cylinder (not shown). The 
center of mass of the platelets are constrained to the 
cylinder axis. The sites of the platelets are shown as red 
spheres while the divalent counterions as blue spheres. (b) 
The potential of mean force between two freely rotating 
C–S–H platelets with σ = − 1.2 e/nm2 in a 10 mM calcium 
salt solution at a volume fraction of 0.023. The number of 
sites as indicated in the legend from 50 to 91, corresponds 
to 5 to 11 nm in diameter. Figures reproduced from 
Ref. [72], with permission from the American Chemical 
Society. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web 
version of this article.)   
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date back to the early 2010s, before PMFs were computed from full 
atomistic simulations (Bonnaud et al.'s work from 2016 [74], discussed 
in the previous section). The first effective interaction potentials be-
tween C–S–H particles were thus developed using both logical and 
empirical considerations, inspired and supported by results from 
modelling and experiments. 

The first effective potential has been proposed by Masoero et al. [82] 
in 2012. The functional form of the potential was chosen a priori to 
feature a strong repulsion when two particles are pushed together, an 
energy minimum at short distances to ensure cohesion, and a fading 
interaction at longer distances. A pairwise, spherical, Lennard-Jones 
potential was chosen, but with two modifications: (1) the exponents 
were not fixed to 12–6, thus leading in fact to a Mie potential [83]; (2) 
the energy scale was set to depend on the volume of the interacting 
particles, ε ~ σij

3, to account for particle size polydispersity. σij =
1
2
(
σi +

σj
)

is a measure of the average size of two interacting particles i, j. This 
led to: 

Uij = 4ε
(

σ3
ij

)
[(

σij

rij

)2α

−

(
σij

rij

)α
]

(13) 

This potential features three parameters: σ, α and ε. The first one, σ, 
can be set for each particle i based on its diameter, which is identified as 
the equilibrium distance r0, i where U is minimum for two particles with 
same size; specifically, σi = r0,i

̅̅̅
2α

√
. The other two parameters, α and ε 

(with its dependence on σij
3), were calibrated to capture the elastic 

modulus Eeq and the strain at failure εu of C–S–H from molecular sim-
ulations [82]. Typical potential curves are shown in Fig. 13.a. A detailed 
explanation of the calibration is provided in Ref. [84]. 

In 2014, Ioannidou et al. proposed attracto-repulsive spherical po-
tentials [85]. The potentials feature a modified Lennard-Jones term akin 
to the α exponent of Eq. (13) but with energy well depth ε0 constant and 
independent of the particle size σ. The Lennard-Jones term ensured 

short-range attraction, but the potential also included a novel feature: a 
medium-range repulsion described by a Yukawa term. All this led to: 

Uij = 4ε0

[(
σ
rij

)2α

−

(
σ
rij

)α
]

+A
e− κrij

rij
(14)  

where κ is the inverse screening length and A the Yukawa energy con-
stant. The screening length was set to κ− 1 = 0.5σ and different ratios of 
the energy constants ε0 and A were considered in order to qualitative 
explore the forces measured from AFM in different Ca(OH)2 solutions, 
and here previously shown in Fig. 10.a [87]. Fig. 13.b. shows two curves 
for a high and low Ca(OH)2 concentrations. The energy constants were 
chosen so that the attractive energy wells has the same depth. In ref. 
[88], the phase diagrams of such interactions has been computed. Goyal 
et al. used such potentials for C–S–H gelation at early (low Ca(OH)2 
concentration) and later (low Ca(OH)2) stages of hydration [89]. The 
Yukawa term reduces during hydration and disappears (A = 0 at Eq. 
(14)) at the setting of C–S–H [90] as the cohesion dominates due to 
elevated surface charges [55]. 

The potentials in Eqs. (13) and (14) became the bases for most 
interaction potentials in subsequent particle-based simulations of 
C–S–H. In some cases the potentials and parametrizations have been 
used directly and individually, e.g. in Refs. [90–92]. In other cases they 
were combined and slightly modified, such as in Refs. [93–95]. 

The potentials in Eqs. (13) and (14) do not capture the orientation- 
dependence of the interactions, as shown by the full atomistic simula-
tions in Fig. 12. An orientation-dependent potential has been proposed 
and used in 2015 by Yu and Lau [96], who considered interactions be-
tween disk-shaped C–S–H particles. The chosen functional form for the 
interaction was Gay-Berne [97], calibrated using experimental data as 
well as adhesion energy between C–S–H interfaces from atomistic sim-
ulations. Nevertheless, potentials of Eq. (14) at low Ca(OH)2 concen-
tration have shown the growth of anisotropic elongated clusters akin to 

Fig. 12. Particle-particle interaction potentials from full atomistic simulations. (a) Typical configuration of interacting C–S–H particles, covered by adsorbed water, 
at a surface-surface distance dij; (b,c) PMF, viz. the grand potential of the system Ω, as a function of dij, for different relative orientations between the particles. The 
green curves are analytical fits proposed in Bonnaud et al. [74], from where all the images in this figure have been adapted with permission from the Royal Society of 
Chemistry. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. Particle-particle interaction potentials first proposed in (a) Masoero et al. 2012 [82] (Eq. (13)) and (b) Ioannidou et al. 2014 [85]. In (a), the two curves refer 
to different combinations of particle sizes. In (b), the two curves refer to same particle size but different relative strength of attraction and repulsion. This was inspired 
by AFM experiments of low and high Ca(OH)2 contents (see Fig. 10). Figures reproduced from Refs. [85,86], with permission from the Royal Society of Chemistry. 
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Bernal spiral [85,89]. 
In 2017, Shvab et al. [98] adopted the Lennard-Jones potential in Eq. 

(13) to simulate heterogeneous precipitation of C–S–H. For this study, 
they found it necessary to calibrate the potential in such a way that the 
cohesion energy ε0 be consistent with the interfacial energy of C–S–H in 
water, taken as 87.6 mJ/m2 from Ref. [99]. This calibration of the po-
tential, however, changed the values of elastic modulus compared to the 
previously discussed calibration, where the Young modulus was deter-
mining the value of ε0, not the interfacial energy. To enable a calibration 
based on both interfacial energy and mechanical properties, Coopa-
mootoo et al. [100] proposed a 4-parameter (instead of 3 parameters in 
Eq. (13)) shifted harmonic potential. This potential was proposed for 
tricalcium silicate and later applied also to C–S–H particles [101]: 

Uij =
1
2
kij
(
rij − r0,ij

)2
− εij when rij < ru,ij

Uij = 0 when rij ≥ ru,ij

(15) 

The four parameters in this potential are the stiffness kij, the equi-
librium distance between interacting particles r0, ij, the cohesive energy 
scale εij, and the interaction cutoff distance ru, ij. In all the parameters, 
the subscript ij indicates that they can account for interacting particles of 
different sizes (see Ref. [101] for more details). For simplicity, Eq. (15) 
considers a sharp interaction cutoff, but extension to a smooth cutoff is 
straightforward (e.g. by multiplying Uij times a logistic function). Sec-
tion 3.5 below will discuss how the parameters in Eq. (15) can be linked 
to interfacial energy and mechanical properties. 

A last interaction potential has been proposed and used by Masoumi 
et al., in 2020 [56]. The potential is an orientation dependent Gay-Berne 
fitted to PMFs from full atomistic simulations. These latter were per-
formed using an approach similar to Bonnaud et al. [74] and considering 
various relative orientations of the C–S–H particles. However, unlike 
Bonnaud et al., Masoumi et al. considered thin particles, akin to plate-
lets, and focused their subsequent mesoscale simulations on the 
agglomeration and stacking of such platelets. This focus is somewhat 
similar to the aforementioned work of Yu and Lau, who used disk-shaped 
particles [96]). 

3.5. Comparison between effective potentials 

Comparing the potentials presented in the previous section is not 
straightforward, as they were developed for different purposes and 
include unique parameters. There are however some general features 
that are common to all or most the potentials above. This section will 
present and discuss these features and use them to attempt a qualitative 
and somewhat quantitative comparison between the potentials. The 
purpose is not to extract precise quantities, but rather to provide the 
reader with an intuition of how different potentials and parametrization 
are likely to impact the resulting properties from mesoscale simulations 
featuring multiple particles. The detailed results of actual mesoscale 
simulations will be then presented and discussed in the next Sections 4 
and 5. 

Fig. 14 depicts a curve whose features are, in full or in part, displayed 
by most of the interaction potentials in the previous section. The qual-
itative resemblance is complete with the well-shoulder Lennard-Jones- 
Yukawa potential in Fig. 13.b, as well as with the Gay-Berne potential 
fitting PMFs from atomistic simulations for parallel particles in Fig. 12.b. 
The curve in Fig. 14 can also be made to resemble the Lennard-Jones 
potential in Fig. 13.a and the Gay-Berne potential for perpendicular 
particles in Fig. 13.c, as long as the medium-range shoulder is removed. 
Consequently, one can also consider the harmonic potential in Eq. (15) 
as a local approximation of the curve in Fig. 14 around its energy 
minimum. 

The suggested approach to compare the potentials in the previous 
section is to extract from each of them the descriptor of the curve in 
Fig. 14 that are indicated on the curve itself. Namely:  

• The equilibrium distance r0, which is linked to the diameter of the 
interacting particles;  

• The curvature of the potential ρ− 1 near its minimum, which controls 
the linear elastic mechanical response of the C–S–H if most particles 
in a mesoscale arrangement sit relatively close to their equilibrium 
positions. Following Ref. [84], the elastic modulus Eeq of the material 
at zero porosity and ρ may be linked as: Eeq = 4

πr0ρ;  
• The change in interaction energy ε when particles are separated from 

rij = r0 to rij = ∞. This can be linked to the interfacial energy γ be-
tween particles and surrounding medium, as previously discussed in 
Section 3.1. To this end, one must assume an effective contact surface 
area between interacting particles; one possibility is to link such area 
to the cross sectional area of two neighboring particles, which for 
particles of same size would give γ = 2ε/(πr0

2);  
• The activation energy to separate two particles, ε + Δε, whose 

magnitude relative to the thermal energy kBT controls the entity of 
the energy fluctuations that may induce structural rearrangements. 
This is important during structural formation but also for plastic and 
viscous rearrangements in the mature solid;  

• The force to separate two interacting particles, Fmax, which is the 
maximum positive dUij/drij. It can be linked to the failure stress σu of 
the material at zero porosity, e.g. by σu = 4Fmax/(πr0

2);  
• The interparticle distance ru at which Fmax is reached, which is linked 

to the strain at failure of the material, εu = (ru − r0)/r0 

Table 1 compares these quantities for some of the interaction po-
tentials from the previous section. Depending on the definition and 
parametrization of each potential, the terms in Table 1 may end up 
depending (physically or not) on particle diameter. Therefore, in the 
table we indicated the diameter D for which the terms were computed. 
For example, the equivalent modulus Eeq is independent of D for the 
Lennard-Jones potential in Ref. [82], because the potential features ε ~ 

Fig. 14. Generic pair interaction potential between nano-units. The highlighted 
quantities are used in the text to compare different potentials from 
the literature. 

Table 1 
Physical quantities linked to the parameters highlighted in Fig. 14, for reference: 
particle diameter D, equivalent elastic modulus Eeq, solid-solution interfacial 
energy γ, energy well depth vs. thermal fluctuations (Δε + ε)/kBT (for room 
temperature T = 298 K), stress σu and strain εu at failure.  

Potential 
description 

D 
(nm) 

Eeq 

(GPa) 
γ (mJ/ 
m2) 

Δε + ε
kBT 

- 

σu 

(MPa) 
εu - 

Lennard-Jones in 
Eq. (13) [82,90]  

10  63.6  811  31,000  1080  0.05 

Harmonic in Eq.  
(15) [101]  

10  63.6  87.6  3090  1289  0.05 

Bonnaud et al.'s 
PMF [74]  

5  141  349  12,900  5900  0.066 

Masoumi et al.'s 
PMF [56]  

5  425  417  4000  5800  0.061  
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σ3. However, the same potential does not ensure the size-independence 
of the interfacial energy γ. Furthermore, for all the potentials in the 
table, the activation energy Δε + ε changes with particle size. 

The Lennard-Jones potential in Ref. [82] was parametrized to cap-
ture Eeq and εu from atomistic simulations. Therefore the potential has 
been used successfully to describe elastic properties of the C–S–H gel at 
the nano-to-micro mesoscale, such as elastic moduli, hardness [86,90], 
and creep modulus [102] from nanoindenation experiments. This po-
tential does not include a repulsive shoulder, Δε = 0, and entails a 
relationship between energy scale ε and interaction stiffness ρ− 1. 
Consequently, when calibrated to capture modulus and failure strain, as 
in Ref. [82], the potential yields ε that scales as D3 and thus an interfacial 
energy γ that is reasonable for particles of ca. 5 nm diameter (101 mJ/ 
m2, compared to 87.6 mJ/m2 in Ref. [99]), but overestimated for larger 
particles (e.g. 811 mJ/m2 for particles with D = 10, as shown in Table 1). 
In reality, the interfacial energy should scale as the area of the interface 
between particles, ~D2, whereas the curvature of the potential at 
equilibirium, which is linked to the elastic modulus, should scale as D3. 
In the Lennard-Jones potential in Eq. (13), everything scales with ε 
which in turn scales as D3, hence the potential is appropriate for elastic 
properties but not to describe interfacial energies. This limitation was 
overcome in the harmonic potential in Ref. [101], which separately fits 
Eeq, γ, and εu. 

Both the Lennard-Jones and the harmonic potential feature very high 
activation energies Δε + ε. This makes structural rearrangements from 
energy fluctuations very unlikely. The LJ-Yukawa potential in Ref. [85], 
instead, was parametrized using AFM data that featured a weaker 
cohesion. As a result, its Δε + ε is now in the order of magnitude of kBT, 
leaving room for interesting structural evolution that may be particu-
larly important for the C–S–H gel during early hydration. On the other 
hand, the mechanical properties and interfacial energies associated to 
this potential are orders of magnitude lower than for C–S–H during 
setting. 

Table 1 also includes quantities computed from the atomistic simu-
lations in Refs. [56,74]. They predict high values for all the quantities. 
Nevertheless, one must consider that the AFM experiments in Fig. 10.a 
indicated a much lower energy scale, as fitted by most of the LJ-Yukawa 
potentials in Eq. (14). Lower energy scales, although greater than in the 
AFM experiments, were also predicted by the simulations in Fig. 10.a, 
where the solvent was treated implicitly. All this suggests that the in-
teractions between C–S–H particles may feature two different regimes: a 
strong cohesion at very short range (crystalline regime) and softer 
colloidal interactions in the medium range. These regimes would be 
separated by a high energy barrier but, thus far, experimental obser-
vations of these regimes are still lacking as well as attempts to consider 
them both in mesoscale simulations. 

4. Formation of C–S–H mesostructures 

This section presents nanoparticle-based simulations of C–S–H at the 
nano-to-micro mesoscale. The focus is kept on simulations of C–S–H 
formation, as creating model structures is the first step to then compute 
structural features and mechanical properties. Structure and mechanics 
will be covered in the next section. 

4.1. Nucleation and growth models 

Nucleation of minerals is a complex topic, as many non-classical 
mechanisms are possible [103]. The experimental literature on nucle-
ation mechanisms of C–S–H is limited. First data came from Garrault- 
Gauffinet et al. [53]; by testing homogeneous nucleation in supersatu-
rated solutions, they found that Classical Nucleation Theory could be 
used to interpret the results, returning critical nuclei of C–S–H as small 
as 2 molecules only. This was attributed to a low (liquid-solid) surface 
tension, i.e. 12 mJ/m2 see Section 4.1 and Fig. 10. Recent experiments 
found that the homogeneous nucleation of C–S–H may actually follow a 

non-classical pathway involving cations other than calcium [104]. 
Recent in situ experiments of C3S hydration in a wet cell by soft X-ray 
spectromicroscopy reported Ca-containing nanoparticles in the solution 
around the C3S particles and agglomeration of them by the C3S surface 
[105]. 

While the experiments have tested fundamental aspects in homoge-
neous nucleation regimes, traditional semi-analytical approaches to 
modelling C–S–H formation [8] have typically assumed heterogeneous 
nucleation for two reasons: first, heterogeneous nucleation is usually 
thermodynamically favourable, hence it is believed to take over in a 
cement paste where the dissolving cement grains provide surfaces on 
which C–S–H can form; second, experimental results could be better 
fitted using semi-analytical models that assume heterogeneous nucle-
ation and growth rather than homogeneous ones [106,107]. Coarse- 
grained simulations have shown that growth of C–S–H should be 
strongly limited by electrostatics [108], hence what is described as 
“growth” in nucleation and growth models, is more likely to reflect a 
mechanism of secondary nucleation of nanoparticles, or of locally ho-
mogeneous nucleation followed by aggregation. Mesoscale 
nanoparticle-based simulations of C–S–H formation have thus emerged 
as a way of bridging the molecular with the continuum scales. 

A usual target of nucleation and growth models is the early hydration 
rate curve of cement paste, shown in Fig. 15. The curve describes the 
temporal evolution of the heat release rate, originating from the 
exothermic reaction of cement dissolution. Based on an underlying 
assumption that C–S–H precipitation is rate-limiting, the rate curve is 
commonly used as a signature of C–S–H formation. In reality, multiple 
processes may contribute to the various regimes in Fig. 15 [99,109,110]; 
a review of these processes is beyond the scope of this manuscript, but 
the interested reader can start from Ref. [111]. What is important here is 
that the same curve has become a target for nanoparticle-based simu-
lations too. 

The first nano-particle based simulations of C–S–H nucleation and 
growth were proposed by González-Teresa et al. [112], but these sim-
ulations did not include interaction potentials and did not aim at a 
statistical mechanical description of the system. Instead, the authors 
implemented a series of rules, listed in Fig. 16, which led to C–S–H 
nuclei forming and growing into clusters that eventually filled the space. 
The simulations produced rate curves for C–S–H precipitation similar to 
the experimental hydration rate curve, and they were also used to 
discuss cement setting [113]. 

Two other mesoscale models have been proposed more recently, 
which did not feature mechanical interactions between particles: (i) a 
model based on the attachment of triangular nanoparticles mimicking 
the growth of C–S–H sheets [115], and (ii) a model based on the Phase 
Field Method, for now only used in 2D due to its high computational cost 
[116]. The focus of these models is increasingly toward an accurate 
description of the morphology-dependent chemical kinetics of the sys-
tem. On the other hand, since 2012 a thread of mesoscale simulations of 

Fig. 15. Schematic of a typical cement hydration curve [111].  
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C–S–H based on mechanically interacting nanoparticles has developed: 
these will be discussed in the rest of this section. 

4.2. Mesoscale simulations of C–S–H formation using interaction 
potentials 

To date, most nanoparticle-based models of C–S–H at the mesoscale 
employ coarse-grained units that interact with effective potentials. As 
discussed in Supplement S1, a key point of such approaches is that if the 
coarse-graining unit is well represented, access to the physics depends 
only on having appropriately modelled the interactions (here the PMF) 
within the statistical mechanics framework. The simulation techniques 
consist of Molecular Dynamics (MD) and Monte Carlo (MC) where 
fluctuations and heterogeneity emerge as results, rather than being 
imposed. A strength of these simulations is that both structural evolution 
and mechanical stress are captured into the same, coupled, free energy 
landscape. In other models, such as those based on continuum micro- 
mechanics, stresses and chemical evolution of the various phases are 
rarely coupled at the constitutive level. In these mesoscale simulations, 
instead, stress and chemical transformations contribute at the same time 
to the same free energy landscape, hence both are accounted for when 
minimizing the free energy and exploring the landscape. 

Mesoscale models of C–S–H aim to capture the reactive solidification 
process that takes place during cement hydration and setting. The 
appropriate statistical ensemble in order to account for the creation of 
C–S–H particles due to the dissolution-precipitation reactions, is the 
Grand Canonical (μVT) statistical ensemble, where μ is the chemical 
potential, V the volume and T the temperature (see Supplement S1.2). 
This defines an open system that can exchange particles with a reservoir 
of fixed chemical potential μ or activity z (as see Supplement S1.4.1). In 
the rest of this section, results from different particle-based simulations 
of C–S–H formation are compared with reference, where possible, to the 
hydration rate curve of cement paste in Fig. 15. 

4.2.1. Monte Carlo simulations 
Monte Carlo simulations of C–S–H formation, using spherical parti-

cles polydisperse in size and cohesive interactions, were first published 
in 2012 [82]. The interaction potential was the generalized Lennard- 
Jones in Eq. (13), with ε proportional to particle volumes and with 
exponent α = 14 [82]. The simulations started with an empty box and 
particles were inserted or deleted with probability 

Pins/del ≃ min
{

exp
[
±μ− ΔU

kBT

]
, 1
}

, where ΔU is the change in total interac-

tion energy in the system between the two states (see Supplement 
S1.4.1). The choice of μ = 0 led to indefinitely increase the number of 
particles within the simulation box, but the Lennard-Jones interactions 
prevented the insertion of new particles overlapping with already 
existing ones (i.e. for which ΔU ≫ 0). In between insertion moves, the 
algorithm allowed for a number N of Monte Carlo particle displace-
ments, stimulating aggregation. Monte Carlo simulations are not meant 
to simulate time evolution of the system. Because of this limitation, the 

simulation results were not compared with the hydration rate curve of 
cement. Different mesoscale morphologies were thus obtained by 
varying N and the allowed polydispersity of the particles. The simula-
tions produced meso-structures with different packing fractions and 
particle size polydispersity that were used to compute mechanical 
properties. 

4.2.2. Monte Carlo coupled to Molecular Dynamics simulations 
Ioannidou et al. [85] proposed a hybrid scheme of GCMC insertions/ 

deletions followed by Molecular Dynamic in the Canonical NVT 
ensemble in order to introduce a time scale. The energy dissipation in 
the canonical ensemble was ensured by Nosé-Hoover thermostat 
[117,118]. A family of interparticle potentials motivated by AFM mea-
surements (Eq. (14)) have been investigated using this simulation 
approach. This simulation approach with the aforementioned interpar-
ticle potentials successfully reproduced the hydration kinetics of C–S–H. 
Fig. 17(d) shows the comparison of the simulation volume fraction with 
the degree of hydration from experiments. Fig. 17 (a-c) shows snapshots 
of the GCMC/MD simulations while the system progressively densified. 
In the beginning of the acceleration regime the system forms clusters 
(Fig. 17 (a)) that eventually grew in elongated structures that formed a 
percolating gel network (Fig. 17 (b)). The gel formation indicates the 
inflection point between acceleration and deceleration. Fig. 17 (c) shows 
the formation of a porous solid C–S–H from the gel precursor. 

The number of GCMC attempts over the number of steps of MD 
defined a kinetic rate R = NGCMC/NMD. The kinetic rate had an effect on 
the hydration curve and on the resulting meso-structures. The effect on 
the hydration curves is a shift in time whereas, on the meso-structures, 
higher kinetic rates induce more structural disorder [85]. The produced 
meso-structures were validated through a large set of available experi-
mental results ranging from electron-microscopy imaging [90], nano- 
indentation tests [90], small angle X-rays and neutron scattering 
(SAXS and SANS) [90] and adsorption/desorption of nitrogen and water 
[119] that are discussed in Section 5. 

Goyal et al. recently extended this model to account for heteroge-
neous precipitation of C–S–H particles using a spatial gradient of 
chemical potentials corresponding to higher nucleation of C–S–H near 
the surface of dissolving cement grains [89]. This enhances the effect of 
different interparticle potentials on the hydration curves and the struc-
tural and mechanical heterogeneities. 

4.2.3. Kinetic Monte Carlo simulations 
Another way to introduce temporal evolution is offered by the Ki-

netic Monte Carlo method that is based on transition rates among states. 
In 2017, Shvab et al. [98] published mesoscale simulations of C–S–H 
formation based on an off-lattice Kinetic Monte Carlo (KMC) scheme 
that explicitly accounted for the rates of C–S–H precipitation and 
dissolution. The KMC algorithm lets C–S–H particles appear or disap-
pear, deriving the characteristic time of the events from coarse-grained 
rate equations. To compute the rates, Shvab et al. considered a 

Fig. 16. Schematic of the nucleation and growth simulations in Ref. [114], including predicted heat release rate curve. Some of the images in the figure are reprinted 
from Ref. [114] with the permission of AIP Publishing. 
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simulation box containing two phases: a solid represented explicitly by 
mechanically interacting spherical particles with diameter D = 10 nm, 
and a surrounding implicit solution represented by the average con-
centrations of ions in it. 

The per-particle rate equations were obtained starting from the rate 
of forming or dissolving a single molecule of solid C–S–H. Employing the 
law of mass action and assuming one-step reactions, the unimolecular 
rates were expressed as: 

rdiss = ka2exp
[

(1 − χ) − ΔUij,diss(r) + γΔΩ
kBT

]

(16)  

rprec = ka2exp
[

χ − ΔUij,prec(r) − γΔΩ
kBT

]

β (17) 

k is the rate constant of C–S–H dissolution. a = 0.65 nm is the linear 
size of a C–S–H molecule. ΔΩ is the change in surface area of a particle 
when the molecule under consideration is dissolved or precipitated. γ is 
the solid-solution interfacial energy of C–S–H. ΔUij is the change in 
interaction energy in the system upon dissolving or precipitating the 
molecule (this changes the size of the pertaining particle, hence the 
interactions between particles if their size-dependence is accounted for). 
Together, the ΔUij + γΔΩ term represents the excess enthalpy of the 
solid compared to its standard state. Transition State Theory assumes 
that all this enthalpy is dissipated upon dissolution, hence does not 
feature in the precipitation rate. Instead, Shvab et al. allowed for such 
enthalpy to also contribute to the precipitation rate, assuming that a 
fraction 0 < χ < 1 is still present in the activated complex (see [98] for 
more details). Transition State Theory is recovered for χ = 0. Finally, in 
Eq. (17), β is the saturation index of the solution with respect to C–S–H 
precipitation, viz. the ratio of the ion activity product and the equilib-
rium constant for the reaction. 

The formation (or dissolution) of a D = 10 nm C–S–H particle, con-
taining thousands of molecules, was then modelled as the serial pre-
cipitation (or dissolution) of n = D/(2a) C–S–H molecules in radial 
direction: 

Rdel =

(
∑n

i=1
r− 1

diss,i

)− 1

(18)  

Rin = κ

(
∑n

i=1
r− 1

prec,i

)− 1

(19) 

κ is a parameter related to the concentration of calcium and silicon 
ions in solution, which are all assumed to provide initial nucleation sites 
(from the aforementioned result that critical C–S–H nuclei are very 
small). In implementing Eqs. (18) and (19), the ΔUij term contained in r 
was expressed as a function of the entire interaction energy between a 
particle and its neighbour, for which the authors employed the gener-
alized Lennard-Jones potential in Eq. (13). 

Fig. 18 shows two simulation results for heterogeneous C–S–H pre-
cipitation from solutions with assigned β(t). Predicted rate curves are 
compared to a typical one from Chan's model (BNG). Irrespective of β(t), 
the KMC simulations predict initial acceleration reflecting the increasing 
surface of the hemispherical domains formed by precipitated particles. A 
peak rate is also always predicted, when neighboring domains of pre-
cipitates impinge laterally on each other: this was originally discussed in 
the seminal work and model of Garrault and Nonat [120]. The time- 
dependence of β becomes important after the peak rate, as decelera-
tion is only captured when ion depletion in solution is considered, 
leading to the decreasing β(t) curve in Fig. 18.a (the curve was taken 
from Ref. [99], where this mechanism for deceleration was originally 
modelled at the microscale). 

Recently, these KMC simulations have been extended to use net re-
action rates [100], although thus far only for the dissolution of trical-
cium silicate and considering that each particle represents one molecule 
of solid only. 

5. Properties of C–S–H gel and cement paste in mesoscale 
simulations 

5.1. Structural properties 

Particle-based simulations can be used to explore the growth of 
C–S–H gels and cement paste. The simulated particle configurations can 
be further analysed in terms of structural characteristics and subjected 
to numerical mechanical testing. This allows for comparison with 
experimental data and analysis of structural evolution of the growth 

Fig. 17. Snapshot from the GCMG and 
MD precipitation simulation with 
increasing volume fraction of solid (a)η =
0.08, (b)η = 0.16 and (c)η = 0.26. Only 
the bonds between the particles are dis-
played, using lines. The colour code cor-
responds to the number of nearest 
neighbours. Red is 10–12, blue 6–9, and 
gray 0–5 neighbours; (b) Comparison 
between solid volume fractions from the 
simulations and degree of hydration from 
experiments. The simulations capture an 
initial accelerating phase and the subse-
quent deceleration. Figures adapted from 
Ref. [85] with permission of the Royal 
Society of Chemistry [85]. (For interpre-
tation of the references to colour in this 
figure legend, the reader is referred to the 
web version of this article.)   
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models. 

5.1.1. Volume fraction 
The configurations of particle mesoscale simulations are character-

ized by their volume or packing fraction, which depends on the shapes, 
sizes and interactions of/between the particles. A crystalline system of 
monodisperse spheres can pack up to 74%. C–S–H exhibits areas of 
crystalline packing but overall is amorphous. Hence, models with 
spherical particles, monodisperse in size, aim for volume fractions up to 
the close random packing of 64%. Size polydispersity of spheres allows 
to increase the random close packing [121]. Masoero et al. investigated 
size polydispersity of C–S–H spherical particles and reached volume 
fractions up to 0.72 [82]. Masoumi et al. reached similar volume frac-
tions using ellipsoid particles of polydisperse sizes [56] and Yu et al. by 
varying the aspect ratio [96]. Masoumi et al. have summarised results on 
volume fraction and particle asphericity showing that aspherical parti-
cles percolate at a lower volume fraction [56]. The final volume fraction 
of the configurations can be obtained by different preparation methods, 
such as MD in isothermal ensemble (NVT) [88], MD in isobaric- 
isothermal ensemble (NPT) [56] or with GCMC precipitation models 
(see Section 4). 

The volume of C–S–H increases during hydration following a 
sigmoidal evolution with time [122]. This experimental result has been 
used to connect to the time evolution of the volume fraction in simulated 
configurations. An example of the time evolution of the volume fraction 
in precipitation models is shown in Fig. 17(d) [85]. Goyal et al. inves-
tigated the evolution of volume fraction in heterogeneous surface 
growth models [89]. In heterogeneous growth models, the probability of 
C–S–H precipitation is higher near the surface of other solids, therefore 
computing local volume fractions (lvf) allows to rationalize the C–S–H 

aggregation process [89]. The lvf distributions show that the local vol-
ume fraction near a surface can be 1.5 to 2.5 times higher than away 
from it, depending on the particle interactions. 

The distribution of local volume fractions is also useful in homoge-
neous precipitation models as it allows to explore heterogeneities within 
the configuration. Such distributions have been computed in different 
models [56,89,90,92,123]. The definition of the local volume for the 
computation of the lvf differs between models. It is either defined in a 
spherical volume of few particles diameter around each particle [90,92] 
or based on a 3D grid [56]. Distributions of local volume fractions for 
spherical and ellipsoidal particle simulations are shown in Fig. 19. a and 
b respectively [56,92]. Overall, simulation data for both spherical or 
ellipsoidal particle models agree that, as the average volume fraction of 
the configuration increases, the distribution of local volume fractions 
gets skewed with the mode moving to higher values and a long tail 
developing toward the lower volume fractions [56,90,92,123]. This 
indicates that the areas of highly densely packed C–S–H grow locally 
within the configuration. 

The solid volume fraction is interconnected to porosity, which is one 
minus the volume fraction. The Powers-Brownyard (PB) model of C–S–H 
estimates the capillary pore volume in the hardened cement paste from 
the water-to-cement ratio [124]. Ioannidou et al. used the PB model to 
connect the volume fraction of the mesoscale simulation configurations 
to the water-to-cement (w/c) ratio in order to compare structural and 
mechanical properties with experimental data [90,92]. Fig. 19.c shows a 
comparison of local volume fraction distributions of C–S–H estimated 
from nano-indentation experiments in cement paste samples and from 
simulations [90]. The nano-indentation measurements have been 
coupled with chemistry information of elemental maps to select only the 
C–S–H volume fractions. 

5.1.2. Clusters, connectivity and local order 
Particles simulations give the opportunity to analyse further the 

positions of particles and compute spatial or temporal correlations. 
Common quantities to characterize the evolution of the microstructure 
during hydration and setting is the cluster size distribution, coordination 
number, gyration radius, bond orientational order parameter, pair dis-
tribution functions and structure factor. The cluster size distribution has 
been used to characterize the stacking of ellipsoids or the gelation pro-
cess of C–S–H. The cutoff distance for two particles to belong in the same 
cluster is determined by the position of the first minimum after the main 
peak in the pair distribution function. This is also the first coordination 
shell. The gyration radius indicates the morphology of the clusters and 
the bond orientational order parameter the type of local packing. The 
pair distribution function describes how density varies as a function of 
distance from a reference particle. 

Masoumi et al. computed the cluster size distribution of ellipsoidal 
particles for configurations of different volume fractions [56]. Interest-
ingly, the estimated average thickness is between 3 and 6 nm for all 
volume fractions and ellipsoid sizes, in agreement with SANS observa-
tions [125]. 

For the precipitation model described in Section 4.2.2 the cluster size 
distributions, coordination number, pair distribution function, gyration 
radius and bond orientational parameters were computed for low and 
high Ca(OH)2 concentration potentials and different kinetic rates 
[85,126]. The combined analysis of these structural quantities suggested 
that the low Ca(OH)2 concentration potential promotes the growth of 
elongated clusters with local packing akin to Bernal spirals that branch 
and impinge during precipitation. This potential has thermodynamically 
stable clusters at low volume fraction that promote quick filling of the 
simulation box and geometric percolation. On the contrary, the high Ca 
(OH)2 concentration potential grows large, compact clusters with crys-
talline local packing that favor densification. Comparison of the same 
structural properties with MD equilibrium simulations of the same in-
teractions potentials showed that the local packings are thermody-
namically stable, hence persist through a broad range of kinetic rates 

Fig. 18. Kinetic Monte Carlo simulation results from Shvab et al. [98]. (a) 
Temporal evolution of saturation index from Ref. [99]; (b) Rate curves pre-
dicted by KMC simulations with different assumptions on β(t), and comparison 
with a typical curve from Chan's model (BNG); (c) Snapshots of the evolving 
mesoscale structure of C–S–H during a typical KMC simulation (the numbers 
correspond to different points on the rate curves in (b). Reprinted with 
permission from Ref. [98]. Copyright 2017 American Chemical Society. 
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[85,88]. Fig. 20 a and b show heatmaps of bond orientational parame-
ters distribution for low and high Ca(OH)2 concentration potentials 
respectively [88]. Low Ca(OH)2 potential shows a high intensity at 
Bernal spiral packing whereas high Ca(OH)2 potential shows high in-
tensity at face-centered cubic and hexagonal close packed crystals. 

The geometric percolation for a precipitation model as a function of 
the kinetic rate (as defined in Section 4.2.2) was investigated in 
Ref. [127]. The authors computed size, number, shape and percolation 
volume fraction for configurations of about 1700 spherical particles of 5 
nm in a cubic box of 60 nm, with particles interacting via a Mie po-
tential. Despite the small system size, they reported that high kinetic rate 
simulations produced more clusters of smaller size and elongated shape 
and pushed geometric percolation to higher volume fractions. 

Cluster analysis in surface growth simulations of the low Ca(OH)2 
concentration potential resulted in percolating clusters with low density 
whereas high Ca(OH)2 concentration potential resulted in locally dense 
and crystalline crust on the cement grain surfaces and an anisotropic 
network in between as shown in Fig. 20 c [89]. 

5.1.3. Spatial correlations 
Non-invasive experimental techniques to investigate correlations at 

different length scales are Small Angle X-ray and Neutron scattering 
(SAXS and SANS). Scattering originates from density fluctuations. In 
porous materials, such as cement paste, the fluctuations occur at the 
interfaces between void (pore) and matter (solid) and depend on the 
orientation and roughness of interfaces. The scattering intensity I(q) is 
computed as the Fourier transform of the auto-correlation of fluctua-
tions in local density [128]. When the scattering intensity is computed in 
simulation configurations, the system size must be large enough to not 
induce cutoff effects in real space, which would cause artifacts in Fourier 

space. 
Small angle scattering is also connected to chord length distribution 

functions, providing a link between imaging techniques and scattering 
[129]. Chords are line segments that have both ends at a pore-solid 
interface. Such distributions can also provide average pore size, pore 
size distribution, surface roughness and spatial correlation between 
points belonging to the solid, the pore network, or the interface between 
them. Chord length distributions also provide a way to estimate the 
specific surface area of porous materials. For sufficient sampling of the 
materials, the specific surface area is Ssp = 4ϕ/[<lp > ρ(1 − ϕ)], where 
<lp> is the average of the pore chord length distribution, ρ is the density 
of a nanosized C–S–H crystal, and ϕ is the porosity of the porous sample. 
Specific surface areas were computed for different cutoffs of the smallest 
chord length in Ref. [90] and used to rationalize experimental mea-
surements of specific surface area that vary broadly upon drying con-
ditions and choice of adsorbate. Goyal et al. computed the evolution of 
specific surface area during hydration [89]. 

Cement pastes have been extensively investigated with SANS/SAXS. 
An interesting result is that the scattering intensity invariably behaves as 
a power of the q vector over a wide range of q and this result persist 
regardless the composition or age of hardened paste. Fig. 21 shows 
experimental measurements and lines of powers of q. The characteristic 
q− 3 dependence is shown to extend over about two orders of magnitude. 
Such extended spatial correlations of cement pastes could not be ob-
tained with dense packings of spheres polydisperse in size [128]. Fig. 21. 
b shows that the I(q) of a very dense, highly polydisperse packing, 
simulated with the process in Section 4.2.1 [82], has a q− 2 dependence. 
Scattering intensities computed from ptychographic imaging show that 
this is relevant for inner product C–S–H over a limited range of q [130]. 

Fig. 21.b shows that the I(q) of a low density packing simulated with 

Fig. 19. Distributions of local volume fractions ηlocal for simulations with spherical (a) and ellipsoidal (b) particles for different overall volume fractions η. (c) 
Comparison of packing fractions estimated from nano-indentation experiments and simulations. Reproduced from (a) ref. [92] with permission from ASCE, (b) ref. 
[56] with permission from Wiley and (c) ref. [90]. 

Fig. 20. Bond orientational parameters heatmaps for (a) low Ca(OH)2 concentration potential showing high intensity at Bernal spiral (BS) packing and (b) high Ca 
(OH)2 concentration potential showing high intensity in hcp or fcc crystal both at volume fraction 0.052. (c) Snapshot of the surface growth model for high Ca(OH)2 
concentration potential. The dark colour indicates higher density crust close to cement grain surfaces. Reproduced (a) and (b) from ref. [88] and (c) reprinted with 
permission from ref. [89]. Copyright 2020 American Chemical Society. 
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the process in Section 4.2.2 [85] has a very limited q− 3 dependence 
[131]. The first simulations data that could attain an extended spatial 
correlations of q− 3 are shown in Fig. 21.a. The q− 3 dependence persist 
for about two orders of magnitude for both a very porous and a denser 
system (volume fraction 0.33 and 0.52 respectively). These simulated 
configurations were also produced with the process in Section 4.2.2 
[85], however to obtain long range correlations over a wide range of q, 
system sizes of about 0.6μm had to be simulated, using about half a 
million particles [90]. In the computation of I(q), finite size effects and 
boundary conditions must be handled with care. In Fig. 21.a the plateau 
at low q, where the simulation data are restricted by the system size, is 
associated to a correlation length of about π/q = 40 nm, ten times 
smaller than the box size 0.6μm. 

Combining the scattering intensity with chord length distribution 
analysis, Ioannidou et al. found that the extended q− 3 behavior of the 
small angle scattering originates from the coexistence of surface 
roughness of the capillary pores at the scale of 3 - 40nm with a fractal 
pore network [90,132]. The authors suggested that the out-of- 
equilibrium process that was used to produce the growth of the struc-
ture (see Section 4.2.2 produced such a complex mesopore network 
[85]. 

Other growth models, not based on interaction but rather on 
geometrical triangulation in 2D with a prescribed set of rules, have been 
developed to estimate the scattering intensity [115]. However, the 
system size of such structures was small and the computed scattering 
intensity was significantly affected by finite box effects. 

Goyal et al. computed the scattering intensity of heterogeneously 
grown structures [89]. In these configurations, the packing and 
morphology is anisotropic along the z direction; high density packed 
areas exist in boundaries and more porous in the middle of the simula-
tion box. The scattering intensity calculation of anisotropic structures is 
more complex as it requires the computation of autocorrelation of 
density fluctuations in each orientation before performing the 3D 
Fourier transform. To overcome this, the authors used a method based 
on 2D projections [133]. They found that at high q the signal in all di-
rections is oscillating due to monodisperse size of spherical particles. At 
low q, the comparison of I(q) along the z anisotropic direction and the 
isotropic directions suggested that the differences are due to high dif-
ferences in density along the z direction. However, for high Ca(OH)2 
concentration potential the anisotropy persists also in the middle zone, 
suggesting that is inherent to the potential. 

5.1.4. Pore network 
At the sub-micrometer scale, hardened cement paste is composed of 

gel pores (< 5 nm), small capillary pores (10–100 nm) and large 

capillary pores (100–1000 nm). Pores of sizes larger than 50 nm cannot 
be captured easily in mesoscale simulations. In particle-based simula-
tions, the pore size distribution (PSD) can be directly calculated from the 
mesoscale structure of the aggregated particles. The PSD can be obtained 
using Monte Carlo (MC) sampling of the geometric pore space in simu-
lation configurations [134]. The pore volume is probabilistically probed 
with either 3D shapes, such as spheres, or with 1D chords. In the first 
case, the PSD is obtained from the diameter of the largest sphere that fits 
at a given point [134]. Sufficient sampling provides a representative 
PSD. This method was used in Ref. [89,90,92] to estimate the PSDs from 
the simulations. 

The PSDs of the simulation samples in Refs. [90,92] showed a first 
peak of gel nanopores and wide range distribution of small capillary 
mesopores in the 4–30 nm range (see Fig. 22c). The majority of these 
pores were connected with few of them being isolated. These PSDs were 
in agreement with pore size distribution estimated from nuclear mag-
netic resonance spectroscopy (NMR) [135]. In Ref. [92] the results were 
compared with the nitrogen adsorption/desorption experimental results 
of Mikhail et al. [136] for different ordinary Portland cement pastes, 
prepared with different initial water-to-cement ratios. 

In the case of chords, a line segment starting from a random point 
grows in random directions until it reaches solid boundaries [129]. The 
same methods can be applied to digitised tomography images [129]. 
This provides a direct comparison of the pore structure between ex-
periments and simulations. In Ref. [90] the distribution of chord lengths 
in the pore obtained from particle simulation configurations were 
compared to ones obtained from experimental SEM images. 

Yu et al. computed PSD for ellipsoidal packings based on a 3D grid 
algorithm that grades different levels of voids and that clusters them 
based on a breadth-first search (BFS) algorithm, assigning to connected 
clusters a spherical volume [137]. The PSD computed for models with 
ellipsoid of different aspect ratios follow a normal distribution, with 
high aspect ratios leading to larger pores. Masoumi et al. provided a 2D 
voxel map of the pore volume in ellipsoidal particle configurations in 
box sizes 75 nm and various volume fractions [56]. Goyal et al. 
computed the PSD using MC geometrical sampling [134] for early and 
late stages of hydration of C–S–H and showed the evolution of the 
average pore size for C–S–H close to clinker surface and away from it 
[89]. 

Another common way to assess pore size distribution (PSD) are 
physisorption experiments. In physical adsorption the molecules of an 
adsorbate (vapor) attach to the surface of the adsorbent (solid), similar 
to condensation. In capillary pores of 2–50 nm, multilayer adsorption 
from the vapor into a porous medium proceeds to the point at which 
pore spaces become filled with condensed liquid from the vapor. The 

Fig. 21. Scattering intensity computed from simulations and compared with experiments. The configurations show (a) an extended q− 3 power law and (b) limited 
q− 3 dependence for ϕ = 0.36. The dense configuration of ϕ = 0.76 has q− 2 dependence. η and ϕ both indicate volume fraction. Reproduced from (a) ref. [90] and (b) 
ref. [131] with permission from ASCE. 
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measurement of the quantity of adsorbent as a function of its vapor 
pressure at constant temperature provides the most common experi-
mental observation: the adsorption/desorption isotherm. The amount of 
adsorbed vapor at a given temperature and pressure depends on the 
interaction between the vapor and the solid. Note that the isotherm of a 
solid-gas system should be reversible if there is no irreversible change in 
the nature of the solid and/or gas, since there is one state of equilibrium 
at a given vapor pressure. At lower pressures this is what is usually 
observed, but at higher pressures a hysteresis arises. This is commonly 
related to the pore structure of the solid and to the formation of a 
menisci; the difference in the process of formation and recession of this 
meniscus causes the hysteresis. The distribution of capillary bridges and 
menisci is key to understand the capillary stresses induced on a porous 
solid matrix. 

PSD experimentally derived from adsorption/desorption isotherms is 
based on the Kelvin's equation and surface adsorption models that as-
sume that pores are cylinders or spheres [138,139]. A recent theoretical 
model for adsorption and PSD estimation in cement paste was based on 
such hypotheses for pore sizes and connectivity [140]. Zhou et al. 
developed a simulation scheme based on mesoscale particle configura-
tions of C–S–H and lattice gas Density Functional Theory [141]. Fig. 22 a 
and b show adsorption/desorption isotherms obtained from the fluid 
distribution around C–S–H particles, compared with experimental data 
for nitrogen and water respectively [119]. The sorption curve for ni-
trogen displays only minimal hysteresis, whereas for water displays a 
significant hysteresis, both in agreement to experimental observations in 
Refs. [136,142]. The water hysteresis arises from ink-bottleneck states 
upon desorption due to constrictions in the pore network of C–S–H 

[141]. Comparison of PSDs obtained from the Kelvin equation and the 
geometrical Monte Carlo sampling is shown in Fig. 22 c and d for ni-
trogen and water respectively. The Kelvin equation PSD for nitrogen 
show similar features to the geometrical Monte Carlo PSD, whereas for 
water, the Kelvin equation features a bimodal distribution for gel pores 
and lack of large capillary pores. This may be because water molecules 
interact strong with C–S–H particles and the interlayer spaces within the 
C–S–H [143], which nitrogen does not. All this suggests that nitrogen 
sorption may be more appropriate for characterizing the mesopore 
network of C–S–H [119]. 

Capillary stresses due to changes in relative humidity cause material 
deformation, as observed in drying shrinkage experiments [144–146]. 
The state of the art in atomistic modelling of fundamental mechanisms 
driving drying shrinkage has been recently reviewed [147]. At the larger 
mesoscale, in the model proposed by Zhou et al., capillary stresses due to 
imbalanced fluid distributions around the particles can be computed and 
used as input to MD simulations [141]. Zhou et al. computed the drying 
shrinkage for various relative humidities and compared those to 
experimental values [141]. 

5.2. Mechanical properties 

Various mechanical properties have been computed using mesoscale 
simulations of C–S–H. This section starts with the eigenstresses gener-
ated during the precipitation of the gel, then will move to short-term 
properties (elastic moduli and strength), and will finally address fail-
ure and long-term viscous behaviours. 

Fig. 22. Isotherms and pore size distri-
butions. Adsorption/desorption iso-
therms for (a) nitrogen and (b) water in 
cement paste. Symbols show the mass 
ratio of wet over dry sample, Madsorbent/ 
Mdry (blue squares and red dots for 
adsorption and desorption respectively) 
from experiments of Ref. [136] for (a) 
and Ref. [142] for (b). Black lines show 
simulated isotherms on cement model 
configurations with realistic 3D pore 
network of water to cement ratio (w/c) 
0.52. For water sorption (b) the degree 
of saturation (DOS) estimated from the 
simulations is shown at the right y axis. 
(c) and (d) show pore size distributions 
calculated by Monte Carlo method on 
the three cement model configuration, 
and from applying the Kelvin's equation 
to the isotherms of nitrogen and water 
respectively. Y and X-axis values are 
normalized probability density and pore 
radius respectively. The terms hardened 
and aged referred to samples with and 
without eigenstresses. Reproduced from 
ref. [119]. (For interpretation of the 
references to colour in this figure 
legend, the reader is referred to the web 
version of this article.)   

K. Ioannidou et al.                                                                                                                                                                                                                              



Cement and Concrete Research 159 (2022) 106857

19

5.2.1. Eigenstresses during C–S–H formation 
During its formation, the C–S–H phase develops autogeneous strain 

generating self-equilibrated eigenstresses. If a sample is unconfined and 
free to undergo volume changes, the average eigenstresses will be null 
but still the sample will feature a heterogeneous field of local eigens-
tresses. In 1997, Bažant et al. [148] indicated these eigenstresses as the 
promoters of long-term basic creep in concrete, arguing how they could 
originate from processes such as competitive growth of C–S–H nano-
particles and other crystals (e.g. calcium hydroxide) as well as hetero-
geneous drop of pore water chemical potential during hydration. Based 
on these mechanisms, Bažant et al. predicted an order of magnitude of 
150–200 MPa for the average intensity of the local eigenstresses at sub- 
micrometer length scales. Samples whose deformations are constrained 
will still develop a field of local eigenstresses and, on top of that, they 
will also feature non-zero average eigenstresses, experimentally 
computed in the 0–40 MPa range with non-monotonic evolution during 
hydration [149]. 

In a particle simulation, the components of the eigenstress tensor σ 
on particle i can be quantified using the virial expression [150,151]. For 
pairwise interactions only and negligible kinetic energy, this is: 

σab,i =
1

2Vl

∑

i∈Vl

[
∑

j∕=i

(
ra,iFij,b,i + ra,jFij,b,j

)
]

(20)  

where Vl is the volume over which the contributions to the eigenstresses 
are averaged. a, b are Cartesian coordinates, j are the neighbours 
interacting with particle i, ra is the a-component of the position vector, 
and Fij, b, i is the b-component of the force on particle i coming from its 
interaction with particle j. If the focus of the simulation is on the average 
eigenstresses in the whole system, then Vl should equal the volume of the 
entire simulations box Vbox. Instead, if one is after meaningful local 
stresses, one should use Vl ≪ Vbox but, at the same time, Vl should be 
sufficiently large to capture a representative elementary volume, RVE. 

Sometimes a related but different quantity is computed: the per-particle 
contribution to the average stress, whereby only one particle i is 
considered at a time. In this case taking Vl = Vbox/N, where Vbox is the 
volume of the simulation box and N is the number of particles in it, leads 
to a quantity whose average over the N particles coincides with the 
average eigenstress over the whole simulation box. A variation of the 
per-particle stress contribution uses the per-particle Voronoi volume 
instead of just Vbox/N. 

In a simulation, only very ordered structures of particles can be free 
from local eigenstresses, viz. have all the particles sitting in local minima 
for all the interaction potentials, such that Fij = 0 everywhere: see the 
“crystalline” data-set in Fig. 23.b. All the C–S–H simulations presented 
in Section 4 produce disordered structures, hence all would feature local 
eigenstresses. However, such eigenstresses would not result only from 
the physical process of C–S–H formation; in part they would also be 
intrinsic to arbitrary steric constraints imposed by model-specific as-
sumptions, e.g. on the size, shape, and polydispersity of the particles. 
Therefore, when simulating formation eigenstresses one should take 
care of controlling and possibly minimizing the impact of such steric 
constraints on the predicted stresses. 

Ioannidou et al. [92] computed local eigenstresses using a version of 
the potential in Eq. (14), without Yukawa shoulder and with ε = 0.15 
kBT. This low energy scale and the employed Grand Canonical Monte 
Carlo formation algorithm (see Section 4.2.2) ensure that the system can 
explore the potential energy landscape quite efficiently, leading to bet-
ter equilibrated structures and thus minimizing the effect of steric con-
straints on the resulting eigenstresses. The eigenstresses were then 
computed fixing the structure and applying the pressure unit ε/σ3 = 0.55 
GPa that the authors estimated for hardened C–S–H gel. This led to 
eigenstresses in the ±0.1 GPa range, with intensity increasing with the 
local packing density of the structure: see the increasing standard de-
viation of the curves in Fig. 23.a. 

Masoero and Di Luzio [101] used a different approach to compute 

Fig. 23. Simulated fields of eigenstress and per-particle stresses from C–S–H formation on structures, all relaxed to zero average axial stresses. (a) Snapshot of local 
packing densities η, which correlate with local eigenstress intensity, and distributions of hydrostatic eigenstress (pressure) intensity a for different average η of the 
structures (reproduced from Ref. [92], with permission from ASCE); (b) Snapshot of per-particle shear stresses straight from a packing algorithm akin to Section 
4.2.1, and distribution compared to a crystalline structure featuring no eigenstress (reprinted from Ref. [91], Copyright (2019), with permission from Elsevier); (c) 
Snapshot of tensile (red) and compressive (blue) hydrostatic component of per-particle stresses, and distribution of intensity before and after particle inflation as 
explained in the main text (reprinted from Ref. [101], Copyright (2020), with permission from Elsevier). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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per-particle contributions to the eigenstressses. Initial C–S–H structures 
were created using a packing algorithm similar to that described in 
Section 4.2.1, with monodisperse particles interacting via harmonic 
potentials of the type in Eq. (15). Strong per-particle stresses of ±1 GPa 
emerged as a result of the steric constraint: see the dataset named “after 
monodisperse packing” in Fig. 23.c. Similar intensities were previously 
obtained by Liu et al. [91], see Fig. 23.b, using a similar packing algo-
rithm and a slightly different, but similarly intense, interaction poten-
tial. Masoero and Di Luzio [101] found that these per-particle stresses 
depended indeed on arbitrary assumptions in the packing algorithm, 
which did not represent a physical process of C–S–H formation. To 
correct for this, a fraction δ of the particles in the structure were inflated 
from a diameter of 5 nm to 7 nm, and the average stress on the whole 
simulation volume was relaxed back to zero by energy minimisation, 
while letting the simulation box expand to remove average eigenstresses 
and preserve local stresses only. This mimicked physical processes tak-
ing place during C–S–H formation and generating local pressure, e.g. 
crystallization pressure or disjoining pressure in the pore solution. The 
result was an even stronger field of per-particle stresses, but consistent 
across different packing schemes to obtain the initial monodisperse 
structure: see Fig. 23.b. The resulting per-particle stresses were capped 
by local plastic deformations to ±2 GPa, with average positive and 
negative intensity in the 150–200 MPa range, consistent with the 
aforementioned estimation by Bažant. 

The simulated stresses in Fig. 23 differ by one order of magnitude, 
but this is because Fig. 23.a shows eigenstresses averaged over a suffi-
ciently large RVE (see details in Ref. [92]) whereas Fig. 23.b,c show per- 
particle stresses, with Vl set to the tributary volume of a single-particle. 
Another contribution to the difference in stress intensity may be that the 
structures in Fig. 23.a had maximum packing density η = 0.52, whereas 
the structures in Fig. 23.b,c had η ≈ 0.64; the intensity of the eigens-
tresses increases rapidly when approaching the close packing limit, 
which induces strong steric constraints [92]. 

The presented simulations have mitigated but not completely 
removed the issue of intrinsic steric constraints causing artificial con-
tributions to the eigenstresses. A step to further reduce such artifacts 
would be to model partial dissolution/reprecipitation of C–S–H by 
letting particles change their shape anisotropically, hence simulating 
physical interactions between growing and shrinking nano-domains. 
Another improvement would be to couple particle simulations with 
pore saturation models (e.g. those shown later in this section), which 
would help account for the now-overlooked contribution of capillary 
stresses during C–S–H formation. 

5.2.2. Elastic moduli 
Most nanoparticle-based simulations of C–S–H in the literature 

report computed elastic moduli. González-Teresa et al. [112] were first 
to estimate elastic moduli from mesoscale models of C–S–H. In partic-
ular, they used a purely geometric (no interaction forces) particle-based 
model to compute the density ρ of so-called “low-density” and “high- 
density” C–S–H structures. Subsequently they used linear functions E(ρ), 
separately obtained from previous molecular simulations [152], to es-
timate various elastic moduli (here collectively called E). The results 
agreed well with experimental data on C–S–H. 

With the advent of interaction-based nanoparticle simulations of 
C–S–H, the most common method to compute elastic moduli became the 
finite deformation method. This consists in starting from a C–S–H 
structure at zero average stress, applying an increasing finite deforma-
tion to the simulation box in one or more directions, and computing the 
average stress components during the deformation process (using Eq. 
(20) with Vl = Vbox, for all a, b = x, y, z components). The slopes of the 
resulting stress-strain curves in their initial linear regime quantify the 
elastic moduli. Depending on the applied deformations, different moduli 
can be extracted, and the full elastic tensor can be constructed from 
multiple simulations. An alternative way to compute moduli is by 
monitoring the thermal fluctuations of the average stress components at 

constant volume [153], as done for example in Refs. [82,86]. The 
advantage of the fluctuations method is that the whole elastic tensor is 
obtained from a single simulation. The drawback is that the reference 
configuration must be in a rather stable energy minimum, because if 
fluctuations induce even small irreversible particle rearrangements, the 
error on the computed moduli can be large. Instead, small irreversible 
rearrangements have only a limited impact when the finite deformation 
approach is used, causing small drops in the stress-strain curves which 
can be easily neglected when computing the initial slope. 

When the finite deformation method is used, an important variable is 
the applied strain rate. Most nanoparticle simulations of C–S–H perform 
energy minimisation between subsequent deformation steps, because 
the energy barriers in the simulations are usually so large that the impact 
of thermal fluctuations can be neglected: see Table 1, where in most 
cases ε + Δε > > kBT.2 

The indentation modulus M is typically computed, because it allows 
direct comparison with experimental results from nanoindentation. 
These results also relate local M with local packing density η of the 
C–S–H. The numerical calculation of M is usually carried out in one of 
two ways: (i) via finite deformations in uniaxial strain, while keeping the 
simulation box fixed in the perpendicular directions, which returns M as 
the slope of the axial stress-strain curve, or (ii) by computing two other 
moduli, e.g. the Young modulus E, the shear modulus G, the bulk 
modulus K or the Poisson coefficient ν (or the full elastic tensor with the 
stress fluctuations method) and combining them via linear elastic re-
lationships, such as M =

G(4G− E)
3G− E . In fact, the ability to predict M and its 

relationship to η has become the basic validation for nanoparticle 
models of C–S–H that aim at reproducing mechanical properties, also 
going beyond the linear elastic regime. 

Fig. 24 collects various simulated relationships between elastic 
moduli and packing density. The first such relationship was presented in 
2012 by Masoero et al. [82] and is reproduced here in Fig. 24.a. The 
structures were obtained with the packing algorithm described in Sec-
tion 4.2.1, with modified Lennard-Jones potential in Eq. (13). Particle 
size polydispersity was used to reach η > 0.64. Similar results are shown 
in Fig. 24.b, from a slightly improved way of computing the contact 
surface and thus the bond energy between adjacent particles [84,86]. 
The results in Fig. 24.c [90] extended the range down to very low η, for 
which nanoindentation experiment cannot provide reliable data. The 
simulation method here featured an initial packing stage using the 
Grand Canonical Monte Carlo method in Section 4.2.2, with the softer 
Lennard-Jones-Yukawa potential in Eq. (14). Subsequently, when the 
desired η had been achieved, the interaction potential was replaced with 
the stronger one in Eq. (13) before computing the elastic moduli. The 
results in Fig. 24.d were obtained with the same approach in Fig. 24a,b, 
but a thorough investigation on the impact of polydipsersity was con-
ducted in the manuscript [91], as well as comparing the moduli of 
disordered C–S–H structures to those of crystalline structures featuring 
the same interaction potentials. This showed that M does not depend 
exclusively on η, or on the polydispersity level, or on the structural order 
or disorder, but on all of the above. Fig. 24.e shows recent results on 
Young modulus, which is quite similar to M but does not coincide with it. 
The underlying simulations [93] used the same packing algorithm as in 
Fig. 24.c and then switched to peridynamics simulations parametrised 
on strong mechanical properties similar to those leading to the entries in 
Table 1 for the Lennard-Jones and the Harmonic potentials. The results 
in Fig. 24.f instead were obtained from simulations [94] employing the 
Lennard-Jones-Yukawa potential in Eq. (14) but parametrises similarly 

2 Sometimes the simulations involving energy minimisation are called “quasi 
static”; this may be misleading, because energy minimisation takes the system 
to the nearest metastable energy minimum, whereas simulations at finite 
temperature and finite strain rate might better explore the energy landscape 
and find deeper local minima. Using energy minimisation, therefore, might be 
more representative of loading regimes with large strain rates. 
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to the Lennard-Jones potential in Eq. (13). The computed Young moduli 
in Fig. 24.f are in line with those from the other simulations and with the 
experimental values. However the physical interpretation for the 
resulting Yukawa shoulder, with intensity of hundreds of kBT, is not 
clear. 

5.2.3. Strength 
Computing strength from particle-based simulations is not straight-

forward. A first issue is that various types of strength can be computed, 
e.g. tensile, compressive, shear, or indentation hardness, and the re-
lationships between them are complex, when they exist at all. A second 
issue is that irreversible deformations accumulate progressively while 
transitioning from linear elasticity to full plasticity, and eventually to 
fracture (and not all these regimes necessarily emerge from a simula-
tion). Therefore conventional decisions must be made when defining 
strength, e.g. it could be the stress at which the very first irreversible 
deformation occurs, or the absolute peak stress on a stress-strain curve, 
or other more convoluted definitions. A notable example is the inden-
tation hardness, whose calculation requires constructing several Mohr 

circles at failure (which itself requires a definition of failure) and finding 
the strength envelope that they describe, so that shear cohesion at zero 
confinement can be obtained [155]. In presenting the literature results 
below we will only indicate the type of strength being computed, hence 
providing just an intuitive appreciation of the data; the interested reader 
can find all the methodological details in the referenced works. 

Among the various types of strength being computed, indentation 
hardness H has attracted most attention. This is because, like for the 
indentation modulus M in the previous section, also H can be directly 
compared with experimental results from nanoindentation, which also 
relate it to the local packing density η of the C–S–H. Ioannidou et al. [88] 
were fist to report simulated H vales: see Fig. 25.a. Liu et al. [91] ob-
tained similar values, in Fig. 25.b, which was expected as they used the 
same interaction potential as in Ref. [88], although not the same packing 
algorithm. They also compared the results to simulated H values for 
crystalline structures made with similar nanoparticles, as shown in 
Fig. 25.b. Recently, Yaphary et al. [94] also simulated H values, using a 
potential that featured both a cohesive well and a repulsive shoulder, 
with similar bond energy as in the previous works. Their H values, 

Fig. 24. Simulated indentation moduli M [82,86,90,91] and Young moduli E [93,94] as functions of C–S–H packing density η and, in some cases, comparison with 
experimental results from [90,154] Permissions to reproduce images: (a) with permission from the American Physical Society [82], (b) with permission from the 
Royal Society of Chemistry [86], (d,e,f) from Ref. [91], Copyright (2019), from Ref. [93], Copyright (2021), and from Ref. [94], Copyright (2021), with permission 
from Elsevier. 

Fig. 25. Simulated indentation hardness H [90,91,94] as functions of C–S–H packing density η and, in some cases, comparison with experimental results from 
[90,154] Images (b,c) reprinted from Ref. [91], Copyright (2019) and from Ref. [94], Copyright (2021), with permission from Elsevier. 
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shown in Fig. 25.c, are in a similar range as previous ones, although their 
H − η relationship is less representative of the experimental trend. 

A few other simulated values of strength have been reported in the 
literature. Masoero et al. [86] computed strength under pure shear, 
using energy minimisation after increments of shear strain and keeping 
the box dimensions fixed (hence positive or negative pressures built up 
during the deformation). The obtained shear strength was between 80 
and 320 MPa, increasing with packing densities from η = 0.64 to 0.71 
(different η’s were obtained via random close packing with different 
particle size polydispersity). Recently Liu et al. [91] reported a single, 
smaller, simulated value of shear strength: ca. 50 MPa. Their simulations 
were similar in packing algorithm and potentials as those in Ref. [86], 
but the tests were simple shear, not pure shear. 

Uniaxial tensile strength was first simulated by Davie and Masoero 
[156], using energy minimisation between increments of applied axial 
strain and keeping zero the axial stress perpendicular to the loading axis. 
The computed tensile strength was between 550 and 750 MPa, also in 
this case increasing from η = 0.64 to 0.76. Recently Hou et al. [93] 
computed tensile strength using a Grand Canonical Monte Carlo to 
create the C–S–H structures, followed by a peridynamic algorithm with 
interaction energies in the same order as in Ref. [156]. They computed 
tensile strengths for structures with η ≤ 0.53, but extrapolating their 
results to a η = 0.64 would lead to a strength of ca. 600 MPa, which is 
similar to the previous result in Ref. [156]. 

Compressive strength has been computed only recently by Yaphary 
et al. [94]. In the simulations, the axial stresses perpendicular to the 
loading directions were kept null by adapting the dimensions of the 
simulation box; without this feature, a simulation under compression 
would not be able to predict a transition to plasticity hence a 
compressive strength (differently from tensile simulations, where lack of 
transversal relaxation would still allow breaking the material and 
computing a corresponding strength). Their computed values are 
280–550 MPa for C–S–H configurations that they associate to a low- 
density phase, whose η is between 0.58 and 0.66. For high-density 
C–S–H structure, with η = 0.72 − 0.75, they computes strengths in the 
500 − 900 MPa range. These values suggest a bigger impact of C–S–H 
packing density η on compressive strength that on tensile strength (cf. 
previous paragraph). However, more results on compressive strength 
are needed before drawing strong conclusions. 

5.2.4. Plasticity and fracture 
The current literature on this property is very thin, with very few 

works having reported on simulated plastic deformations in some depth 
[86], and none having quantified fracture energy or toughness yet. 

Masoero et al. [86] computed the accumulation of irreversible strain 
under pure shear, using the same simulations that led to the shear 
strengths in the previous section. Their study considered different levels 
of particle size polydispersity, inducing different packing densities η. An 
interesting result is that, upon large shear deformations, less dense 
structures (η ≤ 0.7) initially developed a negative pressure, i.e. they 
tended to densify. This tendency reversed with the accumulation of 
plastic strain, leading to a buildup of positive pressure indicating a 
tendency to dilate. By contrast, denser structures (η ≥ 0.7) always ten-
ded to dilate, i.e. they developed a positive pressure that kept increasing 
as the plastic strain grew. Irreversible deformations were linked to non- 
affine displacements showing that, in polydisperse systems at large 
strain levels, local deformations would only develop in the matrix of 
smaller particles, whereas larger particles would behave as inclusions 
drifted by the average field of affine strain. Masoero et al. [86] argued 
that the energy to realise this matrix-inclusion behavior would control 
the activation of a fully developed plastic regime. Later simulations 
monitored the strain energy δU to activate plastic deformations during 
quasi-static simulations of simple shear strain ε; the computed ΔU were 
increasing logarithmically with ε until full plasticity was attained, at 
which point ΔU starbilised around 3 − 4 eV. [157,158]. 

Regarding fracture energy or toughness, one may wonder why those 

have not been reported in the literature, since these could be easily 
obtained from published stress-strain curves under uniaxial tension 
(with or without applying a pre-existing notch). The difficulty here is 
that fracture propagation is inherently a multi-scale process, where 
governing defects are likely to exists at length scales greater than the 
hundreds of nanometers of particle-based simulations of C–S–H. As a 
result, correspondence between simulated and experimental results is 
unlikely to be retrieved (even for micro-scale experiments, such as 
scratch tests [159,160]). If correspondence be retrieved, one should then 
make sure that toughening and softening mechanisms at larger scales 
are considered in the validation [161]. A recent attempt to compute 
fracture properties from a PMF-based is in Refs. [162,163], where the 
lattice-element methods has been employed to address fracture of het-
erogeneous solids and has captured indeed some toughening mecha-
nisms in two-phase layered composite materials. These challenges are 
still to be addressed in the field of mesoscale simulations of C–S–H. 

5.2.5. Creep 
Particle-based simulations of C–S–H have been used to predict long- 

term basic creep, viz. slow accumulation of irreversible strain ε under 
constant stress σ and without concurring chemical reactions. The basic 

creep strain of concrete evolves logarithmically, ε = σ
Clog

(
t
t0 + 1

)
, where 

C and t0 are two material parameters: creep modulus and characteristic 
time scale. C–S–H is believed to control the basic creep of concrete, and 
nanoindentation experiments have indeed shown that C–S–H enters a 
logarithmic creep regime already a few seconds after loading [164] (as 
opposed to macroscale creep tests on concrete, which take longer to 
establish a similar regime [165]). Simulating creep is challenging 
because the high energy barriers in hardened C–S–H (see Table 1 and 
Fig. 26) imply that irreversible strain accumulates over time scales that 
are too large for molecular dynamics. 

A first approach to simulate creep was proposed by Masoero et al. 
[157]. They used the activation energies ΔU from the plastic strain 
simulations in the previous section, where each ΔU accompanied a finite 
increment of plastic strain Δε. The Arrhenius law was used to convert 

ΔU into a corresponding time increment Δt = Aexp
(

ΔU
kBT

)
. The resulting 

evolution of ε(t) displayed indeed an initial logarithmic regime until full 
plasticity developed: see Fig. 27.a. An analytical explanation as to why 
ΔU ~ log (ε) entails logarithmic creep was provided later [158]. The 
result in Fig. 27.a, however, predicted an excessively large timescale 
originating from two features of the model: (i) the steric constraint 
imposed by not resolving molecular displacements below individual 
particles, and (ii) the association of creep-driving deformations, which 
are local with only few particles rearranging, with plastic deformations 
under stress, which instead involve an increasing number of particles 
eventually spanning the whole system. To remove the second issue, new 
simulations were carried out where irreversible deformations under 
constant shear stress were activated via small oscillations of shear stress 
or strain. Each oscillation entailed an approximately constant change in 
strain energy, which defined the magnitude of the energy barriers 
sampled by the simulation. Based on this, each cycle of shear oscillation 
was considered to be proportional to a constant time increment, so that 
the computed ε ~ log (n) relationship (e.g. in Fig. 27.b), where n is the 
number of shear oscillations, effectively corresponded to logarithmic 
creep in time. The oscillatory approach was first proposed [158,166] 
and then fully deployed [102,167,168] for C–S–H simulations both at 
the molecular and at the mesoscale. A highlight of these simulations is 
their ability to predict the creep modulus C as a function of the packing 
density η of the C–S–H, providing direct comparison with results from 
nanoindentation creep experiments [164]: see Fig. 27.c. 

Recently, Masoero and Di Luzio [101] addressed another aspect of 
the basic creep of C–S–H: microprestress relaxation. In 1997, Bažant 
et al. [148] proposed a theoretical model that predicted logarithmic 
creep provided that the microprestresses in C–S–H, which are closely 
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related to the formation eigenstresses discussed previously, relax as a 
power law of time. Using oscillatory shear simulations and temperature- 
accelerated molecular dynamics on a C–S–H model with harmonic in-
teractions as in Eq. (15), Masoero and Di Luzio found that indeed 
microprestresses relaxed as a power law of the number n of activation 
attempts, and thus approximately of time: see Fig. 27.d. This confirmed 
Bažant et al.'s assumption, which was originally based purely on self- 
similarity arguments and on it being necessary for capturing logarith-
mic creep. 

6. Summary and outlook 

The development of mesoscale simulations and methods for mate-
rials is an active field of research that has significant challenges and 

practical applications. In this manuscript we have provided an overview 
of computational models and methods used in mesoscale simulations of 
cementitious materials, focusing on C–S–H, which is the main cement 
hydrate. We have illustrated with several examples how mesoscale 
simulations can bridge the gap of length and time scales between mo-
lecular simulations and continuous modelling, to predict macroscopic 
(thermodynamic, kinetic and mechanical) properties and behaviours 
from fundamental molecular processes using a rigorous statistical me-
chanics treatment. The chosen examples ranged from adsorption iso-
therms of simple ions and complex polymers up to the growth, structure 
and mechanical properties of C–S–H gels through liquid and solid phase 
composition (speciation) and interparticle interactions, always 
comparing the results with experimental observations. 

Within the statistical mechanics framework we showed how to 

Fig. 26. Simulated plastic behavior of C–S–H under shear. (a) Monodisperse C–S–H model structure; (b) stress-strain curve under simple shear; (c) evolution of 
energy barriers ΔU to activate irreversible deformation (plastic) events. Images reproduced from Ref. [158], with permission from ASCE). 

Fig. 27. Mesoscale simulation of C–S–H creep: (a) 
Creep curve constructed from activation energies 
during monotonic shear tests [157], such as in 
Fig. 26 above; (b) creep curves from the oscillatory 
approach, for C–S–H structures with different 
packing densities η [102]; (c) creep modulus as a 
function of η [102] from the creep curves in (b), 
and comparison with experimental results from 
nanoindentation [164]; (d) simulated power-law 
relaxation of eigenstresses during oscillatory 
creep simulations [101]. Permissions to reproduce 
images: (a) from Ref. [157] with permission from 
ASCE, (b,c) from Ref. [102], Copyright (2019), 
with permission from Elsevier, (d) from [101], 
Copyright (2020), with permission from Elsevier.   
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develop a hierarchy of coarse grained models where models at different 
levels of coarse graining are related via the calculation of the interaction 
free energy, that is the pair potential of mean force (PMF), between the 
chemical species or nano-particles of interests. Using such a method we 
showed, for example, that the many details of a chemical reaction 
(electronic, kinetic pathway etc…) can be reduced to an equilibrium 
constant, linked to the Gibbs free energy. When embedded into an 
appropriate Monte Carlo move and thermodynamic ensemble, the 
speciation of liquid and solid phases can be studied while keeping a 
microscopic (albeit coarse grained) description of the main physical and 
chemical processes. This was illustrated in the simple CaO–SiO2–H2O 
system, but with some efforts can be extended to the prediction of the 
phase assemblage and pore solution composition of a cement paste. This 
approach may support the development of low clinker cementitious 
materials, which increasingly rely on organic admixtures (e.g. super-
plasticizers) and, for the same reason, are difficult to treat with classical 
speciation models. 

Mesoscopic modelling can also help select and develop organic ad-
ditives. It can be used to predict the affinity of the organic molecules 
with the different phases of the cement (anhydrous and hydrates) ac-
cording to their structure and functionality, but also to predict the 
changes in inter-particle interactions induced by the organics adsorp-
tion. This research field is still in its infancy, especially for what concerns 
the rationalization of the dissolution processes of anhydrous phases and 
nucleation/growth of hydrates, while they interact with organic addi-
tives. This is indeed a field that can significantly benefit from meso-
scopic simulations such as those reviewed in this manuscript. 

The hierarchical coarse graining approach reviewed in this manu-
script, which relies on PMF calculations, can be powerful but some as-
pects require caution. An example was illustrated here with regard to the 
interaction potential between C–S–H particles. Experimental measure-
ments from atomic force microscopy and simulations in the framework 
of the primitive model describe similar interaction potentials, whereas 
atomistic simulations employing empirical force fields predict interac-
tion free energies that are one to two orders of magnitude greater. On 
one hand, this shows a limitation of the primitive model, which does not 
capture the many-body effects that strengthen the interactions in the 
extreme confinement of the inter-lamellar spacing of C–S–H crystals. On 
the other hand, atomistic simulations do not capture the colloidal 
behavior of C–S–H particles at larger distances, nor there is an available 
method for them to predict the changes in interaction potentials in 
response to a change in pH or ion concentration in the cement pore 
solution. Moreover, the PMFs depend not only on the geometry and 
charge of the particles but also on the density of the cement paste. 
Therefore, the tools must then be chosen and used with care according to 
their limitations and to the properties that one wants to model. 

At the coarser mesoscale of hundreds of nanometers, we have shown 
how a few simulations have started to incorporate PMFs coming from 
smaller scales, but still most of the existing particle-based simulations 
use empirical potential which are built rationally to target certain 
properties. Such empirical potentials miss some aspects of atomistic 
processes; this is evidenced, for example, by the practice of using certain 
effective potentials to represent the early stages of C–S–H formation, and 
others to study its mature behaviours. Empirical potentials capturing 
both regimes of colloidal and crystalline interactions are still to be 
developed and could stimulate interesting future studies. Despite such 
limitations, this manuscript has shown how particle-based mesoscale 
simulations to date have already successfully captured a remarkable 
range of C–S–H gel properties, both structural and mechanical ones. 
However, there is still room for significant new developments, such as:  

• Modelling particles that can partially grow and dissolve. The existing 
simulations model growth as secondary nucleation and aggregation, 
but C–S–H often forms elongated crystals, such as foils and needles 
[169]. Aggregation of anisotropic nanoparticles could lead to such 
shapes, but a more efficient way to simulate the formation of such 

morphologies would be to let particles grow and dissolve partially. 
This would also enable simulations of processes where small changes 
in particle sizes might enable significant structural rearrangements 
or stress relaxation, such as in creep or crystallization pressure.  

• Detailed account of particle nucleation and growth mechanics. In the 
current simulations, particles usually appear or disappear without 
specifying the details of the underlying mechanisms. Such details are 
not important in simulations where the target is the thermodynamic 
limit, but they are important for the kinetics. Shvab et al. [98] have 
assumed a simple classical growth mechanism in their Kinetic Monte 
Carlo simulations of C–S–H formation. Nonclassical mechanisms 
may better describe the formation of C–S–H [104,105] but are still to 
be included in mesoscale simulations. 

• Coupling particle precipitation and dissolution with ion diffusion in so-
lution. Most of the current particle-based simulations of C–S–H for-
mation assume uniform composition of the solution surrounding the 
C–S–H particles. Recently, Goyal et al. considered a gradient of 
chemical potential to model a solution that is increasingly saturated 
as a surface of unhydrated cement is approached [89]. Modelling 
also diffusive processes in solution might lead to capturing concen-
tration gradients near the surfaces of individual C–S–H particles, 
where local ionic concentration can significantly affect the strength 
of the interactions. Furthermore, limitation of reactions by diffusion 
might become important during C–S–H formation, especially as the 
packing density of the solid increases. Incorporation of diffusion 
might be through fine grid calculations, e.g. using Lattice Boltzmann 
[170], but for the sake of computational efficiency one might instead 
use a coarser grid and consider the mesostructure of C–S–H in each 
grid cell as an effective porous medium (e.g. as done in Ref. [171], 
where the porous solid is a film of agglomerated bacteria).  

• Addressing long timescales. To date, particle-based simulations have 
used heuristic methods to explore the long-term behavior of the 
materials: see e.g. the simulations of creep reviewed in this manu-
script. The challenge of simulating long timescales at low length 
scales is common across computational material science. However, 
state-of-the-art activation-relaxation techniques are not yet much 
applied to C–S–H, for example metadynamics [172], ABC [173], or 
ART [174]. ART has been recently used to access long term diffusion 
of cesium ions in the C–S–H matrix and combined with mesoscale 
simulations provided useful information for nuclear waste re-
positories [175]. In another multiscale assessment of alkali-silica 
reaction, hours long diffusion times of alkali in the C–S–H inter-
layer were reported using ART [176]. These techniques can be very 
computationally expensive and, to date, there is no definite way of 
ensuring that all the important events underlying the slow evolution 
of the system will be captured. However, incorporating such tech-
niques is worth exploring, as they could improve our understanding 
of slow processes such as those underlying creep or the rheology of 
fresh cement pastes.  

• Simulating cement hydrates other than C–S–H. Undoubtedly, C–S–H is a 
key phase in cement paste and concrete. However, various degra-
dation mechanisms involve other phases too, if not primarily; for 
example, calcium hydroxide is key to carbonation, whereas sulfoa-
luminates underlie delayed ettringite formation. Furthermore, new 
phases may largely supplant C–S–H in future, more sustainable 
concrete, e.g. geopolymers. Including such phases in mesoscale 
simulations would require detailed understanding of relevant 
fundamental processes at the atomic scale, as well as coarse-graining 
through the mesoscales, as shown here for C–S–H. Appropriate 
interaction potentials will be needed too, which can either be derived 
rigorously as PMFs from smaller-scale simulations, or developed 
empirically but rationally directly at the particle scale: such an 
attempt for interfaces between C–S–H and fly ash can be found in 
Ref. [177]. The approaches and results reviewed in this manuscript 
will hopefully provide good guidance to the researchers who want to 
contribute to this exciting field. 
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[18] G. Gouy, Sur la fonction électrocapillaire, Ann. Chim. Phys. 29 (7) (1903) 145. 

[19] D.L. Chapman, LI. A contribution to the theory of electrocapillarity, Lond. Edinb. 
Dublin Philos. Mag. J. Sci. 25 (148) (1913) 475–481, https://doi.org/10.1080/ 
14786440408634187. 

[20] D.C. Grahame, Properties of the electrical double layer at a mercury surface. I. 
Methods of measurement and interpretation of results, J. Am. Chem. Soc. 63 (5) 
(1941) 1207–1215, https://doi.org/10.1021/ja01850a014. 

[21] J.N. Israelachvili, Intermolecular and Surface Forces, 2nd Ed., Academic Press, 
London, 1991. 

[22] B. Jönsson, H. Wennerström, When ion-ion corelations are important in charged 
colloidal systems, in: C. Holm, P. Kekicheff, R. Podgornik (Eds.), Electrostatic 
Effects in Soft Matter and Biophysics, Kluwer Academic Publishers, 2001. 

[23] G.M. Torrie, J.P. Valleau, Electrical double layers. 4. Limitations of the Gouy- 
Chapman theory, J. Phys. Chem. 86 (16) (1982) 3251–3257, https://doi.org/ 
10.1021/j100213a035. 

[24] L. Guldbrand, B. Jönsson, H. Wennerström, P. Linse, Electrical double layer 
forces. A Monte Carlo study, J. Chem. Phys. 80 (5) (1984) 2221–2228, https:// 
doi.org/10.1063/1.446912. 

[25] C. Labbez, B. Jonsson, M. Skarba, M. Borkovec, Ion- ion correlation and charge 
reversal at titrating solid interfaces, Langmuir 25 (13) (2009) 7209–7213. 

[26] P.M. Dove, C.M. Craven, Surface charge density on silica in alkali and alkaline 
earth chloride electrolyte solutions, Geochim. Cosmochim. Acta 69 (2005) 
4963–4970. 

[27] C. Labbez, I. Pochard, B. Joönsson, A. Nonat, C-S–H/solution interface: 
experimental and Monte Carlo studies, Cem. Concr. Res. 41 (2) (2011) 161–168, 
https://doi.org/10.1016/j.cemconres.2010.10.002. 

[28] J. Haas, A. Nonat, From C-S–H to C–A–S–H: experimental study and 
thermodynamic modelling, Cem. Concr. Res. 68 (2015) 124–138, https://doi. 
org/10.1016/j.cemconres.2014.10.020. 

[29] I. Pochard, C. Labbez, A. Nonat, H. Vija, B. Joönsson, The effect of polycations on 
early cement paste, Cem. Concr. Res. 40 (10) (2010) 1488–1494, https://doi.org/ 
10.1016/j.cemconres.2010.06.002. 

[30] F. Brunel, I. Pochard, M. Turesson, S. Gauffinet, C. Labbez, Elastic response of 
cementitious gels to polycation addition, ACS Omega 2 (5) (2017) 2148–2158, 
https://doi.org/10.1021/acsomega.6b00445. 

[31] E. Bernard, Y. Yan, B. Lothenbach, Effective cation exchange capacity of calcium 
silicate hydrates (CSH), Cem. Concr. Res. 143 (2021) 106393. 

[32] C. Labbez, M. Medala, I. Pochard, A. Nonat, Adsorption of multivalent ions in 
cementitious materials : importance of electrostatics, URL, in: 2nd International 
Workshop on Mechanisms and Modelling of Waste/cement Interactions, Le 
Croisic, France, 2008, https://hal.archives-ouvertes.fr/hal-00415128. 

[33] T. Matschei, R. Skapa, B. Lothenbach, F. Glasser, 12th International Congress on 
the Chemistry of Cement, Vol. 3008, Montréal, Canada, 2007. https://www.dora. 
lib4ri.ch/empa/islandora/object/empa. 

[34] H. Viallis, P. Faucon, J.-C. Petit, A. Nonat, Interaction between salts (NaCl, CsCl) 
and calcium silicate hydrates (C-S-H), J. Phys. Chem. B 103 (25) (1999) 
5212–5219, june 24, 1999XC 16. 

[35] M. Turesson, C. Labbez, A. Nonat, Calcium mediated polyelectrolyte adsorption 
on like-charged surfaces, Langmuir 27 (22) (2011) 13572–13581, https://doi. 
org/10.1021/la2030846. 

[36] A.K. Mohamed, S.A. Weckwerth, R.K. Mishra, H. Heinz, R.J. Flatt, Molecular 
modeling of chemical admixtures; opportunities and challenges, Cem. Concr. Res. 
156 (2022), 106783. 

[37] M. Turesson, A. Nonat, C. Labbez, Stability of negatively charged platelets in 
calcium-rich anionic copolymer solutions, Langmuir 30 (23) (2014) 6713–6720, 
https://doi.org/10.1021/la501228w. 

[38] C. Nalet, A. Nonat, Ionic complexation and adsorption of small organic molecules 
on calcium silicate hydrate: relation with their retarding effect on the hydration 
of C3S, Cem. Concr. Res. 89 (2016) 97–108, https://doi.org/10.1016/j. 
cemconres.2016.08.012. 

[39] L. Dupont, A. Foissy, R. Mercier, B. Mottet, Effect of calcium ions on the 
adsorption of polyacrylic acid onto alumina, J. Colloid Interface Sci. 161 (2) 
(1993) 455–464, https://doi.org/10.1006/jcis.1993.1489. 

[40] A.K. Bajpai, Interface behaviour of ionic polymers, Prog. Polym. Sci. 22 (3) 
(1997) 523–564, https://doi.org/10.1016/S0079-6700(96)00003-2. 

[41] D.N. Misra, Adsorption of low molecular weight poly(acrylic acid) on 
hydroxyapatite: role of molecular association and apatite dissolution, Langmuir 7 
(11) (1991) 2422–2424, https://doi.org/10.1021/la00059a003. 

[42] J. Sun, L. Bergstroöm, L. Gao, Effect of magnesium ions on the adsorption of poly 
(acrylic acid) onto alumina, J. Am. Ceram. Soc. 84 (11) (2001) 2710–2712, 
https://doi.org/10.1111/j.1151-2916.2001.tb01078.x. 

[43] J.M. Lamarche, J. Persello, A. Foissy, Influence of molecular weight of sodium 
polyacrylate in calcium carbonate aqueous dispersions, Ind. Eng. Chem. Prod. 
Res. Dev. 22 (1) (1983) 123–126, https://doi.org/10.1021/i300009a028. 

[44] A. Foissy, A. El Attar, J.M. Lamarche, Adsorption of polyacrylic acid on titanium 
dioxide, J. Colloid Interface Sci. 96 (1) (1983) 275–287, https://doi.org/ 
10.1016/0021-9797(83)90029-2. 

[45] L. Jaärnstroöm, P. Stenius, Adsorption of polyacrylate and carboxy methyl 
cellulose on kaolinite: salt effects and competitive adsorption, Colloids Surf. 50 
(1990) 47–73, https://doi.org/10.1016/0166-6622(90)80253-Z. 

[46] L. Bouzouaid, B. Lothenbach, A. Fernandez-Martinez, C. Labbez, Gluconate and 
Hexitols Effects on C–S–H Solubility, arXiv:2111.05152. URL, arXiv, Nov 2021, 
https://arxiv.org/abs/2111.05152v1. 

[47] M. Grutzeck, A. Benesi, B. Fanning, Silicon29 magic angle spinning nuclear 
magnetic resonance study of calcium silicate hydrates, J. Am. Ceram. Soc. 72 (4) 
(1989) 665–668. 

K. Ioannidou et al.                                                                                                                                                                                                                              

https://doi.org/10.1016/j.cemconres.2022.106857
https://doi.org/10.1016/j.cemconres.2022.106857
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312316324148
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312316324148
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312316324148
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312316332500
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312316332500
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312316332500
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312316344723
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312316344723
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312316344723
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312316430875
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312316430875
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010004121938
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010004121938
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010004121938
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010004121938
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312316578573
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312316578573
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312316578573
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312321423261
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312321423261
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312321423261
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010004129760
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010004129760
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010004129760
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010004142266
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010004142266
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010004142266
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010004142266
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312324047383
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312324047383
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312324047383
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312342026898
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312342026898
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312342026898
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312324245130
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312324245130
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312324245130
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312324268044
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312324268044
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312324282135
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312324282135
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312324282135
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010006038903
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010006038903
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010006038903
https://doi.org/10.1016/j.jcis.2010.11.031
https://doi.org/10.1021/jp057096&plus;
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312324291268
https://doi.org/10.1080/14786440408634187
https://doi.org/10.1080/14786440408634187
https://doi.org/10.1021/ja01850a014
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312324443521
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312324443521
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312346012192
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312346012192
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312346012192
https://doi.org/10.1021/j100213a035
https://doi.org/10.1021/j100213a035
https://doi.org/10.1063/1.446912
https://doi.org/10.1063/1.446912
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010006092959
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010006092959
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010006099589
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010006099589
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010006099589
https://doi.org/10.1016/j.cemconres.2010.10.002
https://doi.org/10.1016/j.cemconres.2014.10.020
https://doi.org/10.1016/j.cemconres.2014.10.020
https://doi.org/10.1016/j.cemconres.2010.06.002
https://doi.org/10.1016/j.cemconres.2010.06.002
https://doi.org/10.1021/acsomega.6b00445
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312348177242
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312348177242
https://hal.archives-ouvertes.fr/hal-00415128
https://www.dora.lib4ri.ch/empa/islandora/object/empa
https://www.dora.lib4ri.ch/empa/islandora/object/empa
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312349399856
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312349399856
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312349399856
https://doi.org/10.1021/la2030846
https://doi.org/10.1021/la2030846
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312325214492
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312325214492
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202205312325214492
https://doi.org/10.1021/la501228w
https://doi.org/10.1016/j.cemconres.2016.08.012
https://doi.org/10.1016/j.cemconres.2016.08.012
https://doi.org/10.1006/jcis.1993.1489
https://doi.org/10.1016/S0079-6700(96)00003-2
https://doi.org/10.1021/la00059a003
https://doi.org/10.1111/j.1151-2916.2001.tb01078.x
https://doi.org/10.1021/i300009a028
https://doi.org/10.1016/0021-9797(83)90029-2
https://doi.org/10.1016/0021-9797(83)90029-2
https://doi.org/10.1016/0166-6622(90)80253-Z
https://arxiv.org/abs/2111.05152v1
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010006201318
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010006201318
http://refhub.elsevier.com/S0008-8846(22)00149-1/rf202206010006201318


Cement and Concrete Research 159 (2022) 106857

26

[48] X. Cong, R.J. Kirkpatrick, 29Si MAS NMR study of the structure of calcium silicate 
hydrate, Adv. Cem. Based Mater. 3 (3–4) (1996) 144–156, 1996/0. 

[49] I. Klur, B. Pollet, J. Virlet, A. Nonat, C-S-H structure evolution with calcium 
content by multinuclear NMR, in: P. Colombet, H. Zanni, P. Sozzani, A.- 
R. Grimmer (Eds.), Nuclear Magnetic Resonance Spectrsoscopy of Cement-Based 
Materials, Springer, Berlin, 1998, pp. 119–141, fG 27. 

[50] J.J. Chen, J.J. Thomas, H.F.W. Taylor, H.M. Jennings, Solubility and structure of 
calcium silicate hydrate, Cem. Concr. Res. 34 (9) (2004) 1499–1519. 

[51] S.V. Churakov, C. Labbez, Thermodynamics and molecular mechanism of Al 
incorporation in calcium silicate hydrates, J. Phys. Chem. C 121 (8) (2017) 
4412–4419, https://doi.org/10.1021/acs.jpcc.6b12850. 

[52] Ceédric Plassard, Eric Lesniewska, Isabelle Pochard, Andreé Nonat, Nanoscale 
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