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ȕ Cell function after type 1 
diabetes diagnosis
Despite major advances in insulin delivery 
and glucose monitoring, less than 30% of 
children and adults with type 1 diabetes 
(T1D) achieve levels of glucose control suf-
ficient to prevent long-term complications 
(1). Higher proportions of the population 
are able to achieve optimal glycemic con-
trol in the first year after diagnosis, with 
gradual deterioration over the subsequent 
5 years (2). This deterioration parallels the 
loss of endogenous ȕ cell function. More 
than 80% of individuals maintain a peak 
C-peptide response (greater than 0.20 
nmol/L) at the end of the first year after 
diagnosis, compared with approximately  
30% after four years, and even fewer 
with longer duration (3). Major efforts to 
develop immune therapies to preserve ȕ 
cell function in T1D have thus been made 
under the assumption that preserving 
some ȕ cell function would allow more 
people to achieve glycemic control targets 

and reduce hypoglycemia and the risk of 
long-term complications. But how much 
C-peptide is required for clinical benefit, 
and how long does the effect last?

Long-duration T1D outcomes
In this issue of the JCI, Gubitosi-Klug et al. 
contributed important information toward 
answering the question of how C-peptide  
associates with long-term outcomes in 
T1D (4). Gubitosi-Klug et al. recalled 
patients from the landmark Diabetes 
Control and Complications Trial and the 
Epidemiology of Diabetes Interventions 
and Complications (DCCT/EDIC) study, 
now with an average 35-year duration of 
T1D, and assessed residual ȕ cell function 
by measuring C-peptide during a mixed-
meal tolerance test (MMTT). A total of 
944 individuals from the original cohort 
(~63%) were investigated. As expected, 
the majority (827 individuals [88%]) had 
no detectable C-peptide, even by ultra-
sensitive C-peptide assay. Low C-peptide 

levels were anticipated because of the 
long duration of disease but also because 
the DCCT entry criteria excluded indi-
viduals who had stimulated C-peptide of 
more than 0.50 nmol/L at entry or of more 
than 0.20 nmol/L if they were more than 
5 years from diagnosis at entry (5). None-
theless, 12.4% of recalled participants had 
detectable C-peptide after 35 years, and 
they were categorized into three groups: 
11 (1.1%) had high peak C-peptide (>0.20 
nmol/L), 60 (6.5%) had intermediate lev-
els (0.03–0.200 nmol/L), and 46 (4.8%) 
had low levels (0.003–0.03 nmol/L). 
Severe hypoglycemia rates were lower 
with intermediate (48%) or high C-peptide  
(27%) compared with low (74%) or no 
(70%) C-peptide, but there were no dif-
ferences in hemoglobin A1c (HbA1c) or 
microvascular complication rates (4).

The observation that participants in 
the high C-peptide (>0.20 nmol/L) group 
after 35 years of T1D had similar HbA1c 
levels and long-term complications as 
their low/moderate counterparts (4) at first 
glance appears at odds with earlier DCCT 
reports. Early data showed that having 
peak C-peptide of more than 0.20 nmol/L 
coincided with improved HbA1c, reduced 
risk of retinopathy progression, and less 
severe hypoglycemia (6–8). There are sev-
eral possible reasons for these incongruent 
data. First, the insulin responses (indi-
cated by C-peptide) in these follow-up 
participants were still modest when com-
pared with those earlier in the course of 
T1D (4). The peak C-peptide levels were 
three times lower than in newly diagnosed 
T1D and nine times lower compared with 
nondiabetic controls (9). Second, in addi-
tion to the quantitative impairment, the 
participants showed abnormal C-peptide  
response kinetics (4). Dysfunctional 
secretion kinetics may also contribute to 
reduced effectiveness of secreted insulin. 
There is a disproportionate importance of 
first-phase insulin (10 minute) release in 
controlling postprandial hyperglycemia, 
which is lost early in T1D (9–12) and low-
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Following type 1 diabetes (T1D) diagnosis, declining C-peptide levels reflect 
deteriorating ȕ cell function. However, the precise C-peptide levels that 
indicate protection from severe hypoglycemia remain unknown. In this 
issue of the JCI, Gubitosi-Klug et al. studied participants from the landmark 
and ongoing Diabetes Control and Complications Trial (DCCT) and the 
Epidemiology of Diabetes Interventions and Complications (EDIC) study 
that had long-standing (about 35 years) T1D. The authors correlated severe 
hypoglycemia and other disease outcomes with residual C-peptide levels. 
While C-peptide secretion failed to associate with hemoglobin A1c (HbA1c) 
or microvascular complications, C-peptide levels greater than 0.03 nmol/L 
were linked with fewer episodes of severe hypoglycemia. These findings 
suggest that efforts to preserve finite ȕ cell function early in T1D can have 
meaningful, long-standing health benefits for patients.
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imal level of graft function is required to 
prevent hypoglycemia (17). Establishing 
clear thresholds for clinical outcomes out-
side of islet transplant has proven more 
difficult. Studies in recent-onset T1D (<5 
years) typically include children and young 
adults and have shown an association 
between C-peptide and lower HbA1c (18–
21). In longer-duration diabetes (>5 years, 
range 5–25 years), residual C-peptide  
has been associated with lower insulin 
requirements (22, 23). Notably, only stim-
ulated C-peptide levels of more than 0.40 
nmol/L (two times greater than the thresh-
old for eligibility in the study by Gubitosi- 
Klug et al.) have been linked with lower 
HbA1c (22). As in islet transplantation, low 
levels of C-peptide (as low as 0.04 nmo-
l/L in children 3–6 years from diagnosis 
and median random C-peptide of 0.032  
nmol/L in adults 15–25 years from diag-
nosis) generally appear sufficient for pro-
tection against hypoglycemia (19, 20, 23, 
24). Evidence from interventional studies 
comes from trials of successful immune 
interventions within 1–2 years after diagno-
sis with C-peptide levels 1.9–4 times higher 
than in the high responders described by 
Gubitosi-Klug et al. (4). Where C-peptide 
was preserved, these studies consistently  
showed a reduction in insulin requirements 
(25–32), and, where measured, less hypo-
glycemia (25, 26, 29). However, improve-
ment in HbA1c has not consistently  
been demonstrated, despite effective 
C-peptide preservation. This inconsistency  
is perhaps not surprising in intervention-
al studies where treatment groups are  
expected to achieve the same glycemic 
targets by intensifying insulin therapy. 
However, there are other factors that may 
explain this disconnect, including the 
importance of patient factors in insulin 
management and determining HbA1c 
levels as well as the variation in timing of 
C-peptide loss between individuals.

Collectively, the data suggest that the 
relationship between HbA1c levels and 
C-peptide is different from the relation-
ship with hypoglycemia. The former has 
a steep sigmoidal relationship (Figure 1), 
whereby at high C-peptide levels, changes 
in HbA1c levels are buffered by a sufficient 
cell response to high glucose levels alone 
with insulin adjustments by patients. But 
low levels of C-peptide are insufficient to 
affect hyperglycemia. By contrast, as illus-

number of subjects in this group was low (n 
= 11), reducing the power to detect smaller 
differences in outcomes.

Establishing C-peptide 
thresholds
Gubitosi-Klug et al. (4) drew attention to a 
wider question that is key to the success of 
drug development in this field: How much 
C-peptide preservation is required for 
clinical benefit? The intrinsic relationship 
between endogenous C-peptide produc-
tion and glycemic control is best observed 
in islet transplantation where restoration of 
ȕ cell function improves glycemic control, 
prevents hypoglycemia, and potentially 
slows progression of microvascular compli-
cations (15). Strong and continuous associ-
ations between stimulated C-peptide and 
time in range, glycemic variability (GV), 
and hypoglycemia have been demonstrat-
ed (16). However, the level of islet function 
needed to improve each differs; whereas  
excellent graft function is required to 
reduce hyperglycemia and GV, only a min-

ered in type 2 diabetes (ref. 13). Gubitosi- 
Klug and colleagues (4) observed evi-
dence of dysfunctional secretion where 
the time to peak C-peptide levels was at 
120 minutes for most of the participants, 
whereas, in healthy controls, the median 
time of peak C-peptide is 30 minutes. A 
comparison between the patterns of insu-
lin secretion at this time and at an earlier 
stage of disease was not made. Third, the 
high C-peptide responders were more 
overweight (BMI 32.3 vs. 29 kg/m2 for the 
other groups), with substantially higher 
insulin requirements (0.96 vs. 0.61–0.70 
units/kg/d in the other groups; P < 0.001), 
suggestive of insulin resistance. Higher  
BMI has been associated with higher 
C-peptide levels at diagnosis (14), and 
this was true for the high C-peptide group 
(4). Insulin resistance might explain why, 
despite retaining and receiving more insu-
lin, the high C-peptide group showed no 
difference in HbA1c compared with other 
groups and, in turn, no benefit in terms of 
microvascular complications. Finally, the 

Figure 1. Putative relationship between clinical parameters for individuals with type 1 diabetes and 
C-peptide levels over the period that ȕ cell function declines. Optimal benefit reflects clinical ben-
efit as a theoretical scale of 0%–100%. C-peptide values were derived from clinical data, which gen-
erally include oral glucose tolerance tests for those in prediabetes/stage 2 diabetes and mixed-meal 
tolerance tests for those after diagnosis (stage 3). The levels may be summarized as more than 0.80 
nmol/L in prediabetes/stage 2 diabetes, 0.20–0.80 nmol/L in new-onset diabetes, 0.04–0.20 nmol/L 
1–5 years after diagnosis, and less than 0.04 nmol/L in long-standing diabetes. The loss of C-pep-
tide over a wide range associates with changes in hypoglycemia frequency, but the relationship with 
HbA1c levels flattens at high and low C-peptide levels. (i) In some individuals during prediabetes/
stage 2 diabetes, adequate C-peptide response and skilled insulin adjustments buffer HbA1c levels to 
hyperglycemia. Insulin release and lower C-peptide levels do not markedly affect hyperglycemia. (ii) In 
the first five years following T1D diagnosis, declining C-peptide values coincide with declining HbA1c 
levels, particularly among individuals with less effective self-management, adolescents, and young 
adults. (iii) Gubitosi-Klug et al. (4) demonstrated that after long-standing T1D, even small amounts 
of C-peptide provide protection against hypoglycemia.
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trated by Gubitosi-Klug et al. (4), even few 
functional ȕ cells can markedly affect hypo-
glycemia by virtue of being exquisitely  
responsive to declining glucose levels (22). 
The JDRF/Diabetes UK Trial Outcome 
Marker Initiative (TOMI; https://c-path.
org/programs/tomi-t1d/) will help clarify 
whether this analysis is correct; by col-
lating data sets from multiple trials and 
observational studies, TOMI will explore 
the relationship of C-peptide to clinical 
variables and generate quantitative esti-
mates of what enough C-peptide preserva-
tion might be in different populations and 
for different outcomes.

Conclusions
Insulin-induced hypoglycemia is the most 
frequent complication of intensive insulin 
therapy, and, therefore, the findings of 
Gubitosi-Klug et al. (4) suggest a clinical 
importance for management of patients 
and support maintenance of residual ȕ 
cell function as a goal for disease modifi-
cation. To achieve improved HbA1c levels 
and, hence, reduce macrovascular compli-
cations, greater residual cell function may 
be needed. Nonetheless, it is important 
to remain anchored in the lessons from 
prediabetes and the early postdiagnosis 
period: preserving ȕ cell function is asso-
ciated with easier glycemic control and 
more individuals achieving glycemic tar-
gets. Preserving this level or even the lev-
els seen in prediabetes allows near-perfect 
glycemic control without the burden and 
risks of insulin therapy. As we approach 
100 years of insulin therapy, patients and 
physicians should prioritize early and sus-
tained intervention soon after T1D diag-
nosis or even in the preclinical stage (33). 
Patients that can preserve ȕ cell function at 
levels seen at the diagnosis of T1D, higher 
than those observed by Gubitosi-Klug et 
al. (4) (>0.2 nmol/L), with improved phys-
iologic characteristics, may have optimal 
long-term benefit.
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