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Abstract 

Background: Thyroid hormone responsive protein (THRSP) is a lipogenic nuclear protein that is highly expressed in 
murine adipose tissue, but its role in humans remains unknown.

Methods: We characterized the insulin regulation of THRSP in vivo in human adipose tissue biopsies and in vitro 
in Simpson‑Golabi‑Behmel syndrome (SGBS) adipocytes. To this end, we measured whole‑body insulin sensitivity 
using the euglycemic insulin clamp technique in 36 subjects [age 40 ± 9 years, body mass index (BMI) 27.3 ± 5.0 kg/
m2]. Adipose tissue biopsies were obtained at baseline and after 180 and 360 min of euglycemic hyperinsulinemia 
for measurement of THRSP mRNA concentrations. To identify functions affected by THRSP, we performed a transcrip‑
tomic analysis of THRSP‑silenced SGBS adipocytes. Mitochondrial function was assessed by measuring mitochondrial 
respiration as well as oxidation and uptake of radiolabeled oleate and glucose. Lipid composition in THRSP silencing 
was studied by lipidomic analysis.

Results: We found insulin to increase THRSP mRNA expression 5‑ and 8‑fold after 180 and 360 min of in vivo eugly‑
cemic hyperinsulinemia. This induction was impaired in insulin‑resistant subjects, and THRSP expression was closely 
correlated with whole‑body insulin sensitivity. In vitro, insulin increased both THRSP mRNA and protein concentra‑
tions in SGBS adipocytes in a phosphoinositide 3‑kinase (PI3K)‑dependent manner. A transcriptomic analysis of 
THRSP‑silenced adipocytes showed alterations in mitochondrial functions and pathways of lipid metabolism, which 
were corroborated by significantly impaired mitochondrial respiration and fatty acid oxidation. A lipidomic analysis 
revealed decreased hexosylceramide concentrations, supported by the transcript concentrations of enzymes regulat‑
ing sphingolipid metabolism.

Conclusions: THRSP is regulated by insulin both in vivo in human adipose tissue and in vitro in adipocytes, and its 
expression is downregulated by insulin resistance. As THRSP silencing decreases mitochondrial respiration and fatty 
acid oxidation, its downregulation in human adipose tissue could contribute to mitochondrial dysfunction. Further‑
more, disturbed sphingolipid metabolism could add to metabolic dysfunction in obese adipose tissue.
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Introduction
The thyroid hormone sensitive protein (THRSP; Spot14; 
S14) is a nuclear protein, which is abundantly expressed 
in lipogenic tissues such as in liver, mammary gland, and 
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adipose tissue (AT) and lipogenic breast cancers (Freake 
and Moon 2003; Freake and Oppenheimer 1987; Jump 
1989; Jump et  al. 1984). In the rat liver, expression of 
THRSP is significantly induced by thyroid hormone stim-
ulation (Jump 1989). Although THRSP was first charac-
terized in 1981, data regarding its physiological functions 
remain inconclusive (Seelig et al. 1981). Zhu et al. showed 
that THRSP deletion in mice enhanced hepatic de novo 
lipogenesis, while Wu et al. reported a decrease in hepatic 
lipogenesis (Wu et  al. 2013; Zhu et  al. 2001). In whole-
body knock-out mice, Anderson et al. reported a weight 
reduction, improved glucose tolerance, and enhanced 
insulin sensitivity, while several contradictory studies in 
animal models suggested a positive correlation between 
THRSP expression and insulin sensitivity, glucose toler-
ance, and lipid synthesis (Anderson et al. 2009; Cao et al. 
2007; Wang et al. 2007, 2004).

Data are sparse regarding the role of THRSP in human 
metabolism. Serum and AT levels of the protein are 
decreased in subjects with the metabolic syndrome, 
while its expression is upregulated during adipogenic dif-
ferentiation (Chen et al. 2019; Ortega et al. 2010). These 
findings suggest a functional role for THRSP in healthy 
AT expansion. Importantly, our group has previously 
found THRSP to be one of the top-regulated genes in 
micro array analysis of human AT upon infusion with 
insulin (Soronen et  al. 2012). Whether THRSP acts as 
a mediator of insulin-regulated metabolic pathways in 
AT is unknown. In addition to lipid storage capacity, the 
composition of stored lipids affects adipocyte metabo-
lism and signaling to other cell types (Ahonen et al. 2021; 
Leiria and Tseng 2020). There are, however, no stud-
ies showing whether THRSP modulates adipocyte lipid 
composition.

Mitochondrial dysfunction has a detrimental impact 
on adipocyte metabolism and is thought to contribute to 
the pathogenesis of obesity, insulin resistance, and type 
2 diabetes (Lowell and Shulman 2005; Rocha et al. 2020; 
Van Der Kolk et al. 2021). Thyroid hormones impact the 
mitochondrial function by alterations of ATP synthesis, 
oxidative phosphorylation, fatty acid transport and mito-
chondria biogenesis (Harper and Seifert 2008; Sinha et al. 
2018; Weitzel et al. 2003). However, the role of THRSP in 
mediating the mitochondrial effects of thyroid hormones 
is unclear.

As we hypothesized THRSP to be a likely regulator of 
adipocyte metabolism, we systematically assessed its 
functions in human AT in vivo and in a cultured human 
adipocyte model in vitro. Specifically, we wished to vali-
date the induction of THRSP by insulin in human adi-
pocytes and to determine whether THRSP is a potential 
mediator of lipogenic actions of insulin in humans. To 
this end, we studied THRSP expression in AT biopsies 

of 36 individuals, obtained during euglycemic hyperin-
sulinemia. We further replicated the analysis in cultured 
adipocytes and determined whether silencing of THRSP 
conferred transcriptional changes in central metabolic 
pathways. As this was found to be the case, we studied 
the effects of THRSP silencing on cellular mitochondrial 
functions and on the adipocyte lipidome.

Materials and methods
Subjects and design of the clinical study
We recruited a total of 36 non-diabetic volunteers based 
on the following inclusion criteria: (a) age 18–60  years; 
(b) a body mass index (BMI) ≤ 40 kg/m2; (c) no evidence 
of acute or chronic disease other than obesity based on 
history, physical examination, electrocardiogram, and 
standard laboratory tests (complete blood counts, serum 
creatinine, thyrotropin, and electrolyte concentrations); 
(d) no use of drugs potentially affecting glucose tolerance; 
and (e) not pregnant or lactating. All volunteers were 
women. Each subject underwent a history and physi-
cal examination, including measurement of body weight 
and height. Fasting blood samples were drawn for meas-
urement of plasma glucose, serum insulin, and serum 
C-peptide concentrations. The percentage of body fat was 
determined by using a bioelectrical impedance analysis 
(BioElectrical Impedance Analyzer System Model #BIA-
101A; RJL Systems, Detroit, MI, USA). Subcutaneous fat 
volume was determined using magnetic resonance imag-
ing, as previously described in detail (Ryysy et al. 2000). 
Whole-body insulin sensitivity of each subject was deter-
mined using the euglycemic hyperinsulinemic clamp 
technique (DeFronzo et  al. 1979; Westerbacka et  al. 
2006; Yki-Jarvinen et al. 1984). Briefly, we used a primed-
continuous infusion of regular human insulin (Insulin 
Actrapid; Novo Nordisk, Denmark), with the continuous 
part of infusion given at a rate of 1 mU/kg·min for 6 h. 
Normoglycemia was maintained by adjusting the rate of 
a 20% glucose infusion, based on plasma glucose meas-
urements sampled every 5 min from arterialized venous 
blood. Aspiration needle biopsies of subcutaneous AT 
(SAT) were obtained before hyperinsulinemia and at 180 
and 360 min after the start of the infusion. The biopsies 
were immediately snap-frozen in liquid nitrogen and sub-
sequently stored at − 80 °C until further analysis. Insulin 
sensitivity (M-value) of the subjects was calculated from 
the glucose infusion rate required to maintain normo-
glycemia from 30 to 360  min, and the median M-value 
was used to divide the subjects into insulin-sensitive 
(IS) and insulin-resistant (IR) groups (DeFronzo et  al. 
1979). Each participant provided a written informed con-
sent after being explained the nature and potential risks 
of the study, which received approval from the Ethics 
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Committee of the Hospital District of Helsinki and Uusi-
maa (Helsinki, Finland).

Cell culture and transfections
We studied the function of THRSP by silencing or over-
expressing the gene in human adipocytes. To silence 
THRSP, Simpson-Golabi-Behmel syndrome (SGBS) adi-
pocytes were cultured and differentiated for 14 days (Fis-
cher-Posovszky et al. 2008; Wabitsch et al. 2001). Mature 
adipocytes were then transfected with either 200  nM 
of THRSP siRNA (siRTHRSP; Ambion; AM16704, 
ID:12758) or Silencer Select™ non-targeting control 2 
(SS2; Thermo Fisher Scientific 4390846, Waltham, MA), 
by using the RNAiMax™ transfection reagent (Thermo 
Fisher Scientific; 13778-150). Transfection complexes 
underwent incubation on the cells for 72 h, followed by 
lysing or further use for downstream experiments. Insu-
lin induction of SGBS was performed by first starving the 
cells in serum-free low-glucose medium, and then treat-
ing with 100 nM insulin or insulin and 50 µM LY294002 
(LY) overnight.

To overexpress THRSP in SGBS cells, the cells were 
cultured as specified above. Preadipocytes were then 
infected with lentiviral particles expressing THRSP 
(THRSP oex; accession number BC031989) or control 
particles generated from an empty pENTR2B vector (oex 
ctrl), along with polybrene (8  µg/ml). Transduction was 
carried out for 24  h, followed by switching to a serum-
free medium. After 24 h, the medium was again replaced 
with a culture medium containing serum and blasticidin 
(20 µg/ml; Invitrogen; R210-01) for 2 days. Next, the cells 
were cultured and differentiated as specified above. The 
constructs were generated by the Genome Biology Unit, 
which is supported by HiLIFE and the Faculty of Medi-
cine, University of Helsinki, and Biocenter Finland.

To further validate our observations made in human 
adipocytes, we repeated the key experiments in 3T3-
L1 mouse adipocytes. The cells were differentiated as 
described previously (Mysore et al. 2017). Insulin induc-
tion was performed as specified above.

RNA sequencing
After the transfection of mature SGBS adipocytes with 
either siRTHRSP or SS2 (see above), the cells were lysed 
and their RNA extracted using the RNeasy mini kit (Qia-
gen; 74104), followed by DNase I treatment, according 
to the manufacturer’s protocol. The library was prepared 
using the TruSeq Stranded mRNA kit (Illumina) accord-
ing to manufacturer’s protocol. Sequencing was per-
formed on the Illumina NovaSeq 6000 platform using 
2 × 100  bp paired-end reads for analysis. Demultiplex-
ing of the sequencing reads was performed with Illu-
mina bcl2fastq version 2.20. Adapters were trimmed 

with Skewer version 0.2.2 (Jiang et al. 2014). The quality 
of FASTQ files was analyzed with FastQC version 0.11.5-
cegat (Andrews 2010).

RNA-sequencing analysis was performed using the 
Chipster suite (Kallio et  al. 2011) according to the fol-
lowing workflow: (1) FASTQ reads were trimmed 
using Trimmomatic (Bolger et  al. 2014); (2) Trimmed 
pair-ended reads were aligned to the Homo_sapiens 
GRCh38.95 genome using STAR (Dobin et al. 2013); (3) 
Aligned reads were counted using HTSeq (Anders et al. 
2015); (4) Differential expression analysis was performed 
using DESeq2 (Love et al. 2014); (5) Ensembl identifiers 
were annotated using BioMaRt (Durinck et al. 2009).

For the Reactome pathway analysis, the list of differen-
tially expressed genes (DEGs) was first filtered by Entrez 
names. Of duplicate Entrez IDs, the most significantly 
differentially expressed ones were used for downstream 
analysis. Subsequently, the Reactome pathway database 
was employed for the interrogation using the Reac-
tomePA package (Yu and He 2016). In order to compare 
pathways activated by either THRSP silencing or insulin 
stimulation, we used a previously published microar-
ray dataset (GSE26637, downloaded from https:// www. 
ncbi. nlm. nih. gov/ geo/) of human SAT collected during 
an euglycemic hyperinsulinemic clamp (Soronen et  al. 
2012). We used the data of 5 arrays, each generated from 
SAT of lean insulin-sensitive females collected at fast-
ing and at 180  min of sustained hyperinsulinemia. Raw 
data (CEL files) were normalized by using the Robust 
Multichip Average (RNA) normalization function of the 
affy package (Gautier et al. 2004). Next, to determine the 
transcriptomic alterations in SAT induced by hyperinsu-
linemia with reference to fasting, DEG analyses were per-
formed using the limma algorithm (Phipson et al. 2016). 
The DEG results then underwent probe set annotations 
using their corresponding chips and filtering for dupli-
cated genes, of which the most significant probe was 
retained. Pathway analyses were subsequently performed 
using the ReactomePA package (Yu and He 2016). Signif-
icantly altered pathways were further compared between 
insulin resistance and THRSP silencing, and only the 
commonly altered pathways were selected.

Gene expression analysis
Quantitative real-time PCR (qPCR) was used to meas-
ure gene expression in the SGBS and 3T3-L1 adipocytes 
and human SAT. Total RNA from SGBS cells or from 
tissue biopsies was isolated using the Lipid Tissue Mini 
Kit (Qiagen; Gaithersburg, MD) according to the manu-
facturer’s protocols. RNA from 3T3-L1 cells was isolated 
using PureLink™ RNA Mini Kit (InVitrogen, Carlsbad, 
CA; 12183018A). The SuperScript® VILO™ synthe-
sis Kit (Invitrogen, Carlsbad, CA; 11754-050) was used 
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for reverse transcription of cDNA. To quantify mRNA 
expression, qPCR was performed using the Lightcy-
cler® SYBR-Green® master mix (Roche Diagnostics, 
Mannheim, Germany; 04887352001) and a LightCycler 
480 II Real-Time PCR system (Roche Applied Science, 
Penzberg, Germany). For analysis, crossing point (Cp) 
values were calculated from amplification curves and 
normalized to Cp values of the housekeeping genes ribo-
somal protein lateral stalk subunit P0 (36B4) and actin. 
Sequences of the used qPCR primers are listed in Table 1 
and mouse qPCR primers are listed in Additional file 1: 
Table S5.

Western blotting
SGBS and 3T3-L1 protein expressions were quanti-
fied by western blotting. Cells were lysed in RIPA buffer 
(15  mM Tris–HCl, pH 7.4, 1% NP40 1%, 1.25% sodium 
deoxycholate, 150  mM NaCl, 1  mM EDTA, 1% SDS). 
Equal amounts of protein were loaded on 10% SDS poly-
acrylamide gels (Fast Cast TGX Stain-Free, BioRad, Her-
cules, CA), and blotting was done on PVDF membranes 
using the BioRad Transblot system. The membranes were 
blocked and probed overnight with anti-THRSP (Pro-
teintech; 13054-I-AP) in 5% milk in TBS, 0.5% Tween-20. 
Proteins were detected with enhanced chemilumines-
cence (Pierce ECL Western; Thermo Scientific, Waltham, 
MA; 32106). Image Lab (BioRad) was used to quantify 
the corresponding protein band intensities, which were 
normalized to total protein intensity.

Measurement of mitochondrial respiration
The mitochondrial oxygen consumption rate (OCR) in 
control and THRSP-silenced or overexpressing SGBS 
cells was measured using the Seahorse XF96 Extra-
cellular Flux Analyzer (Agilent Technologies). SGBS 
preadipocytes were plated onto XF96 cell culture plates 
(Agilent Technologies), differentiated, and transfected 
as described above. The cells were incubated for 1  h in 
XF base medium with 10  mM d-(+)glucose (Sigma; 
68769), 1  mM sodium pyruvate (Sigma; S8636), and 
2  mM l-glutamine (Gibco; 25030-024), in a  CO2 free 
incubator. OCR was measured using the XF Cell Mito 

Stress Test Kit (Agilent Technologies) according to the 
manufacturer’s protocol. Maximal respiration rates were 
obtained and normalized to cell count. Hoechst (3.3 µM; 
Thermo Scientific; 62249) was used to stain the cells, and 
the counting was done using the Cytation 5 Cell Imaging 
Multi-Mode Reader (Biotek, Agilent Technologies). OCR 
in THRSP-overexpressing and control cells was meas-
ured in preadipocytes due to a defective differentiation 
capacity of the lentivirally transduced cells on Seahorse 
plates. The overexpressing cells were seeded onto XF96 
cell culture plates and grown until confluency, followed 
by the OCR measurement.

Measurement of fatty acid oxidation
The THRSP-silenced or overexpressing SGBS adipo-
cytes were starved in a substrate-limited medium (Glu-
cose-free DMEM [Gibco, 11966025]; 1 mM l-glutamine 
[Gibco, 25030-081]; 0.5 mM glucose) for 24 h. The next 
day, the cells were pre-treated for 3 h with 1 mM l-car-
nitine or 50  µM Etomoxir (EMD Millipore Corp. USA; 
236020). Thereafter, the cells were incubated with  [3H] 
oleic acid (0.1  µCi/well; Perkin Elmer; NET289005MC) 
and albumin-bound oleic acid Sigma; 03008) in KH 
buffer (25.0  mM  NaHCO3, 1.2  mM  MgSO4  ×   7H2O, 
1.2 mM  KH2PO4, 4.7 mM KCl, 118.1 mM NaCl, 2.5 mM 
 CaCl2 ×  2H2O, 10 mM HEPES, pH7.4) for 2 h. The incu-
bation medium was collected, and the samples were 
passed through  OH− ion exchange columns (Dowex 
1X8-200 Ion Exchange Resin, 217,425, Merck). The 
flow-through was collected to scintillation vials, and the 
amount of oleate oxidized was determined from the radi-
oactive water by liquid scintillation counting.

Glucose uptake
The THRSP-silenced or overexpressing SGBS adipocytes 
were washed carefully with PBS and starved in glucose- 
and serum-free DMEM for 24  h. The cells were treated 
with 100  nM insulin for 20  min and then incubated 
with 50  nM deoxy-d-glucose and  [3H] deoxy-d-glucose 
(0.5 µCi/well; Perkin Elmer; NET328A250UC) for 5 min. 
Glucose uptake was terminated by three washes with ice-
cold PBS. The cells were lysed with 0.1% SDS and radio-
activity was measured by liquid scintillation counting.

Lipidomic analysis
Total lipids were extracted from THRSP-silenced and 
control mature SGBS adipocyte lysates by using the 
Bligh and Dyer method in the presence of naturally 
absent lipid species as internal standards (Bligh and 
Dyer 1959). The following lipid species were added as 
internal standards: cholesterol ester (CE) 17:0, CE 22:0, 
ceramide (Cer) 18:1;O2/14:0, Cer 18:1;O2/17:0, diglyc-
eride (DG) 14:0/14:0, DG 20:0/20:0, free cholesterol 

Table 1 Sequences of primers used for qPCR analysis

Primer name Sequence

36B4 F 5′‑CAT GCT CAA CAT CTC CCC CTT‑3′

36B4 R 5′‑GGG AAG GTG TAA TCC GTC TCC‑3′

Actin F 5′‑GAC AGG ATG CAG AAG GAG ATT‑3′

Actin R 5′‑TGA TCC ACA TCT GCT GGA AGG‑3′

THRSP F 5′‑CAG GTG CTA ACC AAG CGT TAC‑3′

THRSP R 5′‑CAG AAG GCT GGG GAT CAT CA‑3′
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(FC) [D7], lyso-phosphatidylcholine (LPC) 13:0/0:0, 
LPC 19:0/0:0, lyso-phosphatidylethanolamine (LPE) 
13:0/0:0, PC 14:0/14:0, phosphatidylcholine (PC) 
22:0/22:0, phosphatidylethanolamine (PE) 14:0/14:0, 
PE 20:0/20:0 (di-phytanoyl), phosphatidylglycerol (PG) 
14:0/14:0, PG 20:0/20:0 (di-phytanoyl), phosphati-
dylinositol (PI) 17:0/17:0, phosphatidylserine (PS) 
14:0/14:0, PS 20:0/20:0 (di-phytanoyl), sphingomyelin 
(SM) 18:1;O2/12:0, triglyceride (TG) 17:0/17:0/17:0, 
and TG 19:0/19:0/19:0. The lipid extract was recov-
ered by a pipetting robot (Tecan Genesis RSP 150) and 
vacuum dried. The residues were dissolved in 7.5  mM 
ammonium acetate in methanol/chloroform (3:1, v/v) 
for low mass resolution tandem mass spectrometry and 
chloroform/methanol/2-propanol (1:2:4 v/v/v) with 
7.5  mM ammonium formate for high resolution mass 
spectrometry.

The analysis of lipids was performed by direct flow 
injection analysis (FIA) using a triple quadrupole 
mass spectrometer (FIA-MS/MS; QQQ triple quad-
rupole) and a hybrid quadrupole-Orbitrap mass spec-
trometer (FIA-FTMS; high mass resolution). FIA-MS/
MS (QQQ) was performed in positive ion mode using 
the analytical setup and strategy described previously 
(Liebisch et  al. 2004). A fragment ion of m/z  184 was 
used for LPC (Liebisch et al. 2002). The following neu-
tral losses were applied: PE and LPE 141, PS 185, PG 
189 and PI 277 (Matyash et  al. 2008). PE-based plas-
malogens (PE P) were analyzed according to the prin-
ciples described by Zemski-Berry (Zemski Berry and 
Murphy, 2004). Sphingosine based Cer and HexCer 
were analyzed using a fragment ion of m/z 264 (Liebi-
sch et al. 1999). Quantification was achieved by calibra-
tion lines generated by addition of naturally occurring 
lipid species to the respective sample matrix.

A detailed description of the FIA-FTMS strategy was 
published recently (Höring et al. 2021, 2020). TG, DG, 
and CE were recorded as [M +  NH4]+ in positive ion 
mode in range m/z 500–1000 for 1  min with a maxi-
mum injection time of 200 ms, an automated gain con-
trol of 1 ×  106, three microscans and a target resolution 
of 140,000 (at m/z 200). PC, phosphatidylcholine ether 
and SM were analyzed as [M +  HCOO]− in negative 
ion mode in range m/z 520–960 at the same resolu-
tion setting. Multiplexed acquisition was applied for 
the [M +  NH4]+ of FC and the corresponding internal 
standard (FC[D7]) (Höring et  al. 2019). Quantification 
was performed by multiplication of the spiked inter-
nal standard amount with analyte-to-internal standard 
ratio. Lipid species were annotated according to the lat-
est proposal for shorthand notation of lipid structures 
that are derived from mass spectrometry (Liebisch 
et al. 2020).

Statistical methods
Normality of the data was tested using the Shapiro 
Wilk’s test. The independent 2-sample 2-tailed Student’s 
t-test or the Mann–Whitney U test were used to com-
pare two groups, whereas the one-way ANOVA or the 
Kruskal–Wallis test were employed to compare three or 
more groups of normally and non-normally distributed 
data, respectively. The Spearman’s correlation coeffi-
cient was used to determine bivariate correlations. Mul-
tiple Mann–Whitney U tests with FDR set to 5% were 
used to compare means of the lipidomic data. Data are 
in mean ± SD. A P value ≤ 0.05 was considered statisti-
cally significant. Statistical analyses were performed with 
GraphPad Prism 9.3.1 (GraphPad Software, Inc., La Jolla, 
CA, USA) or R 4.0.3.

Results
THRSP is induced by insulin in human adipocytes in vivo 
and in vitro
Clinical characteristics of the subjects are shown in 
Table  2 (n = 36). Mean M-value for all subjects was 
6.4 mg/kgBW/min, with SD of 1.8 mg/kgBW/min. Insu-
lin induced THRSP expression in human SAT in a time-
dependent manner (Fig. 1a). The induction by insulin was 
stronger in more insulin-sensitive subjects and THRSP 
expression correlated positively with the M-value, 
which is a measure of insulin sensitivity  (r360 min = 0.62; 
P < 0.0001; Fig.  1b, c). Moreover, clinical features asso-
ciated with insulin resistance, such as the waist-to-hip 
ratio, SAT volume, serum insulin and C-peptide concen-
trations, and fasting plasma glucose concentrations, cor-
related inversely with THRSP expression (Fig. 1d).

To confirm that the insulin induction of THRSP 
occurs in adipocytes and also affects THRSP protein 

Table 2 Clinical characteristics of the participants subjected to 
euglycemic hyperinsulinemic clamp

a Data is represented as average ± SD
b fP, fasting plasma; cfS, fasting serum; dBW, body weight

All (n = 36) IS (n = 18) IR (n = 18)

Age (years)a 40 ± 9 38 ± 8 43 ± 11

Weight (kg)a 75 ± 15 69 ± 11 80 ± 16

BMI (kg/m2)a 27.3 ± 5.0 24.9 ± 3.7 29.8 ± 5.0

Postmenopausal (n) 6 1 5

Waist‑to‑hip ratio (A.U.)a 0.9 ± 0.1 0.8 ± 0.0 0.9 ± 0.1

fP‑glucoseb (mmol/l)a 5.2 ± 0.6 5.0 ± 0.7 5.4 ± 0 ± 0.5

fS‑insulinc (mU/l)a 4.1 ± 1.6 3.5 ± 1.2 4.8 ± 1.7

M‑valued (mg/kgBW/min)a 6.4 ± 1.8 7.8 ± 1.1 5.0 ± 1.2

Body fat (%)a 32.9 ± 7.2 30.1 ± 7.2 35.7 ± 6.2

SAT by MRI  (cm3)a 4111 ± 2189 2893 ± 1517 5328 ± 2103

C‑peptide (nmol/l)a 0.58 ±  + .18 0.51 ± 0.11 0.66 ± 0.20
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levels, mature human SGBS adipocytes were treated 
with insulin. Indeed, insulin significantly increased 
both THRSP mRNA and protein concentrations of the 
adipocytes (Fig.  1e, f ). Addition of the PI3K inhibitor 
LY294002 (LY) abolished THRSP induction, suggest-
ing that insulin regulates THRSP in a PI3K-dependent 
manner (Fig. 1f ). THRSP induction by insulin was also 
confirmed in another cell model, 3T3-L1 adipocytes 
(Fig. 1g, h).

THRSP silencing alters metabolic pathways
To identify putative functions of THRSP, we per-
formed a transcriptomic analysis by next-generation 
RNA sequencing in THRSP-silenced SGBS adipocytes. 
Silencing efficiency was 52% at the protein level and 
49% at the mRNA level (Fig.  2a, b). Of the over 27,000 
total transcripts detected, those significantly differen-
tially expressed numbered 4174  (Padj ≤ 0.05; Fig.  2c). 
Expression data for the differentially expressed genes 
(DEGs) is shown in Additional file 2: Table S1. A gene set 

Fig. 1 Insulin induces THRSP expression in human adipose tissue and human and mouse adipocytes. a Subcutaneous adipose tissue (SAT) biopsies 
were obtained in a euglycemic hyperinsulinemic clamp and THRSP mRNA expression was measured at basal, 180 min and 360 min (n = 36). b 
THRSP expression correlated with M‑value, which is a measure of insulin sensitivity. The correlation was the strongest at 360 min. c Subjects were 
divided to insulin sensitive (IS; n = 18) and insulin resistant (IR; n = 18) group by median of M‑value. THRSP induction by insulin was higher in IS 
group in comparison to IR group. d Correlation coefficients of waist‑to‑hip ratio, amount of SAT, fasting plasma glucose (fP‑glucose), fasting serum 
insulin (fS‑insulin) and C‑peptide (C‑pep) e Insulin induced THRSP protein expression in SGBS adipocytes (n = 6, three independent experiments). f 
LY294002, an inhibitor of PI3K, blocked insulin‑mediated THRSP induction, measured at mRNA level (n = 6, two independent experiments). g Insulin 
induced THRSP protein expression in 3T3‑L1 adipocytes (n = 10, three independent experiments). h Insulin induced THRSP mRNA expression in 
3T3‑L1 adipocytes (n = 5, two, independent experiments). The data is represented as mean with SD. Statistical significance is designated as *P ≤ 0.05 
**P < 0.01, ***P < 0.001, ****P < 0.0001
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enrichment analysis (GSEA) revealed that multiple path-
ways involved in energy and lipid metabolism (choles-
terol biosynthesis, fatty acid metabolism, citric acid cycle, 
steroid metabolism, and sphingolipid metabolism) had 
a negative normalized enrichment score (NES), indicat-
ing genes in those pathways to be mostly suppressed by 
THRSP silencing (Fig. 2d).

As we found THRSP to be an insulin-inducible gene, 
a further analysis was performed to understand which 

insulin-mediated functions in human SAT are altered in 
response to THRSP silencing. A publicly available micro-
array dataset (GSE26637) from our previous study was 
used to identify differentially expressed genes in AT dur-
ing euglycemic hyperinsulinemia, and the altered gene 
profile was then compared with transcriptomic changes 
in the THRSP-silenced SGBS adipocytes. A total of 128 
common DEGs were identified between the datasets 
(Fig.  3a; gene list in Additional file 1: Table S2). Several 

Fig. 2 THRSP silencing alters adipocyte metabolism pathways in adipocytes. a, b To study the impact of low THRSP levels on adipocyte function 
and gene expression, adipocytes were transfected with non‑targeting control siRNA (SS2) or THRSP siRNA (siRTHRSP; n = 5, two independent 
experiments). c RNA sequencing of the transfected cells revealed significant down regulation of 2124 genes and an increase of 2049 genes’ 
expression upon THRSP silencing (n = 4). d GSEA pathway analysis showed 38 significantly altered pathways with negative and 32 with positive 
NES score. The data is represented as mean with SD. Statistical significance is designated as *P ≤ 0.05 (a, b). The transcriptomic data with adjusted P 
value  (Padj) ≤ 0.05 was considered as statistically significant
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common and inversely affected pathways were identified 
by a Reactome GSEA (Fig.  3b). These included steroid 
metabolism, cholesterol biosynthesis, fatty acid biosyn-
thesis, and SREBP-regulated pathways, suggesting that 
THRSP might be an important mediator of these func-
tions of insulin in adipocytes. Gene expressions of the 
altered metabolic pathways are shown in Fig. 3c.

THRSP silencing impairs mitochondrial function
In THRSP-silenced adipocytes, genes involved in the 
citric acid cycle, oxidative phosphorylation, and oxida-
tion were significantly downregulated (Fig.  4a, Addi-
tional file 1: Fig. S2c). Thus, we next assessed whether 
THRSP silencing affects mitochondrial functions. By 
employing radioactive oleate as a substrate, we found 
fatty acid oxidation to be significantly decreased in 
THRSP-silenced cells as compared to SS2 controls 
(Fig.  4b; P = 0.0037). To study mitochondrial respi-
ration, the mitochondrial oxygen consumption rate 

(OCR) was measured using the Seahorse Mito Stress 
test. THRSP silencing in mature adipocytes led to sig-
nificantly decreased maximal OCR (Fig. 4c; P = 0.035), 
whereas overexpression of THRSP in preadipocytes 
markedly increased OCR (Fig.  4c; < 0.0001). To deter-
mine whether the decreased mitochondrial activity is 
due to dampened mitochondrial biogenesis rather than 
mitochondrial function, we measured the ratio of mito-
chondrial DNA to genomic DNA. The ratio remained 
unchanged by THRSP silencing, implying that there 
was no inhibition of mitochondrial biogenesis (Addi-
tional file 1: Fig. S1).

To investigate if the dampened oxidative phosphoryla-
tion (as measured by OCR) is related to altered glucose 
uptake, we next measured the uptake of radioactive glu-
cose in THRSP-silenced adipocytes. THRSP silencing 
decreased the uptake of glucose in comparison to SS2 
controls (P = 0.03), but a similar change was not observ-
able during treatment of the cells with insulin (Fig. 4d).

Fig. 3 THRSP silencing and insulin targeted common pathways. a Venn diagram indicates the number of significantly altered genes in THRSP 
silencing in blue, hyperinsulinemia in red and overlapping significantly altered genes in the middle. b GSEA Reactome analysis was conducted from 
the transcriptome of human AT obtained during hyperinsulinemic clamp. Pathways affected by insulin infusion were compared to the pathways 
altered by THRSP silencing. There was 10 common pathways inversely altered. NES score is indicated by color and the set size by symbol size. c 
Significantly altered common metabolic pathways’ gene expression. Statistical significance is denoted as *Padj ≤ 0.05, **Padj < 0.01, ***Padj < 0.001, 
****Padj < 0.0001
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THRSP silencing alters the lipid composition in adipocytes
THRSP reportedly has a lipogenic function in various 
tissues, and the observed impairment of mitochondrial 
function during its silencing shows that THRSP regulates 
adipocyte energy metabolism (Freake and Oppenheimer 
1987; Jump et  al. 1984; Kinlaw et  al. 1995). Moreover, 
the transcriptomic analysis suggested a potential role of 
THRSP in cholesterol, phospholipid, glycerophospho-
lipid, and sphingolipid metabolism (Fig.  5a; cholesterol 
metabolism in Fig.  3c). We next performed a lipidomic 
analysis of THRSP-silenced adipocytes, which showed a 
significant reduction in the total concentrations of hexo-
sylceramides (HexCer) compared to controls (Fig.  5b). 
Specifically, concentrations of HexCer species 18:1; 
 O2/16:0, 18:1;  O2/18:0, 18:1;  O2/22:0, 18:1;  O2/22:1, 18:1; 
 O2/24:0, and 18:1;  O2/24:1 were reduced (Fig.  5c, all 
lipid species shown in Additional file  1: Table  S3). Cor-
roborating these findings, the transcriptomic analysis 
revealed alterations in key genes regulating glycerophos-
pho- and glycosphingolipid metabolism. In the glycosyl 
ceramide pathway, the key gene UDP-glucose ceramide 
glucosyltransferase (UGCG ), which catalyzes the glyco-
sylation of ceramides to glucosylceramides, was down-
regulated. Subsequently, downstream genes converting 
glucosylceramides to more complex glycosphingolipids 
were inhibited. Genes involved in the de novo synthesis 

of ceramides were also inhibited, including dihydrocera-
mide desaturase (DEGS1) and ceramide synthases 1 and 
4 (CerS1; -4; Fig. 6). Consistent with our observations in 
human adipocytes, genes involved in sphingolipid metab-
olism were downregulated in THRSP-silenced 3T3-L1 
adipocytes as well (Additional file  1: Fig. S2c). Interest-
ingly, when THRSP-silenced adipocytes with HexCer 
defect were treated with exogenous glucosylceramides, 
the mitochondrial respiration was restored (Additional 
file 1: Fig. S3).

Discussion
In the present study, we investigated functions of the 
insulin-regulated gene product, THRSP, by employing 
human SAT biopsies and cultured human adipocytes. 
We studied the expression of THRSP before and dur-
ing euglycemic hyperinsulinemia in vivo and found that 
insulin significantly induced THRSP expression, which 
was enhanced in subjects with high insulin sensitivity. A 
transcriptomic analysis of THRSP-silenced adipocytes 
revealed altered expression of genes not only related to 
lipid metabolism but also to mitochondrial function, 
oxidative phosphorylation, and oxidation pathways. Fur-
ther analyses in cultured human SGBS adipocytes pro-
vided evidence for functions of THRSP in maintaining 
mitochondrial activity, fatty acid oxidation, and normal 

Fig. 4 Mitochondrial function is dampened by THRSP silencing in adipocytes. a Oxidation, citric acid cycle and respiratory electron transport 
associated genes were affected by THRSP silencing. The heatmap represents  log2 fold‑change  (log2 FC) of significantly altered genes  (Padj ≤ 0.05). 
b Oxidation of  [3H] oleate (n = 9, two independent experiments). c Oxygen consumption rate (OCR) measured in control (ss2), THRSP silencing 
(siR), overexpression control (oex ctrl) and overexpression (oex) (Two independent experiments with multiple replicates). d) Uptake of  [3H] glucose 
in THRSP silenced adipocytes with or without insulin (n = 12, two independent experiments). Statistical significance is designated as *P ≤ 0.05 
**P < 0.01, ****P < 0.0001
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cellular sphingolipid concentrations, with a marked 
reduction of HexCer in THRSP-silenced adipocytes.

Our observations on the induction of THRSP by insu-
lin are in agreement with the previously known lipogenic 
function of the protein (Freake and Oppenheimer 1987; 
Wu et  al. 2013). A comparative transcriptomic analy-
sis revealed that, in both THRSP-silenced adipocytes 
and insulin-stimulated AT, commonly affected genes 
belonged to the ‘Lipid metabolism’ and ‘SREBP-activated’ 
pathways—SREBP activity playing a crucial role in adipo-
cyte lipogenesis (Gondret et  al. 2001; Kim and Spiegel-
man, 1996). The above observations support a function 
of THRSP as a regulator of lipid homeostasis, while pos-
sibly mediating the effects of insulin on adipocyte lipid 
metabolism. Moreover, antiviral interferon-stimulated 
gene expression pathways were shared between adipo-
cyte THRSP silencing and AT insulin induction in vivo. 
Interferon signaling in adipocytes is known to signifi-
cantly affect adipocyte differentiation, lipogenesis, and 
immune responses (Lee et  al. 2016; McGillicuddy et  al. 
2009; Wensveen et  al. 2015). The downregulation of 
interferon-stimulated genes by insulin and THRSP might 
thus contribute to the enhanced insulin-mediated lipo-
genesis in adipocytes. However, a contradicting report 
claims that interferon signaling can improve metabolic 

dysfunction in AT (Wieser et  al. 2018). Further studies 
are warranted to understand the insulin-mediated regu-
lation of interferon signaling and how it regulates adipo-
cyte lipid metabolism.

We observed quite a low number of pathways that were 
commonly regulated by insulin in AT in vivo and in adi-
pocytes subjected to THRSP silencing. It is, however, 
worth noting that the method of differential expression 
analysis was different in the two datasets: next-genera-
tion RNA-seq was employed in the THRSP-silenced cells 
while microarrays were used in the in  vivo study. This 
difference in technology might limit the number of path-
ways shared between the studies. On the other hand, the 
high number of genes and pathways affected by THRSP 
silencing may indicate that THRSP in adipocytes could 
execute additional insulin-independent functions that are 
crucial for AT metabolism. Therefore, a further effort was 
made to understand the functions of THRSP in adipocyte 
metabolism.

The RNA-seq and pathway analysis in THRSP-silenced 
cells revealed significant regulation of several mitochon-
drial functions, with alterations in key genes involved in 
oxidative phosphorylation and the TCA cycle (Fig.  4a). 
Mitochondrial function is generally dampened in obese 
AT, and this is often referred to as a hallmark of obesity 

Fig. 5 Adipocyte lipid composition is altered by THRSP silencing. a Significantly altered phospholipid, glycerophospholipid and sphingolipid 
metabolism genes and their  log2 fold‑changes  (log2 FC;  Padj ≤ 0.05). b  Log2 FC of lipid class concentrations between ss2 and sirTHRSP (n = 12, two 
independent experiments). c  Log2 FC of hexosyl ceramide (HexCer) species. TG, triglycerides; DG, diglycerides; LPC, lyso‑phosphatidylcholines; PE 
P, phosphatidylethanolamine plasmalogens; HexCer, hexosylceramides; Cer, ceramides; SM, sphingomyelins; PC O, phosphatidylcholine ethers; 
PC, phosphatidylcholines; PI, phosphatidylinositols; PG, phosphatidylglycerols; PS, phosphatidylserines; PE, phosphatidylethanolamines; LPE, 
lyso‑phosphatidylethanolamines; FC, free cholesterol. Statistical significance is designated as **Padj < 0.01, ***Padj < 0.001, ****Padj < 0.0001
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(Schöttl et  al. 2015; Vernochet et  al. 2014). Of inter-
est, a previous study has shown that THRSP expression 
is decreased in obesity (Ortega et al. 2010). Contrary to 
this finding, we did not observe a significant difference 
in THRSP expression between IS and IR subjects in the 
basal state, possibly due to the limited range of BMI 
among our study participants. Mitochondrial respira-
tion was dampened, however, in adipocytes subjected to 
THRSP silencing. Despite the relatively low abundance of 
mitochondria in white adipocytes they are essential for 
the cells’ metabolic functions, and mitochondrial dys-
function does contribute to AT inflammation (Woo et al. 
2019).

Thyroid hormone receptor signaling has been sug-
gested to increase the trafficking of fatty acids into mito-
chondria (Sayre and Lechleiter, 2012). Since THRSP is 
also a T3-induced gene, it could be surmised to play a role 
in this process. Previous studies have shown that thyroid 
hormones induce enzymes favoring fatty acid oxidation, 
such as the uncoupling protein 2 (UCP2) (Sinha et  al. 
2018), which showed reduced expression in our THRSP-
silenced adipocytes. Even though mitochondrial respira-
tion and fatty acid oxidation was reduced upon THRSP 
silencing, the expression of CD36 was unaltered, and car-
nitine palmitoyltransferase 1A (CPT1a) expression was 
increased. However, the expression of fatty acid-binding 

Fig. 6 Schematic representation indicating sphingolipid metabolism genes downregulated in THRSP‑silenced adipocytes. The figure 
represents sphingolipid metabolism, where the altered genes are designated by blue color. Saposin (SAP) below the gene name indicates 
activation by SAPs. GalCeramide, galactosylceramide; GlcCeramide, galactorylceramide; LacCeramide, lactosylceramide, CST, cystatin; ARSA, 
arylsulfatase A; SAP, saposin; UGT8, UDP glycosyltransferase 8; GALC, galactosylceramidase; SGMS, sphingomyelin synthase; SMDP, Sphingomyelin 
phosphodiesterase; UGCG, UDP‑glucose ceramide glucosyltransferase; GBA, glucosylceramidase beta; B4GALT5/6, beta‑1,4‑galactosyltransferase 
5/6; GLB1, galactosidase beta 1; B3GNT5, beta‑1,3‑N‑acetylglucosaminyltransferase 5; B3GALT5, beta‑1,3‑galactosyltransferase 5; ST3GAL3, ST3 
beta‑galactoside alpha‑2,3‑sialyltransferase 3; NEU, neuraminidase; HEXB, hexosaminidase subunit beta; HEXA, hexosaminidase subunit alpha; 
GM2A, GM2 ganglioside activator; ST3GAL2/3, ST3 beta‑galactoside alpha‑2,3‑sialyltransferase 2/3; B3GALT4, beta‑1,3‑galactosyltransferase 4; 
B4GALNT1, beta‑1,4‑N‑acetyl‑galactosaminyltransferase 1; ST3GALT5, ST3 beta‑galactoside alpha‑2,3‑sialyltransferase 5; GLA, galactosidase alpha; 
B3GALNT1, beta‑1,3‑N‑acetylgalactosaminyltransferase 1; A4GALT, alpha 1,4‑galactosyltransferase
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proteins 3 and 7 (FABP3, -7) was decreased, suggest-
ing an impaired influx of fatty acids into the cells, which 
putatively contributes to the reduced fatty acid oxidation. 
The observed reduction in OCR in the THRSP-silenced 
cells could also reflect a reduced glucose disposal rate 
(Woerle et al. 2003). While the reduction in OCR may in 
part be due to decreased glucose uptake, THRSP could 
also play a direct role in the regulation of oxidative phos-
phorylation, as suggested by our transcriptomic analysis. 
In alignment with our observations, THRSP was identi-
fied as a sirtuin 1-regulated gene in 3T3-L1 adipocytes, 
sirtuins being established regulators of mitochondrial 
function and biogenesis in human adipocytes (Majeed 
et al. 2021).

In addition to the direct effects on mitochondrial func-
tion, we observed that THRSP silencing significantly 
altered the adipocyte lipid composition. Several studies 
have shown that obesity and its metabolic consequences 
are closely related to disruptions in sphingolipid metab-
olism (Chaurasia et al. 2016; Green et al. 2021). Moreo-
ver, altered sphingolipid metabolism is connected to 
dysfunction of mitochondria (Knupp et  al. 2017; Roszc-
zyc-Owsiejczuk and Zabielski 2021). To this end, we 
observed a reduction in HexCer (glucosyl- and galacto-
sylceramides) in the THRSP-silenced cells. Consistent 
with these changes, genes involved in the synthesis of 
glucosylceramides were downregulated (Fig. 6), including 
UDP-glucose ceramide glucosyltransferase (UGCG ), the 
enzyme converting ceramide to glucosylceramide, as well 
as β-galactosidase (GLB1), neuraminidase 1 (NEU1), and 
hexosaminidase α (HEXA), which convert gangliosides 
back to glucosylceramide. In addition to reduced concen-
trations of HexCer, the downregulation of these enzymes 
could theoretically lead to an accumulation of ceramides 
and GM1, -2, and -3 gangliosides, all of which have been 
identified as contributors of insulin resistance in various 
cell types (Demir et al. 2020; Haynes et al. 2012; Kajihara 
et  al. 2020; Lipina and Hundal, 2015; Sasaki et  al. 2018; 
Wang et al. 2014; Yamashita et al. 2003). However, cera-
mide concentrations were not significantly increased, 
possibly due to the observed downregulation of ceramide 
synthases.

Interestingly, Chew et  al. found HexCer plasma con-
centrations to negatively correlate with BMI and HOMA-
IR, whereas ceramides showed a positive correlation 
(Chew et  al. 2019). HexCer are known to play a role in 
resolving AT inflammation. They are presented by anti-
gen-presenting cells as endogenous lipid antigens, result-
ing in iNKT cell activation and subsequent clearing of 
inflammation and the associated AT dysfunction (Lynch 
et al. 2012; Park et al. 2019; Rakhshandehroo et al. 2019; 
van Eijkeren et al. 2020, 2018). Although several publica-
tions have found sphingolipids as a whole to contribute 

to mitochondrial dysfunction, there is recent evidence 
that UGCG increases glycolysis and oxidative phospho-
rylation (Schömel et  al. 2020). Supporting this finding, 
we observed that addition of exogenous glucosyl cera-
mide rescued the mitochondrial respiration in adipo-
cytes subjected to THRSP silencing. Although addition 
of exogenous glucosylceramides does not rescue all of 
the alterations in lipid profile in THRSP-silenced adi-
pocytes, it supports the notion that THRSP may impact 
mitochondrial functions both via the expression of genes 
involved in mitochondrial function and by regulating 
sphingolipid metabolism. Suppression of UGCG expres-
sion and the reduction in HexCer could thus be linked to 
impaired mitochondrial metabolism.

We also observed a reduction in the mRNA of several 
lysosomal hydrolases or their regulators, including aryl-
sulfatase A, B, and K, choline phosphotransferase, and 
prosaposin. Prosaposin is a precursor of saposin, which is 
an activator of sulfatases in the sphingolipid metabolism. 
Deficiencies in these enzymes are linked to lysosomal 
storage disorders, but data is limited regarding their role 
in adipocyte metabolism or obesity (Allende et al. 2021; 
Monteith et al. 2016; Raj et al. 2020; Simonis et al. 2019; 
Tomanin et al. 2018; Trabszo et al. 2020). Lysosomal stor-
age disorders are often associated with mitochondrial 
dysfunction, altered metabolism and fibrosis, showing 
parallels with obesity (Mizunoe et al. 2019; Pshezhetsky, 
2015). Therefore, it might be of interest to study a possi-
ble role of THRSP in lysosomal storage diseases.

THRSP is regulated by insulin, thyroid hormone, car-
bohydrate intake, and fatty acids (LaFave et  al. 2006). 
The present RNA-seq data suggest that, although insu-
lin does induce THRSP, manipulation of either THRSP 
expression or insulin levels affected partly distinct path-
ways. In light of the present observations, we speculate 
that THRSP could execute distinct functions depending 
on the regulator that induces it. For instance, regulation 
of mitochondrial function could be a thyroid hormone-
induced function of THRSP (Comas et  al. 2019; Lanni 
et  al. 2016). This is supported by the finding that mito-
chondrial pathways were not among the commonly regu-
lated ones between AT insulin induction in vivo and the 
THRSP-silenced adipocytes. Moreover, non-coding RNA 
processing was identified as being potentially inhibited 
by THRSP, independent of insulin action. This aligns with 
previous research demonstrating that T3 inhibits various 
long non-coding RNAs in hepatocellular cancer—this 
inhibition could thus be mediated via THRSP (Huang 
et al. 2021).

Collectively, our findings shed light on the functions 
of THRSP in human AT in vivo and adipocytes in vitro, 
suggesting that THRSP plays a major role in the reg-
ulation of adipocyte metabolism via altering both 
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mitochondrial function and cellular lipid composi-
tion. The present work adds to the existing knowledge, 
emphasizing the impact THRSP may have on whole-
body health and development of metabolic disease. 
Fluctuations in THRSP expression might represent 
a physiologic response to nutritional and hormonal 
stimuli, which are known to be disturbed in obesity and 
metabolic disease. Thus, further studies are warranted 
to investigate whether restoring of THRSP responsive-
ness in insulin-resistant individuals could have thera-
peutic potential for ameliorating metabolic disease.
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