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Abstract

Understanding host-parasite systems are challenging if biologists employ just the ex-

perimental approaches adopted, whereas mathematical models can help uncover other

in-depth knowledge about host infection dynamics. Previous experimental studies have

explored the infrapopulation dynamics of Gyrodactylus turnbulli and G. bullatarudis ec-

toparasites on their fish host, Poecilia reticulata. However, other important and open

biological questions exist concerning parasite microhabitat preference, host survival, par-

asite virulence, and the transmission dynamics of different Gyrodactylus strains across dif-

ferent host populations over time. This thesis mathematically investigates these relevant

biological questions to understand the gyrodactylid-fish system’s complexity better using

a sophisticated multi-state Markov model (MSM) and a novel individual-based stochas-

tic simulation model. The infection dynamics of three different gyrodactylid strains are

compared across three different host populations. A modified approximate Bayesian com-

putation (ABC) with sequential Monte Carlo (SMC) and sequential importance sampling

(SIS) is developed for calibrating the novel stochastic model based on existing empirical

data and an auxiliary stochastic model. In addition, an extended local-linear regression

(with L2 regularisation) for ABC post-processing analysis has been proposed. Advanced

statistics and an MSM are used to assess spatial-temporal parasite dynamics. A linear

birth-death process with catastrophic extinction (B-D-C process) is considered the aux-

iliary model for the complex simulation model to refine the modified ABC’s summary

statistics, with other theoretical justifications and parameter estimation techniques of

the B-D-C process provided. The B-D-C process simulation using τ -leaping also pro-

vides additional insights on accelerating the complex simulation model by proposing a

reasonable error threshold based on the trade-off between simulation accuracy and com-

putational speed. The mathematical models can be extended and adapted for other

host-parasite systems, and the modified ABC methodologies can also aid in efficiently

calibrating other multi-parameter models with a high-dimensional set of correlating or

independent summary statistics.
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Chapter 1

Introduction

1.1 General overview of the study

This thesis is an interdisciplinary research (between the Cardiff University School of

Mathematics and School of Biosciences), primarily focusing on modelling infection dy-

namics of Gyrodactylus parasites on freshwater fish within at least a standard 17-day

experimental period. The gyrodactylid-fish system, like other host-parasite systems, is

widely used to investigate ecological, evolutionary, and epidemiological problems. They

are particularly amenable to experimental manipulation (for instance, controlled infec-

tions on a single fish), and there is an agent-based simulation model of these dynamics

(with its limitations together with other specific research problems of mathematical and

biological importance presented under section 1.3). The current study demonstrates the

use of novel mathematical and stochastic simulation models to add to our understand-

ing of the gyrodactylid infection dynamics of three different parasite strains (with two

strains of Gyrodactylus turnbulli and one strain of G. bullatarudis) across three different

fish populations (Ornamental stock, Lower Aripo River, and Upper Aripo River fish) over

time. Like other biological systems and modelling problems (as reviewed in Chapter 3),

the mathematical modelling of the gyrodactylid-fish system also requires an in-depth un-

derstanding of the biology of the Gyrodactylus ectoparasites (as presented in sections 1.4

and 1.5) as well as expert knowledge about their infection dynamics on the fish host with

the help of experimental empirical data (presented and thoroughly analysed in Chapter 2).

For the first time in this study, we have developed a multi-state Markov model (MSM),

which extends the standard survival models, to investigate open biological questions con-

cerning host survival and parasite virulence. In the MSM, we also incorporate population
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heterogeneity and the effect of censoring based on the entire infection history of each host

until the end of the observation period. A brief motivation for adapting the MSM for

the gyrodactylid-fish system compared to the traditional survival models is highlighted

in section 1.3 and discussed further under Chapter 2. Additionally, the limitations of the

existing agent-based model for the gyrodactylid-fish system (as discussed in section 1.3)

have motivated the development of a novel individual-based stochastic simulation model

in the current study (under Chapter 6). Findings from Chapter 2 (based on the MSM

and a multivariate rank-based distribution-free test) have also informed some aspects of

the novel stochastic simulation model concerning its model assumptions as well as other

hypotheses of the study (investigated within the Bayesian setting under Chapter 6). To

fit our novel stochastic simulation model, we propose a modified likelihood-free param-

eter estimation methodology for complex model calibration via approximate Bayesian

computation (ABC) as well as a robust approach for ABC post-processing analysis (to

correct for the imperfect mismatch between simulated and observed data).

The modified ABC algorithm (with its pseudo-codes outlined in Chapter 5, and dubbed

in the current study as weighted-iterative ABC) is based on sequential Monte Carlo

(SMC), sequential importance sampling (SIS), and ABC summary statistics weighting

(adaptively computed based on the harmonic mean of previous and current summary

statistics weights). Our robust ABC post-processing method (for adjusting the resulting

ABC posterior and estimating its mean) is an extension of the standard ABC local-

linear regression (to include an L2 regularisation term). It is considered an independent

ABC final step after executing the weighted-iterative ABC to fit the novel simulation

model. Unlike the standard ABC post-analysis methods, our proposed ABC posterior

correction method is implementable even if the set of ABC summary statistics (possibly

high-dimensional) is highly correlated in the neighbourhood of the observed summaries.

In addition, it improves the standard ABC local-linear regression (with heteroscedastic

errors) in the presence of multicollinearity, supercollinearity, outliers, or non-normal re-

gression residuals.
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A continuous-time Markov process dubbed the linear birth-death process with catas-

trophic extinction (B-D-C process) is further investigated and considered an auxiliary

stochastic model (for the developed complex individual-based simulation model). For

the first time in this study, the exact analytical results of the B-D-C transition function

and its theoretical moments are derived and numerically validated, as in the setting of

discretely observed processes. The motivation for the B-D-C model is to refine the set

of summary statistics of the modified ABC based on parameter estimates of the B-D-C

model. Before ABC fitting of the novel stochastic simulation model, three different pa-

rameter estimation methods: maximum likelihood estimation (MLE), generalised method

of moments (GMM), and embedded Galton-Watson (GW) estimation methods for the

B-D-C model were developed and compared by exploring the trade-off between estima-

tion accuracy (quantified by the estimation bias, variance, and mean square error) and

computational speed based on different in silico simulation experiments (where parasite

population size is large, moderate, or low). The two zero states of the B-D-C process

(due to either the natural death of parasites or parasite population extinction after host

mortality) were distinguished or separately set up in the aforementioned B-D-C param-

eter estimators (MLE, GMM, and GW).

Furthermore, we adapted and compared two hybrid τ -leaping algorithms to simulate the

B-D-C process and identify which method is cost-effective (based on their respective sim-

ulation speed and fidelity). The simulation of the B-D-C process using a hybrid τ -leaping

algorithm also provided additional insights on accelerating the complex stochastic simu-

lation model (based on its derived leap size estimator) by proposing a reasonable error

threshold based on the trade-off between simulation accuracy and computational speed.

Prior to fitting our novel stochastic simulation model, the fidelity of our proposed ABC

methodologies was numerically assessed at different proposal draws based on a simple

modelling problem (with multivariate normal likelihood and known analytical posterior

distribution). Here, we investigated whether the resulting ABC approximation is mu-
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tually compatible with any Monte Carlo sample size (N ≥ 500) or independent of N by

determining the minimal number of proposal draws to achieve a good posterior estimation.

The high computational cost of simulating data from the sophisticated individual-based

simulation model, computing some components of the set of multidimensional ABC sum-

mary statistics (such as the B-D-C model parameters across a whole host population),

and the quadratic cost of implementing ABC-SMC methods motivated this further explo-

ration. Our ABC methodologies could also be modified and utilised in other studies to fit

complex mathematical and simulation models. Section 1.2 outlines the structure of the

thesis and provides a summary of each thesis chapter (including their interdependencies).

Therefore, achieving the study’s overarching aims uncovered many intriguing and novel

biological questions (with their underlying hypotheses tested by adapting other advanced

statistical tests and the fitted mathematical models). Additionally, it has resulted in new

findings and provided many directions for future studies of the gyrodactylid-fish system.

Specifically, it has motivated other future research regarding between-host parasitic trans-

mission and mixed gyrodactylid infection for this host-parasite system, amongst others

(see the concluding Chapter 7 for detailed information regarding future work directions

and the main thesis contributions). Briefly, the study is imperative mathematically and

biologically in the following ways:

• The findings would help policymakers, disease modellers, and biologists better un-

derstand the Gyrodactylus-fish system using mathematical models and can be used

to inform management decisions for the control of gyrodactylid infections.

• The use of the sophisticated multi-state Markov model provides a robust approach

to model almost any longitudinal survival data where infection progresses through

different dependent events or stages before host death may occur.

• The novel stochastic simulation model developed for the Gyrodactylus-fish system

would help to provide a relatively realistic imitation of this biological system. Thus,

it would facilitate experimental data collection and aid in investigating specific
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research questions and the system’s complexity that may be difficult to control and

implement experimentally. The simulation model can provide relevant information

about parasite numbers at different body locations of fish over time for a fish group

based on specific demographic characteristics (such as the parasite strain, fish type,

fish sex and fish size) and underlying model parameters. The fish survival status

and exact time to fish mortality are other essential outputs of the simulation model.

• The development of the modified ABC methodology (with sequential Monte Carlo

and sequential importance sampling) coupled with the proposed ABC post-processing

methodology (with L2 regularisation to deal with problems of multicollinearity, sup-

percollinearity and convergence issues of the standard ABC local-linear regression)

would help parameter estimation of both sophisticated and simple likelihood-free

models sequentially across a whole population.

• The mathematical models developed in this study can be adapted for future pre-

dictions within and beyond the standard 17-day infection period for a particular

Gyrodactylus strain across the different fish populations. In addition, the individual-

based stochastic model can also be further modified to conduct biological experi-

ments for mixed gyrodactylid parasite populations and can be expanded further for

broader host-parasite systems.

1.2 Thesis structure

This thesis is logically structured into seven main chapters, and the interdependencies

(in terms of methodology development and contributions) between the thesis chapters

are illustrated with arrows in an attempt to answer the underlying research questions

(presented in section 1.6 after reviewing the gyrodactylid-fish system and its biology for

further modelling purposes) and achieve the study’s specific objectives (Figure 1.1).

Chapter 1 gives a general overview of the study (highlighting its novelty and contribu-

tions), the conceptual framework of the entire thesis (i.e., the thesis structure), other back-
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ground information or research problems relevant for modelling purposes (section 1.3),

the biology of Gyrodactylus and the gyrodactylid-fish system (sections 1.4 and 1.5), as

well as formalises the research questions and the study’s main limitations (presented un-

der section 1.6).

Chapter 2 attempts to provide answers to three crucial biological questions concerning

parasite microhabitat preference, host survival and parasite virulence based on existing

empirical data. An introduction to the underlying research areas and other specific re-

search gaps are discussed. The empirical data is described using two appropriate graphical

summaries of mean parasite intensities (among surviving fish) across host body regions

(microhabitats) and other covariates (parasite strain and fish stock) over time. Statistical

tests (rank-based multivariate Kruskal-Wallis test and its post-hoc tests) are adopted to

compare the spatial and temporal parasite distribution. A time-inhomogeneous multi-

state Markov model is developed to explore the gyrodactylid infection progression (host

survival and parasite virulence). Other analytical derivations of mean sojourn times and

transition probabilities conditioned on other covariates (fish sex, fish stock, fish size, and

parasite strain) are presented. The main results and further discussion sections relevant

to answering research questions 1-4 (outlined in section 1.6) are summarized for sub-

sequent modelling purposes. Findings from Chapter 2 provided epidemiological insights

into the development of the novel individual-based stochastic simulation model (presented

in Chapter 6).

Chapter 3 critically review mathematical models for host-parasite systems (which in-

cludes both individual-based and population-based models). Extant literature on mod-

elling infectious diseases for microparasitic and macroparasitic infections is presented.

Furthermore, an overview of population and individual-based mathematical models is

given. Lastly, we present a summary of the previous modelling work carried out con-

cerning the Gyrodactylus infection dynamics. This Chapter 3 thus provides the necessary

information needed in developing mathematical models to study biological systems.
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Chapter 4 outlines the auxiliary stochastic model, the birth-death process with catas-

trophic extinction (in terms of analytical proof, parameter estimation, and model fitting

via two different hybrid τ -leaping algorithms). The definition of the B-D-C process,

the derivation of its exact transition function, numerical validations using Monte Carlo

estimation, comparison of three different parameter estimation methods (MLE, GMM,

and GW), and detailed results from two different τ -leaping procedures are presented.

As previously highlighted, the findings from Chapter 4 would help refine the summary

statistics of the modified ABC methodologies (presented under Chapter 5) by identify-

ing more cost-effective parameter estimation techniques for the B-D-C process (based on

accuracy-speed trade-off) and further aid in accelerating the complex stochastic model

(based on the results of the hybrid τ -leaping of the B-D-C process).

Chapter 5 begins with a literature review of existing ABC methodologies. Then, the

weighted-iterative ABC with SMC and SIS is described with pseudocodes and other an-

alytical or theoretical methodologies (including a proposed optimised linear function to

project parasite numbers till the end of the infection period after host mortality to aid

in computing ABC summaries). Finally, an extended local-linear regression with het-

eroscedastic errors and L2 regularisation (based on a weighted ridge regression) for ABC

post-processing analysis is presented. The performance of the modified ABC methodology

(with sequential Monte Carlo and adaptive importance sampling; described in section 5.3)

and the proposed ABC posterior correction method (described in section 5.3.4) are tested

using simple ABC experiments (based on multivariate normal conjugate priors with an

exact form of posterior distribution), before calibrating the sophisticated individual-based

simulation model based on the modified ABC methods. Finally, the robustness of the

modified ABC algorithm to the choice of pre-specified decreasing tolerances and the num-

ber of proposals for adaptive importance sampling were assessed. Compared to the clas-

sical ABC posterior correction method, the modified ABC post-processing method (with

L2 regularisation) is justified as a robust extension of the standard local-linear regression.
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Chapter 6 presents the multidimensional individual-based stochastic simulation model

for two age groups (using an extended hybrid τ -leaping algorithm) to include population

carrying capacity (depending on the size of fish), a preference for parasites to move for-

wards or backwards (dependent on the parasite strain) and other specific information of

host (fish sex, size and fish stock) across the external surfaces of fish over time (within

a standard 17-day infection period). Hence, the individual-based model is developed to

also discriminate between the behaviour of different strains of Gyrodactylus on the three

different fish populations. Furthermore, results on the model fitting of the complex simu-

lation model using the modified ABC and its posterior adjustment with L2 regularisation

are given. Further multivariate analyses within the Bayesian framework are adapted to

investigate the study’s main hypotheses (based on adjusted posterior samples). Results

from Chapter 6 are therefore used to provide answers to other research questions related

to the study (i.e., research questions 5-9).

Chapter 7 finally summarises the works of the previous six chapters (Chapters 1-6),

study’s main contributions and future work directions.

Figure 1.1: The thesis structure.
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All formulated mathematical theorems under Chapters 2, 4 and 5 of the current study

are derived and proved for the first time (and thus not previously proposed in any other

study). All the proposed algorithms, Algorithms 1-6 (with their respective pseudo-codes)

under Chapters 4–6, are also developed for the first time in this study. All lemmas

and Algorithms L1-L4 are presented in this current study based on previously published

studies (with appropriate references provided accordingly). The first main work in this

interdisciplinary research (corresponding to Chapter 2) has been submitted to a high-

impact peer-reviewed biological journal. Results from Chapters 4–6 will be published in

mathematics peer-reviewed journals. All R codes developed for statistical analyses and

mathematical modelling (including their Jupyter Notebook HTML and source files) as

well as the empirical data (for this study) can be found via the GitHub URL link (for

reproducibility of results): github.com/twumasiclement/In-Silico-Modelling-of-Parasite-

Dynamics.

1.3 Other background information of the study

Emerging infectious diseases pose a serious economic risk to freshwater fisheries, with

several newly detected pathogens causing large scale disease outbreaks in fisheries and

fish farms worldwide, including the UK. For example, some trout fisheries in South Wales

and South West England have had to close due to Argulus species outbreaks [292]. In-

vestigating the dynamics of such infectious diseases among fish is crucial since farmed

fish is the major source of human protein, and aquaculture contributes significantly to

the world economy. In the process of conserving wild fish stocks, the management of

infectious disease dynamics has gained interest to researchers and fish-farming industries

over the past years; since it is a predominant limitation to the sustainability and mainte-

nance of farmed fish globally. In Europe, Gyrodactylus salaris has caused major problems

in farmed salmonids; notwithstanding the lethal effects of other species, including Gyro-

dactylus turnbulli and G. bullatarudis [15, 187].

Experimental studies have previously explored the infrapopulation dynamics of G. turn-

9



bulli and G. bullatarudis ectoparasites on their fish host. Nonetheless, other important

biological questions exist in relation to parasite microhabitat preference, host survival,

parasite virulence, and the temporal transmission dynamics (in terms of infrapopula-

tion, interspecies and interpopulation dynamics) of different Gyrodactylus strains across

different host populations. Moreover, although much is known about the dynamics of

gyrodactylid infections on a single fish, and an individual-based simulation model that

reproduces these dynamics exists [306], the spatial information (species-specific microhab-

itat preference) and other relevant information were not well captured. In the existing

individual-based model (IBM), information about parasite fecundity, age group (young

or old parasite), parasite mortality, parasite mobility, host sex, host immune response

and sources of stochasticity or random variations have not been fully incorporated for

different Gyrodactylus strains across different fish populations.

Additionally, there exist limitations in some of the underlying model assumptions of the

existing IBM. For instance, it assumed that the maximum distance that parasites can

move within any time step was half the fish length, and localised immune response only

occurs between 12-18 hours when at least one parasite occupies a site. However, within a

realistic setting, the time to host immune response can occur at any time after infection,

and localised immune response may depend on host and parasite genotype, the surface

area of the body locations and host sex. The existing IBM did not distinguish between

fish’s major body locations (tail fin, lower body, upper body, anal fin, dorsal fin, pelvic

fins, pectoral fins and head) or their respective surface area. For example, as individual

host infections with G. turnbulli progress, parasites migrate from the caudal fin and body

to the pectoral, pelvic, dorsal and anal fins; a migration to potentially facilitate trans-

mission [129]. There exit a unique caudal-rostral preference between G. turnbulli and

G. bullatarudis species [129, 131], and thus, these microhabitat preferences need to be

incorporated when simulating the species-specific population dynamics. Hence, the need

for a more realistic stochastic simulation model for studying these host-parasite systems’

infection dynamics.
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Also, through survival analysis, an individual’s infection history can be modelled as a

two-stage process with one possible transition from “alive" to “dead" state [1]. In such

instances, we often adopt the standard logistic regression or Cox proportional-hazards

regression to investigate risk factors of host mortality and to estimate hazard rates; while

the non-parametric Kaplan-Meier method is used to estimate survival curves from cen-

sored data [93]. However, in most longitudinal studies, such as data collection from the

gyrodactylid-fish system, the “alive" state could further be divided into two or more in-

termediate (transient) phases, each corresponding to a different stage of the infection

[151]. Multi-state models (MSMs), also adapted in the current study, allow for time-to-

event longitudinal data analysis in which surviving individuals may have varying infec-

tion outcomes over time (before host mortality may occur). A change of infection state

is considered a transition or an event. Estimating progression rates, transition proba-

bilities, the mean sojourn time in a given state, analysing the effects of individual risk

factors, survival rates, and prognostic forecasting are all areas of interest under multi-

state modelling [217]. Although MSMs have several applications in biomedical research,

population demography, and other areas of epidemiology, this class of models is under-

used in studying host-parasite interactions in most parasitological studies. In the current

study, for the first time, MSM is used to investigate the infection progression of two

co-infecting gyrodactylids across different fish hosts. We thus develop a robust MSM

for the gyrodactylid-fish system (in Chapter 2) to improve previous estimates of survival

probabilities by Cable and van Oosterhout [57], and to efficiently quantify parasite viru-

lence as a function of both host mortality and recovery (given some underlying covariates).

Therefore, this thesis mathematically investigates open biological questions to help better

understand the gyrodactylid-fish system’s infection dynamics based on advanced statistics

and improved models. The infection dynamics of three different gyrodactylid strains

across three different fish populations within a standard 17-day experimental period are

investigated. Sections 1.4 and 1.5 briefly reviews the biology of gyrodactylid parasites
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and their host-parasite systems to provide good biological insights about the host-parasite

under investigation.

1.4 Biology of Gyrodactylus parasites

Gyrodactylus are monogenean worms that commonly infect the gills and skin of fresh-

water and marine fish. There are several monogenean families with approximately 1500

species that can infect fish. Other monogenean worms belonging to the genus Dactyl-

ogyrus can also affect freshwater fish. The Dactylogyrus parasites are mostly found on

the gills as opposed to Gyrodactylus parasites that predominantly infect the skin [67].

Gyrodactylus are ubiquitous on teleosts with currently over 400 described species [134].

These parasites are dubbed as “Russian-dolls” due to their rare reproductive mode in

the Animal Kingdom; such that for 180 years, they have been known to produce fully

matured daughters in the uterus of mothers, and each daughter contain developing em-

bryos as represented by Figure 1.2 [15, 106]. An epidemic caused by Gyrodactylus salaris

in Europe (Figure 1.3) has encouraged much research into gyrodactylid infections, and

thus, these parasites are the best-studied monogenean. Consequently, three economically

relevant species, namely: G. salaris on Atlantic salmon, G. thymalli on grayling and G.

derjavini on brown trout have had a lot of research attention over the years. Nonethe-

less, other gyrodactylids have extensively been studied, including those that infect other

teleosts (over 30,000 hosts). These hosts are key model systems for studying evolutionary

and ecological processes and many other parasitic organisms in general [15]. This current

study focuses on two distinct Gyrodactylus species (G. turnbulli and G. bullatarudis).

Specifically, two strains of G. turnbulli species (laboratory-bred and wild strains) and a

wild strain of G. bullatarudis are considered across three different fish populations.
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Figure 1.2: Light micrograph (interference contrast) of Gyrodactylus salaris with two
developing daughters in utero like a “Russian-doll” [15, 106].
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Figure 1.3: Regions of Europe reported with Gyrodactylus salaris infections (red), terri-
tories with unconfirmed reports (yellow), areas with unknown G. salaris infection status
(grey) and lastly, territories free from this gyrodactylid infection (green) [81].
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1.4.1 Morphology and progenesis of Gyrodactylus

Gyrodactylids are among the smallest monogeneans (Figure 1.4) characterized by their

spindle-shaped body, posterior opisthaptor equipped with marginal hooks, hamuli and

bars (Figure 1.5) [309]. In addition, there are two notable cephalic processes anteriorly,

which bears adhesive glands and spike sensilla for attachment to the body of their host

[see 17]. Gyrodactylids have unusual sexual maturity, with accelerated maturation of the

sexual organs such that the larva can reproduce even as a juvenile. However, there is a

significant difference in the progenesis of different Gyrodactylus parasites. A second re-

productive adaptation of Gyrodactylus species is their viviparous nature, where parasites

give birth to fully grown young parasites which are already developing embryos within

their utero.

Figure 1.4: A scanned electron micrograph of G. salaris aquatic parasites (about 0.5 mm
long)- Source: sciencephoto.com/media/887549/view.
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Figure 1.5: Gyrodactylus jalalii sp. nov. A. whole mount. B. male copulatory organ. C.
marginal hook. D. anchor-bar complex. E. anchor. Scale bars represent 50 µm (whole
mount), 10 µm (marginal hook, MCO) or 30 µm (anchor, anchor-bar complex) [309].

1.4.2 Ethology of gyrodactylids

The general behaviour of gyrodactylids includes locomotion, questing, feeding, repro-

duction and transmission. Subsequent sections summarize briefly the aforementioned

behaviours of these parasites.

1.4.2.1 Locomotion

To move, the parasite uses the anterior glands (Figures 1.4 and 1.5) to cement the head

momentarily to the fish while the opisthaptor is released and drawn towards the head;

resulting in the release of the head eventually [15]. There could be a repetitive occurrence

of this process for a period of time before the parasite settles down to a single position.
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Gyrodactylids move along the skin usually, and this behaviour could be due to either

avoidance of localised immune reaction from the fish or acquired immunity after second

infection [57].

1.4.2.2 Questing

Questing behaviour may occur spontaneously and frequently among all gyrodactylids.

This action significantly enhances their response to external stimuli such as touching

substrate or host with a fibre. When questing, the parasite spreads from the substrate

using its cephalic lobes. Gyrodactylids attach to the body of fish in the process or interact

directly with other parasites resulting in copulation in most instances [15]. Generally,

questing behaviour among these parasites allows the spike sensilla and unciliated receptors

of the cephalic lobes to sample the surrounding host or other parasites (Figure 1.6).

Figure 1.6: Anterior lateral view of scanned electron micrograph of the sensory apparatus
at the anterior lobes of G. salaris actively searching the surface of its substrate [15].
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1.4.2.3 Feeding

In most Gyrodactylus species, parasites individually lie in a distinctive pose with the

anterior portion of the body stretched and flattened against the epidermis of its host

(Figure 1.7); while rigidly attached by the opisthaptor, with the anterior lobes raised

[53]. In the process, the pharynx is projected into close contact with the epithelium of

the fish. It is often observed that the pharynx pumps, with slight waves of contraction

passing along its body. Feeding usually elapses for few periods, after which the parasite

uncurl but is contracted and relatively inactive for few minutes [15]. The mode of feeding

can eventually cause fish mortality.

Figure 1.7: Mode of feeding of gyrodactylids which effectively kill a host through at-
tachment, (a) - (b), and grazing activity, (c) leading to gyrodactylosis and disruption of
osmotic permeability of the epidermis [81].

1.4.2.4 Reproduction

Gyrodactylus parasites are capable of both asexual and sexual reproduction. When the

population density is low, these parasite species prefer asexual reproduction, while when

the population density is high, they prefer sexual reproduction. Unfortunately, there is

no clear information on where mates are found or how they protect themselves, although
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their mating behaviour is influenced by population size [53]. Gyrodactylids quest with

members of the same species until they impale their penis into their preferred partner.

After initiation of copulation, the partner may respond by grasping the initiator with its

penis, and mutual insemination may proceed [127]. Copulation may be unilateral such

as that one partner does not mutually inseminate. This behaviour can be observed in at

least G. turnbulli [15]. Birth occurs after the copulation stage. Nevertheless, gyrodactylid

birth could be viviparous (reproduction of fully grown young parasite) or oviparous (egg-

laying without embryonic development inside the mother). Healthy worms attached to

the body of fish can rapidly reproduce. Among viviparous Gyrodactylus parasites which

are of interest to this study, the daughter breaks through a ventral birth pore close to

the pharynx. A good way of knowing when the gyrodactylid parasite is about giving

birth is through its gravid appearance and the slow waves from muscular contraction

travelling along the parent’s body. The first part of the daughter emerges as a bleb of

tissue, which is rapidly followed by the worm’s anterior portion (Figure 1.8). If the mother

becomes detached during the beginning stages of birth and the daughter has no fish (host

substrate) to attach to its anterior glands, both parasites may die since the daughter could

not escape from the mother’s uterus. However, in cases where the daughter is manually

pulled with the watchmaker’s forceps and fin pin, the mother may survive. Consequently,

successful birth is contingent on the muscular activities of the mother and its offspring.

However, abortion of young embryos could occur after prolonged detachment of both

parasites [15, 53]. Hence, Gyrodactylus spp. reproduce with a fully grown daughter in

the utero, which in turn envelopes a developing embryo, boxed inside one another embryo-

like “Russian dolls” (Figures 1.2 and 1.8). A single gyrodactylid parasite on a fish’s body

can cause a whole population explosion due to their reproductive life cycle (Figure 1.9),

thereby making them one of the most virulent monogenean parasites.
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Figure 1.8: A gyrodactylid parasite individually giving birth to a pregnant daughter as
large as itself [15].

Figure 1.9: Reproductive cycle of Gyrodactylus parasites [53].
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1.4.2.5 Transmission

Among viviparous gyrodactylids (which are the focus of the current study), the relatively

continuous transmission and infection of new hosts throughout the life cycle increase

colonisation of new host resources as well as host shifts [41]. At favourable conditions,

the viviparous gyrodactylid may remain stationary on the current host’s body, and trans-

mission can easily lead to high fish mortality. Surprisingly, transmission can cause a low

death rate of the parasite in the presence of fish immune response [41]. Gyrodactylus

parasites can show diversity in their transmission strategies when detached from fish.

After prolonged detachment or fish mortality, some parasite strains (e.g., G. salaris) can

immediately transfer to suitable hosts they contacted. In contrast, there exist very little

knowledge about transmission of oviparous gyrodactylids since all stages of their life cycle

may lead to transmission of infection [126], and eggs are positioned around the inactive

host resulting in infra-population over time [15, 179].

1.4.2.6 Swimming

This particular life process is not common to all gyrodactylids when detached from the

substrate, but reported among other species like G. rysavyi [94]. This monogenean par-

asite of the skin, fins and gills of the Nile catfish (its host) can engage in directional

swimming when disconnected from the host and freed in open water as opposed to other

gyrodactylid species. Other studies have revealed that forcibly detached specimens of

G. turnbulli and G. salaris, for instance, may thrash back and forth until they reach a

solid substrate, but this behaviour is not unidirectional. G. turnbulli species’ particular

transmission behaviour (in which detached parasites travel through the water film, see

section 3.3 of Cable et al. [55] study) is not considered a swimming behaviour ([cf. 154]).
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1.5 Host-parasite system: G. turnbulli and G. bullatarudis

infecting guppies (Poecilia reticulata)

1.5.1 Introduction

Gyrodactylus turnbulli and G. bullatarudis are the most studied gyrodactylids after G.

salaris. These species predominantly occur among natural guppy populations, Poecilia

reticulata, in Trinidad (Figure 1.10); and have been adopted as a model system with

their host. The parasites occur at high prevalence of over 75% [307], but with low mean

intensity (approximately ∼ 10 parasites per host) [305]. Experimental studies have shown

that their parasitic infection can cause sudden behavioural changes among hosts such as

feeding behaviour, selection of mates and courtship activities [303, 306]. These parasites

can also co-infect the same host [268]. The two parasite species are relevant to the aquar-

ium trade and have been considered a threat to the conversation of endangered fish [176].

Generally, the rate of their transmission between female fish is higher than male guppies,

with transmission also affected by host personality [256]. Previous experimental studies

have helped get some insights into their infection dynamics and host immune responses.

There is usually a slow growth in the parasite population from the start of infection, but

the parasite population extinct after host immune defence (which is temporally induced

after high parasite abundance) [16]. Guppies are among the most popular fish in aqua-

culture due to their natural ability to reproduce, colour diversity, robustness and ease of

maintenance [268]. Thus, based on these features mentioned earlier about guppies, their

laboratory usage for experiments makes them preferable when studying infections from

both G. turnbulli and G. bullatarudis.

A study on survival and behaviour of Gyrodactylus turnbulli and G. bullatarudis on

dead fish revealed that, under certain conditions such as high parasite abundance, these

parasites might survive on a dead host for a while (see Figure 1.11); however, at low

parasite abundance, there is a slight chance of survival [see 53]. Moreover, the study also
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discovered differences in their parasitic behaviour or migration after fish mortality, such

that, G. turnbulli may move away from the dead host into water columns as opposed to

G. bullatarudis which stay in the bottom of the fish [53].

Figure 1.10: Ornamental male and pregnant female guppies (A); female guppy showing
signs of fin clamping due to high parasite load (B)- Source: en.aqua-fish.net.

Figure 1.11: A diagram showing the mean percentage relative parasite coverage (under-
neath each figure) for G. turnbulli and G. bullatarudis at low and high burdens for time
0 (time of host’s death) and 12h after host death [53].
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1.5.2 Site specificity of Gyrodactylus turnbulli and Gyrodactylus bul-

latarudis on hosts

Previous studies have shown that some gyrodactylids have specific site preference, but

this behaviour varies widely between species [15]. The majority of the parasites infect

the skin and fins, whereas some also occur on the gills. Gyrodactylus turnbulli and G.

bullatarudis unlike other gyrodactylid species of guppies, display marked site preference.

The Gyrodactylus bullatarudis usually occur rostrally towards the head and mouth at low

densities, whereas the G. turnbulli prefer mostly the caudal regions of fish [55, 131, 129].

Under experimental conditions, G. turnbulli most commonly infect guppies through their

fins [129]; however, parasites individually move towards the caudal peduncle and tail fins

over time when the parasite burden gradually increases. The parasites then return to the

fins to conceivably cause transmission [129].

Immunological changes may influence migration behaviour in the epidermis of the host

[15]. Specifically, parasites may face three scenarios that will cause them to change

location or preference. The possibilities may be that: an immune-active site was en-

countered, and thus parasites moved, or the location was previously infected but not

immune-activated and may choose to stay or finally, the site becomes immune-naive,

which cannot harm parasites or force migration [15]. In the process of feeding on or

infecting fish, different gyrodactylid species within a particular microhabitat exploit the

same source of carbon, which in turn lead to host death after over-exploitation. Conse-

quently, any other gyrodactylid species on such dead hosts will die out [15]. Although

these species’ respective caudal and rostral preferences on the host are reported, it is

unknown whether this is consistent over time and across different fish stocks. The spatial

and temporal dynamics concerning microhabitat preferences of three different Gyrodacty-

lus strains across different host populations have been explored in details in the thesis

Chapter 2, amongst other objectives.

24



1.6 Research questions and study’s limitations

The study consists of seven chapters, together attempting to provide answers to the

following nine major research questions:

1. Is the caudal and rostral preferences of the gyrodactylid strains consistent over time

and across different fish stocks?

2. Does fish sex, fish size, fish stock, and parasite strain affect gyrodactylid infection

progression (host recovery and host mortality over time)?

3. What is the average infection time of infected fish conditioned on the significant

predictors?

4. Is the virulence (quantified by both host mortality and recovery) of the gyrodactylid

strains time-varying and dependent on the covariates (fish sex, fish size, fish stock

and parasite strain)?

5. Are the birth rates (for young and old parasites) and death rates (with or without

immune response) of Gyrodactylus parasites significantly different across the three

parasite strains?

6. Is the adaptive immune response from gyrodactylid infection progression, sex and

host-dependent?

7. Is the mortality rate of male fish from gyrodactylid infection significantly higher

than female fish?

8. Are the microhabitat preferences of Gyrodactylus turnbulli and G. bullatarudis par-

asite species driven by their rate of movement on their fish host?

9. What is the effective population carrying capacity of Gyrodactylus parasites at the

major body regions of their fish host?

The research questions were motivated by several factors: the biology of the Gyrodacty-

lus and previous experimental studies about its host-parasite system (reviewed under
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sections 1.4 and 1.5), open biological questions concerning the distinct gyrodactylid mi-

crohabitat preference (between Gyrodactylus turnbulli and G. bullatarudis species) across

different host populations, key determinants of host survival and parasite virulence (condi-

tioned on parasite mortality and host recovery), as well as underlying research hypotheses

(motivated by research questions 5-8) to be investigated based on the fitted individual-

based stochastic simulation model (within a Bayesian setting). Research questions 1-4 are

investigated under Chapter 2. Answers to research questions 5-9 are provided through the

use of Bayesian hypothesis testing after ABC fitting of the complex stochastic simulation

model (presented under Chapter 6).

Limitations of the study

The study’s limitations (associated with developed mathematical models and the scope

of the study) are outlined as follows:

• The multi-state Markov model developed in this study assumed that fish could not

be reinfected after infection loss due to the study’s experimental design. However,

this can be modified for other biological or ecological systems that allow host rein-

fection after parasite extinction. Thus, the multi-state model’s results may change

due to reinfection within a social setting where population mixing between hosts is

possible.

• In addition, in the multi-state Markov model, we could not include spatial informa-

tion and other relevant information about parasite fecundity, age group (young or

old parasite), parasite mortality, parasite mobility and host immune response while

exploring host survival and parasite infrapopulation dynamics.

• Moreover, the novel individual-based stochastic simulation model (formulated within

the standard 17-day experimental period) is only developed to investigate the in-

frapopulation infection dynamics of gyrodactylids on a fish and cannot examine

infection transmission between hosts.
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• Additionally, the development of other methodologies in the current study (ini-

tially not considered in the original research plan), such as the modified ABC post-

processing method with L2 regularisation and other additional numerical evaluation

experiments of the proposed ABC methodologies, broadened the scope of the study.

• Therefore, the current study did not investigate the long-term infection dynamics of

the gyrodactylid parasites beyond the standard 17-day experimental period. Hence,

this study did not consider the interpopulation (or mixed-gyrodactylid) within-

host infection dynamics, between-host transmission or intrapopulation infection

dynamics (using a social network model) and long-term predictions beyond the

standard 17-day infection period across the different host populations by adapting

the novel stochastic simulation model.
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Chapter 2

Spatial and temporal parasite dynamics of Gyrodactylus

2.1 Introduction

The fastest growing global food sector is aquaculture with parasites posing the greatest

threat to economies, sustainability, and animal welfare. Management of parasitic infec-

tion and prophylactic treatment in aquaculture is costly. An estimated hatchery loss to

parasitism of 20%, results in an annual loss >£100 million globally [276]. Taking into

consideration the grow-out of aquatic species and associated dietary investment, the cu-

mulative annual cost from infectious disease to fish farming is estimated between £1-10

billion [68, 276]. The current study focuses on the spatial and temporal infection dynam-

ics of the gyrodactylid-fish system by providing new epidemiological insights with the help

of a more robust multi-state Markov model, a rank-based non-parametric multivariate

analysis of variance test coupled with its post-hoc tests. Gyrodactylids are common fish

parasites [276]; Gyrodactylus salaris alone caused epidemics among farmed salmonids,

which resulted in death of up to 86% of salmon in infected rivers [15, 187].

Gyrodactylids are monogenean ectoparasites that are ubiquitous on teleosts [133]. Among

well studied Trinidadian guppy populations, gyrodactylids are the dominant parasites

[≥42% prevalence, 3.3 mean intensity; 52]. The prevalence of Gyrodactylus species varies

spatially across watercourses (lower, mid, and upper courses of the rivers or lakes) and

temporally among Trinidadian population, and between host sexes [286]. Gyrodactylus

prevalence is higher in female guppies, but only in lower courses [286], predominately due

to fish shoaling behaviour [72, 118]. The parasites have no specific transmission stage

and transfer from fish to fish occurs during host contact. Their reproductive mode is

similar to that of microparasites with replication occurring directly on the host [reviewed
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by 15]. Their hyperviviparous nature and short generation times [< 24 h at 25◦C; 270]

can cause population explosions with substantial spatial and temporal variation amongst

different species [e.g., 56, 130, 196, 205, 265]. Many infect the skin and fins, others occur

predominantly on the gills [130, 229]. Gyrodactylus turnbulli and G. bullatarudis, which

both infect the guppy (Poecilia reticulata), niche partition with G. turnbulli occurring

caudally [129] and G. bullatarudis rostrally [131]. According to Haris [129], as individual

host infections with Gyrodactylus turnbulli progress, parasites migrate from the caudal

fin and body to the pectoral, pelvic, dorsal and anal fins; a migration to potentially facil-

itate transmission. Gyrodactylids may also move to optimise feeding, reduce competition

and avoid localised immune reactions [15, 137, 141, 200, 257, 306]; the scorched earth

hypothesis [265]. Although the respective caudal and rostral preferences of G. turnbulli

and G. bullatarudis on the host are well reported [e.g,. 131, 129], consistency over time

and across different fish stocks is not.

Host survival following gyrodactylid infection was previously explored by Cable and van

Oosterhout [56]. They showed that mortality of guppies differed significantly between

fish stocks for each parasite strain. From their experimental study, guppies were cate-

gorised according to whether they: i) fought off the infection, ii) remained infected, or

iii) died while infected. The fate of these guppies was predominantly affected by fish size,

such that smaller guppies were more likely to clear the infection, while larger fish either

died or remained infected beyond the end of the study period [56]. Traditional survival

models, including Kaplan-Meier and Cox proportional-hazards regression, are not able

to effectively incorporate changes in host infection status over time [151]. For instance,

individuals (hosts) are either classified as censored (alive) or uncensored (dead) at the

end of the study but information on whether the censored cases remained infected or

fought off the infection is excluded. This can, therefore, lead to incorrect estimation of

risk parameters such as survival probabilities and hazard ratios [32]. Multi-state models

(MSMs), however, are suitable for such modelling where the infection history of the host

is of interest, and at any one time the host could occupy a different infection status [151].
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Consequently, it is useful and more robust for analysing survival data when different

treatments and intermediate events can occur in the lifetime of individuals or the popu-

lation of interest [207]. MSMs are able to estimate additional relevant quantities such as

the mean sojourn times from transient states and transition probabilities. Hence, MSMs

are considered as a natural extension of the standard survival models [207, 211].

MSMs provide a robust approach to modelling almost any kind of longitudinal failure

time data. Thus, it can be used to perform life history analysis across several areas of

application, including but not limited to demography, epidemiology, actuarial science,

reliability analysis, and micro-sociology [5, 151]. In the standard context of multi-state

modelling, individual life histories are observed as independent sample trajectories of

stochastic processes moving between states in a discrete state space [5]. In epidemiology,

the states of the process could be defined as disease outcomes such as healthy, exposed,

infected, diseased with complications, or dead (for instance). In other fields, the states

could correspond to various statuses for an individual, an insurance policy, or a technical

component (amongst others). A change of state is considered a transition or an event.

The state structure (which is not unique) describes the states and the various transitions

between them. For each possible transition, an MSM is specified entirely by its state

structure (defined by the transition rate at which an event occurs over time) and the

form of the hazard function for the respective transitions (given individuals’ characteris-

tics or covariates). This class of models can be applied to study more complicated types

of longitudinal (or life history) survival data (depending on the modelling problem under

study). The model can be formulated as either Markovian (if the future state of the

process is dependent on only the current state and independent of previous states) or

non-Markovian (if the Markov assumption fails); however, the latter is not well discussed

in the literature [151]. This study also focuses on only the Markov-type MSM (as in the

Markov chain setting). Andersen and Borgan [5] and Hoem et al. [147] have reviewed

Markov models, whereas Cox and Miller [71] have discussed MSMs in detail.
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For multi-state processes that are misclassified or can only be viewed through a noisy

marker, hidden Markov models can be implemented [158]. There is more extensive lit-

erature on different classes of MSMs and Markov extension models with specific appli-

cations to the modelling of fertility, competing risks, disability, recurrent events, twin

survival, and alternating events [reviewed by 151]. Additionally, the MSM can either

be time-homogeneous (if the transition intensities or rates of the Markov chain are in-

variant over time) or time-inhomogeneous (in the case of time-varying transition rates).

Also, the time-space can be either discrete or continuous. Other studies have employed

the discrete-time MSM in the study of infectious diseases [e.g., 61, 192]. There exists a

comprehensive and flexible software packages (e.g., msm and msSurv R packages) to help

modellers fit any proposed continuous-time MSM (for a given biological system) based on

a panel or longitudinal data and well-defined transition intensities [158]. Although MSMs

have been applied in several fields, they are rarely used for studying host-parasite inter-

actions and host survival in most parasitological studies. For the first time in this study,

MSM is used to investigate the infection progression of two co-infecting gyrodactylids

across different fish hosts.

Parasites and their hosts compete for survival. Such co-evolutionary interactions drive

virulence originating from parasite pathogenesis and host defence [206]. Together, mea-

sures of host mortality, host resistance, host recovery, mutation, superinfection, host het-

erogeneity, and mode of transmission all contribute to explain parasite virulence [206].

There exists significant heterogeneity in virulence between Gyrodactylus turnbulli and Gy-

rodactylus bullatarudis strains [56]; for example, the laboratory bred G. turnbulli strain

(Gt3 ) inflicts a higher proportion of causalities, followed by G. bullatarudis (Gb), and

then the wild-type G. turnbulli (Gt). However, G. bullatarudis reach a higher load

over time compared to the two G. turnbulli strains, where the wild-type reach a higher

maximum load than the inbred strain [56]. Previous studies of these host-parasite sys-

tems explored parasite virulence predominantly based on host mortality, host resistance

and host heterogeneity, with less emphasis on host recovery as a measure of virulence
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[56, 287]. Thus, virulence of the three gyrodactylid strains on different fish stocks has not

been quantified over time while accounting for possible changes in host infection status

before host mortality may occur.

The current study focuses on the spatial and temporal infection dynamics of the gyrodactylid-

fish system by providing new epidemiological insights with the help of a robust MSM,

a multivariate rank-based distribution-free test coupled with its post-hoc tests. In this

study, we focus on a continuous-time MSM that is time-inhomogeneous. This time-

inhomogeneous MSM is used to analyse our longitudinal survival data (instead of its

time- homogeneous version) since transition intensities may naturally differ across indi-

viduals or time-varying covariates. Here, we examine gyrodactylid microhabitat prefer-

ence of three parasite strains (two strains of Gyrodactylus turnbulli and one strain of G.

bullatarudis), and how these preferences vary across three different fish stocks over time

based on existing experimental data. We also develop an MSM to improve on previous

estimates of survival probabilities given fish sex, fish size, fish stock and parasite strain.

We further quantify and compare the virulence (measured by rate of host mortality and

recovery) over time, and estimate other relevant epidemiological quantities (mean time

of host to remain infected and probability of infected host to either recover or die across

the covariates).
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2.2 Materials and description of empirical data

2.2.1 Experimental data

The data used here is from the experimental study of Cable and van Oosterhout [56],

subsequently used as the basis of an agent-based model in van Oosterhout et al. [306].

Briefly, cultures of three different Gyrodactylus strains were used to infect three different

fish stocks: Ornamental Stock (OS), Lower Aripo River fish (LA) and Upper Aripo River

fish (UA); 157 guppies in total, in a full factorial design to give nine different host-parasite

combinations, with 13− 22 replicates per combination. Two out of the three parasite

strains were Gyrodactylus turnbulli, a laboratory-bred strain (Gt3 ) and a wild G. turnbulli

strain obtained from guppies caught in the Lower Aripo River, Trinidad (Gt); whereas

the third strain was G. bullatarudis, also a wild type obtained from hosts in the Lower

Aripo River. Both male (68) and female (89) individually isolated guppies were used for

the experiment and maintained under constant environmental conditions (25±0.5◦C; 12h

light/12h dark regime). All tanks and containers were kept in a randomised block design

to reduce common environmental effects. The fish considered in the experiment were

naive and, thus, bred under parasite-free conditions. Each fish was then infected with

two parasites at time 0, and parasites were counted every 48 h over a 17-day infection

period. For each fish, the number of parasites was recorded across eight different body

regions (tail fin, lower body, upper body, anal fin, dorsal fin, pelvic fins, pectoral fins

and head). Survival data describing the various host infection status (remain infected,

recovered from the infection or died) over time were extracted from the empirical data for

the multi-state modelling. The number of surviving fish (with or without host infection

loss) and dead fish across the nine different host-parasite groups over time from days 1

to 17 is given by Table 2.1.
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Table 2.1: Number of surviving fish (with or without infection loss) and dead fish for the
nine different host-parasite groups over time from days 1 to 17.

Days Gt3 Gt Gb Total (n)

OS LA UA OS LA UA OS LA UA
Fish alive with infection

Day 1 14 22 17 13 17 19 17 19 19 157
Day 3 13 20 13 11 16 16 16 19 16 140
Day 5 13 19 8 11 16 13 15 18 15 128
Day 7 13 18 4 11 14 11 14 14 10 109
Day 9 12 17 3 11 13 10 13 12 6 97
Day 11 12 15 3 10 13 6 11 10 3 83
Day 13 11 12 2 10 11 5 10 6 3 70
Day 15 9 10 0 7 10 5 7 4 2 54
Day 17 0 0 0 3 3 2 1 2 0 11

Fish alive with loss of infection
Day 1 0 0 0 0 0 0 0 0 0 0
Day 3 1 2 0 0 0 0 1 0 1 5
Day 5 1 2 3 0 0 1 1 1 1 10
Day 7 1 1 3 0 0 1 1 1 2 10
Day 9 2 1 3 0 0 1 2 1 2 12
Day 11 2 1 3 1 0 1 4 1 2 15
Day 13 2 2 3 1 0 1 4 1 2 16
Day 15 3 2 3 2 0 1 5 2 2 20
Day 17 5 4 3 3 3 1 7 3 2 31

Fish dead
Day 1 0 0 0 0 0 0 0 0 0 0
Day 3 0 0 4 2 1 3 0 0 2 12
Day 5 0 1 6 2 1 5 1 0 3 19
Day 7 0 3 10 2 3 7 2 4 7 38
Day 9 0 4 11 2 4 8 2 6 11 48
Day 11 0 6 11 2 4 12 2 8 14 59
Day 13 1 8 12 2 6 13 3 12 14 71
Day 15 2 10 14 4 7 13 5 13 15 83
Day 17 9 18 14 7 11 16 9 14 17 115

2.2.2 Data preprocessing and visualisation

All analyses were carried out using R version 3.6.3 [247]. Images of fish were produced

in Gimp software version 2.10.12 [293] and outlined in R. Two graphical summaries of

the data were produced. These are available in full in Appendices A and B, with ex-

amples given in Figures 2.1 and 2.2. For the first summary (Figure 2.1 and Appendix

A), the shading represents the log mean intensity of parasites over surviving fish. The
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number of surviving fish for the nine different host-parasite groups (obtained from the

fully crossed design of the three parasite strains and three different host populations)

generally decreased (slowly) over time from days 1 to 17 (refer to Table 2.1). For the

second graphical summary (Figure 2.2 and Appendix B), the eight body regions of the

fish were recategorised into four: tail, lower region (comprising of the lower body, anal

fin, pelvic fins, and dorsal fin), upper region (made up of the upper body and pectoral

fins) and the head. This re-categorisation allowed us to visually and statistically assess

any caudal-rostral preference of the three parasite strains on the three fish stocks more

effectively over the study period due to low parasite numbers observed on the fish fins

(anal fin, pelvic fins, dorsal fin, and pectoral fin).

2.3 Methods and results

2.3.1 Multivariate Kruskal-Wallis test for parasite distribution com-

parison across host body regions

The multivariate Kruskal-Wallis test (MKW) is a multivariate extension of the distribution-

free univariate Kruskal-Wallis test [143]. We used it to test the null hypothesis that dis-

tribution of parasite number at the four body regions (tail, lower region, upper region and

head) is equal for the different host-parasite combinations at each observed time point.

Let Yij be a vector of the number of parasites at the four body regions for the jth fish from

the ith group (host-parasite combination), where i= 1,2,3, · · · ,9 and j = 1,2,3, · · · ,ni. Let

Rij be the rank corresponding to Yij calculated element-wise (ties are assigned a mean

rank) and R̄i =
ni∑
j=1

Rij
ni

then E(R̄i) = m = n+1
2 under H0; where n =

9∑
i=1

ni is the total

number of fish (n = 157), R̄i is the mean rank for each ith group and ni is the number

of fish in group i. The vector Ui = (R̄i1−m,R̄i2−m,R̄i3−m,R̄i4−m)> denotes the

average ranks for the ith group corrected for m for each variate (body regions). The
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pooled within-group covariance matrix is estimated as

V = 1
n−1

9∑
i=1

ni∑
j=1

(Rij−m1)(Rij−m1)>, (2.1)

where Rij = (Rij1,Rij2,Rij3,Rij4)> and 1 = (1,1,1,1)>. The MKW test statistic (W),

given as

W =
9∑
i=1

niUi
>V −1Ui ∼ χ2

k(g−1), (2.2)

is approximately (asymptotically) chi-squared with k(g− 1) degrees of freedom, where

k = 4 and g = 9 [143]. After performing the MKW, the univariate Kruskal-Wallis test

(UKW) was used to further compare the distribution of parasites at each of the four body

regions for each parasite strain (Gt3, Gt and Gb) across the fish stocks (OS, LA and UA)

at each time point (days 1 to 17). A Bonferroni-Dunn’s post-hoc test was finally applied

for pairwise comparisons of the parasite distribution between the different parasite-fish

combinations over time. The caudal-rostral preference of the three parasite strains on

the three fish stocks was statistically inferred from these tests (testing the niche partition

hypothesis of G. turnbulli and G. bullatarudis for preferences at the caudal and head

regions, respectively).

2.3.2 Results on parasite microhabitat preferences

Fish heatmaps (Figure 2.1 and Appendix A) depict variations in parasite distribution

across eight body regions (caudal fin, lower body, upper body, anal fin, pelvic fin, dorsal

fin, pectoral fin and head) over time for each gyrodactylid strain (Gt3, Gt and Gb) on the

different fish stocks (OS, LA and UA). Gt3 showed a clear preference for the caudal fin

and lower body, with higher mean intensities on OS and LA fish than on the UA stock

from day 7 until the end of the infection period. By day 15, all the UA fish had lost the

Gt3 infection. Similarly, Gt was more abundant on the tail and lower body until day

13; but switched to a head preference among only OS and LA populations on day 15. In

contrast, Gb showed a clear rostral preference from day 7 onwards; a preference strongest
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in OS≥LA≥UA fish stocks until the end of the infection period.

When comparing just four body regions of the fish (tail, lower region, upper region and

head), the peak time of infection varied spatially across parasite strains and fish stocks

(Table 2.2; Figure 2.2). On day 15, higher mean intensities were recorded on the head for

both Gt and Gb on OS fish stock. Also for Gb on the same fish stock, a higher number of

parasites occurred on the head between days 9 and 17 compared to any other body region

or host-parasite combinations (Figure 2.2 and Appendix B). Parasite distributions varied

at the four body regions across the nine host-parasite combinations (Figure 2.2) from

days 1 to 15 (MKW: 71.25≤W≤168.57, df=32, p<0.001), but not on day 17 (W=38.12,

df=32, p=0.211). Only the parasite distribution at the tail and head respectively dif-

fered significantly across the nine host-parasite combinations from days 1 to 5 and on

day 9 (p≤0.001). However, parasite distribution differed significantly among groups on

the lower body region on days 7 and 11 (UKW: 17.12≤H≤17.74, df=8, 0.023≤p≤0.029),

tail on days 7 and 15 (19.49≤H≤24.93, df=8, 0.002≤p≤0.012) and head on days 7, 11

and 13 (21.22≤H≤47.36, df=8, 0.001<p≤0.007).

From the Bonferroni-Dunn’s tests, there were significant pairwise differences in parasite

distribution at the tail between all Gb groups (Gb-OS, Gb-LA and Gb-UA) and G. turn-

bulli strains on the fish stocks (with the exception of Gt3 on OS) during day 1 of infection

(0.001<p≤0.016). However, there was no significant difference in parasite distribution of

the G. turnbulli strains at the tail across the 3 fish stocks over time; with the exception of

days 3 and 15, between Gt3 -OS and Gt-LA groups (p=0.019) as well as between Gt3 -LA

and Gt3 -UA groups (p=0.037). On days 3 and 5, parasite distribution at the tail was

significantly different (0.001<p≤0.036) between all Gb groups and Gt groups with the

exception Gt-OS for day 3 and Gt-UA for day 5. Parasite distribution at the tail on day

7 was significantly different between Gb-UA and Gt groups (Gt-OS and Gt-UA); whilst

a significant difference was found between Gb-UA and Gt groups (Gt-LA and Gt-UA).

Nevertheless, there was no significant difference between groups of the G. turnbulli strains
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and G. bullatarudis from day 15 till the end of the infection period. Significant difference

in parasite distribution on the lower region only occurred on day 7 between Gt-OS and

Gb-UA groups (p=0.039); and on day 11 between Gb-UA and Gt-LA groups (p=0.014).

Nonetheless, parasite distribution on the head was significantly different (0.001<p≤0.013)

between each of the G. bullatarudis groups (Gb-OS and Gb-UA) and all the G. turnbulli

groups on day 1. But from days 3 to 5, significant pairwise difference (0.001<p≤0.046)

was found between all Gb groups and turnbulli strains for all fish stocks respectively at

the head. However, apart from Gb-OS group that still showed significant difference with

all G. turnbulli groups on day 7 (0.001<p≤0.016), Gb-LA and Gb-UA rather showed

significance difference (0.001<p≤0.037) with Gt3 -OS and Gt3 -LA. Nevertheless, Gb on

Ornamental fish showed difference significantly (0.001<p≤ 0.013) on the head with Gt3

on OS and LA stocks as well as Gt on LA population during day 9; whereas, two groups

of Gb (on OS and LA stocks) had significant difference with only Gt3 on OS fish popu-

lation during day 11 of the infection period. On day 13, there was significant difference

in parasite distribution on the head between Gb and Gt on OS only.

38



Gt3

Gt

Gb

Gt3

Gt

Gb

OS        LA        UA           OS        LA       UA
Log 

Mean Intensity

Figure 2.1: The movement of three different gyrodactylid parasites species/strain (Gt3,
Gt and Gb) across eight host body parts (tail, lower body, anal fin, pelvic fins, dorsal
fin, upper body, pectoral fins, head) of different fish stocks (Ornamental, LA and UA
stocks) at four time-points. The degree of blackness indicates higher mean intensity (on
log scale) over surviving fish.
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Figure 2.2: Mean intensities (with corresponding 95% confidence intervals) of three gy-
rodactylid strains (Gt3, Gt and Gb) at four main body regions (tail , lower region, upper
region and head) across three fish stocks (Ornamental, LA and UA stocks) over surviving
fish and across time.
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Table 2.2: Peak time of gyrodactylid infection (in days) across three different parasite
strains and three fish stocks for four body regions.

Parasite strains Fish Tail Lower region Upper region Head
Gt3 OS 11 11 15 15

LA 15 15 15 9
UA 11 11 13 11

Gt OS 17 13 15 15
LA 11 11 11 15
UA 9 9 17 9

Gb OS 7 13 17 15
LA 11 11 11 15
UA 5 7 9 13

2.3.3 Multi-state Markov model for gyrodactylid infection progression

Individual fish after being infected can transition among three discrete host states: fish

remains infected (state 1), fish alive with loss of infection (state 2) and fish dead (state

3), over the observation period. Let {Xi(t); t ≥ 0} be the state of fish i over time. We

suppose that {Xi(t)} is a time-inhomogeneous Markov chain with transition rate matrix

Q(t) = {qrs(t)} for r,s = 1,2,3. For each i = 1,2, · · · ,157, we have observations Xi =

(Xi0,Xi1, · · · ,Xi9) at times t0 = 0, t1 = 1, t2 = 3, · · ·, t9 = 17. The likelihood for the model

parameters θ = {qrs(t)} is given as

L(θ) =
157∏
i=1

Li(θ|xi), (2.3)

where Li(θ|xi) is the likelihood contribution for each fish i obtained as product of state

transition probabilities such that

Li(θ|xi) =
9∏
j=1

pxij−1,xij (tj−1, tj) (2.4)

with pxij−1,xij (tj−1, tj) = P{Xi(tj) = xij |Xi(tj−1) = xij−1}. We assumed that once a fish
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had lost its infection (state 2) or died (state 3), it cannot be reinfected due to the experi-

mental design (move back to state 1) and thus the corresponding rates are 0. Hence, the

transition rate matrix Q(t) for the multi-state model with the three discrete host states

is given as

Q(t) =



1 2 3

1 q11(t) q12(t) q13(t)

2 0 0 0

3 0 0 0

 with q11(t) =−q12(t)− q13(t),

where q12(t) > 0 and q13(t) > 0 are the rates at which an infected fish loses its infection

and dies at time t respectively. Here, we modelled the rate matrix Q(t) as a piecewise

constant function with change points t1, t2, · · · , t8. For t∈[tj−1, tj), we write Q(t) = Qj .

The transition probability matrix is

P (s, t) = (Pij(s, t))ij = (P (X(t) = j|X(s) = i))ij = e
∫ t
s
Q(u)du. (2.5)

The likelihood function for the model parameters is estimated using a maximum likelihood

method, fitted using the msm package in R [159].

2.3.3.1 Estimating the probability of transition and parasite virulence given covariates

We examine how variables such as fish sex, fish size, fish stock and parasite strain may

affect the transition rates Q(t). Let zi = {zi1, zi2, zi3, zi4} be the realized values of the

covariates (fish sex, fish size, fish stock and parasite strain) for fish i. Then, the transition

rate matrix entries qrs(t) for r,s= 1,2,3 and t∈[tj−1, tj) were taken as

qrs(t,zi) = q
(0)
rsjexp(βrs1zi1 +βrs2zi2 +βrs3zi3 +βrs4zi4) = q

(0)
rsjexp(βTrszi), (2.6)

where q(0)
rsj is baseline intensity, and βrs is a parameter vector. The likelihood is then

maximized over q(0)
rsj and the regression coefficients βrs; for r= 1 and s= 2,3. The hazard

ratios (HR) corresponding to each covariate are exp(βrs), for r = 1 and s = 2,3. The
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transition probabilities were estimated from qrs(t,zi) using equation 2.5. Given the four

predictors (fish sex, fish size, fish stock and parasite strain) and two possible transitions

from state 1 to either state 2 (q12) or state 3 (q13) in the proposed multi-state Markov

model (defined by equation 2.6), there are 162 (or 256) possible variable permutations or

models (which includes transitions independent of the underlying covariates).

A systematic variable and model selection was carried out using both Akaike information

criterion (AIC) and Bayesian information criterion (BIC) statistics (due to the relative

advantages of the two model selection criteria), where all possible variable permutations

or models were considered. The AIC statistic assesses the model’s goodness of fit while

reducing the complexity of the underlying parameters; whereas the BIC statistics pe-

nalise adding more parameters or strongly penalise free parameters compared to the AIC

statistic. According to Kuha [183], effective model selection can be achieved by using

both AIC and BIC statistics, predominantly to identify models favoured by both crite-

ria; although the study’s methodological design, the main research questions, and the

belief of a true model and its applicability to the study are crucial factors in determining

whether to utilise the AIC or BIC [310]. The best model (among identified parsimonious

or highly predictive models) was finally chosen based on a likelihood ratio test (LRT)

at a 5% significance level. Detailed results on the variable selection for the multi-state

model and its R codes (for reproducibility of results) can be found via the GitHub URL

link: github.com/twumasiclement/In-Silico-Modelling-of-Parasite-Dynamics.
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Let T1 be the time spent in state 1, given that the fish or the process is in state 1 at time

0. Then, the mean sojourn time in state 1 is given as

E(T1) =
∞∑
j=1

E(T1|leave in period j)×P(leave in period j), (2.7)

where

E(T1 | leave in period j) = tj−1 +E(Sj |Sj ≤ tj− tj−1) (2.8)

with

Sj ∼ exp(q12(j,zi) + q13(j,zi)),

and E(Sj |Sj ≤ tj − tj−1) is given by equation 2.11 according to Theorem 1. In equa-

tion 2.7, the probability that the process leaves in period j, denoted by P(leave in period j),

is computed such that

P(leave in period j) =



P (Sj ≤ tj− tj−1), j = 11−
j−1∑
j′=1

P(leave in period j′)
×P (Sj ≤ tj− tj−1), 2≤ j ≤ 7

1−
 7∑
j′=1

P(leave in period j′)
 , j ≥ 8

with

P (Sj ≤ tj− tj−1) = 1− e−(q12(j,zi)+q13(j,zi))(tj−tj−1) for j ≥ 1

in accordance to equation 2.10 under Theorem 1.

Theorem 1. Let Sj be the time spent by infected fish during period j. Suppose that

Sj ∼ exp(q12(j,zi) + q13(j,zi)) with probability density

f(Sj) = [q12(j,zi) + q13(j,zi)]e−(q12(j,zi)+q13(j,zi))Sj , Sj > 0
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where q12(j,zi) and q13(j,zi) are the transition rates from state 1 to state 2 and 3, respec-

tively, given the covariates zi for fish i; such that

E(Sj) = 1
q12(j,zi) + q13(j,zi)

.

Then,
E
[
Sj1{Sj≤tj−tj−1}

]
= E(Sj)− [tj− tj−1 +E(Sj)]e−(q12(j,zi)+q13(j,zi))(tj−tj−1) (2.9)

and P (Sj ≤ tj− tj−1) = 1− e−(q12(j,zi)+q13(j,zi))(tj−tj−1). (2.10)

Proof of Theorem 1.

For simplicity, let Sj ∼ exp(λ) with probability density f(Sj) = λe−λSj , Sj > 0 and

E(Sj) = 1
λ , where λ= q12(j,zi) + q13(j,zi). Suppose α = tj− tj−1, then

E
[
Sj1{Sj≤α}

]
=
∫ α

0
Sjf(Sj)dSj = λ

∫ α

0
Sje−λSjdSj

= λI, where I =
∫ α

0
Sje−λSjdSj .

Considering the integral I and using integration by parts,

I =
∫ α

0
Sje−λSjdSj = uv

∣∣∣∣α
0
−
∫ α

0
u′vdSj ,

where u= Sj , u′ = 1, v′ = e−λSj and v =− 1
λe−λSj .

=⇒ I =−Sj
λ

e−λSj
∣∣∣∣α
0

+
∫ α

0

1
λ

e−λSjdSj =−α
λ

e−λα− α

λ2 e−λα+ 1
λ2

=−1
λ

e−λα
[
a+ 1

λ

]
+ 1
λ2 .

Hence, E
[
Sj1{Sj≤α}

]
= λI = λ

(
−1
λ

e−λα
[
α+ 1

λ

]
+ 1
λ2

)
= 1
λ
−
[
α+ 1

λ

]
e−λα = E(Sj)− [α+E(Sj)]e−λα.

Substituting for λ and α gives the required equation 2.9 such that
E
[
Sj1{Sj≤tj−tj−1}

]
= E(Sj)− [tj− tj−1 +E(Sj)]e−(q12(j,zi)+q13(j,zi))(tj−tj−1).
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Also, the required equation 2.10 can be obtained such that

P (Sj ≤ tj− tj−1) = P (Sj ≤ α) =
∫ α

0
λe−λSjdSj

= λ
∫ α

0
e−λSjdSj = λ

[
−1
λ

e−λSj
]α

0

= 1− e−λα = 1− e−(q12(j,zi)+q13(j,zi))(tj−tj−1). q. e. d.

From Theorem 1, it can be deduced that

E(Sj |Sj ≤ tj− tj−1) =
E
[
Sj1{Sj≤tj−tj−1}

]
P (Sj ≤ tj− tj−1)

= E(Sj)− [tj− tj−1 +E(Sj)]e−(q12(j,zi)+q13(j,zi))(tj−tj−1)

1− e−(q12(j,zi)+q13(j,zi))(tj−tj−1) ,

(2.11)

where

E(Sj) = 1
q12(j,zi) + q13(j,zi)

.

Also, given the fish or process is in state 1, then the probability of moving to state 2 or

3 next is given as

P (transition from state 1 to s|leave state 1) =
∞∑
j=1

P (transition from state 1 to s|leave in period j)×P(leave in period j), (2.12)

where
P (transition from state 1 to s|leave in period j) = q1s(j,zi)

q12(j,zi) + q13(j,zi)

for s= 2,3. We assume that q12(t,zi) = q12(15, zi) and q13(t,zi) = q13(15, zi) for t≥ 15.

2.3.3.2 Results on the multi-state Markov modelling

We used the time-inhomogeneous multi-state Markov model to examine the significant

determinants of fish survival (fish sex, fish size, fish stock and parasite strain). The esti-

mated hazard ratios (HR) corresponding to each significant predictor of the fitted model

is summarized by Table 2.3. Figure 2.3 shows how the baseline transition rates from the

infected state (state 1) to uninfected (state 2) and dead (state 3) states changed over the
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observed time intervals. Figure 2.4 shows that the fitted multi-state model gives a very

good fit to the proportion of fish that will remain in each host infection status from the

onset of infection to the end of the study period.

The likelihood of infected fish fighting off their infection was significantly influenced by

fish size (HR=0.87, 95% C.I=0.76-0.99, p=0.037); such that larger fish are less likely to

clear off their infection. However, fish sex, fish stock and parasite strain did influence the

likelihood of infected fish dying, but not parasite extinction. Infected male fish were 52%

more likely to die compared to female fish (HR=1.52, 95% C.I=1.04-2.22, p=0.031). The

risk of death from the gyrodactylid infection among the OS fish (HR=0.24, 95% C.I=0.14-

0.39, p<0.001) was 76% less likely compared to UA fish stock. LA fish (HR=0.39, 95%

C.I=0.25-0.61, p<0.001) were 61% less likely to die from gyrodactylid infections rela-

tive to UA fish. Based on estimated hazard ratios, the rate of fish survival from the

gyrodactylid infections was higher among OS stock; followed by LA stock and then UA

stock. Fish infected by laboratory strain of G. turnbulli (HR=1.65, 95% C.I=1.03-2.65,

p=0.037) were 65% more likely to die compared to the wild strain. The wild G. bul-

latarudis strain (HR=1.64, 95% C.I=1.02-2.62, p=0.039) was also 64% more likely to

kill fish compared to the wild G. turnbulli strain. The estimates of the hazard ratios

corresponding to Gt3 and Gb relative to wild G. turnbulli strain suggest that there is no

significant difference in the likelihood of fish mortality between Gt3 and Gb strains. We

quantified parasite virulence by estimating both the rates of host mortality (Figure 2.5)

and host recovery (Figure 2.6) over time using the fitted multi-state Markov model.

We estimated the mean sojourn time in state 1 (the average amount of time fish can

remain infected) and the probability of next transition from the infected state (state 1)

to either recovery (state 2) or dead state (state 3) across all significant predictors (fish

sex, fish size, fish stock and parasite strain) of the fitted multi-state Markov model. For

any strain of gyrodactylid, large Ornamental female fish remained infected longer than

fish with any other attributes (Table 2.4). Fish infected with the wild G. turnbulli strain
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on average remained infected longer than fish infected with Gt3 or wild G. bullatarudis

strains before either recovering or dying, irrespective of the fish size, stock and sex. The

mean time for fish to remain infected with any parasite strain before fighting off their

infection or dying was between 6 and 14 days. It was found that an infected fish had a

higher probability of dying than recovering from the infection irrespective of the type of

gyrodactylid infection, fish stock, sex, and size (Table 2.5). Large male fish were more

likely to die than small or medium-sized male or female fish of any size; whereas the

chance of host recovery was higher among OS fish stock compared to the Trinidadian

fish stocks. The fish infected with wild G. turnbulli strain had a greater probability of

fighting off their infections than fish infected with either Gt3 or Gb strain.

Table 2.3: Estimated hazard ratios (HR) from the multi-state Markov model across sig-
nificant predictors (fish sex, fish size, fish stock and parasite strain) with their respective
95% confidence intervals (C.I).

Covariates Transitions HR Lower C.I Upper C.I p-value
Fish size 1→ 2 0.87 0.76 0.99 0.037
Fish sex

Male (Ref: Female) 1→ 3 1.52 1.04 2.22 0.031
Fish stock

OS (Ref: UA) 1→ 3 0.24 0.14 0.39 <0.001
LA (Ref: UA) 1→ 3 0.39 0.25 0.61 <0.001
Parasite strain
Gt3 (Ref: Gt) 1→ 3 1.65 1.03 2.65 0.037
Gb (Ref: Gt) 1→ 3 1.64 1.02 2.62 0.039
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Table 2.4: Mean sojourn time (in days) for fish to remain infected across significant
predictors (fish sex, fish size, fish stock and parasite strain) based on the fitted multi-
state Markov model.

Parasite Fish Male fish Female fish
strain stock Small Medium Large Small Medium Large

(11 mm) (17 mm) (26 mm) (11 mm) (17 mm) (26 mm)
OS 10.69 11.33 11.79 11.40 12.13 12.64

Gt3 LA 9.52 10.03 10.40 10.49 11.12 11.56
UA 6.78 7.04 7.22 8.06 8.43 8.69
OS 11.52 12.26 12.79 12.01 12.81 13.37

Gt LA 10.67 11.31 11.76 11.38 12.11 12.62
UA 8.32 8.71 8.99 9.49 10.00 10.36
OS 10.71 11.35 11.81 11.42 12.14 12.66

Gb LA 9.54 10.06 10.43 10.51 11.14 11.58
UA 6.81 7.07 7.25 8.09 8.46 8.72

Table 2.5: Probability of next transition from the infected state 1 to either the recovery
state 2 or the dead state 3 across significant predictors (fish sex, fish size, fish stock and
parasite strain) based on the fitted multi-state Markov model.

Male fish Female fish

Parasite Fish Small Medium Large Small Medium Large
strain stock (11 mm) (17 mm) (26 mm) (11 mm) (17 mm) (26 mm)

p12 p13 p12 p13 p12 p13 p12 p13 p12 p13 p12 p13

OS 0.460 0.540 0.357 0.643 0.266 0.734 0.565 0.435 0.460 0.540 0.358 0.642
Gt3 LA 0.338 0.662 0.249 0.751 0.177 0.823 0.436 0.564 0.335 0.665 0.247 0.753

UA 0.177 0.823 0.122 0.878 0.082 0.918 0.238 0.762 0.168 0.832 0.116 0.884
OS 0.586 0.414 0.481 0.529 0.378 0.622 0.683 0.317 0.587 0.413 0.483 0.517

Gt LA 0.457 0.543 0.355 0.645 0.264 0.736 0.562 0.438 0.456 0.543 0.355 0.645
UA 0.253 0.747 0.179 0.821 0.124 0.875 0.335 0.665 0.246 0.754 0.176 0.824
OS 0.463 0.537 0.359 0.641 0.268 0.732 0.567 0.433 0.462 0.538 0.360 0.640

Gb LA 0.340 0.660 0.250 0.750 0.179 0.821 0.438 0.562 0.337 0.663 0.249 0.751
UA 0.178 0.822 0.123 0.877 0.083 0.917 0.240 0.760 0.169 0.831 0.116 0.884
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Figure 2.3: Piecewise-constant plot of estimated baseline transition rates from infected
host state to uninfected and dead states at different observed time intervals in the time-
inhomogeneous multi-state Markov model.
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Figure 2.4: Comparison between observed and expected proportion of fish that will re-
main in each host infection state from days 1 to 17 after the onset of gyrodactylid infection
based on the fitted multi-state Markov model (mean absolute percentage error=7.85%).
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Figure 2.5: Predicted host mortality rates of parasite strains (Gt3, Gt and Gb) on the
fish stocks (Ornamental, LA and UA stocks) over time for both male and female fish
respectively.
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Figure 2.6: Predicted host recovery rates over time at different fish sizes (11, 14, 17, 20,
23 and 26 mm).
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2.4 Discussion

2.4.1 Insights into the gyrodactylid-fish system

In this study, we built on previous studies of the infrapopulation dynamics of three dif-

ferent gyrodactylid strains (two strains of G. turnbulli and one strain of G. bullatarudis)

among three different fish stocks (OS, LA and UA stocks) in relation to parasite habi-

tat preference, host survival and parasites’ virulence [see 129, 132, 56, 287]. Here, we

re-analysed empirical data to investigate further our understanding of these parasites’

spatial and temporal variation. Concerning parasite habitat preference, it was previously

hypothesised that there is a niche partition with G. turnbulli occurring caudally [129] and

G. bullatarudis rostrally [132]. We have confirmed here that the microhabitat preferences

of the G. turnbulli (laboratory and wild type) and G. bullatarudis strains depend on the

type of host, and can change over time for the wild G. turnbulli strain. A quantitative

measure of the significance of differences in spatial parasite distribution over time and

across different fish stocks has been established using a Multivariate Kruskal-Wallis test

and associated post-hoc statistical tests. In the previous analysis of the existing empirical

data, a binomial logistic regression was employed to estimate survival rates such that fish

classified as either dead or alive at the end of the observation period [56]. Information

about whether fish alive either remained infected or recovered from the infection was

not included in the earlier model, which could have impacted the significance of some

covariates and other estimates. In addition, the virulence of the gyrodactylid strains was

only measured by the proportion of host casualties [56]. Here, using a more sophisticated

mathematical model, we have been able to include host recovery, and fish sex was identi-

fied as a significant factor of host survival compared to the previous study [56]. We have

also estimated for the first time, the average duration that fish can remain infectious

and the probability that infected fish will either recover or die from each of the three

parasite strains across the three guppy populations, sexes, and different fish sizes (small,

medium and large sizes). We have quantified both host recovery and mortality over time
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as relevant metrics of parasite virulence for the gyrodactylid-fish system.

As noted in this study, the captive-inbred G. turnbulli strain preferred the tail of three

different fish stocks (Ornamental, Lower Aripo River and Upper Aripo River stocks);

whereas the wild G. turnbulli initially preferred the tail but then switched to the head.

The wild Gyrodactylus bullatarudis consistently showed a rostral preference on all fish.

The mean intensity of parasites was higher on OS and LA fish than UA stocks across all

body regions over time, probably related to the higher mortality of the UA fish. Lower

numbers of parasites on the pectoral, pelvic, dorsal and anal fins compared to the tail,

lower body, upper body, and head regions might be affected by fish being maintained in

isolation or due to difference in the surface area of these body regions. Individual host

isolation meant there was no opportunity for host-to-host transmission to occur via the

fins [as suggested by 129]. Thus, the parasites might be making a behavioural decision

to enhance their fitness in response to the absence of alternative hosts and or reduce

competition at small-sized body regions over time. The peak time to infection varied

spatially across parasite strains and fish stocks. Such variation likely represents a trade-

off between successful parasite exploitation and the host’s localised immune response

[reviewed by 15]. Parasite distribution on infected hosts could also be driven by multiple

abiotic and biotic factors [137, 141, 200, 257].

The fitted multi-state model revealed that fish sex, fish stock and parasite strain in-

fluenced fish mortality. LA and OS fish stocks survived for longer than UA fish. The

Ornamental guppy population was infectious longer than the Trinidadian fish stocks (LA

and UA fish) based on the estimated average duration of infection, however, the OS

guppies had a higher chance of host recovery compared to the LA and UA fish stocks.

The OS guppies were twice as likely to fight off the infection even with a higher infection

mean time than the Trinidadian fish stocks due to superior innate immune defences or

immunocompetence towards single-species infections [56, 203, 303, 304]. Larger fish were

infectious over a longer period than small or medium-sized fish, whereas female fish from
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all three guppy populations experienced a longer duration of infection than male fish. It

was found that fish infected by the wild strain of G. turnbulli on average remained infected

longer than the laboratory G. turnbulli strain and the wild G. bullatarudis strain. Ad-

ditionally, probability of host recovery from the wild G. turnbulli strain was consistently

higher among all fish stocks and sexes. Previous experiments showed that LA guppies

have a superior immune response to the UA fish [303]; whilst the Ornamental guppy

stock performed better in parasite resistance than the UA stock [56]. This current study

revealed that a longer period of host infection leads to a higher chance of host recovery

and a smaller chance of host mortality. Thus, the low mean parasite intensity and low

infection duration among UA guppies compared to OS and LA stocks, explains why UA

fish were more likely to die over time relatively. As in the previous study, the laboratory

strain of G. turnbulli and wild strain of G. bullatarudis were more likely to cause fish

mortality than the wild strain of G. turnbulli, but we found that infected male fish were

twice as likely to die relative to female fish. The main reason for this new finding of fish

sex as a significant determinant of host mortality is the use of a multi-state model that

is able to incorporate host mortality and recovery simultaneously. Other parasite-fish

studies have identified fish sex as a significant factor of host mortality [318]. Only fish

size significantly influenced the rate of infection loss; namely larger fish acquired more

parasites as infections progressed resulting in low parasite extinction compared to smaller

fish [306]. Host recovery is thus dependent on host size, with probability of infection loss

low but increasing gradually over time. Nevertheless, it was found that the chance of

host mortality was more likely to occur than host recovery irrespective of host size.

Parasite virulence was described in terms of host mortality and recovery. We found that

host mortality and host recovery are significantly time-dependent and generally higher to-

wards the end of the infection period. Previously, Gt3 was identified as causing most host

deaths, followed by G. bullatarudis and then the wild G. turnbulli; but their respective

host mortality rates were not quantified, nor did we previously consider how this changed

over time, nor the effect of the different fish stocks [56]. Here, we found no significant

56



difference in host mortality rates between Gt3 and Gb parasite strains over time. Male

fish from the three different guppy populations (OS, LA and UA stocks) consistently had

a higher rate of host mortality than female fish stocks over time. This could be explained

by the fact that the female fish are infectious longer than the male fish as revealed by the

estimated mean sojourn time of infection; and thus, the female host populations are able

to develop innate or adaptive host immunity faster than the male fish stocks over time.

In summary, both host-parasite and strain-specific microhabitat preferences were identi-

fied. The multi-state Markov model was also usefully employed to provide temporal and

additional insights into host survival and parasite virulence (described by host mortality

and recovery). The multi-state Markov model assumed that fish could not be reinfected

after infection loss due to the study’s experimental design, but this could be adapted in

future studies to include transmission. The model’s results may change due to reinfec-

tion in a social setting where population mixing between hosts is possible. The developed

time-inhomogeneous multi-state Markov model could be extended and applied to a range

of different host-parasite systems.

2.4.2 Mathematical implications of the study findings

The current study could inform the modelling of other biological systems and survival

analyses where the entire infection history of an individual (or host) is of interest. Multi-

state models provide a robust approach to modelling almost any kind of longitudinal

time-to-event data. In the current multi-state Markov model, we could not include spatial

information and other relevant information about parasite fecundity, age group (young or

old parasite), parasite mortality, parasite mobility, and host immune response while ex-

ploring host survival and parasite infrapopulation dynamics. Hence, a more sophisticated

(individual-based) stochastic simulation model including these data will be needed to un-

derstand the gyrodactylid-fish system better. The findings from the spatial-temporal

parasite dynamics will impact some aspects of the sophisticated stochastic simulation
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model (for the gyrodactylid-fish system) in several ways, including the specification of

the model’s discrete states and model assumptions as well as other specific hypotheses

to investigate (as presented under Chapter 6). Such a stochastic model (conditioned on

relevant information such as fish sex, fish size, fish type, and parasite strain) should be

able to simulate the spread of different age parasites over the external surfaces of fish

over at least a 17-day infection period with population carrying capacity (dependant on

host size and area of host body regions).

Unlike the multi-state Markov model, the novel individual-based stochastic model can

investigate specific hypotheses of interest or open biological questions concerning gy-

rodactylids’ birth, death, mobility rates of the different parasite strains, and immune

responses of different host populations (amongst others). Furthermore, the stochastic

simulation model can predict the infrapopulation dynamics of the gyrodactylid-fish sys-

tem beyond the standard 17-day experimental period and be modified to investigate

mixed-gyrodactylid infection dynamics on a single host (which is unknown to biologists).

Based on findings from the spatial and temporal parasite dynamics of the Gyrodactylus

species (as a result of lower mean parasite intensities at some host body areas as observed

in this study), the stochastic individual-based model must be set up such that for each

fish host, the eight body regions (tail, lower body, upper body, anal fin, dorsal fin, pelvic

fins, pectoral fins, and head) must be re-categorised into four major body locations: tail,

lower region (comprising of the lower body, anal fin, pelvic fins and dorsal fin), upper

region (made up of the upper body and pectoral fins) and the head (as observed in Fig-

ure 2.2).

The multidimensional stochastic model should be parameterised by young and older par-

asites’ birth, death, and movement rates conditioned on the host’s immune response and

parasite strain. Host mortality should be assumed to occur at a rate proportional to the

total number of parasites on fish (and conditioned on host sex and size). However, the
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microhabitat-specific immune responses occur as a function of the parasite abundance in

each of the four major body regions of the host (and are dependent on host sex and fish

type). The stochastic model should also include parasite body preference for moving back

and forth on the host (conditioned on parasite strain). Consequently, the sophisticated

stochastic simulation model will help answer other open biological questions as well as

serve as a more realistic simulator to aid in the data-generation process of this system

and conduct (numerical) biological experiments that are difficult to explore or control

within standard experimental settings.

In general, the statistical tests and the multi-state model used in this study could be

helpful for other host-parasite systems. Specifically, the rank-based multivariate Kruskal-

Wallis test (with its post-hoc tests) and the time-inhomogeneous multi-state Markov

model could be adopted for other biological systems to investigate the spatial-temporal

parasite distribution as well as host survival. We did not estimate other relevant epidemi-

ological parameters (such as the probability that a recovered host will be reinfected or die

and the mean sojourn time for a recovered individual to remain uninfected or reinfected)

from the multi-state model, as for this study, we focused just on parasite infrapopula-

tions. Future studies will examine host-to-host transmission to holistically understand

the spread of gyrodactylid parasites and the host-parasite interactions among different

populations of fish.
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Chapter 3

Review of mathematical models for host-parasite systems

3.1 Introduction

Mathematical modelling of biological or host-parasite systems has seen tremendous de-

velopments and broad applications in the field of theoretical and applied ecology [30].

Mathematical models give a logical framework for developing, testing, and evaluating

ecological hypotheses and biological systems. Most of these classical models are applied

either at the individual or population level. Hence, these models can be categorised as ei-

ther individual-based models (IBMs) or population-based models (PBMs). IBMs strictly

model each individual by keeping track of the state of each member of the population;

whereas, PBMs keep track of the total number of individuals in each state. However,

common modelling setbacks are primarily attributed to the underlying assumptions made

about the models, which are either too simple or too complex. Consequently, it makes

some mathematical models unrealistic with respect to the biological or host-parasite sys-

tem under study [77]. All the mathematical models reviewed in this section and under

subsequent sections of Chapter 3 are models developed from previous studies.

Even though individual hosts or parasites may differ genetically, physiologically, or be-

haviourally, one of the most common modelling assumptions in PBMs is that the dis-

tribution of hosts’ parasites can be aggregated into a single state variable that signifies

population size [113, 322]. Many traditional ecological or epidemiological models, such

as logistic, Lotka-Volterra or predator-prey, and compartmental epidemic models, as-

sume that all individuals (within a subgroup) are identical and can be lumped together

to represent the population size (as a single state variable). However, the single state

variable modelling principle is only valid in a practical sense from two different perspec-
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tives. That is i) when there is no information loss by considering population averages or

aggregations or ii) all parasites or individuals represented by a population number are

identical. Individual variations between organisms are recognised in this viewpoint, but

they are irrelevant in the context of the modelling problem under investigation; therefore,

models that average the entire distribution of the individuals are statistically sufficient.

Nonetheless, the setbacks regarding population aggregation are that biological organisms

are naturally distinct in physiological and behavioural traits (determined by their spe-

cific genetic, age structure and other environmental factors); and for spatially dependent

systems, organisms or individuals mainly affect other organisms within their spatial-

temporal neighbourhood [60, 219]. Also, a small number of hosts are infected with many

parasites, while most hosts are either parasite-free or have a lower parasite load over time.

The origin of this nearly universal pattern is critical to our knowledge of host-parasite

interactions, and it significantly impacts various aspects of their ecology and evolution.

Nevertheless, the data-generating processes that characterise parasite aggregation in the

standard statistical framework or parasitological data are mostly not explicitly described

or further explored [113]. Consequently, many studies have been done to bridge all these

modelling gaps associated with PBMs by adopting IBMs through computer simulations

or in silico models [153]. According to Metz and Diekmann [219], individual-based mod-

elling approaches can be broadly categorised into either i) individual state (or i-state)

distribution and ii) i-state configuration models. The mathematical modelling of the

i-state distribution methods are dominated by classical transition matrix (e.g., Markov

models [298, 328]), and partial differential equation (e.g., reaction-diffusion equations for

Lotka-Volterra competition system [222]) approaches. In contrast, Monte Carlo com-

puter modelling is the central methodology used in the i-state configuration approach

(e.g., stochastic simulation algorithms [12, 36]). The classification of individual-based

ecological models into i-state distribution and i-state configuration models reflect only a

technical component of the model structure [219]. Thus, it implies that there are two

numerical approaches to define individuals in the model. Nonetheless, this classification
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provides little useful information from a biological standpoint, as well as in terms of the

model’s ability to describe and predict system dynamics [301]. Incorporating evidence

from the individual level to investigate processes at the population, community, and

ecosystem levels can also improve PBMs.

In summary, IBMs have advantages over PBMs making them relevant to adopt in both

epidemiological and parasitological studies [30]. Additionally, IBMs can integrate the

intrinsic stochastic nature of infections, possible interactions among parasites and their

hosts, and other events such as host immune response. Although IBMs appear more

useful and accurate than PBMs due to their flexibility and modelling accuracy, they

require enormous computational efforts since birth, death, and possible movements are

tracked for each parasite and plausibly their host, especially for spatially explicit IBMs.

Despite the advantages of IBMs in modelling host-parasite systems, only a few have been

developed or applied to parasitological studies, for instance the gyrodactylid-fish system,

since they require in-depth information about the biology of both parasites and their host

[107, 198, 306]. Also, the tractability of some parasites and their host populations makes

them highly preferable for IBM [306].

In general, modellers require expert knowledge from biologists to summarise a biological

system of interest, according to the study’s goal, to model the biological system [96].

Thus, the biological aspect of model building entails providing observed or experimental

data, expert opinion, or knowledge of similar systems. In contrast, the modeller side fo-

cuses on selecting and adapting existing methods or developing new ones appropriate for

the system and biological questions under investigation. The intersection of biology and

mathematical modelling is vital for defining the model’s framework (within or between

hosts, populations, type of parasitic infection, etc.) and identifying general knowledge

alongside implausible or contentious aspects [96]. The biological hypotheses of interest

can then be formulated. Thus, biological knowledge of the host-parasite system under

investigation provides the needed elements to formulate and evaluate mathematical mod-
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els; whereas, modelling leads to the formation of novel hypotheses and the identification

of relevant information and research gaps that should be examined through experimental

or observational research. Figure 3.1 is a conceptual framework summarising the rela-

tionship between the knowledge of the biological system and the mathematical model

together with model fitting and hypothesis testing.

Figure 3.1: Mutual input of biology and mathematical modelling [adapted from 96].

The subsequent sections of Chapter 3 are organised as follows: Section 3.2 gives a brief

history about mathematical modelling of infection dynamics for host-parasite systems;

whereas, section 3.3 discusses the modelling of host-parasite interactions for both mi-

croparasitic and macroparasitic infections, and reviews existing PBMs and IBMs for

modelling of host-parasite systems. Finally, section 3.4 presents previous works on the

modelling of Gyrodactylus infections.

3.2 Brief history of host-parasite mathematical models

Over the years, mathematical models of parasitic infections have aided in predicting

host-pathogen interaction outcomes, testing pertinent hypotheses, and assessing general

or unknown knowledge regarding disease transmission and evolution in various scenarios

[8, 172]. However, they have not reached their full potential due to their underlying limi-

tations, including their robustness and model assumptions. Consequently, it has resulted

63



in the development of new and improved methodologies in recent times. Furthermore,

with the rise in the frequency of emerging and re-emerging infectious disease outbreaks in

recent decades, the use of mathematical models to generate short-term and long-term pre-

dictions have grown [65]. Hence, it is necessary to evaluate the assumptions that underpin

disease transmission and control models as well as how they influence estimates of essen-

tial epidemiological parameters and epidemic projections. Their applications range from

parasite population biology and between or within-host dynamics to implementing inter-

vention strategies against pathogens of public and animal health interests. Nonetheless,

it was not until Louis Pasteur (the founder of modern immunology) developed the “germ

theory of diseases”, which asserts that micro-organisms known as pathogens or germs

(e.g., bacteria, viruses, fungi, and viroids, amongst others) can cause disease transmis-

sion, that the scientific study of infectious disease epidemiology began in earnest [98].

Then, in 1890, Robert Koch (also known as the father of microbiology with Louis Pas-

teur and as the father of medical bacteriology) discovered a vaccine therapy (known as

tuberculin medication for tuberculosis) based on the germ theory [114, 185].

The study of parasitic infections was pioneered by John Graunt, who first applied basic

numerical techniques (without the use of a mathematical model) for competing risk anal-

ysis of several diseases and other causes of death over 20 years in a study on the Bills

of Mortality for London parishes (which included diseases such as smallpox, swinepox,

convulsion, plague, and measles, amongst others) as early as 1662 [109]. In the twentieth

century, Chiang and other modellers formally developed mathematical models for com-

peting risk analysis for human and animal mortality [63, 95, 277]. Daniel Bernoulli is

credited with being the first to use a deterministic model based on a differential equation

for the number of survivors in a cohort of individuals subjected to smallpox epidemic

disease in 1760, where he also investigated the efficacy of variolation treatments against

smallpox [8]. In 1906, Hamer’s study of measles led to the popular term known as the

“law of mass-action”, the fundamental principle for the compartmental model of dis-

ease spread in mathematical epidemiology, under the homogeneous-mixing assumption
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[8, 123].

This law in infectious disease dynamics among human and animal populations assumes

that the infection transmission rate in a given well-mixing population is proportional

jointly to the number of infected (I) and susceptible (S) individuals; such that new infec-

tions occur at a rate equal to either βSI (for density-dependent transmissions) or βS I
N

(for frequency-dependent transmissions) where β is the transmission or effective contact

rate (which depends on the per capita contact rate and transmission probability) and

N is the total population size [320]. The effective contact rate (β) can also be age-

dependent, and methods for estimating age-stratified contact rates exist in the literature

[see 241]. It can be challenging to fit sophisticated or multi-parameter compartmental

models to various data sources with the needed uncertainty estimates for major model

parameters of interest (including β). Given a (possibly multi-parameter) compartmen-

tal model (whose likelihood function is mostly mathematically intractable or unknown),

likelihood-free methods of inference such as bootstrap filter [112], approximate Bayesian

computation [209, 288], and synthetic likelihood methods [325] (amongst others) have

been proposed in the literature to estimate underlying model parameters (including the

effective contact rate).

Density-dependent transmission models assume that transmission scales linearly with

population density (where the population density is the population size per area) and

that the mean number of contacts with infected individuals is dependent on the density;

in contrast, frequency-dependent transmission models assume that infection transmission

or the rate of contact is independent of both population size and the density [29]. In both

classes of models, homogeneous mixing is assumed with no specified geographical or social

structure [101]. The mode of transmission is frequently used to guide the choice between

these two models, though the transmission mechanism is not explicitly considered in de-

riving their respective infection rates. Heesterbeek [144], on the other hand, revealed

that the mass-action principle in epidemiology was formally established by Ronald Ross
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and Anderson McKendrick (in 1902), who arrived at the concept simultaneously but via

distinct paths (contrary to what has been believed over the years). More specifically,

Anderson McKendrick identified the universal application of the mass-action principle,

whereas Ronald Ross developed it from an innovative chemical standpoint. Ross fur-

ther constructed a continuous-time model based on Hamer’s discrete model for studying

malaria disease infection [8]. In a nutshell, the law of mass-action made epidemiology a

science [144]. Then, in 1927, Kermack and McKendrick proposed the epidemic thresh-

old theorem and developed basic compartmental or deterministic models for examining

the transmission dynamics of viral and bacterial infectious agents within a population of

hosts, amongst other [86, 171]. Although the classical compartmental models such as the

Susceptible-Infectious-Removed (SIR) models are typically referred to as the Kermack

and McKendrick models, it has been pointed out that the 1927 paper discusses a more

generic framework with fewer assumptions. For a general overview of SIR models, see a

few works by Bohner et al. [42], Satsuma et al. [266], and Weiss [314].

Reed and Frost, and Major Greenwood developed discrete-time stochastic models in 1928

and 1931, which proceeded via generations of infectives [74]. Bartlett [25] investigated a

continuous-time stochastic SIR model, which sparked a vast literature. Finally, in 1931,

Greenwood [116] proposed the idea that randomness could play a role in infection trans-

mission and that transmission could happen or not happen with a certain probability

during a given contact. Furthermore, in a study on the mathematical theory of infec-

tious diseases and its applications in 1957, Bailey [14] presented both deterministic and

stochastic epidemic models, as well as the estimation of their parameters. The basic

reproduction concept (which estimates the average number of infected contacts per in-

fected individual) had its origins in the work of Ronald Ross, Alfred Lotka, and others;

however, it was first applied in epidemiology in 1952 by George Macdonald (who con-

structed population models of the spread of malaria disease) [285]. For a more detailed

historical perspective about the basic reproductive number (R0), which is a pivotal epi-

demic quantity or an epidemic invasion criterion (for R0 > 1), see works by Heesterbeek
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[145]. The three core principles underpinning modern theoretical epidemiology are the

mass-action principle coupled with the epidemic threshold theory and randomness in dis-

ease transmission [96]. The use of mathematical modelling has increased substantially

in the last two decades across all areas of infectious disease research, from ecology, biol-

ogy, microbiology and pathogen evolution to large-scale epidemiology and public health

[9, 18, 85, 87, 168, 208, 328].

3.3 Literature on modelling infection dynamics

3.3.1 Introduction

Each member or individual of a population is classified according to their state (i.e., the

characteristics that influence their ability to acquire and spread infection). At a minimum,

an individual’s state indicates their disease status, such as whether they are susceptible to

infection, infectious, or have recovered from infection. Other characteristics, such as age

or spatial location, may be necessary to characterise the states of individuals, depending

on the level of information used by our host-parasite models. Generally, depending on

the location of parasites’ microhabitat, they can be categorised as either endoparasitic

(i.e., parasites that live inside the host such as intercellular parasites like parasitic worms,

protozoans of vertebrates, and other helminths, etc.) or ectoparasitic (i.e., parasites that

reside outside the host such as monogenean parasites, arthropods, and other protozoans,

amongst others). These groups of parasites can also be either microparasitic or macropar-

asitic in relation to their size, generational time length, and mode of reproduction.

The classification of ecological models as either IBM or PBM can be much more meaning-

ful when based on some biologically essential attributes of the models. Four appropriate

classification criteria are [301]: i) the extent to which the complexity of the life cycle of

an individual (e.g., host or parasite) is reflected in the model, ii) whether or not resource

dynamics (such as food, space, or habitat quality) are explicitly taken into account, iii)

67



whether or not real or natural numbers are used to represent population size, and iv)

the degree to which variations among individuals of the same age is taken into account.

These criteria can be used to classify most theoretical ecology models that describe the

dynamics of ecological systems. Hence, PBMs and IBMs are two common disease mod-

elling frameworks for host-parasite systems. Despite the disparities between PBMs and

simulation-based IBMs, researchers have discovered that the two frameworks share sim-

ilarities and other hybrid models which combines IBMs and PBMs exist by leveraging

their respective advantages [311]. A thorough discussion about the similarities between

IBMs and PBMs, as well as the application of some existing hybrid models, can be found

in a study by Gallagher [108]. For disease modelling, IBMs are effective when limited

knowledge about a developing outbreak, and thus, IBMs that sufficiently reflect reality

and provide useful insight for decision-making are desired by mathematical modellers

[44]. The modelling of host-parasite systems (for both microparasitic and macroparasitic

infections) together with an overview of existing population-based and individual-based

models of host-parasite systems are presented in sections 3.3.2–3.3.4.

3.3.2 Modelling host-parasite systems

Mathematical models help better understand how infections spread within or between

host populations and provide a simple summary of epidemiological data [28]. Biological

or general ecological systems may include the interaction between competitors for limited

resources (e.g., food), infrapopulation or interpopulation variations, the effects of mu-

tualists or the trophic effects of predator-prey interactions. The link between parasites

and host populations can be viewed as an extension of the predator-prey relationship in

general [231]. Infectious agents are categorised into microparasites and macroparasites,

partly dependent on the type of model required to characterise infection transmission.

Thus, to model disease infection among animal or human populations, it is necessary to

distinguish between the type of parasitic infection. Ecologists and epidemiologists bene-

fit from the distinction between macroparasites and microparasites since these groups of
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parasites vary considerably in terms of within-host replication, ability to induce a lasting

host immune response, and how they are quantified in natural populations. The choice of

the modelling approaches for host-parasite interactions is thus partly dependent on the

classification of parasitic infection. In addition, in-depth knowledge about the system is

crucial in modelling host-parasite interactions and formulating relevant hypotheses (refer

to Figure 3.1). Hence, modelling approaches are utilised in various ways depending on

what is known about the biological system under study and the research questions to be

addressed [146].

The first goal to model host-parasite interactions of any biological system could be to

summarise existing knowledge and build a formal representation of the system to make

it easier to grasp the underlying complex processes and establish general qualitative as-

sumptions with the help of existing empirical data [96]. For instance, prior to developing

a novel stochastic simulation model to understand the gyrodactylid-fish system better,

the current study had to understand the biology of the system (see section 1.4) and de-

scriptively explore the spatial-temporal parasite dynamics of Gyrodactylus on their fish

host as well as test other hypotheses using multi-state Markov model and advanced sta-

tistical tests (see Chapter 2). Possible model representations of general biological systems

include but are not limited to analytical formulations (e.g., deterministic dynamical sys-

tems, stochastic processes, etc.), computer-based or simulation-based models (e.g., Monte

Carlo simulation algorithms), and graphical models (e.g., social network models, decision

trees and directed or undirected graphical models, amongst others).

After model identification and understanding the biological system being modelled, the

second aim is to determine the relative importance of each of the numerous mechanisms

involved in system dynamics (important, secondary, or irrelevant) [96]. A detailed de-

scription of the system is then required with explicitly stated assumptions and biologically

relevant model parameters. The model can then test biological hypotheses (explaining

the model’s structure, parameter values, or underlying transition function) by comparing
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distinct sub-models dynamical behaviour that includes or excludes the hypotheses. The

multi-state Markov model (described in section 2.3.3) and other investigations about

the infrapopulation dynamics of the three different Gyrodactylus strains (presented in

section 2.3.2), for example, gave temporal and extra insights into parasite virulence, mi-

crohabitat preferences, host survival, and the significant factors influencing these disease

outcomes across three different guppy populations. Consequently, the findings helped

define novel biological questions, other model assumptions, and the model parameters to

consider in the complex stochastic model for the gyrodactylid-fish system (developed in

Chapter 6).

Third, suppose the mathematical model has been fitted or calibrated and validated based

on the observed empirical data of the underlying biological system [96]. In that case, it

can be used to further forecast future system states based on observed previous states

and assumptions about future mechanisms. A typical example is that biologists usually

study the infrapopulation dynamics of Gyrodactylus parasites on their host within a 17-

day infection period; whereas, very little is known about the infection dynamics beyond

these observation periods. Hence, with the help of a robust simulation model, predictions

beyond the standard 17 days can be made using the fitted model. Of course, quantitative

forecasts are still subject to some uncertainty following model validation; however, qual-

itative forecasts can be offered for several situations (only if past data are unavailable).

Moreover, specific complex explorations that may be difficult to investigate under exper-

imental settings (such as studying the infection dynamics of mixed-gyrodactylid strains

on a single host) can be experimented with using the fitted model or modified model

version (especially for agent-based models). Sections 3.3.2.1 and 3.3.2.2 present mathe-

matical models for modelling microparasitic and macroparasitic infections, respectively.

Figure 3.2 is a graphical summary of the modelling process of biological systems from

model identification to testing hypotheses and making predictions based on the fitted

mathematical model.
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Figure 3.2: Graphical summary of the modelling process of biological systems.

3.3.2.1 Modelling microparasitic infection

Microparasites are small-sized infectious agents that reproduce directly within the host

and have a short generation time (e.g., viruses, pathogenic bacteria, protozoa, etc.) [289].

Depending on hosts’ immunocompetence, they often gain immunity to infection over time,

and infection duration is usually short compared to the host lifespan. Microparasitic infec-

tions can also be transmitted directly or indirectly through an intermediary host. Math-

ematical models of microparasitic infections are mostly population-based models which

classify individuals in a closed population into three main categories or sub-populations:

susceptible (where members of the population are at risk of infection), infected (where

members of the population who are infectious after exposure), and recovered or immune

(where members of the population are either dead or cannot be reinfected), and monitor

temporal changes in the number of hosts within each group under the assumption that

the entire population are homogeneously mixing. If the host survives the infection, it

can either transition into the recovered class and become immune for a short time (or

indefinitely in certain situations) or relapse into the susceptible class.

These types of models for host-microparasite dynamics, initially established by Kermack

and McKendrick [171], are called compartmental models [8]. The basic fundamental

microparasite model (given by equation 3.1 and outlined by Figure 3.3) under the density-
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dependent transmission assumption (where transmission or contact rate depends on the

population density such as directly transmitted diseases), was developed by Anderson

and May [7] with differential equations defined as:

dX

dt
= aN − bX−βXY +γY

dY

dt
= βXY − (α+ b+γ)Y,

(3.1)

where dX
dt is the rate of change of susceptible host populationX(t), dYdt is the rate of change

of infected host population Y (t), and N(t) =X(t) +Y (t) is the total host population at

time t. Here, the per-capita birth rate of the host does not depend on the infection, and

the net birth rate is given as aN (where a is the per-capita birth rate of the host). In

addition, susceptible individuals are infected at rate β (where β represent the transmission

coefficient) and die at rate b (where b is the per-capita death rate of the host); whereas,

the infected host population die at a rate of b+α, with α denoting the parasite-induced

host mortality rate. Finally, if infected individuals survive the infection, they relapse into

the susceptible state at rate γ (where γ is the recovery rate). Like other compartmental

models, if the recovery rate (γ) is constant, then the distribution of infectious periods

is exponential with mean 1
γ . This assumption corresponds to the probability of recovery

being independent of the time since infection in biological terms. In most applications,

this is far from reality, but it simplifies the model formulation substantially. Otherwise,

keeping track of when each infective acquired the infection is required.
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Figure 3.3: Conceptual framework of a simple host-microparasite interaction [adapted
from 8].

This model was later modified and expanded to incorporate: i) parasite-induced host

reproduction reduction, ii) infection latent periods, iii) vertical transmission, iv) dis-

ease and stress, v) density-dependent constraints, and vi) free-living infective stages

[81]. Their simple model captured the essence of the dynamical interaction between

invertebrate hosts and the microparasites they directly transmit by integrating parts

of traditional epidemiology (where the host population is constant) and prey-predator

dynamics (which conventionally emphasise how prey and predator populations may be

regulated by their interaction) [7]. Transmission of some microparasites can also be rel-

atively constant throughout a wide range of host populations, a mechanism known as a

frequency-dependent transmission where transmission or contact rate is independent of

the population density (e.g., vector-borne and sexually transmitted diseases) [294]. Due

to frequency-dependent transmission in such instances, there is no threshold density for

pathogen invasion; in theory, such pathogens can survive at arbitrarily low host densi-

ties. Figure 3.4 briefly outlines microparasitic infection dynamics within host populations
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from susceptible state to recovered or removed state. Nonetheless, the number of dis-

tinct groups can be increased or decreased depending on the complexity of the modelling

problem and the disease infection under study. Thus, several variants of these compart-

mental models (with or without demography) and their diverse applications exist in the

literature [see 48, 218, 262, 273]. Within the susceptible-infected (SI) framework, com-

partmental models can be as simple as the classical SI model or as quite sophisticated.

For instance, Pandey et al. [233] described an epidemic model with 26 compartments.

MSEIR, MSEIRS, SEIR, SEIRS, SIR, SIRS, SEI, SEIS, SI, and SIS are other

typical compartmental models, where M refers to passive infant immunity, and E rep-

resent the exposed state but not yet infectious [146]. Compartmental models can be

constructed deterministically using ordinary differential equations (ODEs) and difference

equations or stochastically using continuous-time Markov chains and stochastic differen-

tial equations (SDEs). For example, the ODE epidemic model serves as a framework

for developing equivalent stochastic models and a point of comparison with stochastic

epidemic models [4]; thus, these two classes of models are different perspectives on the

same infectious dynamics.

Disease infections are naturally stochastic, especially at the individual level, and stochas-

tic models thus aid in understanding that random fluctuations can explain variations

in disease transmission [28]. However, stochastic epidemic models are best adapted to

studying infection dynamics in small populations, unlike their deterministic versions, and

explaining infection dynamics at early stages. The prevailing view is that deterministic

models should be thought of as approximations to stochastic models, and thus, the de-

terministic models are rightly infinite population limit of their stochastic models with

homogeneous or non-homogeneous mixing populations [184, 261]. According to Kurtz

[184], the approximation holds when all population sizes (i.e., the sizes of all subgroups

defined in the model) are large, and the number of contacts made by infected individuals

throughout their infectious phase is high; nonetheless, these assumptions are frequently

inappropriate in practice. Appropriate adjustments to the basic SIR model extend the
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model’s applicability by improving the consistency of the model assumptions with reality.

Moreover, each extension necessitates additional information, such as community sizes

or group contact patterns. As a result, it is vital to establish a careful balance between

sophisticated and overly simplistic models. Random fluctuations can address minor fea-

tures of stochastic models; thus, they can be developed with fewer details.

The desirability of deterministic models stems from the fact that they are mathematically

more tractable than their stochastic counterparts [28]. However, many assumptions are

made in compartmental models, including that hosts are uninfected at birth, that the dis-

ease does not affect host fecundity, that hosts can be immune to the disease over time, and

that host populations are large such that stochastic processes can be ignored. Further-

more, because the growth of microparasites occurs quickly after exposure within the host,

the intra-host infection dynamics can be disregarded when modelling with compartmental

models or other population-based models. Infected hosts may die before microparasites

can produce many new infections if they are excessively virulent, whereas non-virulent

pathogens can become highly abundant but have low population-level effects. Therefore,

simple microparasite models can provide essential insights for considering pathogen risks

to wild or captive populations. For instance, models indicate that the effects of infec-

tious microparasitic disease on the host populations are influenced by several factors,

including pathogen effects on individual host fitness. In addition, models for micropara-

sitic infections can produce important infection control predictions, such as the effects of

vaccination or culling on the likelihood of pathogen eradication [8].
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Figure 3.4: Infection dynamics of micro-parasitic infection in human and animal popu-
lations [adapted from 170].

3.3.2.2 Modelling macroparasitic infection

In contrast to microparasites, macroparasites have no direct reproduction within the host

(e.g., parasitic arthropods, helminths, etc.) and are usually larger with more extended

generations times [8]. For macroparasites, transmission stages (eggs and larvae) are pro-

duced and released into the environment or their host population. Extensive empirical

studies have revealed that macroparasites are virtually always aggregated across host

populations, with most individuals harbouring modest numbers of parasites but a few

individuals hosting many [275]. According to experimental research, the magnitude of
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spatial aggregation in the infective stage distribution is reflected in the level of para-

site aggregation across hosts [174]. Individual differences in hosts’ exposure to parasite

infective stages and disparities in their susceptibility once an infectious agent has been

encountered produce variations like these. Furthermore, in the absence of any exposure

heterogeneity, even minor differences in susceptibility between hosts can quickly estab-

lish non-random, aggregated parasite distributions [6]. The relative importance of these

different mechanisms and the role of interactions between mechanisms in intensifying in-

dividual host differences in parasite burdens are still unknown [321].

Moreover, the number of macroparasites harboured by individual hosts often determines

the severity of macroparasitic infections and the reproductive capacity of adult macropar-

asites (i.e., macroparasite virulence), and only a fewer number of the host population

may survive high parasite abundance [275]. Modellers keep track of the number of adult

macroparasites per host since macroparasitic infection outcomes (such as the survival and

fecundity of macroparasites and their hosts) depend significantly on infection intensity.

Mathematical models that investigate these problems mostly become intractable [117],

while experimental studies and computer simulations can become increasingly compli-

cated [321]. However, models for studying macroparasite infections must account for the

variations in parasite population dynamics and aggregation in parasite abundance. In

contrast to the compartmental models for studying microparasitic infection within host

populations, distributional models are instead employed to model host-macroparasite in-

teractions [8]. These distributional models are more sophisticated than compartmental

models because they must account for parasite distribution among hosts [8]. Anderson

and May [6, 212] proposed the core macroparasite model on which subsequent models are

based; whereas, Dobson and Hudson and others [88] further modified the Anderson-May

macroparasite model (outlined at the top part of Figure 3.5) to take into account the

presence of free-living infective stages or larvae, arrested parasite development, and par-

asites with complex life cycles (which can incorporate several intermediate hosts as well

as a definitive host). These models, which are a version of the predator-prey model, com-
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monly characterise the density of the entire host population, the adult parasite abundance

within hosts, and the total number of free-living parasite stages or larvae in the exter-

nal environment. Interestingly, highly aggregated parasite distributions tend to maintain

host–macroparasite interactions, whereas random or regular parasite distributions tend

to destabilise them, resulting in host and parasite abundance population cycles (as shown

at the bottom part of Figure 3.5).

Dobson and Hudson’s modified macroparasite model is defined by the system of differ-

ential equations (given by equation 3.2) such that [88]:

dH

dt
= (a− b)H− (α+ δ)P

dP

dt
= βWH− (µ+ b+α)P −αP

2

H

(
k+ 1
k

)
dW

dt
= λP −γW −βWH,

(3.2)

where dH
dt is the rate of change of the total host population H(t) (with grouse considered

as hosts in their model), dPdt denotes the rate of change of the number of adult parasite

population, and dW
dt represents the rate of change of the total population of free-living

larvae W (t) at time t. As in the basic microparasite model (given by equation 3.1 and

Figure 3.3), per-capita host birth and death rates in the modified macroparasite model

are denoted by a and b, respectively. Here, the per-capita rates at which adult parasites

induce host infecundity and mortality are respectively denoted by δ and α. The model

assumes that reproduction takes place outside of the host via transmission stages (e.g.,

eggs or larvae), and the overall host death rate increases linearly with parasite burden.

In addition, older parasites reproduce free-living infective stages (or larvae) at rate λ

and die due to three different processes: parasite mortality (µ), host mortality (b), and

parasite-induced host mortality (α). As a result, the model assumes that once hosts die,

their parasites extinct. Free-living egg and larval stages die in the external environment

at a rate γ, while hosts (e.g., grouse) consume them at a rate of β, resulting in new
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adult infections. Furthermore, the model described by Figure 3.5 further assumes that

parasites aggregate within hosts according to a negative binomial distribution, with the

degree of aggregation inversely proportional to k. Nonetheless, for more complex host-

macroparasite systems, the exact probability distribution of the number of aggregated

parasites per host may be unknown or mathematically intractable. The mortality of

adult parasites is influenced by within-host aggregation (as indicated in equation 3.2),

with parasite mortality increasing when k is small (and parasites are highly clustered).

Dobson and Hudson [88] defined the basic reproductive number of macroparasites (R0)

as the product of the average number of new infections caused by a single adult parasite

and the average life expectancy of adult and larval stages; where

R0 = βλH

(µ+ b+α)(γ+βH) . (3.3)

As with microparasitic infections, macroparasite invasion and persistence within host

populations occur when R0 > 1. When parasites decrease host fecundity (i.e., δ > 0),

the host–macroparasite interaction becomes even more destabilised, increasing the like-

lihood of parasite-induced host population cycles over time (for additional quantities

and applications from this macroparasite model, see [88]). Later versions of Anderson

and May’s basic model included: i) non-random parasite distributions, ii) non-linear

parasite-induced host deaths, iii) density dependence in parasite population growth, iv)

parasite-induced reduction in host reproduction, v) parasites that reproduce within their

hosts, and vi) the effect of time delays [6, 212]. The existing mathematical models for

host-macroparasite systems can be extended, modified and adapted for other host popu-

lations (including hosts that do not feed directly on their parasites but can induce host

immune response over time).
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Figure 3.5: Conceptual framework of a simple host-macroparasite interaction model
(top), and the infection dynamics of host population, adult parasites and free-living
transmission stages over time (bottom) [adapted from 88].

3.3.3 Overview of population-based models

Population-based models (PBMs) dominate epidemiological and ecological studies com-

pared to individual-based models (IBMs), and they frequently produce basic models, such

as systems of ordinary differential equations or difference equations, that can be analysed

mathematically and numerically [197]. In population ecology, the spatial-temporal varia-

tions in abundance and distribution of species (including plants, animals or humans) are
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often explored; whereas, changes in the number of individuals of a given species or inter-

acting species over time are usually described using dynamical system modelling (based

on differential or difference equations). PBMs thus have been proposed to predict and

understand these population dynamics. To get the basic knowledge of species’ spatial-

temporal abundance and distribution using PBMs, four main parameters which are not

limited to the number of births (B), deaths (D), immigration (I) and emigration (E),

are often tracked; such that the changes in the population size (N) through space and

time is given as [46]

N(t) =B(t)−D(t) + I(t)−E(t). (3.4)

Equation 3.4 suggests that the population increases in number through births or immi-

gration and decrease through death or emigration at any time t; nonetheless, there can

be other sources of population increments or decrements depending on the dynamical

ecological system under study. Broadly, continuous-time models, discrete-time models,

and stochastic models are the three basic types of PBMs applied to problems in popula-

tion ecological modelling [46]. Population-based mathematical models can be approached

from two perspectives. Firstly, as deterministic population models (i.e., using difference

or differential equations), such as the continuous-time Lotka-Volterra model of interspe-

cific competition or the discrete-time Nicholson-Bailey predator-prey model [178, 202],

or secondly, as stochastic population models, in which the occurrence of events is con-

sidered probabilistic even though the underlying rates remain constant [214, 230]. Even

though these PBMs often ignore some underlying biological or ecological realism of the

system due to mathematical generalities, they provide a framework through which the

occurrence of fundamental or complex relationships and processes of the system can be

formulated and explored [138].

In mathematical biology, integrodifference equations are widely adopted to model the

dispersal and growth of populations [201]. An alternative approach to the previously

discussed deterministic and stochastic epidemic population-based models (including de-
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terministic and stochastic integrodifference equations and compartmental models) in the-

oretical ecology and epidemiology is branching process models (BPMs), which are classes

of either discrete-time or continuous-time stochastic individual-based processes often em-

ployed to approximate the beginning of an epidemic[3, 160, 221]. The Galton-Watson

discrete-time process (described in [173]) is the most common formulation of the branch-

ing process; nonetheless, its continuous-time processes can be derived via embeddability

of the discrete-time branching processes. Specifically, BPMs are suitable for modelling

problems across many species of animals, plants and other organisms where the growth

and development of the population over time are of interest [13]. In the simplest case, the

original intent of branching processes was to formulate a mathematical model in which

each individual of a given population in the nth generation produces a random number

of offspring in generation n+ 1, under fixed probability distribution (obtained from a

probability generating function) [221]. Multi-type branching processes, for example, are

more complex extensions of that simple branching process [121, 162]; whereas, other gen-

eral forms of the branching process formulated as an embedded random walk exist in the

literature [35, 246]

To formulate the simple discrete-time case, suppose Zn is the state in period n (i.e.,

the population size of generation n), and assume Xn,k is an independent and identically

distributed random variable representing the number of offspring (k) in the nth genera-

tion, where n ∈ {0,1,2, · · ·} and k ∈ {0,1,2, · · · ,Zn}. Also, suppose pk = P (Z1 = k) is the

probability mass function of Z1 =X (where pk denote the probability that an individual

produces k offspring in one generation), with corresponding probability generating func-

tion given as f(s) =
∞∑
k=0

pks
k (for s on the unit interval). Then the recurrence equation

for the state at generation n+ 1 is given as [312]

Zn+1 =
Zn∑
k=0

Xn,k, Z0 = 1. (3.5)

In epidemiological studies and the modelling of other systems with similar dynamics,

BPMs are often used to determine: i) the long-term survival of such a process or its
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ultimate extinction probability such that lim
n→∞P (Zn = 0) = f(0), ii) the epidemic thresh-

old known as the basic reproductive number (R0), iii) the intrinsic exponential growth

rate of the process (e.g., the Malthusian parameter for epidemic branching process), iv)

expected population size of a particular generation, and v) the effects of control mech-

anisms. For example, in branching process theory, the mean reproductive rate of the

branching process µ (which also estimates R0) is

µ= E[X] =
∞∑
k=0

kpk = f ′(1) (3.6)

and by employing the standard Wald’s equation of expectation to equation 3.5, the ex-

pected population size of the nth generation is

E[Zn] = ξµn, for Z0 = ξ. (3.7)

By imposing the Markovian property of the branching process (where the state Zn de-

pends on Zn−1) and equation 3.6, leads to the efficient Harris estimator or Method of

Moments estimator of µ based on the first N generations is defined as [103, 326]:

µ̂= lim
N→∞

N∑
n=1

Zn

N−1∑
n=0

Zn

≈R0. (3.8)

From equations 3.6–3.8, the expected number of individuals in the population extinct

if µ < 1 with probability of ultimate extinction occurring at µ = 1; whereas at µ > 1,

the probability of ultimate extinction < 1 (but not necessarily zero). Unlike in sim-

ilar deterministic models (e.g., epidemic compartmental models where R0 > 1), there

remains a chance of extinction even when the mean reproductive rate µ > 1 [254]. A

more comprehensive theoretical framework and justifications of mathematical models for

branching processes, including multidimensional analogue of the Galton-Watson model

and continuous-time branching processes, have been presented in Harris’s study [135].

Finally, these BPMs closely approximate the IBMs and provide insight into the demo-

graphic and environmental stochasticity parameters that influence the critical domain
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size for a stochastic population (necessary for the population to persist; but the critical

domain size is dependent on the model structure and assumptions) [254]. For vast appli-

cations of branching processes in epidemiological and ecological modelling, see works by

Vajargah and Moradi [302], Jacob [160], Inés et al. [155] and Hautphenne et al. [142].

For a variety of problems, branching processes can be simulated, particularly in the field

of evolutionary biology, and such simulations aid in the development and validation of

these models’ estimating methodologies, as well as hypothesis testing [122].

Moreover, continuous-time population models, characterised by differential equations that

dominate the literature, are: i) Pure birth processes (suited to modelling systems where

over a short period, the population proliferates without being constrained by crowding,

competition, or contests and do not die but give birth at a constant rate), ii) Pure death

processes (suited to ecological processes concerned with how an organism’s lifespan and

survival affect population fluctuations over time, where individuals do not give birth and

do not suffer the constraints of crowding, competition or contests but die at a constant

rate), iii) Birth-death processes (suited to systems where populations change as a result of

birth and death processes), iv) Logistic growth models (describe population growth in the

presence of a limiting resource or carrying capacity where co-existing species or individu-

als are embedded in webs of competitive and trophic interactions), and v) Predator-prey

processes (which are a class of population-based models used to explore the effects of

interspecific and intraspecific competition among species or populations) [46]. Different

species or populations can compete for limited resources like food and territory. These

interspecific competitive (between species) interactions have a well-established mathe-

matical framework [150], and theoretical results for a broad class of models involving

predation, competition, and cooperation exist [255]. Although correlation does not nec-

essarily indicate causation (e.g., a negative correlation between populations of two or-

ganisms does not always imply interspecific competition), basic mathematical models of

competition assume that a species’ growth rate is inhibited by either intraspecific (within

species) or interspecific processes.
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The single-species logistic growth model (such as the standard Pearl-Verhulst logistic

growth model) can be extended to a two-species form assuming N1(t) and N2(t) denote

the numbers of individuals of species 1 and 2 at time t, respectively. Suppose ri are the

growth rate of species i, sii is the intraspecific effect of species i on itself, and sij is the

interspecific effect of species j on species i for i, j = 1,2. Biologically, for species i, j = 1,2,

it is assumed that sii or sij < 0 implies an inhibitory effect, sii or sij = 0 suggests no effect

and sii or sij > 0 indicates an enhanced effect. Then, the general model form (under the

deterministic scheme) for two-interacting populations with direct competition within and

between species is given as [255]

dN1
dt

=N1(r1 + s11N1 + s12N2)
dN2
dt

=N2(r2 + s21N1 + s22N2),
(3.9)

where ri > 0 with sii < 0 and sij < 0. However, it can be inferred from equation 3.9 that

for non-interacting populations, ri > 0 with sii < 0 and sij = 0 for i, j = 1,2 (i.e., indepen-

dent logistic case). Also, the second species lives on the waste products of the first (i.e.,

scavenging), but otherwise does it neither harm nor good if ri < 0 with sii < 0, s12 = 0

and s21 > 0. Additionally, there is a symbiotic relationship between the two species or

populations if ri < 0 with sii = 0 and sij > 0 for i, j = 1,2. Since the overall dynamics of

the general two-species model given by equation 3.9 is dependent of six real parameters

(which may be < 0, = 0 or > 0), there are 36 = 729 possible model formulations; nev-

ertheless, only a few which involves either predation or competition may have biological

importance. The traditional Lotka-Volterra predator-prey model (under the determin-

istic scheme) can be derived from equation 3.9 by setting r1 > 0, r2 < 0, s11 = s22 = 0,

s12 < 0 and s21 > 0; where, N1(t) is the number of prey (or hosts), N2(t) is the number

of predators (or parasites) at time t. Here, it is assumed that in the absence of predators

(species 2), prey (species 1) increases at a rate of r1; whereas, predators die at a rate of

r2. Also, within-species competition is ignored at s11 = s22 = 0; whereas, s12 measures
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the death rate of prey due to being eaten or attacked by predators, and s21 determines

the ability of the predator in catching prey. The more predators there are, the faster the

prey population will be reduced, and the availability of predator food resources increases

as the number of prey increases.

Biological experiments or mathematical modelling are the conventional techniques to

study parasites’ influence on communities; the former is logistically problematic in the

field. The latter relies on various simplifying assumptions. Both can only examine interac-

tions among a few species at a time. Network analysis, adapted from other mathematical

domains, is gaining attention in community ecology and is now applied to study complex

host-parasite interactions [242]. It enables an entire complicated system to be analysed

rather than just one or a few components at a time. The application of network theory

to understand and predict the spread of parasitic infections through host populations

via social or sexual interactions has been successful [92, 238]. Network analysis can also

be used to uncover recurrent coevolutionary units within a more extensive host-parasite

system and determine how a community will react to perturbations like introducing new

species through migration, invasion or the removal of species following local extinction.

These models also provide a fruitful alternative framework in which to investigate the

transmission of infection in human and animal populations [169], and network epidemic

models under random and non-random mixing assumptions have been proposed in the

literature [327]. A major reason for studying epidemic models on social networks is to

understand better which network features have the most significant impact on spreading

and, in particular, how public health measures such as vaccination, (quicker) diagnosis

and treatment, isolation, travel restrictions, and so on can be used to reduce spreading

[49].

However, modelling transmission over networks is mathematically and computationally

challenging due to the intrinsic high-dimensionality of networks. As a result, even the

most basic network epidemic models leave many problems unexplained. Efforts to in-
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crease the practical utility of network models by integrating realistic elements of contact

networks and host-parasite biology (for instance, waning immunity) have made some

headway, but robust analytical results are still limited. A more general theory is required

to comprehend the impact of network structure on infection dynamics and control. The

effect of network models for heterogeneously mixing populations on parameter estimation

and the epidemic outcome is under-studied [237]. Although these models allow for exam-

ining the effect of clustering and, in some cases, degree correlation on epidemic features,

it must be acknowledged that the networks they generate are relatively unique and dif-

ficult to generalise. Furthermore, epidemics based on different network models with the

same degree distribution, clustering coefficient, and degree correlation may have different

properties [19]. Understanding how network properties affect epidemiological quantities of

interest is a commonly stated difficulty for sophisticated network models. Several studies

have improved upon methodologies for social network analysis. For an extensive discus-

sion of the computational statistical methods and models (including exponential-family

random graph models, dynamic Markovian and non-Markovian models of networks, joint

model of networks, measurement error models and partially sampled networks, etc.) and

parameter estimation methods in social network analysis, see works by Carrington et al.

[59] and Hunter et al. [152].

3.3.4 Overview of agent-based models

Agent-based models (ABMs), also known as (spatially explicit) IBMs in ecology, are a

population and community modelling approach that allows for a high level of individual

and interaction complexity [119]. This class of models can be seen as a natural extension

of the Lenz-Ising model [225] and Cellular Automata-like models [324]. IBM of popula-

tion dynamics is a popular approach in current theoretical ecology [30], although it has

only been used in a few parasitological research so far [see 107, 199]. IBMs are typically

more complicated than PBMs and are better suited to simulation experiments or in silico

modelling than statistical analysis [197]. Specifically, ABMs can simulate either single-
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species or multiple-species populations of biological systems with both motile and sessile

individuals or organisms [30]. Each autonomous individual or agent (e.g., parasite, host

or otherwise) may have a unique set of state variables or traits (e.g., spatial location

and physiological features) and peculiar behavioural attributes in terms of growth, repro-

duction, habitat selection, foraging, and dispersal [78]. These characteristics may differ

between individuals and might change over time. Nonetheless, agent-based models can

also describe changes in the number of individuals rather than population density and ex-

plicitly account for resource dynamics. Moreover, the advancement of computers shifted

the focus of ecological modelling to individuals rather than population averages used

in population-based models (e.g., compartmental modelling approach) [301]. Addition-

ally, individual-based models are bottom-up models in which population-level behaviours

emerge from interactions among autonomous individuals and their abiotic environment,

as opposed to traditional differential equation population models, which are described in

terms of imposed top-down population parameters (such as birth and death rates) [78].

Models of spatially explicit population dynamics (such as IBMs, interacting particle sys-

tems, neighbourhood models and spatial point processes) can be classified based on

whether population sizes, space, and time are characterised as discrete or continuous

entities [43, 76, 90]. Individuals’ fates in the model are characterised by sets of rules or

assumptions (dependent on age, size, sex, genotype, etc.) that determine their perfor-

mance. Individual-based models have the benefit over traditional models in that they can

include any number of individual-level mechanisms. Therefore, agent-based models are

utilised any time one or more of the following elements are regarded vital for addressing a

research question or solving an applied problem, but are difficult or impossible to repre-

sent in population-level differential equations [30]: i) individual and temporal variations,

ii) local interactions between individuals, and iii) adaptive behaviour (which includes

physiological features and energy budgets). However, because each individual is treated

as a separate entity in IBMs, simulation of the underlying system can be challenging for

complex systems: they can lead to high computational costs (both in terms of time and
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memory). Nonetheless, as computers get more potent through parallel computing and

high memory sizes, this becomes less of an issue when tracking each individual’s states

across the entire population.

The usage of spatially explicit IBM simulation for biological systems necessitates a de-

scription of the environment (e.g., host) and each individual (parasite) living in it as well

as interactions between individuals and the environment. At (almost) every step of this

description of agent-based models, at least a few alternatives are a priori plausible, includ-

ing the model framework, environment specification for individuals to coexist, number of

model parameters of interest, model complexity, and simulation method or approach [30].

Knowing whether and how a choice from among the alternatives changes spatio-temporal

patterns should help distinguish the effects of model formulation and biological processes;

nonetheless, several modellers have argued that IBMs are quite robust to at least some

of these aforementioned alternatives [91, 323]. Thus, to develop agent-based models,

good knowledge of the biological system simulated is required. For example, to specify

a schematic representation of the environment (i.e., host) of an IBM, a question usually

asked involves whether a (discrete) lattice should be modelled as regular or irregular, and

if so, whether it should be made up of squares, triangles, or hexagons in the former case.

In addition, the physical qualities of the environment can be assumed to be homogeneous

or heterogeneous; movement can be directed rather than diffusive, the initial population

distribution might be random or have a particular spatial pattern, and so on [30].

Apart from making a substantial contribution to spatial pattern formation, IBMs also

give a means of determining the population-level outcomes of specific individual-level

behaviour [30]. Computer simulations must be run repeatedly to offer information about

average or typical population responses for IBMs to be reliable. These simulation exper-

iments are better suited to answer specific questions about the model or the biological

system rather than uncovering whole model behaviour due to the high dimensionality of

model parameter space in some instances. Mean-field models are analytical models (rep-
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resented by differential or difference equations) that do not consider spatial or probable

variation (but of great importance) and thus, are in sharp contrast to the individually

oriented modelling spectrum. The mean-field modelling approach has at least one advan-

tage: the agreement between mean-field models and IBMs simulated under homogeneous

mixing settings provides a valuable starting point for exploring the complexities caused

by assumptions that destroy these conditions. Thus, mean-field model techniques de-

scribed extensively by Berec [30] can be adapted in the construction of spatio-temporal

model frameworks like IBMs.

Individual-based models have been criticised for lacking the formal framework and an-

alytical procedures accessible in mathematical models made up of differential equations

and Markov chain models [119]. This is partly due to individual heterogeneity or complex

interaction structures that can cause impacts on system dynamics that are difficult to ac-

count for using population-based framework [20]. To address this problem, understanding

the transition from the most informative individual level to the levels at which system

behaviour is typically observed is vital. Thus, a Markov chain approach can help derive

and evaluate models on specific levels on the one hand and understand the temporal and

spatial patterns that may emerge in that transition on the other [20]. A rigorous investi-

gation of a family of agent-based models that specify the dynamics of a complex system

at the individual level using the Markov chain approach has been proposed by Banisch

[20]. It uses lumpability and information theory to link the individual and population

levels of observation, providing a basic framework for aggregation in agent-based and

related computational models.

The starting point is a microscopic Markov chain description of the dynamical process

that is completely consistent with the dynamical behaviour of the ABM, which is de-

rived by treating the state space of a large Markov chain as the set of all possible agent

configurations [20]. This is known as a micro chain, and using the random mapping

representation of a Markov process (defined in [164]), an explicit formal representation
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incorporating microscopic transition rates may be obtained for a class of models. The

circumstances where the macro model is still Markov may be identified using well-known

lumpability constraints, and in this case, a complete picture of the dynamics is obtained,

including the transient stage, which is the most informative phase in applications. The

sort of probability distribution used to construct the stochastic element of the model,

which determines the updating process and drives the dynamics, plays a critical role

in this regard. The problem of aggregation in ABMs, particularly the lumpability con-

straints, can be incorporated into a broader framework that employs information theory

[defined in 274] to identify different levels and relevant scales in complex dynamical sys-

tems.

Izquierdo et al. [157] introduced the possibilities of using time-homogeneous Markov

chains in the investigation of ABMs based on computer models (with a well-defined

mathematical function written in a programming language, where pseudo-random num-

ber generators are used to simulate random variables in the computer models). They

argued that when a computer model is analysed as a time-homogeneous Markov chain,

many model features not explicit prior to the analysis become apparent. The key con-

cept is to incorporate all possible agent system configurations as the state space of a huge

Markov chain. While Izquierdo et al. (2009) relied on numerical computations to esti-

mate the stochastic transition matrices of the models, Banisch [20] showed how to derive

the transition probabilities P̂ explicitly in terms of the update function u and a probabil-

ity distribution ω accounting for the stochastic parts of the model. Thus, realisations of

ABMs with a sequential update strategy can be thought of as random walks on regular

graphs. Consider a simple agent-based system defined by a set of N of agents (e.g., hosts

or otherwise), where each one is characterised by individual attributes (e.g., physiological

features, spatial location and behaviour) from a finite list of possibilities (denoted by S).

Suppose Σ = SN is the configuration space representing the set all possible combinations

of attributes of agents, and let x = (x1,x2, · · · ,xN ) with xi ∈ S for i = 1,2, · · · ,N denote

an agent configuration (where x is a vector of discrete numbers). At each time step of the
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time-homogeneous Markov simulation model, the agents’ attributes’ updating procedure

typically consists of two phases. First, a subset of agents is chosen at random using some

probability distribution ω, and then, the attributes of the agents are updated according

to a rule defined by u, which depends on the subset of agents selected at this time. ABMs

can be represented using this specification by the so-called random map representation

of Markov chains, under the existence and regularity conditions [188]. A more detailed

mathematical theory and applications of Markov chain aggregation for agent-based mod-

els are presented by Banisch [20], and Izquierdo et al. [157] has demonstrated an in-depth

approach of computer or agent-based modelling using time-homogeneous Markov chains.

A wide range of individual-based models and techniques, as well as their applications in

ecological modelling, have been explored by DeAngelis [77].

3.4 Modelling of Gyrodactylus infection dynamics

Gyrodactylus parasites are unique in that they are ectoparasites with microparasitic char-

acteristics (as discussed in section 1.4). Several modelling studies have been conducted

over the years to understand the infection dynamics of these parasites on their fish host

(especially for G. salaris infection). Scott and Anderson [271] conducted a study in 1984

to understand Gyrodactylus turnbulli infection dynamics, which examined using SIR mod-

els with parameter values based on experimental data of guppy population. Their goal

was to establish which factors have a direct impact on parasite transmission dynamics.

des Clers [82] also designed age-structured population models to evaluate the effects of

G. salaris on various stages of the salmon life cycle in 1993. G. salaris on salmon has also

been studied using other methodologies such as Monte Carlo models [148, 232]. Paisley et

al. [232] utilised this modelling technique to assess the risk of G. salaris being introduced

to the Tana river in Norway, while Høgåsen and Brun [148] adopted the same technique to

estimate inter-river transmission risk of G. salaris by migrating Atlantic salmon smolts.

In addition, other studies have used qualitative risk assessment and analysis techniques

to detect routes of transmission and the risk of G. salaris being introduced into the UK,

as well as the risk of G. salaris spreading to uninfected areas of Europe [234, 235, 236].

92



Jansen et al. [161] employed a dispersal model to investigate the possibility of secondary

infections by testing the hypothesis of parasite inter-river dispersal; whereas, van Ooster-

hout et al. [306] developed an individual-based computer model to simulate the dynamics

of gyrodactylid parasite infection and naive hosts’ immunological defence (i.e., among fish

that have never been exposed to these parasites). Their computer model can predict the

progression of gyrodactylid infections in a single host and provide predictions regarding

parasites’ optimal life history; however, it suffers from a few biological realism of the

gyrodactylid-fish system (especially in terms of species-specific microhabitat preference,

parasite fecundity per age and host mortality, amongst others). Another agent-based sim-

ulation model has been developed to quantify estimation error of G. salaris population

growth rate on a single salmon host conditioned on stochastic variability in survivorship

and reproduction [248]. Their agent-based simulation model assumed two distinct death

functions: i) constant parasite death throughout the simulation and ii) parasite death

is positively associated with parasite age (chance of death increases with parasite age)

as in a study by Cable et al. [54]. Their findings revealed that estimations of error

structures of population growth rate are normally distributed, especially in populations

of more than 20 parasites, and that this rate can be an important measure for comparing

gyrodactylid populations of more than 20 to 30 parasites. Nevertheless, in populations

with fewer than 20 parasites, the error is disproportionately high, making comparisons of

gyrodactylid population growth on different hosts using the population growth parameter

less relevant [248]. Furthermore, Ramrez et al. [248] discovered that decreasing parasite

population growth rates could not be explained based on stochastic error, implying that

the cause is biological. Finally, they concluded that the bulk of gyrodactylid-host studies

identical to their study are a few to identify significant changes in local adaptation of

gyrodactylid monogeneans amongst fish populations.

As can be seen, most of the previous modelling works on the gyrodactylid-fish sys-

tem mainly focused on G. salaris infection dynamics among Atlantic salmon popula-
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tions, with the majority of the research focusing on the use of statistical and com-

puter models to assess and estimate the risk of the parasite’s spread to new rivers

[148, 161, 232, 234, 235, 236]; whereas a few modelling studies on host-parasite dynamics

have been carried out on other parasite species (e.g., G. turnbulli and G. bullatarudis

strains) and other host populations [257, 271, 306]. Moreover, the Anderson-May de-

terministic models (previously discussed in section 3.3.2) were adapted and extended to

analyse the G. salaris-Atlantic salmon infection system further in another study [81].

It allowed predictions on the long-term consequences or impact of infections in UK re-

gions free of G. salaris. As a result, models of host-parasite interactions in the other

gyrodactylid-fish systems need to be investigated since much is already known about the

G. salaris-salmon systems. In addition to comprehending the short-term infection dy-

namics of gyrodactylids as often done in the previous modelling studies, it is critical to

understand the long-term effects of gyrodactylid parasite infections.
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Chapter 4

Birth-death process with catastrophic extinction

4.1 Introduction

This study investigates a continuous-time Markov process dubbed as the linear birth-

death process with catastrophic extinction (B-D-C process). The primary motivation

is to consider the B-D-C process as an auxiliary model for a more complex stochastic

model that simulates the spread of different strains of Gyrodactylus parasites over the

external surfaces of the host (see Chapters 5 and 6). Here, the B-D-C process is used to

refine the summary statistics of a modified approximate Bayesian computation (ABC)

in calibrating the multidimensional stochastic model based on estimates of the B-D-C

model parameters (see Chapters 5 and 6). The simulation of the B-D-C process using a

tau-leaping algorithm also provides additional insights on how to accelerate the simula-

tion of the sophisticated stochastic model by proposing a good error threshold based on

the trade-off between simulation accuracy and computational speed.

The constant-rate linear B-D-C process is a discrete state-space stochastic process where

each host gives birth to new hosts at a constant rate λ> 0, dies at constant rate µ> 0 and

the entire population becomes extinct due to a catastrophic event at a constant ρ > 0 (for

a formal definition, see section 4.1.1). Thus, the linear B-D-C process is an extension of

the classical linear birth-death process where the process is subjected to catastrophes that

result in parasite population extinction [83]. Due to the application of the B-D-C process

in the current study (for other modelling purposes), the catastrophe rate is assumed to

depend on the parasite population size since host mortality (defined as the catastrophe

event) for ectoparasitic infection occurs at a rate proportional to parasite abundance.

Although these class of stochastic models are simple in terms of their model framework,
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the exact transition function and parameter estimation can be challenging to obtain in

the setting of discretely observed processes [75, 167].

In this current thesis chapter, we derive the analytical transition function of the B-D-C

process (section 4.1.2). The derived transition function is further validated analytically

using mathematical induction and is numerically validated based on Monte Carlo esti-

mation (sections 4.1.2–4.1.4). Additionally, we estimate the B-D-C model parameters

by comparing different estimation methods (Maximum likelihood estimation, generalised

method of moments and embedded Galton-Watson approach) based on three different

in silico simulation experiments where parasite population size is large, moderate or low

(section 4.2). The bias, variance, and mean square error of the parameter estimates and

the estimation methods’ computational times are compared. Finally, we develop and

compare two different hybrid τ -leaping algorithm based on leap-size selection methods

proposed by Gillespie [110] and Gillespie and Petzold [111], respectively, to accelerate

the simulation of the B-D-C process (section 4.3). We propose a good error threshold

by exploring the trade-off between simulation accuracy and computational speed of the

three different in silico simulation experiments where parasite numbers are high (Case 1),

moderate (Case 2) or low (Case 3). The differences between the two τ -leaping methods

are the leap-size selection procedure (which is proportional to the simulation error bound)

and their respective leap conditions. All the mathematical theorems under Chapter 4 are

proposed and proved for the first time in the current study.

4.1.1 Definition of the Linear B-D-C process

Let {Xt, t≥0}, the number of parasites on host at any time t, be a linear birth and

death process with catastrophic extinction (B-D-C process) defined on the state space,

S = {0,1,2, · · ·}, determined in accordance with the following scheme:

Event Transition Rate
Birth Xt→Xt+ 1 λXt

Death Xt→Xt−1 µXt

Catastrophe Xt→ 0 ρXt
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where λ > 0, µ> 0 and ρ > 0 are the birth, death and catastrophe rates respectively. The

catastrophe event is defined as the state where the parasite population suddenly hit 0

due to host mortality. The exact transition probabilities of the defined B-D-C process,

Pm,n(t) = P{X(t) = n|X(0) =m}

can be obtained from the probability generating functionGm(z, t) as presented by Lemma 1.

The probability generating function (PGF) given by Lemma 1 is taken from Karlin and

Tavaré [167].

Lemma 1. Given the rates λ, µ and ρ, suppose v0 and v1 are the roots of the equation

λv+ (µ/v) = λ+µ+ρ; 0< v0 < 1< v1.

Then, the probability generating function of the B-D-C process, given X(0) = m≥1, is

defined as:

Gm(z, t) =
∞∑
n=0

Pm,n(t)zn =
[
ν0ν1(1−σ) + z(ν1σ−ν0)

ν1−σν0− z(1−σ)

]m
+C(t)

=
(
k1 +k2z

1−k3z

)m
+C(t) for |z|< 1;

(4.1)

where k1 = ν0ν1(1−σ)
ν1−σν0

, k2 = ν1σ−ν0
ν1−σν0

, k3 = 1−σ
ν1−σν0

, σ= e−λ(ν1−ν0)t, ν0 = (λ+µ+ρ)−
√

(λ+µ+ρ)2−4µλ
2λ ,

ν1 = (λ+µ+ρ)+
√

(λ+µ+ρ)2−4µλ
2λ , and the probability of catastrophic extinction, C(t), is given

as

C(t) = 1−
(
k1 +k2
1−k3

)m
.

Remark. If the catastrophe rate ρ = 0, then the linear B-D-C process {Xt, t≥0} (with

birth rate λ > 0, death rate µ > 0 and catastrophe rate ρ = 0) is the standard linear

birth-death process with its probability generating function given as

G̃m(z, t) =
[

(1−σ) + (σ−γ)z
1−σγ− zγ(1−σ)

]m
, m≥ 1, |z|< 1

where σ = e−(µ−λ)t and γ = λ/µ. Also, for catastrophe rate ρ > 0, the linear B-D-C

process conditioned on non-extinction is a birth-death process (where C(t) = 0).
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4.1.2 Derivation of the transition function and theoretical moments of

B-D-C process from its PGF

We propose and prove the analytical form of the nth derivative of the PGF given by

equation 4.1 (w.r.t. z) of the B-D-C process (in accordance to Theorem 2, proposed

for the first time in the current study) using mathematical induction. The exact tran-

sition probability function and other theoretical moments (mean, variance and the 3rd

uncentred moment) are explicitly derived for further modelling purposes.

Theorem 2. Given the probability generating function Gm(z, t) defined in Lemma 1, the

nth derivative w.r.t. z is given as

G(n)
m (z, t) =

min(m,n)∑
j=1

γ
(n)
j

m!
(m− j)!k

n−j
3 (k2 +k1k3)j

(
k1 +k2z

1−k3z

)m−j
(1−k3z)−(n+j), m,n≥1

(4.2)

where γ(n)
j is defined recursively by

γ
(n)
j = γ

(n−1)
j−1 + (n+ j−1)γ(n−1)

j for j = 2,3, · · ·,min(m,n−1)

and

γ
(n)
1 = min(m,n)γ(n−1)

1 ,

with

γ
(n)
n = γ

(n+1)
n+1 = 1, ∀n ∈ N.
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Proof by mathematical induction.

For n= 1, m≥ 1

∂

∂z
Gm(z, t) = ∂

∂z

[(
k1 +k2z

1−k3z

)m
+C(t)

]

=m(k2 +k1k3)
(
k1 +k2z

1−k3z

)m−1
(1−k3z)−2, γ

(1)
1 = 1

= γ
(1)
1

m!
(m−1)!(k2 +k1k3)

(
k1 +k2z

1−k3z

)m−1
(1−k3z)−2

=
1∑
j=1

γ
(1)
j

m!
(m− j)!k

1−j
3 (k2 +k1k3)j

(
k1 +k2z

1−k3z

)m−j
(1−k3z)−(1+j)

=G(1)
m (z, t) as required.

Now, suppose equation 4.2 holds for n= k, we show it holds for n= k+ 1.

Case 1: k+ 1≤m

G
(k+1)
m (z, t) = ∂

∂zG
(k)
m (z, t)

= ∂

∂z

 k∑
j=1

γ
(k)
j

m!
(m− j)!k

k−j
3 (k2 +k1k3)j

(
k1 +k2z

1−k3z

)m−j
(1−k3z)−(k+j)



= ∂

∂z

γ(k)
1

m!
(m−1)!k

k−1
3 (k2 +k1k3)

(
k1 +k2z

1−k3z

)m−1
(1−k3z)−(k+1)



+ ∂

∂z

γ(k)
2

m!
(m−2)!k

k−2
3 (k2 +k1k3)2

(
k1 +k2z

1−k3z

)m−2
(1−k3z)−(k+2)

+ · · ·+

∂

∂z

γ(k)
k−1

m!
(m− (k−1))!k

k−(k−1)
3 (k2 +k1k3)k−1

(
k1 +k2z

1−k3z

)m−(k−1)
(1−k3z)−(k+k−1)

+

∂

∂z

γ(k)
k

m!
(m−k)!k

k−k
3 (k2 +k1k3)k

(
k1 +k2z

1−k3z

)m−k
(1−k3z)−(k+k)
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= γ
(k)
1

m!
(m− 1)!k

k−1
3 (k2 + k1k3)

(k1 + k2z

1− k3z

)m−1
∂

∂z
(1− k3z)−(k+1) +

(1− k3z)−(k+1) ∂

∂z

(
k1 + k2z

1− k3z

)m−1+

γ
(k)
2

m!
(m− 2)!k

k−2
3 (k2 + k1k3)2

(k1 + k2z

1− k3z

)m−2
∂

∂z
(1− k3z)−(k+2) +

(1− k3z)−(k+2) ∂

∂z

(
k1 + k2z

1− k3z

)m−2+ · · ·+

γ
(k)
k−1

m!
(m− (k − 1))!k

k−(k−1)
3 (k2 + k1k3)k−1

(k1 + k2z

1− k3z

)m−(k−1)
∂

∂z
(1− k3z)−(k+k−1) +

(1− k3z)−(k+k−1) ∂

∂z

(
k1 + k2z

1− k3z

)m−(k−1)+

γ
(k)
k

m!
(m− k)!k

k−k
3 (k2 + k1k3)k

(k1 + k2z

1− k3z

)m−k
∂

∂z
(1− k3z)−(k+k) +

(1− k3z)−(k+k) ∂

∂z

(
k1 + k2z

1− k3z

)m−k
= γ

(k)
1

m!
(m− 1)!k

k−1
3 (k2 + k1k3)

(k1 + k2z

1− k3z

)m−1
k3(k + 1)(1− k3z)−(k+2) +

(1− k3z)−(k+1)(m− 1)
(
k1 + k2z

1− k3z

)m−2
k2 + k1k3
(1− k3z)2

+

γ
(k)
2

m!
(m− 2)!k

k−2
3 (k2 + k1k3)2

(k1 + k2z

1− k3z

)m−2
k3(k + 2)(1− k3z)−(k+3) +

(1− k3z)−(k+2)(m− 2)
(
k1 + k2z

1− k3z

)m−3
k2 + k1k3
(1− k3z)2

+ · · ·+

γ
(k)
k−1

m!
(m− (k − 1))!k

k−(k−1)
3 (k2 + k1k3)k−1

(k1 + k2z

1− k3z

)m−(k−1)
k3(k + k − 1)·

(1− k3z)−(k+(k−1)−1) +

(1− k3z)−(k+(k−1))(m− (k − 1))
(
k1 + k2z

1− k3z

)m−k
k2 + k1k3
(1− k3z)2

+

γ
(k)
k

m!
(m− k)!k

k−k
3 (k2 + k1k3)k

(k1 + k2z

1− k3z

)m−k
k3(k + k)

(1− k3z)−(k+k+1) + (1− k3z)−(k+2)(m− k)
(
k1 + k2z

1− k3z

)m−(k+1)
k2 + k1k3
(1− k3z)2


Expanding the terms gives,
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G
(k+1)
m (z, t) = ∂

∂zG
(k)
m (z, t)

= γ
(k)
1 (k + 1) m!

(m− 1)!k
k
3(k2 + k1k3)

(
k1 + k2z

1− k3z

)m−1
(1− k3z)−(k+2)

+γ(k)
1

m!
(m− 2)!k

k−1
3 (k2 + k1k3)2

(
k1 + k2z

1− k3z

)m−2
(1− k3z)−(k+3)

+γ(k)
2 (k + 2) m!

(m− 2)!k
k−1
3 (k2 + k1k3)2

(
k1 + k2z

1− k3z

)m−2
(1− k3z)−(k+3)

+γ(k)
2

m!
(m− 3)!k

k−2
3 (k2 + k1k3)3

(
k1 + k2z

1− k3z

)m−3
(1− k3z)−(k+4) + · · ·

+γ(k)
k−1(k + k − 1) m!

(m− (k − 1))!k
2
3(k2 + k1k3)k−1

(
k1 + k2z

1− k3z

)m−(k−1)
(1− k3z)−(k+k)

+γ(k)
k−1

m!
(m− k)!k3(k2 + k1k3)k

(
k1 + k2z

1− k3z

)m−k
(1− k3z)−(k+k+1)

+γ(k)
k (k + k) m!

(m− k)!k3(k2 + k1k3)k
(
k1 + k2z

1− k3z

)m−k
(1− k3z)−(k+k+1)

+γ(k)
k

m!
(m− (k + 1))!(k2 + k1k3)k+1

(
k1 + k2z

1− k3z

)m−(k+1)
(1− k3z)−(k+k+2)

Grouping like terms and reorganizing algebraically gives,

G
(k+1)
m (z, t) = ∂

∂zG
(k)
m (z, t)

= γ
(k)
1 (k + 1) m!

(m− 1)!k
(k+1)−1
3 (k2 + k1k3)

(
k1 + k2z

1− k3z

)m−1
(1− k3z)−(k+1+1)

+[γ(k)
1 + γ

(k)
2 (k + 1 + 1)] m!

(m− 2)!k
(k+1)−2
3 (k2 + k1k3)2

(
k1 + k2z

1− k3z

)m−2
(1− k3z)−(k+1+2)

+[γ(k)
2 + γ

(k)
3 (k + 1 + 2)] m!

(m− 3)!k
(k+1)−3
3 (k2 + k1k3)3

(
k1 + k2z

1− k3z

)m−3
(1− k3z)−(k+1+3)

+ · · ·+
[γ(k)
k−1 + γ

(k)
k (k + 1 + k − 1)] m!

(m− k)!k
(k+1)−k
3 (k2

+ k1k3)k
(
k1 + k2z

1− k3z

)m−k
(1− k3z)−(k+1+k)

+γ(k)
k

m!
(m− (k + 1))!(k2 + k1k3)k+1

(
k1 + k2z

1− k3z

)m−(k+1)
(1− k3z)−(k+1+k+1)

=
k+1∑
j=1

γ
(k+1)
j

m!
(m− j)!k

(k+1)−j
3 (k2 + k1k3)j

(
k1 + k2z

1− k3z

)m−j
(1− k3z)−(k+1+j)

where γ(k+1)
j = γ

(k)
j−1 +(k+ 1 + j−1)γ(k)

j for j = 2,3, · · ·,k and γ(k+1)
1 = (k+1)γ(k)

1 , and

γ
(k+1)
k+1 = γ

(k)
k = 1 as required.
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Case 2: k+ 1≥m

G
(k+1)
m (z, t) = ∂

∂zG
(k)
m (z, t)

= ∂

∂z

 m∑
j=1

γ
(k)
j

m!
(m− j)!k

k−j
3 (k2 +k1k3)j

(
k1 +k2z

1−k3z

)m−j
(1−k3z)−(k+j)


= ∂

∂z

γ(k)
1

m!
(m−1)!k

k−1
3 (k2 +k1k3)

(
k1 +k2z

1−k3z

)m−1
(1−k3z)−(k+1)



+ ∂

∂z

γ(k)
2

m!
(m−2)!k

k−2
3 (k2 +k1k3)2

(
k1 +k2z

1−k3z

)m−2
(1−k3z)−(k+2)

+ · · ·+

∂

∂z

γ(k)
m−1

m!
(m− (m−1))!k

k−(m−1)
3 (k2 +k1k3)m−1

(
k1 +k2z

1−k3z

)m−(m−1)
(1−k3z)−(k+m−1)

+

∂

∂z

γ(k)
m

m!
(m−m)!k

k−m
3 (k2 +k1k3)m

(
k1 +k2z

1−k3z

)m−m
(1−k3z)−(k+m)



= γ
(k)
1

m!
(m− 1)!k

k−1
3 (k2 + k1k3)

(k1 + k2z

1− k3z

)m−1
∂

∂z
(1− k3z)−(k+1) +

(1− k3z)−(k+1) ∂

∂z

(
k1 + k2z

1− k3z

)m−1+

γ
(k)
2

m!
(m− 2)!k

k−2
3 (k2 + k1k3)2

(k1 + k2z

1− k3z

)m−2
∂

∂z
(1− k3z)−(k+2) +

(1− k3z)−(k+2) ∂

∂z

(
k1 + k2z

1− k3z

)m−2+ · · ·+

γ
(k)
m−1

m!
(m− (m− 1))!k

k−(m−1)
3 (k2 + k1k3)m−1

(k1 + k2z

1− k3z

)m−(m−1)
∂

∂z
(1− k3z)−(k+m−1)

+

(1− k3z)−(k+m−1) ∂

∂z

(
k1 + k2z

1− k3z

)m−(m−1)+

γ(k)
m

m!
(m−m)!k

k−m
3 (k2 + k1k3)m

(k1 + k2z

1− k3z

)m−m
∂

∂z
(1− k3z)−(k+m) +

(1− k3z)−(k+m) ∂

∂z

(
k1 + k2z

1− k3z

)m−m
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= γ
(k)
1

m!
(m− 1)!k

k−1
3 (k2 + k1k3)

(k1 + k2z

1− k3z

)m−1
k3(k + 1)(1− k3z)−(k+2) +

(1− k3z)−(k+1)(m− 1)
(
k1 + k2z

1− k3z

)m−2
k2 + k1k3
(1− k3z)2

+

γ
(k)
2

m!
(m− 2)!k

k−2
3 (k2 + k1k3)2

(k1 + k2z

1− k3z

)m−2
k3(k + 2)(1− k3z)−(k+3) +

(1− k3z)−(k+2)(m− 2)
(
k1 + k2z

1− k3z

)m−3
k2 + k1k3
(1− k3z)2

+ · · ·+

γ
(k)
m−1

m!
(m− (m− 1))!k

k−(m−1)
3 (k2 + k1k3)m−1

[(
k1 + k2z

1− k3z

)
k3(k +m− 1)

(1− k3z)−(k+m) + (1− k3z)−(k+m−1) k2 + k1k3
(1− k3z)2

]
+

γ(k)
m

m!
(m−m)!k

k−m
3 (k2 + k1k3)m

[
k3(k +m)(1− k3z)−(k+1+m)

]
Expanding the terms gives,

G
(k+1)
m (z, t) = ∂

∂zG
(k)
m (z, t)

= γ
(k)
1 (k + 1) m!

(m− 1)!k
k
3(k2 + k1k3)

(
k1 + k2z

1− k3z

)m−1
(1− k3z)−(k+2)

+γ(k)
1

m!
(m− 2)!k

k−1
3 (k2 + k1k3)2

(
k1 + k2z

1− k3z

)m−2
(1− k3z)−(k+3)

+γ(k)
2 (k + 2) m!

(m− 2)!k
k−1
3 (k2 + k1k3)2

(
k1 + k2z

1− k3z

)m−2
(1− k3z)−(k+3)

+γ(k)
2

m!
(m− 3)!k

k−2
3 (k2 + k1k3)3

(
k1 + k2z

1− k3z

)m−3
(1− k3z)−(k+4)

+γ(k)
3 (k + 3) m!

(m− 3)!k
k−2
3 (k2 + k1k3)3

(
k1 + k2z

1− k3z

)m−3
(1− k3z)−(k+4) + · · ·

+γ(k)
m−2

m!
(m− (m− 1))!k

k−(m−2)
3 (k2 + k1k3)m−1

(
k1 + k2z

1− k3z

)m−(m−1)
(1− k3z)−(k+m)

+γ(k)
m−1(k +m− 1) m!

(m− (m− 1))!k
k−(m−2)
3 (k2 + k1k3)m−1

(
k1 + k2z

1− k3z

)m−(m−1)
·

(1− k3z)−(k+m)

+γ(k)
m−1

m!
(m−m)!k

k−(m−1)
3 (k2 + k1k3)m(1− k3z)−(k+1+m)

+γ(k)
m (k +m) m!

(m−m)!k
k−(m−1)
3 (k2 + k1k3)m(1− k3z)−(k+1+m)

Grouping like terms and reorganizing algebraically gives,
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G
(k+1)
m (z, t) = ∂

∂zG
(k)
m (z, t)

= γ
(k)
1 (k + 1) m!

(m− 1)!k
(k+1)−1
3 (k2 + k1k3)

(
k1 + k2z

1− k3z

)m−1
(1− k3z)−(k+1+1)

+[γ(k)
1 + γ

(k)
m,2(k + 1 + 1)] m!

(m− 2)!k
(k+1)−2
3 (k2 + k1k3)2

(
k1 + k2z

1− k3z

)m−2
(1− k3z)−(k+1+2)

+[γ(k)
2 + γ

(k)
3 (k + 1 + 2)] m!

(m− 3)!k
(k+1)−3
3 (k2 + k1k3)3

(
k1 + k2z

1− k3z

)m−3
(1− k3z)−(k+1+3)

+ · · ·
+[γ(k)

m−2 + γ
(k)
m−1(k + 1 +m− 2)] m!

(m− (m− 1))!k
(k+1)−(m−1)
3 (k2 + k1k3)(m−1)·(

k1 + k2z

1− k3z

)m−(m−1)
(1− k3z)−(k+1+m−1)

+[γ(k)
m−1 + γ(k)

m (k + 1 +m− 1)] m!
(m−m)!k

(k+1)−m
3 (k2 + k1k3)m

(
k1 + k2z

1− k3z

)m−m
·

(1− k3z)−(k+1+m)

=
m∑
j=1

γ
(k+1)
j

m!
(m− j)!k

(k+1)−j
3 (k2 + k1k3)j

(
k1 + k2z

1− k3z

)m−j
(1− k3z)−(k+1+j);

where γ(k+1)
j = γ

(k)
j−1 +(k+ 1 + j−1)γ(k)

j for all 2≤ j≤m, γ(k+1)
1 = (k+1)γ(k)

1 , Q.E.D.

and γ(1)
1 = 1 as required.

Remark. Given Theorem 2, we can directly derive the exact transition function of the

B-D-C process X(t) from the nth derivative of its PGF given by equation 4.1 (w.r.t. z)

as indicated in Corollary 2.1.

Corollary 2.1. The analytical form of the transition function of the process X(t) for

m,n≥0 is given as:

Pm,n(t) =



min(m,n)∑
j=1

γ
(n)
j

m!
n!(m−j)!k

n−j
3 (k2 +k1k3)jkm−j1 m,n≥1

km1 +C(t) n= 0, m≥1

1 m,n= 0

0 otherwise.

(4.3)
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Proof. Suppose m,n≥0

Case 1: m,n≥1

Pm,n(t) = P{X(t) = n|X(0) =m}= G
(n)
m (0, t)
n!

=
min(m,n)∑
j=1

γ
(n)
j

m!
n! (m− j)!k

n−j
3 (k2 +k1k3)j

(
k1 +k2·0
1−k3·0

)m−j
(1−k3·0)−(n+j)

=
min(m,n)∑
j=1

γ
(n)
j

m!
n! (m− j)!k

n−j
3 (k2 +k1k3)jkm−j1 .

Case 2: Let n= 0 and m≥1

Given the generating function Gm(z, t),

Pm,0(t) =Gm(0, t)

=
(
k1 +k2·0
1−k3·0

)m
+C(t) = km1 +C(t).

Case 3: Suppose m= n= 0

Qualitatively, given that there are m= 0 parasites at time t= 0, there is a certain prob-

ability of having n= 0 parasites at any time t > 0 since no birth can occur. Now, since

Pm,0(t) = km1 +C(t)

; where

C(t) = 1−
(
k1 +k2
1−k3

)m
for k1,k2,k3 > 0,

=⇒ P0,0(t) = P{X(t) = 0|X(0) = 0}= Pm,0(t)|m=0= k0
1 + 1−

(
k1 +k2
1−k3

)0
= 1 q. e. d.

Hence, the transition function Pm,n(t) given by Corollary 2.1 is true for m,n≥0 as re-

quired.
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Remark. Given the nth derivative of the B-D-C process X(t) as defined under Theorem 2,

we can further derive at least the first to third theoretical moments of X(t) as indicated

in Corollary 2.2.

Corollary 2.2. The expected value, variance and the 3rd uncentered moment of the B-D-C

process X(t) can be derived from equation 4.1 such that

E{X(t)|X(0) =m}= ∂

∂z
Gm(z, t)

∣∣∣∣∣
z=1

= m(k2 +k1k3)
(1−k3)2

(
k1 +k2
1−k3

)m−1
.

(4.4)

V ar{X(t)|X(0) =m}= ∂2

∂z2Gm(z, t)
∣∣∣∣∣
z=1

+E{X(t)|X(0) =m}− [E{X(t)|X(0) =m}]2 ,

(4.5)

where

∂2

∂z2Gm(z, t)
∣∣∣∣∣
z=1

= 2mk3(k2 +k1k3)
(1−k3)3

(
k1 +k2
1−k3

)m−1
+m(m−1)(k2 +k1k3)2

(1−k3)4

(
k1 +k2
1−k3

)m−2
.

Additionally,

E{X3(t)|X(0) =m}= ∂3

∂z3Gm(z, t)
∣∣∣∣∣
z=1

+ 3E{X2(t)|X(0) =m}−2E{X(t)|X(0) =m}

(4.6)

with

∂3

∂z3Gm(z, t)
∣∣∣∣∣
z=1

= 6m(k2 +k1k3)k2
3

(1−k3)4

(
k1 +k2
1−k3

)m−1
+ 6m(m−1)(k2 +k1k3)2k3

(1−k3)5

(
k1 +k2
1−k3

)m−2

+ m(m−1)(m−2)(k2 +k1k3)3

(1−k3)6

(
k1 +k2
1−k3

)m−3
,

and

E{X2(t)|X(0) =m}= V ar{X(t)|X(0) =m}+ [E{X(t)|X(0) =m}]2. (4.7)
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The 1st, 2nd and 3rd uncentered theoretical moments are useful for the generalised

method of moments estimation of the B-D-C process described in Section 4.2.

4.1.3 Numerical validation of the derived transition function of the B-

D-C process

The derived transition function Pm,n(t) and its theoretical moments (mean and variance

functions) were further validated numerically based on 1 million exact stochastic simula-

tions of the B-D-C process (for pseudo-code and R codes of the exact SSA of the B-D-C

process, see Algorithm 1 and Appendix C) at given parameter values (λ= 0.512, µ= 0.35

and ρ= 0.003) and X0 = 2 as a case study. Algorithm 1 is a novel B-D-C simulation algo-

rithm developed (in the current study) by adapting the standard Monte Carlo stochastic

simulation technique to also include host survival status. The analytical transition prob-

abilities (computed from corollary 2.1) and their corresponding Monte Carlo estimates

(p̂2,n(t) = kn(t)/N , where kn(t) is the frequency of occurrence for each value of n≥ 0 at

time t and N is the total number of simulations) were compared over time (Figure 4.1).

Figure 4.1 is a goodness-of-fit plot of the analytical and Monte Carlo estimates of the

transition probabilities for different values n≥ 0 at six time points (t= 1 to t= 6). The

estimated 95% confidence intervals for the Monte Carlo estimates of the transition prob-

abilities were very small in size due to the smaller values of their respective standard

errors as a result of the large number of simulations; and thus, not presented. However,

the analytical transition probabilities were within the estimated confidence intervals at

least 90% of the time (i.e., coverage probability=0.90). This is because, in practice, a

95% confidence level (based on normal approximation) does not necessarily guarantee

a 95% coverage probability. The sampling distribution of the true mean and variance

functions (equations 4.4 and 4.5) of the B-D-C process were respectively compared with

their corresponding Monte Carlo estimates (Figure 4.2).

Remark. We can deduce from Figures 4.1 and 4.2 that the Monte Carlo estimates of the

transition probabilities, mean and variance of the B-D-C process X(t) are consistent with

the theoretical values. Hence, the derived transition function can be used to accurately
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estimate transition probabilities of the B-D-C process.

Figure 4.1: Comparison between analytical and numerical estimates of transition proba-
bilities of the B-D-C process at given parameter values (λ= 0.512, µ= 0.35 and ρ= 0.003)
from t= 1 to t= 6 (in days).
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Figure 4.2: Comparison between analytical and Monte Carlo estimates of the mean and
variance of the B-D-C process over time (0≤ t≤ 30 days).
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Algorithm 1: Exact SSA of the B-D-C process (pseudo-code)
Input: X, λ, µ, ρ, t, tfinal and host survival status (s).
Output: Parasite numbers and survival status (alive: s= 1; dead: s= 2)

recorded at discrete times (t= 1,2, · · · , tfinal).
1 while t < tfinal and s= 1 do
2 Set initial time t= t0, state X =X0 and s= 1.
3 Calculate rates corresponding to birth (a1), death (a2) and catastrophe (a3);

such that a1 = λX, a2 = µX and a3 = ρX.

4 Compute the total rate, a0 =
3∑
j=1

aj , for j = 1,2,3 (from step 3).

5 Determine the event to occur using a random number u from Uniform(0,a0)
6 if 0≤ u≤ a1 then
7 set X =X+ 1
8 else
9

10 end
11 else if a1 < u≤ a1 +a2 then
12 set X =X−1
13

14 else
15 set X = 0 and s= 2 (then stop the simulation).
16 end
17

18 Generate time increment τ from Exponential(a0), and update the time such
that t= t+ τ .

19 Record (X,s) at the desired discrete times.
20 end
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4.1.4 Behaviour of the transition, mean and variance functions of the

B-D-C process

We further explored the behaviour of the exact transition function by varying the values

ofm (1≤m≤10) and n (1≤ n≤10) at pre-specified parameter values (λ= 0.512, µ= 0.35

and ρ= 0.003). Figure 4.3 shows that for any fixed value of m> 0 and n > 0, transition

probabilities decrease over time for t > 0 and the probability of transitioning to state

n decreases with increasing values of m. The behaviour of the B-D-C process’s mean

and variance functions was also explored over time at m = 2 and different parameter

values by varying the rates in a full factorial design (Figure 4.4). This combination

of parameter values was pre-specified to determine how the choice of values can affect

the mean (or parasite population) distribution over time and help determine instances

where the parasite population from the B-D-C process is low, moderate, or high (for

the sake of three different in silico simulation experiments to be carried out to assess

the computational speed and accuracy of the B-D-C parameter estimation techniques

proposed under the next section 4.2). Generally, the variance of the process X(t) is far

greater than its mean at any value of t > 1 and any given parameter values.
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Figure 4.3: Exact transition probabilities of the B-D-C process at pre-specified parameter
values (λ= 0.512, µ= 0.35 and ρ= 0.003) for different values of m and n (0≤m,n≤ 10)
over time (0≤ t≤ 100 days).

112



Figure 4.4: Exact mean and variance of the B-D-C process at different pre-specified
parameter values (0.5≤ λ≤ 3; 0.3≤ µ≤ 3; 0.001≤ ρ≤ 0.1) over time (0≤ t≤ 50 days).
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4.2 Parameter estimation of the B-D-C process

We estimated the parameters of the B-D-C model by comparing between three estima-

tion methods: Maximum likelihood estimation (MLE), Generalised method of moments

(GMM) and Embedded Galton-Watson approach (GW), based on three different simu-

lation experiments repeated 100 times (with X0 = 2); such that the parasite population

size were low (λ = 3, µ = 2 and ρ = 0.1), moderate (λ = 2, µ = 1 and ρ = 0.01) or high

(λ = 0.5, µ = 0.3 and ρ = 0.001). The main motivation is to identify which estimation

method achieves good estimates (based on their bias, variance and mean square error of

the estimates, respectively) but with faster computational time for the different simula-

tion experiments. These parameter estimates will improve the summary statistics of a

modified ABC based on a complex stochastic simulation model for the gyrodactylid-host

system (see Chapters 5 and 6). The estimation methods were set-up to distinguish be-

tween the two zero states of the B-D-C process at any time t due to natural death of

parasites or catastrophic extinction, such that

P{X(t) = 0 and host alive|X(0) =m}= km1

and

P{X(t) = 0 and host dead|X(0) =m}= 1−
(
k1 +k2
1−k3

)m
,

with k1, k2 and k3 defined as before.

For each in silico simulation experiment (Cases 1-3), we simulated data for 50 independent

hosts. We recorded parasite numbers for each host over a 17-day period (odd-numbered

days from day 1 to 17) to represent one simulation realisation. The simulation is set-up

like the observed empirical data for the sophisticated stochastic model. We fit the MLE

(described in Section 4.2.1) as well as the GMM and GW estimators (described in Sec-

tions 4.2.2 and 4.2.3, respectively) to the 50 simulated data for 100 different simulation

realisations, respectively. The bias, variance and mean square error of the parameter esti-
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mates are computed for comparison. For any biased estimator, we explored its consistency

as the sample size becomes large. The three different in silico simulation experiments

were considered in determining whether the estimation methods will give reasonable es-

timates irrespective of the parasite population size over time as well as investigate the

computational speed in such instances. A major assumption made for these parame-

ter estimation methods is that data from different simulations and in silico simulation

experiments are independent and identically distributed.

4.2.1 Maximum likelihood estimator

Suppose X = {X(t1),X(t2), · · ·X(t9)} is the number of parasites on a host at time ti,

i = 1,2,3, · · · ,9 and follows the B-D-C process with transition function defined in Corol-

lary 2.1. Let nr be the total number of hosts for each realisation for r = 1,2, · · · ,100 (nr

was set at 50 for each simulation realisation). Suppose nki is the number of parasites

on the kth host for k = 1,2, · · · ,nr at time ti, i = 1,2,3, · · · ,9. By employing the Markov

property, the likelihood function corresponding to each simulation realisation for r is

given as

L(X,λ,µ,ρ) =
nr∏
k=1

P{X(t9) = nk9,X(t8) = nk8, · · · ,X(t1) = nk1|X(t0) = nk0}

=
nr∏
k=1

P{X(t1) = nk1|X(0) = nk0}×P{X(t2) = nk2|X(t1) = nk1}× · · ·×

P{X(t9) = nk9|X(t8) = nk8}

=
nr∏
k=1

9∏
i=1

P{X(ti− ti−1) = nki|X(0) = nk0}. (4.8)

Taking logarithm of L(X,λ,µ,ρ) (equation 4.8) gives the log-likelihood function l(X,λ,µ,ρ)

(equation 4.9):
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l(X,λ,µ,ρ) =
nr∑
k=1

9∑
i=1

log (P{X(ti− ti−1) = nki|X(t0) = nk0}) for r = 1,2, · · · ,100.

(4.9)

Now, suppose θ = [λ,µ,ρ]T and Θ = {θ ∈ R3|λ > 0, µ > 0, ρ > 0} is the parameter space

of θ, then the MLE (θ̂MLE) is obtained such that

θ̂MLE = argmax
θ∈Θ

l(X,θ). (4.10)

The maximum likelihood estimates were obtained numerically in R across the entire pa-

rameter space Θ by maximising the log-likelihood function for each simulation experiment

(Cases 1-3). Due to round-off errors in storing the transition probabilities for large para-

site numbers in R version 3.6.3 [247], arbitrary precision arithmetic in Julia version 1.5.3

[33] was employed to store these probabilities as double-precision binary floating-point

numbers (i.e., 64-bit floating-point numbers with 15 decimal digits of precision); however,

arbitrary-precision arithmetic is considerably slow. Additionally, the probabilities were

efficiently computed recursively by pre-calculating various components of the transition

function before computing the log-likelihood function (for the Julia codes of the recursive

transition function and log-likelihood function, see Appendix D).

4.2.2 Generalised method of moments estimator

Let ϕd(θ, ti) = E{Xd
r (ti)|X(0) = m} represent the first d exact theoretical moments and

ϕ̄d(X,ti) denoting their corresponding sample moments for d = 1,2,3 for simulation re-

alisation r such that

ϕ1(θ, ti) = m(k2 +k1k3)
(1−k3)2

(
k1 +k2
1−k3

)m−1
,

ϕ2(θ, ti) = 2mk3(k2 +k1k3)
(1−k3)3

(
k1 +k2
1−k3

)m−1
+m(m−1)(k2 +k1k3)2

(1−k3)4

(
k1 +k2
1−k3

)m−2
+ϕ1(θ, ti),

116



ϕ3(θ, ti) = 6m(k2 +k1k3)k2
3

(1−k3)4

(
k1 +k2
1−k3

)m−1
+ 6m(m−1)(k2 +k1k3)2k3

(1−k3)5

(
k1 +k2
1−k3

)m−2

+ m(m−1)(m−2)(k2 +k1k3)3

(1−k3)6

(
k1 +k2
1−k3

)m−3
+ 3ϕ2(θ, ti)−2ϕ1(θ, ti);

and their corresponding sample moments at time ti, i= 1,2 · · · ,9 is given by

ϕ̄d(X,ti) = 1
nr

nr∑
k=1

Xd
k (ti) for d= 1,2,3 and r = 1,2, · · · ,100.

Suppose ϕ4(θ, ti) is the theoretical probability of catastrophe and let ϕ̄4(X,ti) be its

sample estimate at time ti such that

ϕ4(θ, ti) = 1−
(
k1 +k2
1−k3

)m
and ϕ̄4(X,ti) = ωir

nr
;

where ωir is the number of hosts who died at time ti out of the nr total number of hosts

who were alive at time 0 in the rth simulation realisation. Here, we assume an infected

host dies and parasite population extinction occur at a rate proportional to the number

of parasites X(ti) on host at time ti.

Let g(X,θ) be a 9×4 matrix with entries gij(X,θ) (for 1≤ i≤ 9 and 1≤ j ≤ 4) defined

such that

gij(X,θ) = ϕj(θ, ti)− ϕ̄j(X,ti) (4.11)

and satisfying the 9×1 unconditional moment conditions:

E [g(X,θ)] = 0. (4.12)

A two-step generalised method of moments technique originally proposed by Hansen [124]

was employed to numerically obtain efficient GMM. Now, suppose that

ḡj(θ) = 1
9

9∑
i=1

gij(X,θ) for j = 1,2,3,4. (4.13)
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Then, the GMM estimator is given by

θ̂GMM = argmin
θ∈Θ

ḡ(θ)TΩ(θ∗)−1ḡ(θ), (4.14)

where Ω(θ∗)−1 is a positive-definite weighting matrix (a diagonal matrix with leading

diagonal representing the multiplicative inverse of the variance of jth column entries of

matrix g evaluated at θ∗ as defined in equation 4.15), and θ∗ is the initial parameter

estimates at the first estimation step with the weighting matrix being a 4× 4 identity

matrix. For the weighting matrix at the second estimation step, we assume that the

column entries or components (gj) of matrix g(X,θ∗) are uncorrelated for j = 1,2,3,4.

The 2-step algorithm for obtaining θ̂GMM is therefore:

1. Estimate θ∗ = argmin
θ∈Θ

ḡ(θ)T ḡ(θ).

2. Estimate the weighting matrix Ω(θ∗)−1 given θ∗

Ω(θ∗)−1 =



g1 g2 g3 g4

g1
1

σ2
g1(θ∗)

0 0 0

g2 0 1
σ2
g2(θ∗)

0 0

g3 0 0 1
σ2
g3(θ∗)

0

g4 0 0 0 1
σ2
g4(θ∗)


.

where σ2
gj(θ∗) is the variance of jth column entries of matrix g(X,θ∗) such that

σ2
gj(θ∗) =

9∑
i=1

[gij(X,θ∗)− ḡj(θ∗)]2

8 for j = 1,2,3,4. (4.15)

3. Compute the required estimates θ̂GMM given by equation 4.14.

By the weak law of large numbers,

ϕ̄j(X,ti)
p−−→ ϕj(θ, ti) as nr→∞ for 1≤ i≤ 9, 1≤ j ≤ 4 and 1≤ r ≤ 100.
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Hence, if the moment conditions are met, GMM estimates are consistent as the sample

size increases.

4.2.3 Embedded Galton-Watson estimation approach

A single trajectory of a discretely-observed linear birth-death process (LBDP) with birth

rate λ, death rate µ and equal inter-observation times ∆t corresponds to a Galton-Watson

(GW) process with offspring mean m=m(∆t) and variance σ2 = σ2(∆t) [75, 125]; where

m̂=

T∑
i=1

Zi

T∑
i=1

Zi−1

and σ̂2 = 1
T

T∑
i=1

Zi−1

(
Zi
Zi−1

− m̂
)2

with Z0 = Z(0) denoting the initial population size at time t = 0, the successive popu-

lation sizes represented as Z1 = Z(∆t),Z2 = Z(2∆t), · · · ,ZT = Z(T ∆t), and T being the

final observed time. The GW process is thus the most basic (branching process) model

for a population changing through time. It assumes that given an initial number of in-

dividuals or parasites (Z0 = 1) at the zeroth generation (or at t = 0), each individual in

the population at any time t ≥ 1 can give birth (at a constant rate λ > 0) to offspring

with the same probability distribution, independently of one another; whereas, each in-

dividual can die (at a constant rate µ > 0) until population extinction may occur when

the offspring mean m< 1. Also, analytical estimates of the birth and death rates (λ and

µ) given a finite number of independent trajectories (or initial population size > 1) of a

discretely-observed LBDP with equal inter-observation times conditioned on population

non-extinction have been proposed in the general case by Davison et al. [75] as an em-

bedded GW process (i.e., the more general or extended case with Z0 ≥ 1).

Now, let suppose Zi,k is the number of parasites on each kth surviving host at time

ti for i = 1,2, · · · ,9, k = 1,2, · · · , sr, r = 1,2, · · · ,100 and equal inter-observation times

∆t = ti− ti−1 (where sr is the total number of surviving hosts for each rth simulation

realisation). Suppose Zi,k with birth rate λ > 0 and death rate µ > 0, is a GW process

with mean m(∆t) > 1 and variance σ2(∆t) > 0 (where Z0,k = 2 in our case). Then, the
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analytical estimates of the birth and death rates for k > 1 independent trajectories of the

LBDP and equal ∆t (∆t= 2 in our case) is given as

λ̂= logm̂
2∆t

{
σ̂2

m̂(m̂−1) + 1
}

and µ̂= logm̂
2∆t

{
σ̂2

m̂(m̂−1) −1
}

; (4.16)

where

m̂=

sr∑
k=1

9∑
i=1

Zi,k

sr∑
k=1

9∑
i=1

Zi−1,k

and σ̂2 = 1
9sr

sr∑
k=1

9∑
i=1

Zi−1,k

(
Zi,k
Zi−1,k

− m̂
)2
.

From equation 4.16, it can be observed that when the mean m̂ < 1 (case of subcritical

process), λ̂ < 0; and at m̂= 1 (case of critical process), λ̂ and µ̂ are undefined. According

to Davison et al. [75], λ̂ = µ̂ = σ̂2

2∆t when m̂ = 1. In the non-critical case where the

offspring mean m̂ > 1, the birth and death rates of the B-D-C process are estimated based

on equation 4.16 by conditioning on non-extinction or survival of host. To estimate the

catastrophic rate (ρ) when m̂ > 1, we estimate ρ using maximum likelihood estimation

given by equation 4.18 based on the GW estimates of the birth and death rates (λ̂ and

µ̂ from equation 4.16). Suppose hosts die in the time interval (tki−1 , tki ] at rate ρ, then

the log-likelihood function is given as

l(ρ; λ̂, µ̂) =
nr−sr∑
k=1

log
[
C(tki)−C(tki−1)

]
for r = 1,2, · · · ,100; (4.17)

where C(t) is the theoretical probability of catastrophe given by

C(t) = 1−
(
k1 +k2
1−k3

)m
,

with k1 = ν0ν1(1−σ)
ν1−σν0

, k2 = ν1σ−ν0
ν1−σν0

, k3 = 1−σ
ν1−σν0

, σ= e−λ̂(ν1−ν0)t, ν0 = (λ̂+µ̂+ρ)−
√

(λ̂+µ̂+ρ)2−4µ̂λ̂
2λ̂ ,

and ν1 = (λ̂+µ̂+ρ)+
√

(λ̂+µ̂+ρ)2−4µ̂λ̂
2λ̂ . The MLE estimator of the catastrophe rate given the

GW estimates of the birth and death rates is obtained such that

ρ̂= argmax
ρ∈Θ

l(ρ; λ̂, µ̂). (4.18)
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Remark. The fastest computational time is expected to be achieved from the analytical

estimation of the birth and death rates (λ̂ and µ̂, respectively) using the GW estimator

given by equation 4.16 together with the MLE estimator of the catastrophe rate ρ given

by equation 4.18 compared to the computational time required for the MLE and GMM

estimators given by equations equations 4.10 and 4.14, respectively. For instances where

the offspring mean m̂ ≤ 1 (for critical and subcritical cases), we estimated the B-D-C

model parameters (λ, µ and ρ) using the GMM estimator given by equation 4.14 to obtain

more consistent and less biased estimates within a fast computational time. Generally,

GMM estimation is relatively faster in computational time than MLE. In this study, the

GW estimation approach is employed if and only if the offspring mean m> 1 within the

simulation experiments.

4.2.4 Comparison between the estimation methods

The best estimation methods are identified in this study by exploring the trade-off be-

tween estimation accuracy and computational speed. The MLE and GMM estimates were

computed with their corresponding 95% confidence interval (C.I) for the three simulation

experiments based on 50 independent hosts, respectively (Table 4.1). The GW estima-

tion in this current study, only held for simulation Case 1 (where the true parameter

values were set at λ= 0.5, µ= 0.3 and ρ= 0.001) since it was the only instance where the

offspring mean m from the Galton-Watson estimation approach > 1 (due to large para-

site numbers obtained in simulation Case 1). Thus, GW estimation was not employed for

simulation experiments two and three since the offspring mean m≤ 1. The GW estimates

with their 95% confidence interval for simulation Case 1 are also presented in Table 4.1.

The estimation methods’ performance was compared by estimating the bias, variance,

and mean square error of estimates (based on equations 4.19–4.21) for each parameter of

the B-D-C process (Table 4.1). Given θ = [λ,µ,ρ]T , suppose the true parameter values

of the simulated data is θ0 = [λ0,µ0,ρ0]T and its corresponding estimate is θ̂ = [λ̂, µ̂, ρ̂]T ;

then the bias, variance and mean square error of estimates for each parameter θi for

i= 1,2,3 are computed such that
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bias(θ̂i) = E(θ̂i)− θ0i = 1
100

100∑
r=1

θ̂ir− θ0i, (4.19)

V ar(θ̂i) = E[(θ̂i−E(θ̂i))2], (4.20)

and

MSE(θ̂i) = E[(θ̂i− θ0i)2] = V ar(θ̂i) + [bias(θ̂i)]2. (4.21)

For simulation Case 1, the three estimation methods generally performed well based on

their bias, variance and mean square error estimates (Table 4.1); however, the bias of

MLE was consistently lower and relatively efficient (less variance) in estimating the B-

D-C model parameters based on the three simulation experiments. Nevertheless, the

Galton-Watson estimation approach was significantly faster in computational speed than

MLE and GMM estimation methods (Table 4.4). The computational time required for

MLE was significantly higher than the GMM estimation for simulation Cases 1 and 2,

where parasite numbers were relatively higher than that of simulation Case 3 (Figure 4.6).

This finding is due to the complexity of the B-D-C process’s transition and log-likelihood

functions. The consistency, efficiency and computational time of GW and GMM estimates

were also investigated as the sample size increases for each simulation experiment at

sample sizes of 50, 100 and 500 (Tables 4.2–4.4). The GW and GMM estimates were

relatively efficient as the sample size increased from 50 to 500. The B-D-C process’s

mean behaviour was also bounded based on the MLE and GMM for all three in silico

simulation experiments as goodness-of-fit plots (Figure 4.5). The mean trajectory based

on the expected MLE and GMM estimates and actual parameter values perfectly averaged

the mean trajectories evaluated at MLEs from the 100 realisations, respectively, across

the three simulation cases. Based on the computational speed and accuracy measures

of the respective estimation methods, the Galton-Watson estimation approach (given by

equations 4.16 and 4.18) and the GMM estimator (given by equation 4.14) can be used

together to obtain fast and reasonably accurate estimates of the B-D-C model parameters

122



in refining the modified ABC algorithm for the sophisticated stochastic model. The

estimation must be done such that the Galton-Watson method should be used when the

offspring mean m> 1 and GMM employed when m≤ 1.

Table 4.1: Maximum likelihood, Generalised method of moments and Galton-Watson
estimates based on the three different in silico simulation experiments (Cases 1-3) of 50
hosts respectively.

Simulation Method Parameters θ̂ θ0 bias(θ̂) Var(θ̂) MSE(θ̂) 95% C.I
Case 1 MLE λ 0.503 0.5 0.003 0.001 0.001 0.496-0.509

µ 0.303 0.3 0.003 0.001 0.001 0.296-0.309
ρ 0.001 0.001 7.29×10−5 1.42×10−7 1.48×10−7 0.0009-0.0011

GMM λ 0.526 0.5 0.026 0.140 0.141 0.452-0.599
µ 0.330 0.3 0.029 0.139 0.141 0.256-0.403
ρ 0.001 0.001 -3.97×10−5 1.28×10−7 1.29×10−7 0.0009-0.0011

GW λ 0.507 0.5 0.007 0.020 0.020 0.479-0.534
µ 0.322 0.3 0.022 0.020 0.020 0.294-0.349
ρ 0.0073 0.001 0.006 4.81×10−6 4.46×10−5 0.0068-0.0077

Case 2 MLE λ 1.998 2 -0.002 0.031 0.031 1.964-2.033
µ 1.009 1 0.001 0.031 0.031 0.975-1.044
ρ 0.010 0.01 0.000 4.10×10−6 4.13×10−6 0.009-0.011

GMM λ 1.879 2 -0.121 0.474 0.489 1.744-2.014
µ 0.932 1 -0.068 0.206 0.211 0.843-1.021
ρ 0.010 0.01 2.06×10−4 5.17×10−6 5.21×10−6 0.009-0.011

Case 3 MLE λ 2.953 3 -0.047 0.222 0.224 2.861-3.045
µ 1.969 2 -0.031 0.176 0.177 1.887-2.050
ρ 0.107 0.1 0.007 0.001 0.001 0.101-0.112

GMM λ 2.728 3 -0.272 1.299 1.373 2.501-2.952
µ 1.833 2 -0.167 0.700 0.728 1.669-1.997
ρ 0.104 0.1 0.004 0.001 0.001 0.099-0.109
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Figure 4.5: Bounded mean behaviour of the B-D-C process based on the MLE and GMM
estimates over time across the three different in silico simulation experiments (n = 50
hosts).
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Table 4.2: Effect of sample size on the GMM estimates based on the three different in
silico simulation experiments (Cases 1-3).

Simulation Sample size Parameters θ̂ θ0 bias(θ̂) Var(θ̂) MSE(θ̂) 95% C.I
Case 1 50 λ 0.526 0.5 0.026 0.140 0.141 0.452-0.599

µ 0.330 0.3 0.029 0.139 0.141 0.256-0.403
ρ 0.001 0.001 -3.97×10−5 1.28×10−7 1.29×10−7 0.0009-0.0011

100 λ 0.494 0.5 -0.006 0.026 0.026 0.462-0.526
µ 0.294 0.3 -0.006 0.029 0.029 0.261-0.327
ρ 0.001 0.001 -9.78×10−6 7.39×10−6 7.40×10−8 0.0009-0.0011

500 λ 0.496 0.5 -0.004 0.003 0.003 0.485-0.507
µ 0.296 0.3 -0.004 0.003 0.003 0.285-0.307
ρ 0.001 0.001 2.09×10−6 1.18×10−8 1.18×10−8 0.0009-0.0011

Case 2 50 λ 1.879 2 -0.121 0.474 0.489 1.744-2.014
µ 0.932 1 -0.068 0.206 0.211 0.843-1.021
ρ 0.010 0.01 2.06×10−4 5.17×10−6 5.21×10−6 0.009-0.011

100 λ 1.808 2 -0.192 0.347 0.383 1.693-1.923
µ 0.884 1 -0.116 0.140 0.154 0.810-0.957
ρ 0.010 0.01 0.001 3.46×10−6 3.69×10−6 0.009-0.0011

500 λ 1.927 2 -0.073 0.112 0.117 1.862-1.993
µ 0.961 1 -0.039 0.046 0.048 0.919-1.003
ρ 0.010 0.01 3.21×10−5 3.59×10−7 3.60×10−7 0.009-0.011

Case 3 50 λ 2.728 3 -0.272 1.299 1.373 2.501-2.952
µ 1.833 2 -0.167 0.700 0.728 1.669-1.997
ρ 0.104 0.1 0.004 0.001 0.001 0.099-0.109

100 λ 2.579 3 -0.421 0.628 0.806 2.423-2.734
µ 1.728 2 -0.272 0.294 0.368 1.622-1.834
ρ 0.100 0.1 -0.001 3.75×10−4 3.76×10−4 0.095-0.102

500 λ 2.916 3 -0.084 0.243 0.250 2.820-3.013
µ 1.953 2 -0.047 0.116 0.118 1.889-2.020
ρ 0.100 0.1 -2.27×10−4 8.06×10−5 8.07×10−5 0.098-0.102
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Table 4.3: Effect of sample size on the Galton-Watson estimates (based on simulation
Case 1).

Sample size Parameters θ̂ θ0 bias(θ̂) Var(θ̂) MSE(θ̂) 95% C.I
50 λ 0.507 0.5 0.007 0.020 0.020 0.479-0.534

µ 0.322 0.3 0.022 0.020 0.020 0.294-0.349
ρ 0.0073 0.001 0.006 4.81×10−6 4.46×10−5 0.0068-0.0077

100 λ 0.505 0.5 0.005 0.007 0.007 0.488-0.521
µ 0.319 0.3 0.019 0.007 0.007 0.302-0.335
ρ 0.0074 0.001 0.006 2.86×10−6 4.36×10−5 0.0070-0.0077

500 λ 0.528 0.5 0.028 0.001 0.002 0.520-0.535
µ 0.341 0.3 0.041 0.001 0.003 0.334-0.348
ρ 0.0067 0.001 0.001 3.58×10−7 3.30×10−5 0.0065-0.0068

Table 4.4: Computational time (in secs) between MLE, GMM and GW estimation based
on simulation Case 1 (where true value of λ = 0.5, µ = 0.3 and ρ = 0.001) at different
sample sizes (n).

Estimation method n= 50 n= 100 n= 500
Galton-Watson approach 9.736 19.046 88.531

Generalised method of moments 1086.836 1852.000 6202.532
Maximum likelihood 114584.588 - -
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Figure 4.6: Comparison between MLE computational time and that of GMM at different
sample sizes across the three simulation experiments (Cases 1-3).

4.3 B-D-C hybrid τ -leaping algorithm

Tau-leaping stochastic simulation is a fast approximate method of the exact stochastic

simulation algorithm (SSA) originally proposed by Feller [100]. The τ−leaping algorithm

simulates a stochastic system such that all events are carried out during a time step before

updating the event or transition rates [110]. The principle behind τ−leaping is analogous

to the standard Euler’s method for solving deterministic systems (or differential equa-

tions). The only difference is that the one-step Euler’s method makes use of fixed change

in the system’s state such that x(t+ τ) = x(t) + τx′(t) where x′(t) = f(t,x) and τ is the

fixed step size; whereas τ−leaping update the state using x(t+ τ) = x(t) +P (τx′(t)).

Here, P (τx′(t)) is a Poisson random variable with fixed rate τx′(t) and event or tran-
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sition rate x′(t) to approximate the number of transitions in the time interval [t, t+ τ).

However, the accuracy of τ−leaping depends on how well the leap condition is satisfied

during a time step, rising to different leaping methods [110, 111]. The leap condition

requires a good choice of the leap size τ such that the state change is fixed or does not

vary significantly within the time interval [t, t+ τ) to avoid unexpected increment in the

transition rates.

The size of τ determines the extent to which the system’s history axis is leapt down.

The choice of τ or not using τ (τ = 0) is all about the trade-off between speed and accu-

racy. When the population size of the system increases, the exact SSA is relatively slower

and thus, the leap size τ > 0 is chosen to allow multiple events while satisfying the leap

condition during a time step. However, if only a small number of transitions are leapt

over, then using the exact SSA is much preferred (i.e., when τ = 0). Different choice of

the leap size for accelerating stochastic simulations have been proposed in the literature

[193, 249]; but this current study only focuses on leap-size selection methods proposed

by Gillespie [110] and Gillespie and Petzold [111], respectively.

To successfully develop a tau-leaping method, we require to find the largest value of the

leap size (τ) that satisfies the leap condition. Let x represent the state of the process

X(t), θ= [λ,µ,ρ]T denote the parameters of the B-D-C process, aj(x) = θjx for j = 1,2,3

be the propensity or rate function, and v represent the state-change vector (which takes

values -1, 0 or +1); then the leap condition assumes that the value of τ must be small

enough such that the change in propensity function or event rates |aj(x+Λ(τ,x))−aj(x)|

is bounded above by a pre-specified error control parameter ε (0 < ε� 1) of the sum of

all event rates [110] such that

|aj(x + Λ(τ,x))−aj(x)|≤ εa0(x), ∀j = 1,2,3; (4.22)

where Λ(τ,x)≈
3∑
j=1

Pj(aj(x), τ)vj (with Pj(aj(x), τ) denoting a Poisson random variable

with rate aj(x)τ) and a0(x) is the total rate. However, since the state x cannot change
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by more than 1 within any infinitesimal time interval [t, t+ τ) during the simulation of

continuous-time Markov processes, we separately set-up the catastrophe event (where the

entire population can hit 0 within the infinitesimal time interval) different from the birth

and death events using standard Monte Carlo technique (based on a uniform random

number). Hence, the name “B-D-C hybrid τ -leaping algorithm”.

4.3.1 Procedure for selecting the Leap size

Two different procedures have been proposed by for selecting the leap size (τ) for processes

with N -dimensional states such that the leap condition (equation 4.22) is satisfied [110,

111]. For the purpose of this study, the state x of the B-D-C process is one-dimensional

and thus, the leap size selection stated in Lemma 2 based on τ -selection by Gillespie [110]

and Lemma 3 based on a new τ -selection by Gillespie and Petzold [111] are defined for a

Markov process with one-dimensional state.

Lemma 2. Let a0(x) =
M∑
j=1

aj(x), ξ(x) =
M∑
j=1

aj(x)vj , and bj = daj(x)
dx for j = 1,2, · · ·M .

According to Gillespie [110], a choice for τ satisfying the leap condition (equation 4.22)

at a given value of ε is

τ = min
j∈[1,M ]

{
εa0(x)
|ξ(x)bj |

}
, (4.23)

where vj is the state-change vector for j = 1,2, · · ·M and M is the total number of events

the process X(t).

Lemma 3. Given the M2 functions fjj′ = daj(x)
dx vj′ for j,j′ = 1,2, · · ·M ; suppose the 2M

functions δj(x) and σ2
j (x), are defined such that

δj(x) =
M∑
j′=1

fjj′aj′(x) and σ2
j (x) =

M∑
j′=1

f2
jj′aj′(x).

According to Gillespie and Petzold [111], the largest value for τ which satisfies the leap

condition (equation 4.22) at a given value of ε is

τ = min
j∈[1,M ]

{
εa0(x)
|δj(x)| ,

ε2a2
0(x)

σ2
j (x)

}
. (4.24)

Remark. We propose a choice of τ value as presented in Theorems 3 and 4 (proposed
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for the first time in the current study) based on Lemmas 2 and 3, respectively, for the

B-D-C hybrid τ -leaping algorithm by exploring the trade-off between speed and accuracy.

Since we have set-up the catastrophe event differently from the birth and death events

in the τ -leaping algorithm, the leap sizes (given by equations 4.25 and 4.26) are defined

based on only the birth and death events of the B-D-C process. For easy comparison,

the B-D-C hybrid τ -leaping algorithms motivated by Gillespie [110] and Gillespie and

Petzold [111] studies are named “HTL2001” and “HTL2003”, respectively, in subsequent

sections (described fully in section 4.3.2).

Theorem 3. Given the optimal leap size (defined by equation 4.23) and a pre-specified

error bound (ε), the value of τ for simulating the B-D-C process (HTL2001) with birth

rate λ and death rate µ is

τHTL2001 = ε(λ+µ)
|λ−µ|max(λ,µ) . (4.25)

Proof of Theorem 3 .

Let λ and µ be the birth and death rates of the B-D-C process X(t) = x. Suppose the

propensity or even rate functions corresponding to birth and death events are given by:

a1(x) = λx and a2(x) = µx, with the state-change vector v = [+1,−1] and error bound ε.

From Lemma 2, a0(x) = (λ+µ)x; ξ(x) = a1(x)−a2(x) = (λ−µ)x; b1(x) = λ and b2(x) =

µ.

Then from equation 4.23,

τHTL2001 = min
j∈[1,2]

{
εa0(x)
|ξ(x)bj |

}
= min

{
ε(λ+µ)x
|(λ−µ)xλ| ,

ε(λ+µ)x
|(λ−µ)xµ|

}

= min
{
ε(λ+µ)
|(λ−µ)λ| ,

ε(λ+µ)
|(λ−µ)µ|

}

= ε(λ+µ)
|(λ−µ)|max(λ,µ) q. e. d.

as required by equation 4.25.

Theorem 4. Given the optimal leap size (defined by equation 4.24) and a pre-specified

error bound (ε), the value of τ for simulating the B-D-C process (HTL2003) with birth

rate λ and death rate µ is
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τHTL2003 = min
{

ε(λ+µ)
|(λ−µ)|max(λ,µ) ,

ε2(λ+µ)2x
(λ+µ)max(λ2,µ2)

}
. (4.26)

Proof of Theorem 4 .

Let λ and µ be the birth and death rates of the B-D-C process X(t) = x. Suppose the

propensity or event rate functions corresponding to birth and death events are given by:

a1(x) = λx and a2(x) = µx, with the state-change vector v = [+1,−1], error bound ε and

a0(x) = (λ+µ)x. Then from Lemma 3,

fjj′ =


1 2

1 λ −λ

2 µ −µ

,

δ1(x) =
2∑

j′=1
f1j′aj′(x) = f11a1(x) +f12a2(x)

= λ(λx) + (−λ)(µx) = λ2x−λµx

= (λ2−λµ)x,

δ2(x) =
2∑

j′=1
f2j′aj′(x) = f21a1(x) +f22a2(x)

= µ(λx) + (µ)(µx) = λµx−µ2x

= (λµ−µ2)x,

σ2
1(x) =

2∑
j′=1

f2
1j′aj′(x) = f2

11a1(x) +f2
12a2(x)

= λ2(λx) +λ2(µx) = (λ3 +λ2µ)x,

and σ2
2(x) =

2∑
j′=1

f2
2j′aj′(x) = f2

21a1(x) +f2
22a2(x)

= µ2(λx) +µ2(µx) = (λµ2 +µ3)x.

Then from equation 4.24,
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τHTL2003 = min
j∈[1,2]

{
εa0(x)
|δj(x)| ,

ε2a2
0(x)

σ2
j (x)

}
= min

{
εa0(x)
|δ1(x)| ,

ε2a2
0(x)

σ2
1(x) ,

εa0(x)
|δ2(x)| ,

ε2a2
0(x)

σ2
2(x)

}

= min
{
ε(λ+µ)x
|λ2−λµ|x

,
ε2(λ+µ)2x2

(λ3 +λ2µ)x ,
ε(λ+µ)x
|λµ−µ2|x

,
ε2(λ+µ)2x2

(λµ2 +µ3)x

}

= min
{

ε(λ+µ)
max(|λ2−λµ|, |λµ−µ2|) ,

ε2(λ+µ)2x
max(λ3 +λ2µ,λµ2 +µ3)

}

= min
{

ε(λ+µ)
|(λ−µ)|max(λ,µ) ,

ε2(λ+µ)2x
(λ+µ)max(λ2,µ2)

}
q. e. d.

as required by equation 4.26.

4.3.2 Pseudo-codes of the B-D-C hybrid τ -leaping algorithms

In the B-D-C τ -leaping algorithms (HTL2001 and HTL2003, proposed for the B-D-C

process for the first time in this study), we forego the leaping method and switch to

the exact SSA (Algorithm 1) whenever the leap size τ is very small such that, τ is at

most a few multiples of the expected time to the next event in the exact SSA (1/total

rate). The pseudo-codes of the τ -leaping algorithms are given by Algorithms 2 and 3,

respectively (for R codes, see Appendix E). The main difference between the two B-D-C

hybrid τ -leaping algorithms HTL2001 (Algorithm 2) and HTL2003 (Algorithm 3) is the

choice of the optimal leap size estimator and its leap condition.
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Algorithm 2: B-D-C hybrid τ -leaping algorithm (HTL2001 pseudo-code)
Input: X, λ, µ, ρ, t, tfinal ε, and host survival status (s).
Output: Parasite numbers and survival status (alive: s= 1; dead: s= 2)

recorded at discrete times (t= 1,2, · · · , tfinal).
1 while t < tfinal and s= 1 do
2 Set initial time t= t0, state X =X0 and s= 1.
3 Calculate rates corresponding to birth (a1), death (a2) and catastrophe (a3);

such that a1 = λX, a2 = µX and a3 = ρX.
4 Compute the total rate, a0 =∑3

j=1aj , for j = 1,2,3 (from step 3).
5 Compute the leap size τ = ε(λ+µ)

|(λ−µ)|max(λ,µ) .
6 if τ > 2

a0
then

7 set t= t+ τ and choose a random number r from Uniform(0,1).
8 if r < a3τ then
9 set X = 0 and s= 2 (catastrophe event occurs)

10 else
11 set X =X+Poisson(a1τ)−Poisson(a2τ) (birth and death events

occur)
12 end
13 else
14 Execute exact SSA (Algorithm 1)
15 end
16

17 Record (X,s) at the desired discrete times.
18 end
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Algorithm 3: B-D-C hybrid τ -leaping algorithm (HTL2003 pseudo-code)
Input: X, λ, µ, ρ, t, tfinal ε, and host survival status (s).
Output: Parasite numbers and survival status (alive: s= 1; dead: s= 2)

recorded at discrete times (t= 1,2, · · · , tfinal).
1 while t < tfinal and s= 1 do
2 Set initial time t= t0, state X =X0 and s= 1.
3 Calculate rates corresponding to birth (a1), death (a2) and catastrophe (a3);

such that a1 = λX, a2 = µX and a3 = ρX.
4 Compute the total rate, a0 =∑3

j=1aj , for j = 1,2,3 (from step 3).

5 Compute the leap size τ = min
{

ε(λ+µ)
|(λ−µ)|max(λ,µ) ,

ε2(λ+µ)2x
(λ+µ)max(λ2,µ2)

}
.

6 if τ > 1
10a0

then
7 set t= t+ τ and choose a random number r from Uniform(0,1).
8 if r < a3τ then
9 set X = 0 and s= 2 (catastrophe event occurs)

10 else
11 set X =X+Poisson(a1τ)−Poisson(a2τ) (birth and death events

occur)
12 end
13 else
14 Execute exact SSA (Algorithm 1)
15 end
16

17 Record (X,s) at the desired discrete times.
18 end

4.3.3 Effects of the error bound on the accuracy and speed of the τ -

leaping algorithms

We compared the two B-D-C hybrid τ -leaping algorithms by exploring a balance between

simulation accuracy and computational speed at 15 different error bound values (for 0≤

ε≤0.1) based on the three different in silico simulation experiments (Cases 1-3) in a full

factorial design. For each simulation experiment, 3 million simulations were conducted.

We quantified the simulation accuracy of the two τ -leaping algorithms (HTL2001 and

HTL2003) by estimating the squared error loss between the true mean number of parasites

and its corresponding predictions across all observed time points at each error bound

(ε =0, 0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.09 and 0.1).
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We also computed total standard error of the population mean (total deviation in the

sampling distribution) and computational time (speed) at each ε value for comparison.

We proposed an error threshold for the two τ -leaping algorithms based on the simulation

speed and accuracy for the three simulation cases.

4.3.3.1 Relationship between the leap size, the state and the leap conditions

The relationship between the leap size, the state and the leap conditions were explored

for the two tau-leaping algorithms and across the three different in silico experiments

(Figure 4.7). It was consistently shown across the different simulation Cases that as the

state variable x increases, the leap size of algorithm HTL2003 increases and converges

towards the leap size of algorithm HTL2001. However, the leap condition decreases if

the state value increases. Tau-leaping started in algorithm HTL2001 at state x > 40 for

simulation Case 1, state x > 50 for simulation Case 2 and state x > 30 for simulation

Case 3. For algorithm HTL2003, leaping started at state x > 20 for simulation Case 1,

state x > 30 for simulation Case 2 and state x > 20 for simulation Case 3. Consequently,

starting the tau-leaping algorithms earlier after state x≥ 10 or setting τ = 0 for a small

value of x, say, could improve the computational speed of the τ−leaping algorithms

(HTL2001 and HTL2003), but may have some cost of simulation accuracy.
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Figure 4.7: Relationship between the leap size, the state variable and the leap conditions.

4.3.3.2 Mean comparison at different error values

Figures 4.8–4.10 present the Monte Carlo estimates of the mean parasite numbers between

the two B-D-C hybrid τ -leaping algorithms for ε≤ 0.01 and their corresponding true mean

values over time across the three simulation experiments based on 3 million simulations,

respectively. Although 95% confidence intervals were obtained for the estimates, the

interval width was very small in size due to small standard errors associated with the
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large number of simulations. Hence, the 95% confidence intervals are not presented here;

nonetheless, the true mean was found in the estimated intervals over 90% of the time. The

true mean and the Monte Carlo mean estimates were consistent across the observed time

points (t=1-30 days) for both τ -leaping algorithms at ε ≤ 0.01. The τ -leaping methods

were fairly accurate for small error values (0≤ ε≤ 0.01) compared to error values > 0.01

.

Figure 4.8: Comparing the mean behaviour of parasites between the two B-D-C hybrid
τ -leaping algorithms at given parameter values (λ = 0.5, µ = 0.3, ρ = 0.001) at ε ≤ 0.01
(Case 1).
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Figure 4.9: Comparing the mean behaviour of parasites between the two B-D-C hybrid
τ -leaping algorithms at given parameter values (λ= 2, µ= 1, ρ= 0.01) at ε≤ 0.01 (Case
2).
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Figure 4.10: Comparing the mean behaviour of parasites between the two B-D-C hybrid
τ -leaping algorithms at given parameter values (λ = 3, µ = 2, ρ = 0.1) at ε≤ 0.01 (Case
3).
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4.3.3.3 Simulation accuracy and deviations in sampling distribution at different error

values

We examined the simulation accuracy by estimating the squared error loss and the total

standard error of the population mean at each value of ε across the three simulation

experiments (Figures 4.11–4.13). The simulation accuracy decreased with increasing value

of the error bound, while the small deviation in the sampling distribution of the simulated

data was achieved for larger values of ε. In the first and second simulation experiments

(where parasite numbers were relatively higher), there was no significant difference in

the error loss and standard error estimates between the two τ -leaping algorithms across

the different error bounds. However, simulation Case 3 (where parasite numbers were

relatively low) revealed a significant difference in simulation accuracy and standard error

at ε > 0.01; the HTL2003 algorithm performed better than the HTL2001 algorithm, but

the sampling variations from the HTL2003 algorithm was higher comparatively.
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Figure 4.11: Comparing the simulation accuracy between the two B-D-C hybrid τ -leaping
algorithms at given parameter values (λ= 0.5, µ= 0.3, ρ= 0.001) across the error bound
values (Case 1).
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Figure 4.12: Comparing the simulation accuracy between the two B-D-C hybrid τ -leaping
algorithms at given parameter values (λ= 2, µ= 1, ρ= 0.01) across the error bound values
(Case 2).
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Figure 4.13: Comparing the simulation accuracy between the two B-D-C hybrid τ -leaping
algorithms at given parameter values (λ= 3, µ= 2, ρ= 0.1) across the error bound values
(Case 3).

4.3.3.4 Computational speed versus simulation accuracy across different error values

We proposed a good choice of the error bound (based on the 15 different ε values) by

exploring the trade-off between computational speed and simulation accuracy across the

three simulation experiments for both τ -leaping algorithms (Figures 4.14–4.16). It can be

observed from Figures 4.14–4.16 that ε= 0.01 can be a good error bound choice for both

τ−leaping algorithms so as to achieve accurate simulations with relatively low compu-
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tational time. Nonetheless, HTL2001 was much faster (with small computational time)

than HTL2003 at any each ε value (0 ≤ ε ≤ 0.1) across all the simulation experiments.

From Figure 4.7, the computational speed of the algorithms can be improved further.

Figure 4.14: Plot of computational speed against simulation accuracy between the two
B-D-C hybrid τ -leaping algorithms across the error bound values (Case 1).
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Figure 4.15: Plot of computational speed against simulation accuracy between the two
B-D-C hybrid τ -leaping algorithms across the error bound values (Case 2).
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Figure 4.16: Plot of computational speed against simulation accuracy between the two
B-D-C hybrid τ -leaping algorithms across the error bound values (Case 3).
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Chapter 5

ABC for model calibration

5.1 Introduction

This thesis chapter first briefly reviews approximate Bayesian computation (ABC) algo-

rithms for model calibration (section 5.2). The goal of section 5.2 is to summarise a few

ABC algorithms and provide basic intuition behind some existing theoretical results (with

relevant references for more formal definitions and theoretical works in ABC provided).

Section 5.2.1 gives a more general overview of ABC, whereas section 5.2.2 summarises

various levels of approximation in ABC. In section 5.2.3, we provide a short description

of a few efficient ABC algorithms in the literature, such as Markov chain Monte Carlo

ABC (ABC-MCMC), sequential Monte Carlo ABC (ABC-SMC) samplers, and existing

regression-adjusted ABC methods.

Secondly, we present a modified ABC algorithm dubbed “weighted-iterative ABC” (based

on sequential Monte Carlo, adaptive importance sampling, and a modified summary

statistics weighting under section 5.3). Additionally, we propose a modified methodol-

ogy for ABC post-processing or posterior mean adjustments (for multi-parameter models

with a set of high-dimensional correlating summary statistics) using a weighted ridge

regression estimator. The weighted-iterative ABC coupled with the extended local-linear

regression (with L2 penalty term) is used to calibrate our novel stochastic simulation

model (presented in Chapter 6).

Moreover, we propose an optimised linear regression function to project parasite numbers

after host mortality till the end of the observation period to aid in computing summary

statistics for ABC fitting (section 5.3.3). The proposed ABC post-processing regression
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(in section 5.3.4) is an extension of Beaumont et al. [27] local-linear regression with

heteroscedastic errors and an L2 regularisation. With the help of a numerical experiment

(where the true posterior is known), the fidelity of our proposed weighted-iterative ABC

algorithm and the modified ABC post-processing regression with L2 regularisation are

assessed, and the key findings are summarised in section 5.3.5.

5.2 Literature review of existing ABC algorithms

5.2.1 Overview of ABC

Estimating model parameters and accounting for uncertainty in both the parameters and

model predictions when using mathematical models to investigate biological or physical

events is essential. Nonetheless, due to the inability to compute the likelihood or explic-

itly define its exact form for a large class of mechanistic models, maximum likelihood

and classical Bayesian estimation methods are challenging to implement. Consequently,

a likelihood-free parameter estimation technique known as approximate Bayesian compu-

tation (ABC) has been proposed in the literature to overcome such estimation difficulties

in the Bayesian setting. Explicitly, ABC is a collection of likelihood-free methods de-

veloped for implementing Bayesian analysis when the likelihood function L(θ) = f(y | θ)

[70] of a generative model M is either mathematically intractable or computationally

expensive, by obtaining an approximation to the true posterior distribution, p(θ | yobs),

given the observed data yobs ∈ Y and prior beliefs of the underlying model parameter

θ ∈Θ expressed through the prior distribution π(θ) [279, 282].

ABC has vast applications across different areas of science such as rainfall simulation

[11], astronomy [66], vaccine assessment across populations [69], ecology [73], epidemic

modelling [215], epidemiology [227], model selection in dynamical systems [295], and

archaeology [319], amongst others. The idea of the ABC methodology was initially in-

troduced by Rubin [264], but Tavaré et al. [291] pioneered a rejection-sampling method

for posterior inference. The first major extension of the rejection-sampling method led
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to the development of the basic ABC rejection algorithm. The latter was generalised by

Pritchard et al. [245] based on an approximation of the target (posterior) to arguably

produce the first genuine basic ABC rejection algorithm. Extensions of the basic ABC

rejection algorithm have also resulted in different but more improved versions concerning

computational efficiency, convergence to the true posterior distribution, and its applica-

bility. Beaumont et al. [27] also established ABC by further extending the methodology

and examining its appropriateness for population genetics problems.

Mathematically, the posterior distribution p(θ | yobs) ∝ f(yobs | θ)π(θ) contains all nec-

essary information for predictive inference, decision making, models’ goodness-of-fit and

comparison; and p(θ | yobs) is simply derived using the Bayes’ theorem such that

p(θ | yobs) = f(θ,yobs)
f(yobs)

= f(yobs | θ)π(θ)∫
Θ
f(yobs | θ)π(θ)dθ . (5.1)

During instances where the likelihood f(yobs | θ) is challenging to evaluate, we forgo this

stage and focus on our ability to simulate data from the model for ABC inference. Rather

than explicitly evaluating f(yobs | θ), ABC-based techniques employ systematic compar-

isons between observed and simulated data to approximate the true (but unachievable)

posterior distribution p(θ | yobs). This entails defining an approximation to p(θ | yobs) so

that only the capacity to sample from the model f(· | θ) can provide a means to sample

from this approximate posterior. To numerically evaluate the necessary integrals (pos-

sibly multidimensional integrals) in an ABC framework based on the prior distribution

π(θ) and data from a model f(· | θ), Monte Carlo numerical integration techniques (with

or without importance sampling depending on the choice of ABC sampler) for Lebesgue-

integrable functions [58] are commonly adopted by invoking the law of large numbers.

The idea behind ABC is to summarise the data first using low-dimensional summary

statistics like sample means, autocovariances, or appropriate data quantiles (amongst

others) to ease the comparison between high-dimensional simulated and observed data

[190]. However, other ABC methods which directly compare data exist by adopting the
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Kullback-Leibler divergence [163], the Wasserstein distance [31], or the energy statistic

[224] (but they can be difficult to apply to network data and other high-dimensional

data). If the dimension of summary statistics is too high, it can distort the posterior

approximation due to a prohibitively low acceptance rate; whereas, if too few summaries

are considered, it can result in data information loss [97, 243]. As a result, the balance

between the low-dimension and informativeness of ABC summary statistics has remained

a significant concern in the ABC framework. The general issue of the curse of dimen-

sionality and selection strategies of ABC summary statistics (in the literature) are briefly

discussed in section 5.2.2.2. The notion of sufficient summary statistics in the ABC setting

appears to be an ideal choice in ABC but is frequently unavailable [243]. Thus, strategies

for selecting insufficient low-dimensional summaries are required, and attempts have been

made in previous studies [see works by 84, 99, 253, 260]. The quality of the posterior

approximation depends on the choice of summary statistics, kernel function Kh (with

bandwidth h > 0) or tolerance ε > 0 (given a distance metric without the use of a kernel

function), and the Monte Carlo sampler being implementing [190, 282]. It is important

to note that some ABC samplers rely on a kernel function as a similarity metric (e.g.,

Algorithm L1 [282]) while others (such as the basic rejection ABC summarised below)

do not in assessing the discrepancy between simulation and observed data. According to

Beaumont et al. [27], the latter particularly corresponds to the use of a uniform kernel.

In the case of implementing importance sampling in ABC (where particles are weighted),

a proposal or importance density function is required (instead of repeatedly sampling

particles from the prior).

The basic ABC rejection algorithm can be described in at most four steps. Let θ ∈ Rn,

an n-dimensional real parameter vector, be the model parameters to be estimated; then

the basic ABC rejection algorithm as follows:

Step 1. Draw sample parameter θ∗ or particle from the prior distribution, θ∗ ∼ π(θ).

Step 2. Simulate data ysim from the forward or generative model, ysim ∼ f(· | θ∗).
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Step 3. Compare the discrepancy between the simulated data y∗ and the observed data yobs,

and accept particle θ∗ as a sample from the posterior distribution pε(θ | yobs) defined

by equation 5.2, if the simulated data ysim is close to the observed data yobs using a

distance metric ρ (e.g., Euclidean distance) such that ρ(S(ysim),S(yobs))≤ ε, where

S(·) ∈ Rm is a summary statistics of the data (possibly m-dimensional) and the

sufficiently small ε > 0 is a pre-specified tolerance level (measuring the proportion

of accepted particles); else reject θ∗.

Step 4. Finally repeat steps 1-3 till the desired particle size (N) from the prior distribution

is achieved.

The rejection-based ABC algorithm outlined above (from steps 1-4) leads to sampling

from an approximate posterior pε(θ | sobs) of the form,

pε(θ | sobs)∝ π(θ)
∫
f(ssim | θ)1 [ρ(sysim , syobs)≤ ε]dsysim (5.2)

where sysim = S(ysim), syobs = S(yobs), and ysim ∼ f(· | θ). We assume that sysim ≈ syobs

implies ysim ≈ yobs (with a probability of one). From equation 5.2, let suppose L(syobs |

θ,ε) =
∫
f(ssim | θ)1 [ρ(sysim , syobs)≤ ε]dsysim . Then, ABC in this case can be thought

of as a regular Bayesian analysis with an approximation to the likelihood defined by

L(syobs | θ,ε). When ε→ 0, we would expect equation 5.2 to converge to the posterior

given sobs for large value of the Monte Carlo sample size, N [99].

The indicator function, 1 [ρ(sysim , syobs)≤ ε], in the classical rejection-based ABC sam-

plers can lead to wasteful information loss since the algorithm does not distinguish be-

tween samples of θ which produce simulated data ysim very close to the observed data

yobs and samples of θ for which the associated simulated data is the farthest away from

yobs [282]. Thus, a more continuous scale from 1 (i.e., when ysim ≈ yobs) to 0 (when

‖ysim−yobs‖≈ ‖ssim− sobs‖ is large) is computationally preferred in most instances [282].

This is a motivation behind the use of the smoothing kernel density as a discrepancy

metric. There exist other rejection-based ABC samplers that employ importance sam-
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pling and a positive smoothing kernel function Kh(u) with bandwidth h > 0, where

max
u
K(u) = 1 and u = ‖ssim− sobs‖ (with ‖·‖ being a real norm; for instance, the Eu-

clidean norm). Kh could be defined using any standard (symmetric) kernel such as the

Gaussian, Epanechnikov, triangular, biweight or uniform kernels; where the kernel can

be set such that Kh(u) =K
(
u
h

)
[191]. For multivariate extension of these kernels in the

ABC setting, see work by Sisson and Fan [281]. Phillips and Venkatasubramanian [240]

have reviewed different class of kernel distance measures with more formal definitions. Al-

gorithm L1 [282, p. 16] summarises how particles from an approximate posterior (defined

by equation 5.5) is generated by incorporating importance sampling. Here, each particle

θ ∼ g(θ) is sampled directly from an importance distribution with density g instead of

the prior π(θ) with samples of θ accepted with probability ∝ π(θ)
g(θ) . The ABC rejection

algorithm with importance sampling defined by Algorithm L1 leads to sampling from an

approximate posterior (as h→ 0) with marginal density defined as [190, 209]:

ph(θ | sobs) =
∫
ph(θ,ssim | sobs)dssim

=
∫ [ π(θ)f(ysim | θ)Kh (‖ssim− sobs‖)∫

Rn×Rm π(θ)f(ysim | θ)Kh (‖ssim− sobs‖)dθdssim

]
dssim.

(5.3)

Although it is easy to implement the basic rejection ABC and other rejection-based

ABC samplers, a major disadvantage of these samplers is a low acceptance rate if the

prior distribution is significantly different from the posterior distribution. The trade-off

between accuracy and computational capacity is determined by choice of the tolerance

threshold (ε) or the kernel bandwidth (h) such that, if ε or h is too large, posterior

estimates can be biased with wide credible intervals; and if ε or h decreases, computational

cost increases [115]. Analytical results regarding the pointwise bias in the ABC for fixed

θ (for both univariate and multivariate cases) as well as specific applications of instances

where the ABC posterior was explicitly derived (e.g., for Algorithm L1) exist [see 281,

pp. 21-26]. Li and Fearnhead [191] have examined the accuracy of estimators in relation

to the Monte Carlo error of an importance sampling procedure that samples from the

ABC posterior and a condition to reduce the asymptotic variance of the posterior mean
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Algorithm L1: ABC rejection and importance sampling algorithm

Inputs:
• Prior distribution π(θ) where θ ∈ Rn and a procedure for generating data (ysim)
under the model f(· | θ).
• A proposal density function g(θ), with g(θ)> 0 if p(θ | yobs)> 0.
• A pre-specified number of proposal draws N > 0, and a kernel function Kh(·) with
scale parameter or bandwidth h > 0.
• Observed summary statistics sobs = S(yobs) computed from the observed data yobs;
where s= S(·) ∈ Rm is a low-dimensional vector of summary statistics.

Sampling:
For i= 1, · · · ,N :
1. Generate θi ∼ g(θ) from sampling density g.
2. Generate ysim ∼ f (· | θi), and compute ssim = S(ysim).
3. Accept θi with probability Kh(‖ssim−sobs‖)π(θi)

Kg(θi) ,
where K ≥Kh(0)max

θ

π(θi)
g(θi) . Else go to step 1.

Output:
A set particles {θj}1≤j≤Nh ∼ ph(θ | sobs),
where Nh is the number of accepted particles at given kernel scale parameter h.

(such that the dimension of summary statistics should be set equal to that of the model

parameters). For a more extensive theoretical study on the ABC convergence rate and

computational cost, see work by Barber and Voss [22]. There exist good theoretical and

asymptotic properties of ABC posterior and its mean estimates (as the Monte Carlo

sample size, N , increases) including the associated ABC error [see 104, 190, 191]. The

Monte Carlo error is not dependent on only the ABC sampler but also by the choices of

kernel bandwidth (or tolerance threshold) and the summary statistics [191]. Generally,

higher dimension of the summary statistics, or a smaller value of ε or h, tend to increase

the Monte Carlo error by reducing acceptance probability.

Other variants of the rejection and importance ABC algorithms have been proposed in the

literature to improve the basic rejection ABC (e.g., ABC Rejection Control Importance

Sampling, and ABC-KNN Importance Sampling) [34, 194, 239], Markov Chain Monte

Carlo ABC (ABC-MCMC) samplers [50, 210], sequential Monte Carlo ABC (ABC-SMC)

samplers [64, 79, 194], regression-adjusted ABC methods (for ABC post-processing).
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Also, there exist methodologies for approximating the intractable likelihood function

such as synthetic likelihoods, expectation-propagation ABC, and copula or regression-

density estimation models [24, 97, 189]. Other adaptive ABC methodologies on toler-

ance selection and stopping rules have been proposed for sequential-type ABC methods

[26, 62, 80, 279, 283, 295]. Nonetheless, these adaptive procedures for selecting tolerance

and terminating iterative ABC algorithms after posterior convergence may not always

be robust for calibrating other complex systems and high-dimensional models with more

than five parameters [279]. For instance, common adaptive approaches for selecting the

tolerance sequences for sequential ABC samplers are i) automatically choosing tolerance

(εt) at step t based on quantiles of the distances corresponding to the accepted particles

from iteration t− 1 [66, 156, 280], ii) fixing the decreasing tolerance levels in advance

[26, 283, 295], or iii) adaptively selecting εt based on some quantile of the effective sam-

ple size values [80, 227]. However, these approaches can result in inefficient sampling,

and predetermined quantile can lead to the particle system remaining in local modes, if

not chosen carefully [278].

The rest of section 5.2 is organised as follows. In Section 5.2.2, the impact of various levels

of approximation in ABC (concerning the formulated data-generation process, summary

statistics usage instead of the data itself, and summary statistics weighting) is presented.

In Section 5.2.3, we briefly describe a few efficient ABC algorithms, such as ABC-MCMC

(section 5.2.3.1) and ABC-SMC (section 5.2.3.2) samplers, and regression-adjusted ABC

methods (section 5.2.3.3).

5.2.2 Various levels of approximation in ABC

The most challenging part of executing an ABC analysis is minimising the impact of the

approximation while keeping the required computation to a minimum. As a result, a

brief summary of the various stages or levels of approximation from model development

to implementation of the ABC algorithms is imperative. Below are the key factors that

can affect the ABC posterior accuracy based on the different approximation levels.
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5.2.2.1 Approximations from data-generating processes or model

All simulation models or data-generating processes approximate a natural data-generating

process of a system (e.g., biological systems). Simulations from stochastic models, for

instance, can result in an ABC-specific issue if the suggested model is not robust enough

to reproduce outputs that are very close to the empirical data. In this case, all simulated

data would be far from that observed data, resulting in less accurate model calibrations

via ABC estimation approaches [282]. Specifically, Frazier et al. [105] have shown with

theoretical justifications that, given a misspecified simulation model, the ABC posterior

and local-linear posterior adjustment (for ABC post-processing analysis) may not result

in credible intervals with appropriate frequentist coverage (i.e., the minimum probability,

for any parameter θ, that the credible interval will include the true θ value) as well as

lead to a non-standard asymptotic behaviour. However, their theoretical results also

revealed that some ABC sampling methods can still concentrate posterior mass on an

appropriately defined pseudo-true parameter value under regularity conditions even if

the model is misspecified. Ridgway [258] discovered in another theoretical and numerical

study that some versions of ABC where posterior convergence are less quickly (e.g.,

sequential Monte Carlo ABC with importance sampling) are inherently robust to model

misspecification at the cost of choosing either a larger kernel bandwidth (when a kernel

is used in Monte Carlo methods) or tolerance threshold. Generally, worse ABC posterior

approximation may also suggest a high chance of model misspecification. Consequently,

inspecting the ABC posterior alone may not be sufficient to determine model adequacy

since the ABC posterior may be a poor estimate of the true posterior, and less accurate

simulation models may appear more likely than they are. Hence, the ABC posterior

approximation’s performance depends on the accuracy of the underlying simulation model

replicating the system.

5.2.2.2 Summary statistics usage instead of full data

As previously highlighted, ABC algorithms typically reduce high-dimensional data to a
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low-dimensional user-chosen summary statistics and accept samples of the model param-

eter θ ∈Rn when the simulated summaries ssim ∈Rm are close to the observed summaries

sobs. Due to the general issue of the curse of dimensionality associated with the number

of summaries of high-dimensional data for most ABC samplers (e.g., ABC rejection and

MCMC samplers), low acceptance rates are often achieved. Thus, the tolerance is rather

increased, leading to a high rate of distortion of the ABC approximation. The curse of

dimensionality can be formally approached by considering how ABC approximation error

relates to the Monte Carlo sample size, N [22]. Other studies have also shown that by

adopting importance sampling, the Monte Carlo error in ABC can be made arbitrarily

minimal [296]. It can be shown asymptotically that the rate at which ABC error de-

cays becomes worse as N increases [243]. Under some regularity conditions and optimal

ABC tuning, the mean squared error of a Monte Carlo estimate produced by ABC re-

jection sampling is shown to be On
(
N
−2
m+4

)
[22]; where m and n are the dimension of

the summaries and the model parameters, respectively. Many authors have considered

other definitions of error and several ABC algorithms, and qualitatively proved similar

results (i.e., similar asymptotic results with slight modifications to the exponent of N)

[see 34, 37, 99]. Although these asymptotic results do not precisely capture the behaviour

for the kernel bandwidth h (typically a bias-variance trade-off), they have confirmed that

high-dimensional summaries often result in poor posterior approximations. Hence, selec-

tion and dimensionality reduction techniques of summary statistics in ABC algorithms for

parameter inference, model selection and model predictions have become vital research

areas in recent times [2, 51, 136, 165].

Strategies for selecting summary statistics (to circumvent the curse of dimensionality

problem) in the literature can be broadly grouped into three methods: subset selection,

projection, and auxiliary likelihood (but each has its computational challenges). Firstly,

given a candidate summary statistics ssim ∈ Rm, the subset selection method attempt to

choose an informative representative subset of length l < m via an iterative procedure to

assess the significant impact of adding extra summary statistics based on its modification
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to the approximated posterior. This is done by: i) using a stepwise selection technique

based on an approximate sufficiency test proposed by Joyce and Marjoram [165], ii) find-

ing a subset of ssim from either two-stage approach that first minimises the entropy of

the approximated posterior and then minimises an error loss function (e.g., root mean

square error) [228], or a subset that iteratively maximise the Kullback-Leibler divergence

between two ABC posterior samples (based on existing summary subset and a newly

created subset) in stepwise manner [23], iii) applying a regularisation method based on

lasso regression [140, 272] or performing ABC regression post-processing and performing

variable selection by an empirical Bayes approach [38]. These subset selection methods

may result in high computational cost and scalability problems [243]. Also, a large ABC

approximation error may significantly influence the judgements regarding the usefulness

of a statistic at any point of the iterative procedure.

The projection methods begin with a set of data features and then find informative

low-dimensional projections based on linear transformation. Thus, the subset selection

method can be considered a particular case of the projection method. These projection

techniques employ either the partial least squares regression approach by Wegmann et al.

[313] (similar to the regularisation subset selection method) or a semi-automatic method

(which minimises the quadratic loss of the parameter point estimates) exist [99]. However,

Robert [259] revealed that the former lacks theoretical support compared to the latter.

The projection method can avoid the computational costs associated with the subset

selection methods and search for a more expansive space of summary statistics. [243].

Lastly, the auxiliary likelihood methods choose summaries for ABC of more complex

models by using statistics known to inform a simpler related model [see 245]. The goal

is to extract summary statistics (e.g., maximum likelihood estimates) from an auxiliary

likelihood (given a simpler model) by obtaining an approximate and tractable likelihood

for the data (from the complex model). For instance, in the current study, the linear B-

D-C model (defined in Chapter 4) was considered as an auxiliary model for the complex

stochastic simulation model (developed in Chapter 6) to inform some components of our
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ABC summary statistics based on its parameter estimates (during ABC fitting of the

complex model using our modified ABC methods proposed in section 5.3). Prangle [243]

has reviewed specific types of auxiliary likelihood approaches. They can be computa-

tionally time-consuming, prone to numerical errors, and in some cases, unique MLE may

not even exist [243]. This also suggests why the current study also investigated other

B-D-C parameter estimation methods, such as a generalised method of moments and

the Galton-Watson estimation approach (in addition to MLE), by exploring the trade-off

between computational speed and estimation accuracy (in Chapter 4).

5.2.2.3 Weighting summary statistics and choice of tolerance in ABC analysis

Jung and Marjoram [166] demonstrated that utilising weighted summary statistics and

a well-chosen tolerance in ABC analysis can tremendously result in enhanced perfor-

mance when compared to unweighted analysis. The relevance of assigning weights to

each summary statistic is to quantify their relative importance (where importance is

used informally to denote the amount of information that a summary statistic carries

regarding the parameter θ of interest). The weighting of summary statistics within a

region of the observed summaries in ABC is typically specified at the start of the algo-

rithm to standardise summaries (or to vary on similar scales). However, in iterative ABC

procedures, where there is an update in the proposal distribution of model parameters,

the weighting of summary statistics may not be necessary [244]. While adding more infor-

mative statistics, in theory, should enhance the degree of ABC posterior approximation,

the consequence of doing so without weighting statistics can make the approximation

worse [166]. Including uninformative statistics reduces the acceptance rate, and thus, the

ABC’s accuracy. Consequently, it is imperative to assign a high weight to a small but

highly informative set of summary statistics; however, this is a non-trivial problem with-

out a good intuition of which summary measures are adequately informative [166]. Before

computing the discrepancy measure, several ways of determining the weights (ω ∈ Rm)

for m−dimensional summary statistics (s ∈Rm) exist. A common way is to compute the

weighted Euclidean distance ρ (defined by the sum of weighted squared distances) such
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that

ρ(ysim,yobs) =
 m∑
j=1

ωj
(
ssim,j− sobs,j

)2
1/2

, (5.4)

where ωj = 1
σ2
j
, and σ2

j = Var(ssim,j) is the variance of the jth summary statistic (used

as a scaling to normalise the summary measures) for each simulated data ysim ∼ f(· | θi),

1 ≤ i ≤ N [27, 244]. The scaling in equation 5.4 prevents the most variable summary

from dominating the distance metric. Other distance functions can be used in ABC (e.g.,

median absolute deviation, kernel functions and a chi-squared metric) [see 73, 215]. How-

ever, for iterative ABC algorithms (such as sequential Monte Carlo ABC or population

Monte Carlo ABC), there is no assurance that ω would normalise the summary measures

computed in subsequent iterations since particles are drawn from a different proposal

distribution instead of the prior predictive distribution [244]. The kernel weights can be

problematic in ABC (for h > 0) when θ is large since the vector of summary statistics

must then be equivalently large for parameter identifiability [282]. Hence, the comparison

‖ssim− sobs‖ will suffer from the curse of dimensionality. On the other hand, the choice

of tolerance threshold ε, in theory, will yield a smaller distance for small ε→ 0 but low

acceptance rate; and otherwise for large ε.

The problem of optimally specifying this tolerance threshold has been the subject of ex-

tensive studies. Several adaptive methods of tolerance selections have been proposed in

the literature for different iterative and non-iterative ABC sampling methods. In this

current study, we adaptively compute summary statistics weights in our modified ABC

algorithm based on the inverse of variance for the jth statistic across an entire host pop-

ulation for a given simulation and then sequentially update these weights at a particular

ABC time step t in the ABC algorithm based on the summary statistics weights from

the previous time step t−1 (by finally computing and updating the summary statistics

weights at time t ≥ 1 based on the harmonic mean of summary weights at t− 1 and t;

see section 5.3.4 for further details). With a decreasing sequence of tolerance thresholds

carefully chosen (e.g., based on some heuristic principles such as using trial and error

and good guesses from literature, amongst others), coupled with adaptive importance
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sampling, we also improve the fidelity of the modified ABC algorithm as implemented in

sequential ABC samplers (see sections 5.2.3.2 and 5.3).

5.2.3 Efficient ABC sampling algorithms and adjustments

There are challenges associated with the classical ABC rejection samplers such that: the

majority of the samples are taken from regions of parameter space with low posterior

probability, and thus, there is a high rejection rate due to potential mismatch between

simulated and observed data. As a result, several computational strategies have been pro-

posed to improve the rejection-based ABC samplers’ efficiency. These come in broadly

three approaches: Regression-adjusted ABC samplers [27, 40, 290], Markov chain Monte

Carlo (MCMC) ABC samplers [210, 251], and ABC implementing some variant of se-

quential importance sampling (SIS) or sequential Monte Carlo (SMC) [26, 283, 295].

The regression-adjusted ABC schemes can be combined with or integrated into other

ABC samplers. Section 5.2.3 discusses the aforementioned efficient ABC samplers and

regression adjustments that are improvements to the rejection-based ABC samplers. Sec-

tion 5.2.3.1 describes Markov chain Monte Carlo ABC (ABC-MCMC) samplers; whereas

section 5.2.3.2 reviews sequential Monte Carlo ABC (ABC-SMC) samplers (with SIS).

Finally, existing regression methods for ABC posterior adjustments are presented in sec-

tion 5.2.3.3.

5.2.3.1 Markov chain Monte Carlo ABC

Markov chain Monte Carlo ABC (ABC-MCMC) is one of the extensions of the stan-

dard rejection-based ABC to improve posterior approximations, especially if the prior

distribution π(θ) of the model parameter θ is non-informative by minimising sampling

from low posterior probability regions [209]. Marjoram et al. [210] thus introduced the

ABC-MCMC sampler (based on the Metropolis-Hastings algorithm) by targeting the ap-

proximate posterior pε(θ | sobs) from the joint density given by equation 5.5 (in the case

where a kernel function is not considered, for instance); such that
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pε(θ,ssim | sobs) =
f(ssim | θ)π(θ)1Aε,sobs

(ssim)∫
Aε,sobs×Θ f(ssim | θ)π(θ)dssimdθ

(5.5)

where 1A(·) represent the indicator function of the set A, and

Aε,sobs = {ssim | ρ(ssim, sobs)≤ ε},

with ε, sobs, ssim and ρ defined as before. Wegmann et al. [313] have provided some

implementation tips for the ABC-MCMC sampler as well as proof of the central result

in the former. ABC-MCMC samplers basically add a proposal chain with density g and

a rejection step to generate a sample of θ [11].

Algorithms L2 [adapted from 11, 210] and L3 [adapted from 282] are two alternative im-

plementations of ABC-MCMC sampling with or without a kernel distance metric (where h

denote the kernel bandwidth as defined earlier). The main advantage of Algorithm L2 over

Algorithm L3 is that the former avoids unnecessarily running the simulation step by simu-

lating data based on only accepted proposals; whereas the latter has a minimal number of

MCMC rejection steps comparatively with the acceptance probability directly dependent

on the kernel distance (between ssim and sobs). The ABC-MCMC algorithms basically

generate samples from p(θ | ρ(ssim, sobs)≤ ε) or p(θ |Kh(‖ssim− sobs‖)) (for small enough

ε or h), adds a proposal chain (with density g) and a rejection scheme (also determined

by α) to generate a sample θi for i = 1,2 · · · ,N . The resulting posterior distribution is

a stationary and limiting distribution of the chain under suitable regularity conditions

[210]. The ABC-MCMC algorithm is most likely to converge as ε→ 0 (or h→ 0), but

determining when the Markov chain reaches the stationary regime is challenging; also,

the chain may become trapped in local modes.
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Algorithm L2: ABC-MCMC algorithm without a kernel distance metric

Inputs:
• Prior distribution π(θ) where θ ∈ Rn and a procedure for generating data (ysim)
under the model f(· | θ).
• A Markov proposal density function or transition kernel g(θ,θ∗) = g(θ∗ | θ).
• A pre-specified number of proposal draws N > 0, tolerance ε > 0 and some
distance function ρ.
• Observed summary statistics sobs = S(yobs) computed from the observed data yobs;
where s= S(·) is a low-dimensional vector of summary statistics.

Initialise:
Repeat:
1. Choose an initial parameter vector θ0 ∼ π(θ) from the prior
2. Generate ysim,0 ∼ f(· | θ0) from the model and compute summary statistics
ssim,0 = S(ysim,0), until ρ(ssim,0, sobs)> ε.

Sampling:
For i= 1, · · · ,N :
1. Generate candidate vector θ∗ ∼ g(· | θi−1) from the proposal density g.
2. Accept θ∗ with probability α = min

{
1, π(θ∗)g(θi|θ∗)
π(θi−1)g(θ∗|θi−1)

}
,

and go to step 3, otherwise return to step 1.
3. Generate y∗sim ∼ f (· | θ∗), and compute s∗sim = S(y∗sim).
4. If ρ(s∗sim, sobs)≤ ε then set (θi, ssim,i) = (θ∗, s∗sim), where ssim,i = S(ysim,i)
with ysim,i ∼ f(· | θi). Otherwise, set (θi, ssim,i) = (θi−1, ssim,i−1) and return to step 1.

Output:
A set of correlated parameter vectors θ(1), θ(2), · · · , θ(Nε) ∼ ph(θ | sobs) from a
Markov chain with stationary distribution pε(θ | sobs), where Nε is the number of
accepted particles at tolerance threshold of ε.
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Algorithm L3: ABC-MCMC algorithm with a kernel distance metric

Inputs:
• Prior distribution π(θ) where θ ∈ Rn and a procedure for generating data (ysim)
under the model f(· | θ).
• A Markov proposal density function or transition kernel g(θ,θ∗) = g(θ∗ | θ).
• A pre-specified number of proposal draws N > 0, and a kernel function Kh(·) with
scale parameter or bandwidth h > 0.
• Observed summary statistics sobs = S(yobs) computed from the observed data yobs;
where s= S(·) is a low-dimensional vector of summary statistics.

Initialise:
Repeat:
1. Choose an initial parameter vector θ0 ∼ π(θ) from the prior
2. Generate ysim,0 ∼ f(· | θ0) from the model and compute summary statistics
ssim,0 = S(ysim,0), until Kh (‖ssim,0− sobs‖)> 0.

Sampling:
For i= 1, · · · ,N :
1. Generate candidate vector θ∗ ∼ g(· | θi−1) from the proposal density g.

2. Generate y∗sim ∼ f (· | θ∗), and compute s∗sim = S(y∗sim).
3. Accept θ∗ with probability α = min

{
1, Kh(‖s∗sim−sobs‖)π(θ∗)g(θi|θ∗)
Kh(‖ssim,i−1−sobs‖)π(θi−1)g(θ∗|θi−1)

}
,

and set (θi, ssim,i) = (θ∗, s∗sim) where ssim,i = S(ysim,i) with ysim,i ∼ f(· | θi).
Otherwise, set (θi, ssim,i) = (θi−1, ssim,i−1).

Output:
A set of correlated parameter vectors θ(1), θ(2), · · · , θ(Nh) ∼ ph(θ | sobs) from a
Markov chain with stationary distribution ph(θ | sobs), where Nh is the number of
accepted particles at given kernel scale parameter h.
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To avoid ABC-MCMC samplers getting stuck in low posterior regions, there has been

developments of more improved versions in the literature, such as Augmented space ABC-

MCMC samplers [e.g., 47, 250], Hamiltonian Monte Carlo ABC samplers [e.g., 216], and

multi-try Metropolis ABC [e.g., 177]. Nevertheless, ABC-MCMC samplers (like rejection-

based ABC samplers) also suffer from the curse of dimensionality concerning the number

of summary statistics (a general limitation in MCMC methods for multidimensional prob-

lems), resulting in convergence issues in some instances [282, 313].

5.2.3.2 Sequential Monte Carlo ABC

Sequential-based Monte Carlo ABC (ABC-SMC) samplers are relatively robust for com-

plex model calibration. They can overcome some of the shortcomings associated with

rejection-based ABC and ABC-MCMC samplers, especially when coupled with sequen-

tial importance sampling (SIS) to generate particles in high posterior regions [26, 282].

ABC-SMC samples iteratively from a set of improving intermediate distributions that

effectively converge to the target posterior distribution. Different variants of the SIS

and SMC samplers, including the theoretical aspect of its posterior distribution and

convergence, have then been introduced in the ABC framework by several authors [see

26, 79, 102, 284, 295].

Algorithm L4 summarises an approach of implementing ABC-SMC with SIS, where parti-

cles are assigned importance weights, W (t)
i , for 1≤ i≤N and 1≤ t≤ T (with T denoting

the final ABC time step). Particles are initially sampled from the prior π(θ) and then it-

eratively propagated through a sequence of intermediate distributions, p(θ | ρ(sobs, sobs)≤

εt) for 1 ≤ t ≤ T − 1, until the resulting posterior, p(θ | ρ(sobs, sobs) ≤ εT ), is obtained.

Instead choosing a single tolerance (as in the case of rejection-based ABC and ABC-

MCMC samplers), a monotonically decreasing sequence of tolerances are chosen such

that ε1 > · · ·> εT > 0. Thus, the distribution of gt gradually converge towards the target

posterior distribution, pε(θ | sobs)∝ π(θ)
∫
f(ssim | θ)1 [ρ(sysim , syobs)≤ εt]dsysim .
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Algorithm L4: Sequential Monte Carlo ABC (ABC-SMC) algorithm

Inputs:
• Prior distribution π(θ) where θ ∈ Rn and a procedure for generating data (ysim)
under the model f(· | θ).
• A perturbation kernel with sequence

{
K

(t)
h (· | ·)

}
1≤t≤T

and bandwidth h > 0,
which determines the importance or proposal distribution with density g.
• A pre-specified number of proposal draws N > 0, decreasing tolerances {εt}1≤t≤T
(where T is the final ABC time step) and some distance function ρ.
• Observed summary statistics sobs = S(yobs) computed from the observed data yobs;
where s= S(·) is a vector of summary statistics.

Sampling:
for all 1≤ t≤ T do

1. i= 1
repeat

if t= 1 then
sample θ∗ ∼ π(θ)

else
sample θ from the previous population

{
θ

(t−1)
i

}
i
with importance weights{

W
(t−1)
i

}
i

perturb θ∗ ∼K(t)
h (· | θ) such that π(θ∗)> 0

end if
2. simulate ysim ∼ f(· | θ∗)

if ρ(ssim, sobs)≤ εt then
θ

(t)
i ← θ∗

i← i+ 1
end if

until i=N + 1
3. calculate the importance weights: for all 1≤ i≤N

if t 6= 1 then

W
(t)
i =

π
(
θ

(t)
i

)
N∑
j=1

W
(t−1)
j K

(t)
h

(
θ

(t)
i |θ

(t−1)
j

)
else W (1)

i = 1
end if

4. normalise the importance weights over all 1≤ i≤N .

Output:
A sample of weighted particles

{
θ

(T )
j

}
1≤j≤NεT

, where NεT is the number of

accepted particles at final time step T .
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A modified version of Algorithm L4 is proposed in the current study in section 5.3 with a

more detailed description of the step-by-step ABC-SMC sampling scheme. In principle, at

a large Monte Carlo sample size (N), ABC-SMC samplers can avoid the problem of getting

stuck in regions of low posterior probability as observed in most ABC-MCMC samplers

[295]. There is extensive literature on the construction of efficient SMC and SIS as well as

several other adaptive approaches and optimal kernels in ABC-SMC [64, 79, 80, 102, 295].

Some variants of ABC-SMC algorithms may incorporate the following: effective sample

size computation (to determine the need for re-sampling particles) [e.g., 80, 89, 195], ker-

nel distance metric [282, pp. 111-114], adaptive determination of tolerances and adaptive

stopping rule to terminate the algorithm after posterior convergence [e.g., 279]. While

ABC-SMC algorithms are computationally efficient, the overall computational burden is

dependent not only on the model’s complexity and the amount of data available, but also

on the underlying components of the type of sequential scheme adopted [102].

The perturbation kernel
{
K

(t)
h (· | ·)

}
1≤t≤T

, which is used to avoid particle degeneracy,

can be flexibly chosen (and its bandwidth optimally determined). However, other studies

have proposed several optimal perturbation kernels [102]. Generally, the optimal pertur-

bation kernels can be a component-wise perturbation kernel (with independent normal

densities or uniform densities) [26, 102, 215], multivariate normal perturbation kernel

(take into account the potential correlations between weighted particles at any time t)

[102], and local perturbation kernel (e.g., multivariate normal kernel with M -nearest

neighbours or optimal local covariance matrix [102], or perturbation kernel based on the

Fisher information [70]). For exact forms of the aforementioned optimal perturbation

kernels and their specific theoretical properties, see work by Filippi et al. [102]. Some of

the limitations associated with ABC-SMC samplers are that the computational demand

involved in calculating the importance weights increases quadratically as a function of the

number of particles (N), and these samplers can result in particle duplications depending

on the magnitude of assigned importance weight [45]. If a large number of parameters

must be estimated, ABC-SMC samplers may suffer from the dimensionality curse issues
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(as briefly discussed in section 5.2.2.2) [175]. ABC-SMC samplers have several advan-

tages. Because the SMC sampler is population-based, complex posteriors which could be

multi-modal, can be investigated more efficiently. Samples are drawn from a variety of

proposal distributions (g1,g2, · · · ,gT ) with varying tolerances (ε1 > ε2 > · · · > εT ), which

allows for an a posteriori or dynamic study of the posterior’s robustness or sensitivity to

these thresholds. In contrast to the rejection-based sampler, major inefficiencies caused

by mismatches between (initial) prior and target distributions are also circumvented [283].

5.2.3.3 Regression-adjusted ABC

The regression approaches in ABC fitting were originally proposed by Beaumont et al.

[27] as post-processing step of the ABC output pε(θ | sobs) to account for the imperfect

match between the simulated (ssim ∈ Rm) and observed (sobs ∈ Rm) summary statistics

[210, 283]. Thus, regression adjustment aims to improve the resulting approximation

to the true posterior [190]. With the help of smooth weighting and regression adjust-

ment, the rejection-based ABC samplers can be improved to handle a higher number of

summary statistics and thereby deal with the curse of dimensionality [27]. This has led

to coupling the rejection-based samplers with linear or non-linear regression adjustment

[27, 40, 267, 282]. From similar intuition, the posterior distribution approximations from

other efficient ABC samplers, such as ABC-MCMC and ABC-SMC, may be further cor-

rected.

The existing regression adjustment methods are i) standard multiple linear regression with

homoscedastic adjustment [27], ii) local-linear regression (LLR) [27] with heteroscedastic

adjustment, and iii) a non-linear heteroscedastic conditional regression via a feed-forward

neural network (FFNN) [40] in the neighbourhood of the observed summaries sobs. Ac-

cording to Blum [39], the homoscedastic regression adjustments may not always be valid.

This is because, when the Monte Carlo sample size (N) for ABC fitting is not very large

due to computational constraints, local approximations which employ the homoscedastic

assumption, are no longer valid because the neighbourhood corresponding to simulations
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for which Kh(‖ssim,i− sobs‖) 6= 0 , is too large for 1 ≤ i ≤ η. The regression errors are

likely to be heteroscedastic and thus, LLR and FFNN regression with heteroscedastic ad-

justments are improvements of the homoscedastic adjustment by weighting the accepted

samples based on a kernel [27, 40]. To perform LLR with heteroscedastic adjustment on

the η accepted samples of the model parameter θ ∈ Rn (from ABC posterior approxima-

tions), Beaumont et al. [27] specified the regression model in the form

θi = α+ (ssim,i− sobs)>β+ ξi, i= 1,2, · · · ,η; (5.6)

where α is the intercept, β is a vector of regression coefficients corresponding to predic-

tors, ξi is uncorrelated error term with mean zero and non-constant variance (no other

parametric assumptions are made about the distribution of ξ), η is the number of ac-

cepted samples, and ssim,i = S(ysim,i) for ysim,i ∼ f(· | θi). The weighted least-squares

(WLS) estimates of (α,β) are obtained by minimising

η∑
i=1
{θi−α− (ssim,i− sobs)>β}2Kh(‖ssim− sobs‖);

where Kh(·) is kernel function with bandwidth h (Epanechnikov kernel was chosen in

[27], but other kernels such as a Gaussian kernel could be used due to its computational

advantage). Then, the solution is

(α̂, β̂) = (X>WX)−1X>Wθ, (5.7)

where X = [1 | X∗,1 | · · · | X∗,p] is an η × (p+ 1) design matrix (with entries X∗,j =

ssimij − sobsj for column j = 2,3, · · · ,p+ 1; whereas, ssimij is the jth element of ssimi),

p is the number of predictors, W is an η× η diagonal weighting matrix whose ith di-

agonal element is Kh(‖ssim,i− sobs‖), and α̂ is the adjusted posterior mean of θ given

by

η∑
i=1

Kh

(∥∥∥ssimi−sobs∥∥∥)θ∗i
η∑
i=1

Kh

(∥∥∥ssimi−sobs∥∥∥) with θ∗i = α̂+ (ssim,i− sobs)>β̂. Then, the resulting adjusted

posterior is the distribution of θ∗ = θ− (ssim− sobs)>β̂ where (θ,ssim) ∼ pε(θ,ssim). The

samples we get from the regression-adjusted ABC is basically a draw from p∗ε (θ∗ | sobs)
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where the density of θ∗ is

p∗ε (θ∗ | sobs) =
∫
Rm

pε{θ∗+ (ssim− sobs)>β̂, ssim | sobs}dssim. (5.8)

The variance of p∗ε (θ∗ | sobs) is thus strictly small than pε(θ | sobs) [190]. Li and Fearn-

head [190] have provided asymptotic results on the convergence of p∗ε (θ∗ | sobs), and it

was shown that for appropriate choice of the kernel bandwidth (h), regression adjustment

produces a posterior that correctly quantify uncertainty about θ.

The Nadaraya-Watson estimator of the posterior mean (α̂) still suffers from the dimen-

sionality curse since the convergence rate of the estimator declines drastically as the di-

mension of the summary statistics increases [40]. On the other hand, Blum and François

[40] non-linear FFNN with heteroscedastic adjustments can reduce the dimensionality

of the collection of summary statistics using internal projections on lower-dimensional

subspaces and also deal with collinearity of the design matrix [73]. However, dimension

reduction of the summary statistics is not a focus in this study due to our choice of sequen-

tial Monte Carlo ABC sampler and weighted summary statistics coupled with a penalised

regression adjustment. Also, the simulated summaries in the current study are likely to

be multicollinear (in the vicinity of sobs) due to the summary measures considered in this

study and the design data matrix X can be high-dimensional or supercollinear (i.e., when

the number of predictors exceeds the number of accepted particles after the sequential

Monte Carlo ABC sampling). Thus, the term X>WX (with dimension (p+1)× (p+1))

in equation 5.7 is possibly not invertible (or linearly dependent) or close to singular, or es-

timated regression coefficients from the WLS estimator unreliable if rank(X>WX)<p+1

[308] (due to supercollinearity of the design matrix). Hence, another contribution of this

study is to improve upon Beaumont et al. [27] LLR with heteroscedastic adjustment

by using weighted ridge regression to obtain a robust estimator in the presence of multi-

collinearity, supercollinearity and non-normal residuals (see section 5.3.4 for the extended

local-linear regression with L2 regularisation). The additional improvement is achieved

by shrinking regression coefficients close to zero for predictors with less contribution to
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the approximated posterior samples (in the neighbourhood of the observed summaries),

thereby minimising the standard errors corresponding to the regression coefficients. Con-

sequently, the chance of model over-fitting due to model complexity (as a function of

weights) and other levels of approximations in ABC can be minimised.

However, an important component of regression adjustment concerns posterior shrinkage

since regression adjustment shrinkage can be severe, especially at low tolerance rates,

and it can impact posterior calibration [39]. In a model of admixture, for instance, 95%

credibility intervals obtained with regression adjustments were found to contain only 84%

of the true values in less favourable situations [252]. Advantages of the weighted ridge

regression (WRID) [originally proposed in 10] are that i) WRID is robust to sample

size, non-normal errors and outliers [10, 149], ii) estimates from WRID improves as the

predictors become more collinear [315], and can be used when the design data matrix

is supercollinear [308]. A Gaussian kernel is used to estimate the diagonal elements of

the weighting matrix W in the modified local-linear regression. Additionally, since the

complex stochastic model simulates data for a host population, a matrix of summary

statistics with dimension M ×m (where M is the population size and m is the length

of summaries per host) is returned in a single run or for each accepted particle. Hence,

the design data matrix X [specified in 27]) is also modified (due to the high-dimensional

summary statistics in the current study) as well as standardised in this study before pos-

terior mean adjustment since the summary statistics are measured on different scales.

In section 5.3, we present a modified ABC-SMC algorithm and an extended regression-

adjusted ABC method (with L2 regularisation) needed to calibrate our novel stochastic

simulation model for the gyrodactylid-fish system.
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5.3 The Weighted-iterative ABC

5.3.1 Introduction

The pseudo-code of the modified ABC algorithm dubbed “weighted-iterative ABC” for

the complex model calibration is described in Section 5.3.2. The ABC algorithm de-

veloped in the current study is a modification of the ABC-SMC sampler described by

Algorithm L4 in section 5.2.3.2. For our modified ABC-SMC algorithm, the set of sum-

mary statistics per host to extract relevant information from high-dimensional parasite

population data is also weighted (for a detailed description of the empirical data, refer to

section 2.2.1). The weighted-iterative ABC (Algorithm 4) is used to estimate the model

parameters of a novel multidimensional individual-based stochastic model (with at least

23 model parameters) for the gyrodactylid-fish system (in Chapter 6). For a single sim-

ulation run, our stochastic model simulates multidimensional data or a set of M sample

paths over time and space (i.e., across the host’s body regions), corresponding to the

entire observed fish with a population size of M (see Chapter 6 for specific details). To

compute the summary statistics for both simulated and observed data (where the total

observed fish infected at the beginning of the observation period is M = 152), the lin-

ear B-D-C process (defined in section 4.1.1 of Chapter 4) is considered as an auxiliary

stochastic model to the complex simulation model to refine the summary statistics (by

including the parameter estimates of the B-D-C process as additional summaries).

The set of summary statistics computed for a given host data is: i) log count of parasites

across observed times (9 summaries), ii) Wasserstein 1−D distance between host’s body

regions (4 summaries), iv) the time before death (1 summary) and v) parameter estimates

of the B-D-C process based on all simulated sample paths using the Galton-Watson and

GMM estimation approaches as recommended in section 4.2 (3 summaries). Thus, for

the entire host population or in a simulation run, a matrix with a dimension of 152×17

summary statistics is obtained for comparing the discrepancy between the simulated and

observed data during ABC fitting of the complex stochastic model. A weighted sum
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of squares distance metric ρ, which extends the standard weighted Euclidean distance

(given by equation 5.4), is considered the discrepancy metric. Additionally, an optimised

linear regression function (presented in section 5.3.3) is developed to aid in computing

the summary statistics after premature host mortality by projecting the infrapopulation

of parasites till the end of the infection period.

A regression methodology for ABC posterior mean adjustment and post-processing based

on the target posterior samples from the modified ABC algorithm is also presented in sec-

tion 5.3.4. The post-processing analysis (which supplements the modified ABC algorithm

as an independent final step) is employed to adjust further the resulting posterior distri-

bution and the ABC posterior mean after model fitting. Specifically, we have proposed a

penalised local-linear regression with heteroscedastic errors (described in section 5.3.4).

5.3.2 Description of the modified ABC algorithm

Algorithm 4 is the pseudo-code for the weighted-iterative ABC algorithm, which employs

sequential Monte Carlo and sequential importance sampling. The main modifications

in Algorithm 4 with respect to the previous ABC-SMC Algorithm L4 (described in sec-

tion 5.2.3.2) are: i) adaptively integrating importance weights for importance proposal

sampling and summary statistics weights (based on accepted simulations by computing

the harmonic mean between previous and current summary statistics weights at time

t ≥ 1) to improve ABC posterior approximations, ii) inclusion of a weighted distance

metric for comparing between multidimensional data of an entire population (in the case

where summary statistics has bi-dimensional space), iii) adaptation of a computation-

ally efficient multivariate normal perturbation kernel with bandwidth matrix optimally

determined, and iv) a separate post-hoc step which entails a robust correction method

to adjust the resulting ABC posterior approximation using a modified heteroscedastic

local-linear regression with L2 regularisation. The modified ABC algorithm can briefly

be explained as follows:

• Suppose we have a decreasing sequence of tolerances ε1 > ε2 > · · ·> εT (T being the
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final time step), the prior distribution π(·), a simulation model given by f(· | θ),

and a observed summary statistics sobs = S(yobs) (possibly multidimensional).

• At time t = 1, the weighted-iterative ABC algorithm draws proposals θ(1)
i ∼ π(θ)

(for 1 ≤ i ≤ N) from the prior distribution π(θ) with equal importance weight of

W
(1)
i = 1

N ; the accepted particles at the largest tolerance (ε1 ≤ 1) is indicated as

pε1(θ | sobs) (or pε1 for simplicity), and considered as the first intermediate prior

distribution. Instead of commencing the rejection sampling with a smaller tolerance

(as in the case of the standard rejection-based samplers), at t= 1, the algorithm is

similar to the standard rejection ABC (but with a larger tolerance comparatively).

The discrepancy between simulated and observed summary statistics, given θ(t)
i at

time t ≥ 1, is computed using the scaled weighted sum of squares distance metric

such that

ρ(ssim, sobs) =

√√√√√ 1
M

M∑
k=1

m∑
j=1

w(t)
j

(
ssimk,j − sobsk,j

)2
, 1≤ t≤ T. (5.9)

where M is the total population size, m is the summary statistics length per sim-

ulation sample path or host (m = 17 in our case), w(t) is a vector of the summary

statistics weights at time t, and our summary statistics is assumed to have a bi-

dimensional space (for a one-dimensional summary statistics, the standard weighted

Euclidean distance defined by equation 5.4 can be used as the discrepancy measure

instead). Prior to computing the weighted sum of squares distance metric ρ(·), the

summary statistics weight w(t) at time t ≥ 1, is computed based on the harmonic

mean of the current weight w(t)
j′ = 1/σ2

j′ (based on accepted particles, where σj′

is the standard deviation of the j′th summary statistic) for 1 ≤ j,j′ ≤m and the

previous weight w(t−1); such that

w
(t)
j = 2

1
w

(t−1)
j

+ 1
w

(t)
j′

.

According to Prangle [244], there is no assurance that the summary statistics

weights w(t) (meant to normalise the summary statistics at time step t ≥ 1 for
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iterative ABC such as ABC-SMC) would actually normalise the summary statistics

at subsequent iterations since particles or proposals are not sampled directly from

the prior π(θ), but instead, from different proposal distributions gt(θ) over time

t≥ 1. Hence, the main motivations for adopting the harmonic mean of the previous

and current summary statistics weights (based on the multiplicative inverse of the

variance of the jth summary statistic of accepted particles) in this study (instead

of strictly using the conventional approaches defined in [244]) are to i) minimise

the degree of variability in the high-dimensional summary statistics weights at time

t≥ 1 (based on averages across the entire host population as observed in the current

study), and ii) control the potential high disparities between the summary statistics

weights at the current ABC time step t and the previous time t−1 as well as im-

prove normalisation of summary statistics weights due to direct particle sampling

from different proposal distributions (at ABC time steps t−1 and t) instead of the

(initial) prior.

• At t ≥ 2, the algorithm works in steps (with εt < εt−1): instead of directly sam-

pling from π(θ), we randomly draw weighted particles θ∗ ∼ pεt−1 (for N different

times) from the current intermediate prior pεt−1 with a probability equal to their

corresponding normalised importance weight W (t)
i (estimated from equation 5.12).

Following Filippi et al. [102], we then perturb particles θ(t)
i ∼KH(t)(· | θ∗) at iter-

ations t≥ 2 using a multivariate normal (MVN) perturbation kernel KH(t) centred

at or near θ∗, such that

KH(t)

(
θ(t) | θ∗

)
= 1√

(2π)n
(
detH(t)

) exp
{
−1

2
(
θ(t)− θ∗

)> (
H(t)

)−1 (
θ(t)− θ∗

)}
,

(5.10)

with an optimal bandwidth matrix

H(t) =
N∑
i=1

Nεt−1∑
k=1

W
(t−1)
i W̃k

(
θ̃k− θ

(t−1)
i

)(
θ̃k− θ

(t−1)
i

)>
; (5.11)

174



where the quantity
{
θ̃k
}

1≤k≤Nεt−1
denote the set of accepted particles{

θ
(t−1)
i s.t. ρ(ssim, sobs)≤ εt, 1≤ i≤N

}
, with their corresponding importance

weight
{
W̃k

}
1≤k≤Nεt−1

normalised over all 1≤ k ≤Nεt−1 . Filippi et al. [102] have

shown that this choice of kernel bandwidth has good theoretical properties.

We then simulate data ysim ∼ f(· | θ(t)
i ) for 1≤ i≤N , obtain Nεt accepted samples

pεt(θ | sobs) accordingly, and repeat the process until we reach the final or target

posterior pεT (θ | sobs) at the final time step t= T (whereN ≥Nε1 >Nε2 > · · ·>NεT ).

Here,

W
(t)
i =

π
(
θ

(t)
i

)
N∑
l=1

W
(t−1)
l KH(t)

(
θ

(t)
i | θ

(t−1)
l

) , 2≤ t≤ T and W
(1)
i = 1

N
. (5.12)

• At time t = 1, the initial prior density π(θ) ∝ g1(θ) is considered as the first im-

portance or proposal density g1(θ); whereas at t ≥ 2, the importance or proposal

density gt(θ) is derived from equation 5.13 such that

gt(θ) =
N∑
i=1

W
(t−1)
i Kt

(
θ | θ(t−1)

i

)
/
N∑
i=1

W
(t−1)
i . (5.13)

Finally, the approximate posterior distribution pεT (θ | sobs) at t = T from the

weighted-iterative ABC are adjusted using a robust regression adjustment method

with L2 regularisation (proposed in section 5.3.4) to account for the imperfect

mismatch between the simulated and observed data; while accounting for multi-

collinearity, supercollinearity, non-normal errors as well as employing shrinkage to

improve the posterior mean of Beaumont et al. [27] local-linear regression.
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Algorithm 4: Pseudo-code of the weighted-iterative ABC
Input: Initialise the sequence of decreasing tolerances ε1 > ε2 > · · ·> εT ; compute

initial summary statistics weight w(0) = (w1,w2, · · · ,wm); specify prior
distribution π(θ); set number of proposal draws N > 0.

Output: Final unadjusted posterior pεT (θ | sobs) = p(θ | ρ(ssim, sobs)< εT ), and
its adjusted posterior.

1 forall 1≤ t≤ T do
2 for i= 1,2, · · · ,N do
3 if t= 1 then
4 Draw particle θ(1)

i ∼ π(θ)
5 else
6 Randomly draw a particle θ∗ ∼ pεt−1(θ | sobs) with a probability equal

to their corresponding importance weight W (t−1)
i , and further

perturb θ(t)
i from a MVN perturbation kernel KH(t) (· | θ∗) (with

optimal bandwidth matrix H(t) defined by equation 5.11) by
sampling θ(t)

i such that

θ
(t)
i ∼KH(t)

(
θ(t) | θ∗

)
to obtain a new proposal θ(t)

i so that π
(
θ

(t)
i

)
> 0

7 end
8 Simulate data ysim ∼ f

(
· | θ(t)

i

)
9 Compute simulated and observed summary statistics such that

ssim = S(ysim) and sobs = S(yobs)
10 Calculate weighted distance d(t)

i = ρ(ssim, sobs) and accept θ(t)
i if d(t)

i < εt
to obtain accepted particles pεt(θ | sobs)

11 Calculate the j′th summary statistics weight w(t)
j′ = 1/σ2

j′ based on the
Nεt ≤N accepted particles; and update summary weight such that
w

(t)
j = 2

1
w

(t−1)
j

+ 1
w

(t)
j′

(where σ2
j′ is the variance of the j′th summary

statistics at time t), and normalise w(t)
j over all 1≤ j,j′ ≤m

12 end
13 if t= 1 then
14 Set importance weight W (1)

i = 1
N for all 1≤ i≤N

15 else
16 Re-weight the importance weights at t 6= 1 for all 1≤ i≤N by setting

W
(t)
i = π

(
θ

(t)
i

)
/
N∑
l=1

W
(t−1)
l KH(t)

(
θ

(t)
i | θ

(t−1)
l

)
,

and normalise W (t)
i over all 1≤ i≤N .

17 end
18 end
19 Finally, adjust the target posterior pεT (θ | sobs) using the modified regression

adjustment defined in section 5.3.4.2.
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Remark. It can be inferred from Prangle [244] theoretical work on ABC-SMC conver-

gence that as t→∞ and εt→ 0, Algorithm 4 draws approximate samples from the ABC

posterior with density

pεt(θ | sobs) =
∫  f(ssim | θ)π(θ)1Aεt,sobs∫

Rn×Rm f(ssim | θ)π(θ)1Aεt,sobs
dθdssim

dssim,
where θ∼ gt(θ) and 1Aεt,sobs

(·)→{0,1} is an indicator function of the Lebesgue-measurable

set Aεt,sobs = {ssim | ρ(ssim, sobs)≤ εt}; whereas ρ(·) and W (t) ∝ π(θ)
gt(θ) are defined by equa-

tions 5.9 and 5.12, respectively. Given the MVN perturbation kernel KH(t) with optimal

bandwidthH(t) determined by equations 5.10 and 5.11, and for all 1≤ i≤N , the proposal

density gt(θ) is set such that

gt(θ) =



π(θ), if t= 1
N∑
i=1

W
(t−1)
i K

H(t)

(
θ|θ(t−1)

i

)
N∑
i=1

W
(t−1)
i

, otherwise [244].

5.3.3 Projection of parasite numbers after fish mortality

During realisations when an infected fish or host dies before the end of the observation

period in the complex simulation model (developed fully in Chapter 6) or observed empir-

ical data, we use an estimated linear regression function (given by equation 5.18) based

on the parasite data prior to host mortality, to linearly project parasite numbers till the

end of the observation period. Furthermore, to minimise the projection estimation error,

we assign more weight to the most recent outcomes or data prior to host mortality based

on equations 5.14–5.16. Thus, the parasite population projection after host mortality

is used to aid in the summary statistics computation for ABC fitting of the complex

stochastic model (described in section 5.3); specifically, during the computation of other

components of the summary statistics such as the log counts of parasites over time till

day 17, and weights of the Wasserstein 1-D distance metric between body regions of the

host. Below is the newly proposed linear function to estimate missing values after fish

mortality till the end of the observation period:

177



Let yt= total parasites at time t, zt = log(yt), k be the time before fish mortality, α a

regression parameter and γ ∈ (0,1), a tuning parameter which can be optimized. Given

z1, z2, z3, · · · , zk, we want to estimate or project for ẑk+1, · · · , ẑ9. Now, let the proposed

least squares regression equation, denoted by m(t), be defined as given by equation 5.14;

m(t) = (k− t)α+ zk (5.14)

with the estimate of the regression parameter (α) determined such that

α̂ = min
∑
t

(m(t)− zt)2 γk−t. (5.15)

Thus, the prediction of zi for i= k+ 1,k+ 2, · · · ,9 can be estimated using equation 5.16

ẑk+i =m(k+ i) =−i×α̂+ zk, (5.16)

where i is the number of predictions across time. Then,

yk+i = exp(ẑk+i). (5.17)

Hence, also letting yt,u be parasite at location u and time t implies the expected projec-

tions can be made using equation 5.18; where,

ŷk+i,u = ŷk+i×
yk,u
yk

. (5.18)

Theorem 5. (Least squares estimate of the regression parameter)

The exact least squares estimate of the regression parameter α based on equation 5.14 is

given as:

α̂ =

k−1∑
t=1

(zt− zk)(k− t)γk−t

k−1∑
t=1

(k− t)2γk−t
. (5.19)
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Proof of Theorem 5 .

Suppose m(t) = (k− t)α+zk, α=∑
t

(m(t)−zt)2γk−t whilst fixing γ, and the loss function

L(α,γ) = min
α

∑
t

(m(t)− zt)2γk−t. (5.20)

Differentiating equation 5.20 with respect to α and setting to zero gives

∂L

∂α
= 2

k−1∑
t=1
{(k− t)α+ zk− zt}γk−t(k− t) = 0.

This implies
k−1∑
t=1

(k− t)2αγk−t+
k−1∑
t=1

(zk− zt)αγk−t(k− t) = 0,

where

α
k−1∑
t=1

(k− t)2γk−t =−
k−1∑
t=1

(zk− zt)αγk−t(k− t).

Therefore, solving for α gives the required equation 5.19 such that

α̂ =−

k−1∑
t=1

(zk− zt)(k− t)γk−t

k−1∑
t=1

(k− t)2γk−t
=

k−1∑
t=1

(zt− zk)(k− t)γk−t

k−1∑
t=1

(k− t)2γk−t
,γ ∈ (0,1). q. e. d.

5.3.4 Weighted Ridge Regression for posterior adjustment

5.3.4.1 Introduction

The section presents the extended local-linear regression (previously discussed in sec-

tion 5.2.3.3) for ABC post-analysis to improve further the posterior mean estimates by

adjusting the ABC posterior distribution (for a population-based model with population

size of M > 1, where the underlying summary statistics takes the form of a matrix).

This regression mean adjustment method is a robust extension to Beaumont et al. [27]

method (when M = 1 or the summary statistics are assumed to be one-dimensional) by

considering heteroscedastic errors with L2 regularisation (in the neighbourhood of the

observed summary statistics sobs) to deal with potential problems of multicollinearity,
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supercollinearity, non-normal errors and outliers that may exist in the standard local-

linear regression model for ABC post-processing analysis. Section 5.3.4.2 outlines the

modified regression model for ABC posterior mean adjustment based on a weighted ridge

regression (WRID) initially developed by Arkin et al. [10] for general regression problems.

In the proposed regression adjustment model (presented in section 5.3.4.2), the depen-

dent variables represent the posterior samples or approximate posterior distribution of

the model parameters (on a logarithmic scale) from the modified ABC-SMC algorithm;

and their predictors are the corresponding simulated summary statistics in the neigh-

bourhood of the observed summaries. The proposed regression adjustment method can

be adapted and compared to Beaumont et al. [27] local-linear regression for general mod-

elling problems which are not population-based (e.g., ifM = 1) or the summary statistics

are assumed to one-dimensional.

5.3.4.2 Proposed ABC posterior mean adjustment

Given a set of η unadjusted posterior samples from the weighted-iterative ABC algorithm

(described by Algorithm 4), let θ(r)
i be the ith posterior sample (for i = 1,2, · · · ,η) for

the rth model parameter (for r = 1,2, · · · ,n). Suppose ssim,i are the accepted simulated

summary statistics (with dimension M ×m) corresponding to the ith posterior sample;

where the M ≥ 1 corresponds to a population size, and m ≥ 1 the number of summary

statistics for each individual in the population model (to be simulated). The regression

model in the vicinity of the observed summary statistics sobs (with dimension M ×m) is

given as

θ
(r)
i = α(r) + S̄>i β(r) + ς

(r)
i , 1≤ i≤ η and 1≤ r ≤ n (5.21)

where S̄i = 1
M

M∑
k=1

[
ssim(k,m),i− sobs(k,m)

]
is an m-dimensional vector of mean differences

between ssim,i and sobs across all M individuals for the ith posterior sample; α(r) is the

intercept (whose estimate represent the required adjusted posterior mean), β(r) is a vec-

tor of regression coefficients corresponding to the m predictors (in the neighbourhood of
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sobs), and ς
(r)
i are the regression error terms with mean 0 and heteroscedastic variance,

corresponding to the rth model parameter. If M = 1, S̄i = ssim,i− sobs as in the case of

Beaumont et al. [27] regression adjustment methods (where ssim,i and sobs are assumed

to a one-dimensional array or vector of length m, respectively).

Given equation 5.21, the robust weighted ridge regression estimates of
(
α(r),β(r)

)
are

derived by minimising the loss function L(r)
ridge for each rth model parameter such that

L(r)
ridge =

η∑
i=1

θ(r)
i −α

(r)−
m∑
j=1
S̄i,jβ(r)

j


2

Kδ(‖ssim,i− sobs‖) +λ
∥∥∥β(r)

∥∥∥2
2
; (5.22)

where Kδ(·) is a Gaussian kernel with bandwidth or scale parameter δ given as

Kδ(‖ssim,i− sobs‖) = ωi = 1√
2πδ

e
−1
2δ2‖ssim,i−sobs‖2

, (5.23)

and ‖ssim,i− sobs‖= ρ(ssim,i, sobs) is the weighted distance (computed using equation 5.9)

between ssim,i and sobs; and the penalty term λ
∥∥∥β(r)

∥∥∥2
2

=λ
m∑
j=1

β
(r)2
j is the L2 regularisation

element, with λ representing the biasing or penalty parameter. To solve equation 5.22,

we rewrite it using the transformed variables given by equation 5.24. The estimates of

β(r) and α(r) are obtained separately (by initially ignoring the intercept α(r) in equa-

tion 5.21) since the predictors and the dependent variables are respectively mean centred

and re-scaled using √ωi to obtain set of variables with similar scaling (where the latter

is motivated by [220]); such that for 1≤ i≤ η and 1≤ j ≤m:

θ
(r)∗
i =√ωi

(
θ

(r)
i − θ̄

(r)
)

and S̄∗ij =√ωi
(
S̄ij− ¯̄Sj

)
, (5.24)

where θ̄(r) is the weighted mean of θ(r)
i , and ¯̄Sj is the weighted mean of the jth predictor.

To obtain an expression for the intercept α(r) in equation 5.21, we rely on Theorem 6

by reverse transformation of θ(r)∗
i and S̄∗ij into their respective original scales after model

fitting. The reason for the use of the re-scaled variables is that since ridge regression

regularises the linear regression by imposing a penalty based on the size or magnitude of
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the regression coefficients, it requires the variables (predictors and posterior samples) to

have similar measurement scales in order to assess their contributions to the penalised

term fairly, while maintaining the information content of the variables after re-scaling.

Hence, equation 5.22 is transformed (without the intercept) such that

L(r)∗
ridge =

η∑
i=1


[√
ωi

(
θ

(r)
i − θ̄

(r)
)]
−

m∑
j=1

[√
ωi
(
S̄ij− ¯̄Sj

)]
β

(r)∗
j


2

ωi+λ
∥∥∥β(r)∗

∥∥∥2
2

=
η∑
i=1

θ(r)∗
i −

m∑
j=1
S̄∗i,jβ

(r)∗
j


2

ωi+λ
∥∥∥β(r)∗

∥∥∥2
2
,

(5.25)

where β(r)∗
j are the regression coefficient corresponding to the scaled predictors. The

estimate of β(r)∗
j which minimises the loss function given by equation 5.25 such that

β̂(r)∗ = argmin
β(r)∗∈Rm

L(r)∗
ridge,

is given as

β̂
(r)∗
m×1 = (X>m×ηWη×ηXη×m+λIm×m)−1X>m×ηWη×ηθ

(r)∗
η×1 1≤ r ≤ n; (5.26)

where Im×m is an m×m identity matrix, W is a diagonal weighting matrix with the ith

diagonal element given by

ωi =Wii =Kδ(‖ssim,i− sobs‖), 1≤ i≤ η,

X =


S̄∗1,1 S̄∗1,2 · · · S̄∗1,m
... ... . . . ...

S̄∗η,1 S̄∗η,2 · · · S̄∗η,m

 , θ(r)∗ =


θ

(r)∗
1
...

θ
(r)∗
η

 , θ̄(r) =

η∑
i=1

ωiθ
(r)
i

η∑
i=1

ωi

, and ¯̄Sj =

η∑
i=1

ωiS̄ij
η∑
i=1

ωi

.
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Theorem 6. Let suppose a weighted ridge regression model which passes through the origin

such that

Y ∗i = β∗1X
∗
i1 +β∗2X

∗
i2 + · · ·+β∗mX

∗
im+ ε∗i , i= 1,2, · · · ,η (5.27)

where Y ∗ is the dependent variable, β∗j denote the corresponding regression coefficient of

the jth predictor (X∗j , 1≤ j ≤m), ε∗i denote the errors with mean 0 (and heteroscedastic

variance), and η is the sample size. Let also assume the dependent variable (Y ∗) and

design matrix (X∗) are in their standardised form such that

Y ∗i =√ωi(Yi− Ȳ ) and X∗ij =√ωi(Xij− X̄j),

where Y is the unstandardised dependent variable, X is unstandardised design matrix, Ȳ

is the weighted mean of Y , X̄j is the weighted mean corresponding to the jth predictor

(Xj), and ωi is a weight corresponding to ith sample. Suppose that the corresponding

fitted regression model of equation 5.27 is given as

Ŷ ∗i = β̂∗1X
∗
i1 + β̂∗2X

∗
i2 + · · ·+ β̂∗mX

∗
im, (5.28)

where the estimated regression coefficients, β̂∗= argmin
β∗∈Rm

η∑
i=1

{
Y ∗i −

m∑
j=1

X∗i,jβ
∗
j

}2
ωi+λ‖β∗‖22

(with λ denoting the ridge penalty parameter). Then, reverting the variables in equa-

tion 5.28 to their original scales (Y and X) result in a fitted linear model with an esti-

mated intercept term defined as

α̂ = Ȳ −
m∑
j=1

β̂∗j X̄j . (5.29)

Proof of Theorem 6 .

Let suppose the weighted ridge regression model (given by equation 5.27) is fitted such

that equation 5.28 holds, where Ŷ ∗i = β̂∗1X
∗
i1 + β̂∗2X

∗
i2 + · · ·+ β̂∗mX

∗
im, 1≤ i≤ η. Given

that Ŷ ∗i =√ωi(Ŷi− Ȳ ) and X∗ij =√ωi(Xij− X̄j) implies that for 1≤ i≤ η,

√
ωi(Ŷi− Ȳ ) = β∗1

[√
ωi(Xi1− X̄1)

]
+β∗2

[√
ωi(Xi2− X̄2)

]
+ · · ·+β∗m

[√
ωi(Xim− X̄m)

]
.

(5.30)
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Now, multiplying 1√
ωi

to both sides of equation 5.30 and applying a simple algebraic

re-arrangement gives

Ŷi = Ȳ + β̂∗1
(
Xi1− X̄1

)
+ β̂∗2

(
Xi2− X̄2

)
+ · · ·+ β̂∗m

(
Xim− X̄m

)
= Ȳ − β̂∗1X̄1− β̂∗2X̄2−·· ·− β̂∗mX̄m+ β̂∗1Xi1 + β̂∗2Xi2 + · · ·+ β̂∗mXim

= Ȳ −
m∑
j=1

β̂∗j X̄j +
m∑
j=1

β̂∗jXij

= α̂+
m∑
j=1

β̂∗jXij .

(5.31)

Hence, equation 5.31 corresponds to a fitted linear model with an estimated intercept

expressed as

α̂ = Ȳ −
m∑
j=1

β̂∗j X̄j q. e. d.

Our proposed Theorem 6 strictly focuses on how we can derive an expression for the

estimate of the intercept, α(r), after fitting the regression model (equation 5.21) without

the intercept term by minimising the loss function (given by equation 5.25) with a ridge

penalty based on the transformed variables defined in equation 5.24. This gives us an

estimate of α(r) in our modified local-linear regression for each rth model parameter as

α̂(r) = θ̄(r)−
m∑
j=1

β̂
(r)∗
j X̄j , (5.32)

where X̄j =

η∑
i=1

ωiXij

η∑
i=1

ωi

, θ̄(r) is the weighted mean of θ(r) and β̂
(r)∗
j is the estimate of the

regression coefficient corresponding to the jth transformed predictor. α̂(r) is a quantity

denoting the adjusted posterior means on a logarithmic scale in the current study (since

our unadjusted posterior samples were on a logarithmic scale). Hence, the required

posterior mean adjustment of the rth model parameter is estimated by taking inverse of
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its logarithmic form (given by equation 5.32) such that

α̂
(r)
adjust = eα̂

(r)
, r = 1,2, · · · ,n. (5.33)

It is imperative to note that the exponential transform of the estimate of α̂(r) in equa-

tion 5.33 holds since the current study assumes the unadjusted posterior samples were

obtained on a logarithmic scale. An exponential transformation is unnecessary for other

studies where the unadjusted posterior samples were obtained based on their original

scales. In addition, the adjusted posterior distribution θ(r)
adjust (on logarithmic scale) for

the rth model parameter is derived from equation 5.34 such that

θ
(r)
adjust,i = θ

(r)
i −

m∑
j=1

β̂
(r)∗
j S̄ij , i= 1,2, · · · ,η. (5.34)

Remark. The glmnet package in R [139] was used to obtain the optimal value of the

penalty parameter λ via cross-validation (among a range of values from 0.01 to 100) that

achieve the least predictive error before posterior adjustments. Also, optimal value of

the bandwidth or smoothing parameter δ of the Gaussian kernel Kδ(·) (given by equa-

tion 5.23) was adaptively estimated (based on the weighted distances between the simu-

lated and observed summary statistics) via a cross-validation procedure (which minimises

the asymptotic mean integrated squared error) using the kedd package in R [120]. In this

study, 95% credible intervals of posterior mean estimates were estimated based on the

Equal-Tailed Interval (ETI) of posterior distributions using the bayestestR package in R

[204].

Before fitting the complex simulation model (described in Chapter 6), the proposed re-

gression adjustment methodology, as well as the weighted-iterative ABC with SMC and

SIS, were first tested based on a simple modelling problem (with multivariate normal

likelihood) where the exact posterior distribution is known (using conjugate priors for a

multivariate normal distribution with unknown mean vector and known covariance ma-

trix). For the simple numerical experiment (using an artificial data whose true model

parameters are known), the robustness of posterior approximations from the weighted-

iterative ABC at different draws (N = 500, 1000, 2000, 3000, 4000 and 5000) from the
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proposal distribution (on a logarithmic scale) and the pre-specified set of decreasing tol-

erances are also assessed (see section 5.3.5). It helped to justify that once the decreasing

tolerance thresholds and adaptive importance weights are appropriately set up in the

weighted-iterative ABC algorithm with SMC and SIS, the number of particles drawn

from the proposal distribution (N) does not significantly affect the fidelity of the target

posterior. In other words, it will help determine whether the resulting approximate pos-

terior is independent of N or result in mutually compatible approximations at different

values of N .

Consequently, these numerical experiments (based on a toy model with a multivariate

normal likelihood function) will also help determine the minimal number of draws from

the proposal or prior distribution needed to obtain good posterior approximations when

calibrating the complex stochastic simulation model due to the potentially high com-

putational costs of simulating from the stochastic model as well as fitting the model

via sequential Monte Carlo ABC (whose computational cost increases quadratically as

a function of N). All the results from the numerical experiments (based on the toy

model), including the ABC results, are presented in section 5.3.5. Results on ABC fit-

ting of the complex stochastic simulation model are presented in section 6.3. For more

detailed R codes of the modified ABC algorithm and the proposed ABC post-processing

methodology (including other supporting functions), see Appendix F.

5.3.5 Assessing the modified ABC and regression adjustment using a

numerical experiment

5.3.5.1 Introduction

Section 5.3.5 presents a simple numerical experiment with multivariate normal likelihood

function (where the presumed true model parameter values and the exact form of the true

posterior are known) to assess the modified ABC approximations (using Algorithm 4)

and the proposed ABC posterior adjustment methodology (described in section 5.3.4.2)

at a different number of proposal draws (i.e., N = 500, 1000, 2000, 3000, 4000, and

5000 samples); where we further explore whether the resulting approximated posterior
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is independent of N , and mutually compatible ABC approximations are achieved at the

different values of N). Here, the modified regression adjustment is also compared with

the standard local-linear regression adjustment with heteroscedastic errors proposed by

Beaumont et al. [27]. Findings from the numerical experiments are also used to deter-

mine the minimal number of proposal draws needed when fitting the complex stochastic

simulation model (formally described in Chapter 6) due to the high computational costs

involved in i) model simulation, ii) estimation of the multidimensional summary statistics

for the entire host population (especially the summary component which estimates the

B-D-C model parameters during realisations of parasite population explosion as discov-

ered in section 4.2), and iii) implementing sequential Monte Carlo ABC methods (whose

computational cost increases quadratically as a function of N).

5.3.5.2 Description of the toy model and modelling problem

For the numerical experiment based a toy model defined below, artificial multivariate

data X∼Nk (θ,Σ) was simulated from a multivariate normal (MVN) distribution for a

k-dimensional random variables X = (X1,X2, · · · ,Xk)> with k-dimensional mean vector

θ = (θ1, θ2, · · · , θk)> and k× k covariance matrix Σ. For simplicity, we set k = 6 and

assume that the true mean vector (or population mean) of X (in the toy model) is

θ = (0.5,1.0,1.5,2.0,2.5,3.0)> with a positive-definite symmetric covariance matrix Σ =

Var(X) (which was randomly generated in R for the toy model) also known. Specifically,

we randomly assumed that

X =



X1

X2

X3

X4

X5

X6



∼N6





0.5

1.0

1.5

2.0

2.5

3.0



,



24.5134 11.6042 8.2851 15.6787 19.6029 18.4657

11.6042 36.1535 16.9813 9.1931 12.6557 33.0837

8.2851 16.9813 24.7937 5.0379 18.2924 16.5758

15.6787 9.1931 5.0379 16.1338 11.7926 9.8223

19.6029 12.6557 18.2924 11.7926 35.7758 18.0006

18.4657 33.0837 16.5758 9.8223 18.0006 35.2091





.

(5.35)
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Toy model:

Let suppose X (with n number of observations) is a multivariate data randomly gener-

ated from a 6-dimensional MVN distribution with density function fX(· | θ,Σ) given by

equation 5.36, where the population mean vector θ = (θ1, θ2, · · · , θ6)> (with 6 unknown

model parameters) and known covariance matrix Σ (as specified in equation 5.35); such

that

fX (X1,X2, · · · ,X6;θ,Σ) = 1√
(2π)6 (detΣ)

exp
{
−1

2 (X−θ)>Σ−1 (X−θ)
}
. (5.36)

Assuming that θ ∈ R6 is also a random variable, let suppose the prior distribution of θ,

π(θ)∝N6 (µ0,Σ0) is MVN with mean µ0 and covariance matrix Σ0.

Modelling problem:

Given the simulated MVN data X (whose population mean vector is assumed to be un-

known), and the MVN prior density π(θ)∝N6 (µ0,Σ0); we want to estimate the posterior

predictive distribution p(θ |X,Σ) using the weighted-iterative ABC algorithm (outlined

in Algorithm 4) as well as perform regression adjustment using both the proposed pos-

terior correction method (defined in section 5.3.4.2) and standard local-linear regression

adjustment with heteroscedastic errors proposed by Beaumont et al. [27]. Here, we as-

sume that the true likelihood f(X | θ,Σ) is unknown (for the sake of ABC fitting and

assessment). The accuracy of the posterior estimates from the ABC fitting and ABC

post-processing analyses (based on the toy model) at different values of N (where N is

the number of proposal draws) are also compared to the true hyperparameter posterior

mean estimator of θ ∈ R6 defined in accordance with Lemma 4 and the true parameter

values using some standard accuracy measures (i.e., the bias, variance and mean square

error of the posterior estimates as well as their corresponding 95% credible intervals).

Lemma 4. Suppose that X∼Nk (θ,Σ) is a multivariate data (with sample size of n) gen-

erated from a MVN distribution with unknown mean vector θ ∈Rk and known covariance

matrix Σ. Let assume that the prior distribution of θ, π(θ)∝Nk (µ0,Σ0) is multivariate
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normal with mean µ0 ∈ Rk and covariance matrix Σ0. Then, given the MVN data X,

the resulting posterior distribution p(θ |X,Σ) and prior π(θ) are conjugate distributions;

such that p(θ | X,Σ) ∝ Nk
(
θ̂n,Σn

)
is MVN with the exact posterior hyperparameter

mean estimator given as

θ̂n = Σn

(
Σ−1

0 µ0 +nΣ−1X̄
)
, (5.37)

where the covariance matrix Σn = (Σ−1
0 +nΣ−1)−1, X̄ ∈ Rk is the sample mean vector,

and n is the sample size of the observed data [223].

Remark. For the numerical experiment, pseudo-observed data with a sample size of n=

1000 was simulated (in R software) from MVN with true mean and covariance matrix

specified per equation 5.35 (where the true population mean was already known). This

pseudo-observed data was considered as the observed data to be used for ABC fitting,

where we assumed the true parameter mean vector θ ∈R6 of the pseudo-observed data is

unknown with 6 model parameters (as a form of an inverse problem), but the covariance

matrix Σ is known. For simplicity, we also set the covariance matrix of the prior Σ0 = Σ

(since Σ is not to be estimated, and thus, not of interest). We further assume that the

prior mean vector µ0 ∈R6 is the only hyperparameter to consider in the prior distribution

π(θ) during the ABC analysis and evaluation of the exact posterior hyperparameter mean

estimator given by equation 5.37 under Lemma 4. Additionally, since the sample mean

vector X̄ is known to be a sufficient summary statistics for the population mean of MVN

distribution (with known covariance matrix), the sample mean vector was considered

as summary statistics for both pseudo-observed and simulated data from the toy model

during ABC fitting (based on the prior or proposal samples). The weighted Euclidean

distance metric (given by equation 5.4) was used as the discrepancy measure in the

proposed weighted-iterative ABC algorithm to compare between the pseudo-observed

and simulated data. The main results from the numerical experiment (based on the toy

model) are presented in section 5.3.5.3.
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5.3.5.3 Summary of results from the numerical experiment

The MVN model (with 6 model parameters described in section 5.3.5.2) was fitted using

the modified weighted-iterative ABC with sequential Monte Carlo and adaptive impor-

tance sampling (given by Algorithm 4). The modified ABC algorithm was set-up to have

a fixed number of iterations or time steps at T = 10 (i.e., a total of 10 time steps), and

a set of monotonically decreasing tolerances (εt, t= 1,2, · · · ,10) at each ABC time step t

was carefully pre-specified based on the total number of proposal draws or prior samples

(N) according to the following: if N < 1000, εt = 0.5, 0.43, 0.4, 0.35, 0.3, 0.2, 0.1, 0.08,

0.06, 0.02; whereas if N ≥ 1000, εt = 0.5, 0.3, 0.2, 0.1, 0.08, 0.07, 0.06, 0.03, 0.02, 0.01.

To examine the robustness of the modified weighted-iterative ABC based on the choice

of N and pre-specified tolerances, the ABC fitting of the toy model was done at different

values of N : N = 500, 1000, 2000, 3000, 4000, and 5000, respectively; and the resulting

posterior distributions were further adjusted to estimate the posterior mean of the model

parameter θ using the proposed posterior correction method (defined in section 5.3.4.2)

and standard local-linear regression adjustment with heteroscedastic errors proposed by

Beaumont et al. [27] (for comparison purposes) across the 6 model parameters.

Figure 5.1 is a comparative plot showing the variability in the unadjusted posterior mean

estimates of the model parameters with their respective 95% credible intervals at the

different values of N . Figure 5.1 shows that the ABC approximations from the weighted-

iterative ABC with SMC and SIS (Algorithm 4) resulted in mutually compatible ap-

proximations at the different values of N based on the pre-specified tolerance and ABC

time steps. Thus, it can be inferred (from Figure 5.1) that the resulting posterior from

the modified ABC-SMC algorithm is independent of N (for 500 ≤ N ≤ 5000), and the

degree of variability in the posterior distributions are not significantly different irrespec-

tive of the number of proposal draws from the importance distribution with density g

defined by equation 5.13 (from N = 500 to N = 5000). Nonetheless, Figure 5.2 indicates

that the computational cost (or cost in time) increases quadratically as the number of
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proposal draws increases from N = 500 to N = 5000 during ABC fitting of the toy simu-

lation model (run in parallel using over 20 CPU cores of a multi-core processor). Based

on Figures 5.1 and 5.2, it will be cost-effective to fit the complex stochastic simulation

(described in section 6.2.1) at N = 500 due to the high computational cost associated

with model simulation from the complex model (especially during realisations of parasite

population explosion), estimation of the multidimensional summary statistics (across the

entire host population) and the potential cost of implementing the modified ABC algo-

rithm at higher values of N � 500.

After ABC fitting of the toy model, the approximate posterior mean was estimated and

its posterior distribution adjusted using the modified regression adjustment with L2 reg-

ularisation and the standard local-linear regression adjustment (with heteroscedastic er-

rors) at the different values of N . Figures 5.3–5.8 are goodness-of-fit density plots at

the different values of N , which graphically show the unadjusted and adjusted posterior

distributions against the prior distributions (of the fitted toy simulation model). It can

be seen from the goodness-of-fit density plots that the unadjusted posterior based on

the modified ABC algorithm as well as the adjusted posterior using the modified regres-

sion adjustment (with heteroscedastic errors and L2 regularisation) performed well when

compared to the prior distribution across all model parameters at the different values

of N . However, at 1000 ≤ N ≤ 4000, the posterior adjustments from Beaumont et al.

[27] standard local-linear regression (with heteroscedastic errors) resulted in very flat and

poorly adjusted for a few model parameters (relative to the prior distribution). Hence,

the modified regression adjustment, which can deal with potential multicollinearity in the

regression predictors (in the neighbourhood of the observed summaries), supercollinearity

and shrink regression coefficients of predictors with less contribution, appears to be more

robust in adjusting the posterior distribution than the standard correction method. At

certain simulation realisations with very high multicollinearity, the standard local-linear

regression could not be implemented at all or performed poorly since the design matrix

X or the term X>WX (where W was the diagonal weighting matrix) was either singular
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or close to being singular. The unadjusted and adjusted posterior means were computed

and compared with the true parameter values and the true posterior mean estimates at

the different values of N .

Additionally, the bias, variance, and mean square error (MSE) of the posterior mean

estimates, as well as their corresponding 95% credible intervals, were estimated to com-

pare the performance of approximations from the weighted-iterative ABC and the two

regression adjustments numerically (Tables 5.1–5.3). Generally, there was no significant

difference in the degree of accuracy between the unadjusted and adjusted posterior mean

estimates at the different values of N ; and the true posterior mean estimates (based on

equation 5.37) was found in their respective estimated credible intervals. However, the

MSE of the adjusted posterior mean based on the proposed regression correction (with

L2 regularisation) resulted in relatively smaller MSE and credible interval width most

of the time (especially at N ≤ 1000). Hence, it can be inferred from Tables 5.1–5.3 that

the proposed regression adjustment is relatively robust in estimating the posterior mean

compared to the standard local-linear regression of Beaumont et al. [27]. In addition, it

can further be adapted to estimate the posterior mean after ABC fitting of the complex

stochastic simulation model in the presence of high multicollinearity (since the multidi-

mensional summary statistics to be used for calibrating the complex model appears to

be highly correlated). Also, since the number of predictor variables exceed the number

of posterior samples at N = 500 (a condition which results in suppercollinearity), the

proposed regression adjustment will be more suitable for posterior correction. Hence,

the standard local-linear regression may not be possible to be implemented or result in

incorrect adjustments in these aforementioned instances.

Remark. Based on findings from the numerical experiment, it is recommended to fit the

complex simulation model based on N = 500 proposal draws from the importance density,

using the weighted-iterative ABC algorithm since it will be cost-effective to calibrate the

complex model at N = 500; whereas the adjusted posterior of the resulting ABC posterior

(based on the modified ABC regression correction) is considered for subsequent analyses

including hypotheses testing.
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Figure 5.1: Comparative plot of the unadjusted posterior mean estimates of the toy
model parameters with their respective 95% credible intervals (on logarithmic scale) at
different values of N (N = 500, 1000, 2000, 3000, 4000, and 5000 proposal samples).
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Figure 5.2: Computational times (in secs) of ABC fitting of the toy model at different
values of N (N = 500, 1000, 2000, 3000, 4000, and 5000 proposal samples).
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Table 5.1: Comparison between unadjusted ABC posterior mean estimates (θ̂unadj), true
parameter values (θ̂0) and conjugate posterior mean estimates (θ̂conjugate) of the 6 pa-
rameters of the toy model across different values of N (from N = 500 to N = 5000).

Parameters θ̂unadj θ̂0 θ̂conjugate bias(θ̂unadj) Var(θ̂unadj) MSE(θ̂unadj) 95% Cred. Int.

N=500
θ1 0.5280 0.5 0.5063 0.02802 0.0086 0.0094 0.3690—0.6477
θ2 0.9408 1.0 0.8980 -0.0592 0.0065 0.0100 0.8162—1.0587
θ3 1.4656 1.5 1.4664 -0.0344 0.0099 0.0111 1.3403—1.6164
θ4 2.1475 2.0 2.1252 0.1475 0.0062 0.0279 2.0530—2.2712
θ5 2.3186 2.5 2.4327 -0.1814 0.0083 0.0412 2.1536—2.4037
θ6 2.9038 3.0 2.9467 -0.0962 0.0162 0.0255 2.7292—3.0889

N=1000
θ1 0.4853 0.5 0.5058 -0.0147 0.0015 0.0017 0.4487—0.5657
θ2 0.9047 1.0 0.8975 -0.0953 0.0076 0.0166 0.7542—1.0208
θ3 1.4979 1.5 1.4629 -0.0021 0.0097 0.0097 1.3987—1.6916
θ4 2.0873 2.0 2.1241 0.0874 0.0103 0.0179 1.939—2.2482
θ5 2.3485 2.5 2.4320 -0.1515 0.0108 0.0338 2.1973—2.5405
θ6 2.8892 3.0 2.9465 -0.1108 0.0083 0.0206 2.7659—3.0162

N=2000
θ1 0.5155 0.5 0.5074 0.0155 0.0045 0.0047 0.3977—0.6163
θ2 0.8487 1.0 0.8964 -0.1513 0.0102 0.0331 0.6647—1.0167
θ3 1.4233 1.5 1.4584 -0.0767 0.0068 0.0127 1.2936—1.5739
θ4 2.1219 2.0 2.1216 0.1219 0.0056 0.0205 1.9836—2.2309
θ5 2.355 2.5 2.4305 -0.1450 0.0087 0.0297 2.1661—2.4906
θ6 2.8469 3.0 2.9465 -0.1531 0.0191 0.0425 2.6208—3.0568

N=3000
θ1 0.5028 0.5 0.5070 0.0028 0.0055 0.0055 0.3732—0.6188
θ2 0.8546 1.0 0.8971 -0.1454 0.0113 0.0325 0.6780—1.0287
θ3 1.3874 1.5 1.4592 -0.1126 0.0099 0.0225 1.2278—1.5689
θ4 2.0671 2.0 2.1228 0.0671 0.0072 0.0117 1.9282—2.2036
θ5 2.3484 2.5 2.4321 -0.1516 0.0113 0.0342 2.1416—2.4808
θ6 2.8438 3.0 2.9476 -0.1562 0.0160 0.0404 2.6251—3.0456

N=4000
θ1 0.4791 0.5 0.5070 -0.0209 0.0046 0.0051 0.3697—0.6150
θ2 0.8417 1.0 0.8968 -0.1583 0.0077 0.0328 0.6909—1.0394
θ3 1.3654 1.5 1.4595 -0.1345 0.0119 0.0300 1.1978—1.5574
θ4 2.1020 2.0 2.1231 0.1020 0.0132 0.0236 1.9029—2.3057
θ5 2.3448 2.5 2.4320 -0.1552 0.0191 0.0431 2.1084—2.6126
θ6 2.7976 3.0 2.9473 -0.2024 0.0103 0.0513 2.6104—2.9908

N=5000
θ1 0.4683 0.5 0.5072 -0.0317 0.0039 0.0049 0.3577—0.5750
θ2 0.8288 1.0 0.8965 -0.1712 0.0073 0.0366 0.6769—0.9823
θ3 1.4084 1.5 1.4590 -0.0915 0.0109 0.0193 1.2680—1.6036
θ4 2.0716 2.0 2.1221 0.0716 0.0081 0.0132 1.9085—2.2131
θ5 2.3222 2.5 2.4319 -0.1778 0.01541 0.0470 2.0948—2.5289
θ6 2.8138 3.0 2.9468 -0.1862 0.0135 0.0482 2.5742—2.9624
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Table 5.2: Comparison between the standard adjusted posterior mean estimates (θ̂adj),
true parameter values (θ̂0) and conjugate posterior mean estimates (θ̂conjugate) of the 6
parameters of the toy model across different values of N (from N = 500 to N = 5000).

Parameters θ̂adj θ̂0 θ̂conjugate bias(θ̂adj) Var(θ̂adj) MSE(θ̂adj) 95% Cred. Int.

N=500
θ1 0.5502 0.5 0.5063 0.0502 0.0071 0.0097 0.4418—0.7090
θ2 0.9568 1.0 0.8980 -0.0432 0.0336 0.0354 0.6571—1.1809
θ3 1.4172 1.5 1.4664 -0.0828 0.0141 0.0210 1.1992—1.5399
θ4 2.1245 2.0 2.1252 0.12447 0.0017 0.0172 2.0658—2.1730
θ5 2.3436 2.5 2.4327 -0.1564 0.0079 0.0324 2.2000—2.4866
θ6 2.9435 3.0 2.9467 -0.0565 0.0178 0.0210 2.7030—3.0890

N=1000
θ1 0.6350 0.5 0.5058 0.1350 0.1554 0.1736 0.1522—1.3605
θ2 1.066 1.0 0.8976 0.0660 0.0930 0.0973 0.5970—1.5427
θ3 1.6321 1.5 1.4629 0.13205 0.0629 0.0803 1.1401—1.8758
θ4 2.0795 2.0 2.1241 0.0795 0.0129 0.0193 1.9184—2.2594
θ5 2.4111 2.5 2.4320 -0.0889 0.0667 0.0745 2.0394—2.6897
θ6 3.1265 3.0 2.9465 0.1266 0.2522 0.2683 2.1989—3.7414

N=2000
θ1 0.5200 0.5 0.5074 0.0200 0.0050 0.0054 0.3874—0.6491
θ2 0.8283 1.0 0.8964 -0.1717 0.0076 0.0371 0.6665—0.9776
θ3 1.4294 1.5 1.4584 -0.0706 0.0202 0.0252 1.2091—1.6672
θ4 2.0865 2.0 2.1216 0.0866 0.0091 0.0166 1.9378—2.2277
θ5 2.3017 2.5 2.4305 -0.1983 0.1059 0.1452 1.8252—2.8712
θ6 2.8308 3.0 2.9464 -0.1692 0.0174 0.0460 2.5979—3.0677

N=3000
θ1 0.5561 0.5 0.5070 0.0561 0.0099 0.0131 0.3366—0.6926
θ2 1.0135 1.0 0.8971 0.0136 0.0302 0.0304 0.6207—1.2354
θ3 1.3542 1.5 1.4592 -0.1458 0.4966 0.5181 0.7311—3.3913
θ4 2.0331 2.0 2.1228 0.0331 0.1064 0.1075 1.6225—2.7373
θ5 2.3965 2.5 2.4321 -0.1035 0.0295 0.0402 1.9518—2.6140
θ6 3.0575 3.0 2.9476 0.0575 0.1713 0.1746 2.1120—3.6480

N=4000
θ1 0.4122 0.5 0.5070 -0.0878 0.1041 0.1118 0.2259—0.9687
θ2 0.9166 1.0 0.8968 -0.0834 0.0295 0.0365 0.5314—1.1814
θ3 1.4103 1.5 1.4595 -0.0896 0.0125 0.02061 1.1861—1.6170
θ4 2.0267 2.0 2.1231 0.0268 0.0497 0.0504 1.7632—2.4752
θ5 2.5443 2.5 2.4320 0.0443 0.1350 0.1370 1.6821—3.1107
θ6 2.8656 3.0 2.9473 -0.1344 0.0204 0.0385 2.5604—3.0843

N=5000
θ1 0.4411 0.5 0.5072 -0.0589 0.0067 0.0103 0.3259—0.5829
θ2 0.7651 1.0 0.8965 -0.2349 0.0113 0.0665 0.6276—1.0433
θ3 1.4439 1.5 1.4590 -0.0561 0.0095 0.0126 1.2722—1.6720
θ4 2.0309 2.0 2.1221 0.0310 0.0115 0.0124 1.8560—2.2761
θ5 2.3640 2.5 2.4319 -0.1360 0.0124 0.0309 2.1593—2.5994
θ6 2.7485 3.0 2.9468 -0.2515 0.0036 0.0669 2.6816—2.8948
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Table 5.3: Comparison between the proposed adjusted posterior mean estimates (θ̂adj),
true parameter values (θ̂0) and conjugate posterior mean estimates (θ̂conjugate) of the 6
parameters of the toy model across different values of N (from N = 500 to N = 5000).

Parameters θ̂adj θ̂0 θ̂conjugate bias(θ̂adj) Var(θ̂adj) MSE(θ̂adj) 95% Cred. Int.

N=500
θ1 0.5092 0.5 0.5063 0.0092 0.0082 0.0083 0.3690—0.6381
θ2 0.9691 1.0 0.8980 -0.0309 0.0064 0.0074 0.8160—1.0586
θ3 1.4422 1.5 1.4664 -0.0578 0.0099 0.0132 1.3403—1.6164
θ4 2.1352 2.0 2.1252 0.1352 0.0031 0.0214 2.0358—2.1947
θ5 2.2658 2.5 2.4327 -0.2342 0.0057 0.0605 2.1927—2.4078
θ6 2.9442 3.0 2.9467 -0.0557 0.0174 0.0204 2.6854—3.1162

N=1000
θ1 0.5059 0.5 0.5058 0.0059 0.0011 0.0011 0.4460—0.5507
θ2 0.8756 1.0 0.8976 -0.1244 0.0076 0.0230 0.7542—1.0208
θ3 1.4595 1.5 1.4629 -0.0405 0.0097 0.0114 1.3988—1.6918
θ4 2.0740 2.0 2.1241 0.0739 0.0087 0.0142 1.9511—2.2306
θ5 2.3327 2.5 2.4320 -0.1673 0.0106 0.0386 2.2014—2.5397
θ6 2.8354 3.0 2.9464 -0.1645 0.0083 0.0354 2.7659—3.0162

N=2000
θ1 0.5209 0.5 0.5074 0.0209 0.0036 0.0041 0.4083—0.5990
θ2 0.8851 1.0 0.8964 -0.1149 0.0102 0.0234 0.6648—1.0167
θ3 1.4342 1.5 1.4584 -0.0657 0.0059 0.0102 1.3191—1.5620
θ4 2.1169 2.0 2.1216 0.1169 0.0046 0.0183 2.0053—2.2160
θ5 2.3697 2.5 2.4304 -0.1303 0.0071 0.0241 2.1784—2.4740
θ6 2.8744 3.0 2.9465 -0.1256 0.0176 0.0334 2.5819—3.0153

N=3000
θ1 0.50178 0.5 0.5070 0.0017 0.0052 0.0052 0.3784—0.6144
θ2 0.8439 1.0 0.8971 -0.1561 0.0108 0.0351 0.6908—1.0490
θ3 1.4079 1.5 1.4592 -0.0921 0.0082 0.0167 1.2420—1.5525
θ4 2.0646 2.0 2.1228 0.0646 0.0043 0.0085 1.9617—2.1635
θ5 2.3612 2.5 2.4321 -0.1388 0.0084 0.0277 2.1541—2.4752
θ6 2.8406 3.0 2.9476 -0.1594 0.0132 0.0387 2.6553—3.0584

N=4000
θ1 0.4830 0.5 0.5070 -0.0170 0.0038 0.0041 0.3742—0.5953
θ2 0.8494 1.0 0.8968 -0.1506 0.0077 0.0304 0.6909—1.0394
θ3 1.3655 1.5 1.4595 -0.1344 0.0119 0.0299 1.1978—1.5574
θ4 2.1047 2.0 2.1231 0.1047 0.0106 0.0216 1.9211—2.2789
θ5 2.3459 2.5 2.4320 -0.1541 0.0129 0.0366 2.1378—2.5463
θ6 2.7938 3.0 2.9473 -0.2062 0.0088 0.0513 2.6270—2.9766

N=5000
θ1 0.4757 0.5 0.5072 -0.0243 0.0030 0.0035 0.3735—0.5520
θ2 0.8180 1.0 0.8965 -0.1810 0.0056 0.0384 0.6950—0.9689
θ3 1.3951 1.5 1.4589 -0.1049 0.0098 0.02078 1.2522—1.6369
θ4 2.0777 2.0 2.1221 0.0777 0.0052 0.0112 1.9547—2.2093
θ5 2.3147 2.5 2.4319 -0.1853 0.0091 0.0435 2.1605—2.5080
θ6 2.8034 3.0 2.9468 -0.1966 0.0094 0.0480 2.6093—2.9506
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Figure 5.3: Goodness-of-fit density plots of the (unadjusted) approximate posterior dis-
tribution (in black) for the 6 parameters of the toy model against the sequentially improv-
ing prior distributions and the adjusted posterior from the two regression adjustments at
N = 500 (on logarithmic scale).
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Figure 5.4: Goodness-of-fit density plots of the (unadjusted) approximate posterior dis-
tribution (in black) for the 6 parameters of the toy model against the sequentially improv-
ing prior distributions and the adjusted posterior from the two regression adjustments at
N = 1000 (on logarithmic scale).
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Figure 5.5: Goodness-of-fit density plots of the (unadjusted) approximate posterior dis-
tribution (in black) for the 6 parameters of the toy model against the sequentially improv-
ing prior distributions and the adjusted posterior from the two regression adjustments at
N = 2000 (on logarithmic scale).
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Figure 5.6: Goodness-of-fit density plots of the (unadjusted) approximate posterior dis-
tribution (in black) for the 6 parameters of the toy model against the sequentially improv-
ing prior distributions and the adjusted posterior from the two regression adjustments at
N = 3000 (on logarithmic scale).
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Figure 5.7: Goodness-of-fit density plots of the (unadjusted) approximate posterior dis-
tribution (in black) for the 6 parameters of the toy model against the sequentially improv-
ing prior distributions and the adjusted posterior from the two regression adjustments at
N = 4000 (on logarithmic scale).
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Figure 5.8: Goodness-of-fit density plots of the (unadjusted) approximate posterior dis-
tribution (in black) for the 6 parameters of the toy model against the sequentially improv-
ing prior distributions and the adjusted posterior from the two regression adjustments at
N = 5000 (on logarithmic scale).
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Chapter 6

Novel stochastic simulation model

6.1 Introduction

The multi-state Markov model (outlined in section 2.3.3) was not able to include spatial

information and other relevant information about parasite fecundity, age group (young

or old parasite), parasite mortality, parasite mobility and host immune response while

exploring host survival and parasite infrapopulation dynamics. Thus, a more sophisti-

cated stochastic model can incorporate such relevant data and help provide answers to

other unknown biological questions and additional insights about the infrapopulation and

mixed-population dynamics of the gyrodactylid-fish system.

Here, we compare the infection dynamics of the three Gyrodactylus parasite strains (Gt3,

Gt and Gb) across the three host populations (OS, LA and UA fish), by developing a

multidimensional continuous-time Markov Chain (CTMC) model via a hybrid τ -leaping

simulation. The leap size selection (equation 4.26) based on the B-D-C process (the aux-

iliary stochastic model) also provided additional means of accelerating the multidimen-

sional simulation model (see Chapter 4). The model simulates (conditioned on relevant

information such as fish sex, fish size, fish type and parasite strain) the movement of

parasites for two age groups over the external surfaces (four major body regions) of a

fish over a 17-day infection period with population carrying capacity (dependant on host

size and area of body regions). Based on findings from the spatial and temporal para-

site dynamics of the Gyrodactylus species (see Chapter 2), the eight body regions of fish

(tail fin, lower body, upper body, anal fin, dorsal fin, pelvic fins, pectoral fins and head)

shown in Figure 6.1 were re-categorised into four major body locations: tail, lower region

(comprising of the lower body, anal fin, pelvic fins and dorsal fin), upper region (made up
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of the upper body and pectoral fins) and the head (Figure 6.2) in the multidimensional

stochastic model.

It was observed from the empirical data (described fully in section 2.2.1) that there were

lower mean parasite intensities at the pectoral, pelvic, dorsal and anal fins compared to

the tail, lower body, upper body, and head regions due to either fish being maintained in

isolation or difference in the surface area of these body regions. Individual host isolation

suggested that there was no opportunity for host-to-host transmission to occur via the

fins and, thus, the need for the body re-categorisation into the four major regions as rep-

resented in the transition diagram or movement model for a single parasite (Figure 6.2).

The model was parameterised by the birth, death and movement rates of young and

older parasites in the presence or absence of the host’s immune response. Host death

was assumed to occur at a rate proportional to the total number of parasites on the fish.

Parasite body preference which depends on the parasite strain (microhabitat preference),

is included in the stochastic model. The preference for parasites to move back and forth

on the host and the effective carrying capacity (total parasites that can occupy each body

location) of a fish are additional model parameters that are estimated. The underlying

specific assumptions of the complex stochastic model (see section 6.2.2) were motivated

by the findings from the multi-state Markov model in exploring the infection progression

of the Gyrodactylus species, in terms of host survival and parasite virulence of the parasite

strains across the three host populations (see Chapter 2). The CTMC simulation model

was fitted using a modified weighted-iterative ABC (developed in Chapter 5).

Continuous-time Markov chain is often used to model biological systems or processes

where there are a low population count and a high degree of uncertainty associated with

transitions across different states of the process [21]. For this study, the infection dynam-

ics of the laboratory-bred G. turnbulli (Gt3 ), a wild G. turnbulli strain (Gt) and wild G.

bullatarudis (Gb) across three different fish stocks (OS, LA and UA fish) are being com-

pared. The gyrodactylid parasite population are usually low among the host population
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[307]; however, the infection dynamics over time varies across different parasite strains

and different fish populations (Chapter 2). Hence, developing a CTMC simulation model

for the gyrodactylid-fish system can capture the stochasticity of this system in the best

possible way and incorporate relevant complexities into the model; with the aid of existing

empirical data. The multidimensional stochastic model is formally defined in section 6.2

with some numerical experiments performed in section 6.2.3; whereas section 6.3 focuses

on the ABC fitting of the multidimensional stochastic model, including other hypotheses

testing results.

6.2 Construction of the CTMC simulation model

This section presents the framework of the CTMC stochastic model for the gyrodactylid-

fish system (section 6.2.1), the hybrid τ -leaping algorithm for the multidimensional

CTMC simulation model with its underlying assumptions (section 6.2.2) as well as the

pseudo-codes of the hybrid τ -leaping algorithms (section 6.2.2.1) for simulating the spa-

tial and temporal infection dynamics for a fish (conditioned on relevant information such

as fish sex, fish size, fish type and parasite strain). Nine parasite-fish groups (described in

Chapter 2) namely: Gt3 -OS, Gt3 -LA, Gt3 -UA, Gt-OS, Gt-LA, Gt-UA, Gb-OS, Gb-LA

and Gb-UA, are being compared. A linear function (least square regression equation) is

used to project the number parasites after fish mortality until the end of the observation

period (to aid in ABC fitting) as presented under section 5.3.3. The effect of different

error bound values on simulation accuracy and speed for the CTMC simulation model

are further explored; and a reasonable error threshold is chosen based on the trade-off

between accuracy-speed trade-off (section 6.2.3).

6.2.1 Model framework

Suppose individual gyrodactylid parasites on infected fish can transition between four

discrete states or major body locations: tail (state 1), lower region (state 2), upper

region (state 3) and head (state 4) as represented by the transition diagram (Figure 6.2).

Let {A(i)
j,k(t); t ≥ 0} be j × k matrix denoting the number of gyrodactylid parasites at
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body location j (j = 1,2,3,4) of fish i for parasite age group k (k = 1,2) at any time t;

where k = 1 represent young parasites (daughter yet to reproduce) and k = 2 denote old

parasite (mother). Let {X(i)
j (t); t≥ 0} be the total number of young and old gyrodactylid

parasites at any time t at the jth body location of fish i from any parasite-fish group,

such that X(i)
j (t) =

2∑
k=1

A
(i)
j,k(t). For each fish i= 1,2, · · · ,nl, where nl is the total number

of fish in the lth parasite-fish group (for l = 1,2, · · · ,9), we have observations X(i)
j ={

X
(i)
j0 ,X

(i)
j1 , · · · ,X

(i)
j9

}
at times t0 = 0, t1 = 1, t2 = 3, · · ·, t9 = 17. For simplicity, let

assume X(i)
j (t) = X

(i)
ju =

2∑
k=1

A
(i)
j,k(t) for t ∈ [tu−1, tu) (where u = 1,2, · · · ,9 are observed

time indexes). Let zi = {zi1, zi2, zi3, zi4} be the realized values of the covariates: fish

sex, fish size, fish stock and parasite strain, respectively, for fish i. Let also assume

that Bj →{0,1} is an (unobserved) indicator function representing the immune state of

the jth body region of a host over time; such that a value of 0 indicates the absence

of immune response, while a value of 1 implies the presence of immune response. We

suppose that {A(i)
j,k(t); t≥ 0} is a multidimensional time-homogeneous Markov chain with

state space S = {0,1,2, · · ·} defined by the number of parasites per age group k (young

or old parasite) at each jth body region at time t ∪ immune states ∪ mortality state of

fish i, and satisfies the following scheme at any time t:

Event Transition Rate

Parasite birth at region j A
(i)
j,k→ A

(i)
j,k + 1 A

(i)
j,k×

[
1− A

(i)
j,k

ξ(fj ,zi2,κ)

]
× bk(Bj , zi4)

Parasite death at region j A
(i)
j,k→ A

(i)
j,k−1 A

(i)
j,k×

[
1− A

(i)
j,k

ξ(fj ,zi2,κ)

]
×dk(Bj , zi4)

Forward movement from region j to j+ 1 A
(i)
j,k→ A

(i)
j,k−1, A

(i)
j,k×mk(Bj)× ε(zi4)

A
(i)
j+1,k→ A

(i)
j+1,k + 1

Backward movement from region j to j−1 A
(i)
j−1,k→ A

(i)
j−1,k + 1, A

(i)
j,k×mk(Bj)× (1− ε(zi4))

A
(i)
j,k→ A

(i)
j,k−1

Immune response at region j
2∑

k=1
A

(i)
j,k→ 0

[
2∑

k=1
A

(i)
j,k

]
× r(zi1, zi3)

Fish mortality
4∑
j=1

2∑
k=1

A
(i)
j,k→ 0

[
4∑
j=1

2∑
k=1

A
(i)
j,k

]
× s(zi1, zi2)

where bk(Bj , zi4) is the birth rate for parasites age k (which depends on the immune state

207



Bj at body region j and parasite strain zi4), d(Bj , zi4) is the death rate for parasites age

k (which depends on Bj and zi4), mk(Bj) is the movement rate for parasites age k

(which depends on Bj), ε(zi4) is the movement rate adjustment (which depends on the

parasite strain zi4), r(zi1, zi3) is the immune response rate by a single parasite (which

depends the fish sex zi1 and fish type zi3), s(zi1, zi2) is the fish mortality rate caused

by a single parasite (which depends on the fish sex zi1 and fish size zi2), ξ(fj , zi2,κ) is

the population carrying capacity (which depends on the area of body region fj , fish size

zi2 and the effective carrying capacity per unit area of each body region κ). The main

model parameters of underlying the stochastic simulation to be estimated are described

in Table 6.1.

Figure 6.1: Conceptual framework showing the eight body locations of fish.
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Figure 6.2: Transition diagram across the four major body regions of fish used as states
for the CTMC model for a single parasite.

6.2.2 Hybrid τ -leaping algorithm for the multidimensional CTMC sim-

ulation model

The CTMC stochastic simulation model is developed using a hybrid τ -leaping algorithm

whose leap size, τleap, (given by equation 6.1) is a modified version of the optimal leap

size of the B-D-C process (the auxiliary model) given by equation 4.26; such that

τleap = min


ε(b̄+ d̄)

|(b̄− d̄)|max(b̄, d̄)
,

ε2(b̄+ d̄)2
[

4∑
j=1

2∑
k=1

A
(i)
j,k

]
(b̄+ d̄)max(b̄2, d̄2)

 , (6.1)

where b̄ is the average birth rate of young and old parasites, d̄ is the average death

rate of parasites in the presence or absence of host immune response, and ε is the error

bound of the τ -leaping algorithm (which is pre-determined based on the trade-off between

simulation accuracy and speed). The leap condition is determined by 1
10a0

(
A

(i)
j,k

) where

a0

(
A

(i)
j,k

)
is the total event rate (which depends on state A(i)

j,k) for fish i as specified

in Algorithm 3 for simulating the B-D-C process. Thus, the hybrid τ -leaping is set up

such that if the leap size τleap (equation 6.1) > 1
10a0

(
A

(i)
j,k

) , the τ -leaping algorithm is

implemented for a single fish (as given by Algorithm 6), whereas we forego τ -leaping

and use the exact stochastic simulation algorithm (i.e., exact SSA given by Algorithm 5)

when the leap condition is not met. The hybrid τ -leaping simulation at an error bound

of 0 (ε = 0) result in exact SSA only since at ε = 0, the leap size τleap = 0 for any state

value and birth-death parameter values > 0. Thus, the leap condition is not satisfied for
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τ -leaping at ε = 0. The probability of that a single parasite will move between the four

major body regions of fish within the simulation model (J) is assumed to be constant

over time (as shown in Figure 6.2), and it is given as

J =



Tail Lower region Upper region Head

Tail 0 1 0 0

Lower region 1
2 0 1

2 0

Upper region 0 1
2 0 1

2

Head 0 0 1 0


.

The specific underlying assumptions of the CTMC simulation model are as follows:

1. The birth rate of young parasites are greater than the old parasites’ birth rate.

2. The death rate of young and old parasites are assumed to be equal but higher in

the presence of host immune response.

3. The birth rate per age depends on the parasite strain; whereas, the death rate with

or without host immune response depends on the parasite strain.

4. Host mortality occur at a rate proportional to the total number of parasites on the

body of the fish, fish sex and fish size.

5. The rate of movement of each parasite depends its age, strain and immune response.

6. Localised host immune response at each body region occurs at a rate proportional

to the effective population carrying capacity per unit area, fish sex and fish stock.

The localised immune response can also occur at any time within the observed

infection period.

7. The fish size is measured by its standard length, and the unit area of the host’s

body regions depend its size and sex.

8. The population carrying capacity depends on the unit area of the host’s body

regions, fish size and the effective carrying capacity (maximum number of parasites

per unit area of body regions).
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9. The transition or event rates are time-homogeneous and dependent on the current

state of the process (independent of past states) within any infinitesimal amount of

time or time step of the τ -leaping simulation.

Table 6.1: Main model parameters of the multidimensional CTMC stochastic simulation

Parameters Description

Base simulation parameters
b11 birth rate for young Gt3 parasites
b12 birth rate for old Gt3 parasites
b21 birth rate for young Gt parasites
b22 birth rate for old Gt parasites
b31 birth rate for young Gb parasites
b32 birth rate for old Gb parasites
d11 death rate for Gt3 parasites without host immune response
d12 death rate for Gt3 parasites with host immune response
d21 death rate for Gt parasites without host immune response
d22 death rate for Gt parasites with host immune response
d31 death rate for Gb parasites without host immune response
d32 death rate for Gb parasites with host immune response
m movement rate for a single parasite
r immune response rate caused by a single parasite
s host mortality rate caused by a single parasite
κ effective carrying capacity per each body region

Additional simulation parameters
ε1 movement rate adjustment for Gt3 parasites
ε2 movement rate adjustment for Gt parasites
ε3 movement rate adjustment for Gb parasites
r1 immune response rate adjustment for LA fish (ref: UA fish)
r2 immune response rate adjustment for OS fish (ref: UA fish)
r3 immune response rate adjustment for male fish (ref: female)
s1 host mortality rate adjustment for male fish (ref: female)

Remark. Other additional notations in the simulation model are fj for j = 1,2,3,4 repre-

senting the unit area of the four major body regions, Bj are immune states at each body

region (no response: Bj = 1; response: Bj = 2), and x representing the survival status

of fish. In the multidimensional simulation model, the fish is initially infected with at

least 2 parasites at the tail (in a similar fashion as the observed empirical data described

in section 2.2.1), and the total number of parasites at each body region is recorded over

time. For each simulation realisation, the stochastic model is set-up to simulate the entire

fish population corresponding to each parasite-fish groups as observed in the empirical

experimental data (conditioned on descriptive information such as fish sex and fish size).
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6.2.2.1 Pseudo-codes of exact simulation and τ -leaping for the multidimensional model

The novel pseudo-codes of exact stochastic simulation (SSA) and the hybrid τ -leaping

algorithm for the multidimensional CTMC model for simulating infection dynamics of

a single fish are given by Algorithms 5 and 6, respectively. For the R codes used in

simulating the infection dynamics of a single fish, and a group of fish corresponding to

the observed empirical data, see Appendix G.

Algorithm 5: Exact SSA of the simulation model (pseudo-code)
Input: A0, B0, J , x, bk, dk, mk, r, s, s1, κ, ε1, ε2, ε3, f , t, tfinal, fish sex (zi1),

fish size (zi2), fish stock (zi3), parasite strain (zi4) and host survival
status (x).

Output: Number of parasites at each body region over time, Xj(t) =
2∑

k=1
A

(i)
j,k(t)

for fish i; host survival status (alive: x = 1; dead: x = 2)
1 while t < tfinal and x = 1 do
2 Set initial time t= t0; state A1,1 = A0 = 2 & zero elsewhere; immune state

Bj =B0 = 1; host survival status x = 1.
3 Calculate the event rates aδ

(
A

(i)
j,k

)
for events δ = 1,2, · · · ,6 such that:

Birth = A
(i)
j,k×

[
1− (A(i)

j,k/(fj× zi2×κ))
]
× bk(Bj , zi4),

Death = A
(i)
j,k×

[
1− (A(i)

j,k/(fj× zi2×κ))
]
×dk(Bj , zi4),

Forward movement = A
(i)
j,k×mk(Bj)× ε(zi4),

Backward movement = A
(i)
j,k×mk(Bj)× (1− ε(zi4)),

Immune response =
2∑

k=1
A

(i)
j,k× r(zi1, zi3),

Fish mortality =∑
j

∑
k
A

(i)
j,k× s(zi1, zi2).

4 Compute the total rate, a0 =
6∑
δ=1

aδ, for events δ = 1,2, · · · ,6 (from step 3).

5 Determine the event to occur at the host’s body regions using a random
number u from Uniform(0,a0) at a probability equal to aδ

a0
, and update

state A(i)
j,k for fish i according to the scheme defined in section 6.2.1.

6 Generate time increment τSSA from Exponential(a0), and update the time
such that t= t+ τSSA.

7 Record
(
Xj =

2∑
k=1

A
(i)
j,k,x

)
at the desired discrete times for fish i and

j = 1,2,3,4.
8 end
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Algorithm 6: Hybrid τ -leaping algorithm for simulation model (pseudo-code)
Input: A0, B0, J , x, bk, dk, mk, r, s, s1, κ, ε1, ε2, ε3, f , t, tfinal, fish sex (zi1),

fish size (zi2), fish stock (zi3), parasite strain (zi4) and host survival
status (x).

Output: Number of parasites at each body region over time, Xj(t) =
2∑

k=1
A

(i)
j,k(t)

for fish i; host survival status (alive: x = 1; dead: x = 2)
1 while t < tfinal and x = 1 do
2 Set initial time t= t0; state A1,1 = A0 = 2 & zero elsewhere; immune state

Bj =B0 = 1; host survival status x = 1.
3 Calculate the event rates aδ

(
A

(i)
j,k

)
for events δ = 1,2, · · · ,6 such that:

Birth = A
(i)
j,k×

[
1− (A(i)

j,k/(fj× zi2×κ))
]
× bk(Bj , zi4),

Death = A
(i)
j,k×

[
1− (A(i)

j,k/(fj× zi2×κ))
]
×dk(Bj , zi4),

Forward movement = A
(i)
j,k×mk(Bj)× ε(zi4),

Backward movement = A
(i)
j,k×mk(Bj)× (1− ε(zi4)),

Immune response =
2∑

k=1
A

(i)
j,k× r(zi1, zi3),

Fish mortality =∑
j

∑
k
A

(i)
j,k× s(zi1, zi2).

4 Compute the total rate, a0 =
6∑
δ=1

aδ, for events δ = 1,2, · · · ,6 (from step 3).
5 Compute the leap size τleap given by equation 6.1.
6 if τleap > 1

10a0
then

7 set t= t+ τleap and choose a random number u from Uniform(0,a0)
8 if u< a6 then
9 Set x = 2 and break (host mortality event occurs)

10 end
11
12 if a6 < u< a5 +a6 then
13 Set Bj = 2 (immune response event occurs)
14 end
15
16 if a5 +a6 < u< a1 +a2 +a3 +a5 +a6 then
17 update Aj,k = Aj,k +∑

δ
vδP (aδ, τleap) where P ∼ Poisson(aδτleap) and

vδ is state-change vector (birth, death and forward movement events
occur)

18 else
19 update Aj,k = Aj,k +∑

δ
vδP (aδ, τleap) (birth, death and backward

movement events occur)
20 end
21 else
22 Execute exact SSA (Algorithm 5)
23 end
24

25 Record
(
Xj =

2∑
k=1

A
(i)
j,k,x

)
at the desired discrete times for fish i and

j = 1,2,3,4.
26 end
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6.2.3 Determining an error bound for the Hybrid τ -leaping simulation

model

A reasonable choice of the error bound ε (0< ε� 1) for the hybrid τ -leaping simulation

model was further investigated by exploring the trade-off between simulation accuracy

and computational speed at some fixed parameter values (Table 6.2) based on 100 different

simulation realisations or repetitions; where each simulation realisation corresponded to

the nine observed parasite-fish groups (given fish sex, fish size, fish stock and parasite

strain). The simulation accuracy was quantified by the mean square error (given by

equation 6.2) based on the mean (simulated) parasite numbers over time (day 1 to 17)

from the exact SSA (Algorithm 5) and the hybrid τ -leaping algorithm (Algorithm 6) at

10 different error bound values (ε= 0.002,0.004,0.006,0.008,0.01,0.02,0.04,0.06,0.08 and

0.1); such that

MSE
(
X̄

(g)
leap(t), X̄(g)

SSA(t)
)

= 1
100

100∑
r=1

(
X̄

(g)
leap,r(t)− X̄

(g)
SSA,r(t)

)2
, (6.2)

where X̄(g)
leap,r(t) and X̄

(g)
SSA,r(t) are the mean parasite numbers over time t from hybrid

τ − leaping and exact SSA, respectively; across each of the nine parasite-fish groups (g)

and simulation realisation (r). The respective confidence intervals of the mean over time

between the two simulation methods were also compared at 0< ε < 0.1 for each parasite-

fish group over time. The simulation speed was quantified by the computational time

(computer’s CPU time measured in seconds).

It was discovered that the simulation accuracy reduces in the hybrid τ -leaping algorithm

as the error bound (ε) increases from ε= 0.002 to ε= 0.1 (see Figure 6.3). From Figures

6.4-6.13, it can be observed that the mean parasite numbers from the hybrid τ -leaping

simulations were relatively consistent with the exact SSA at error bounds, 0.002 ≤ ε ≤

0.01, across the nine parasite-fish groups (see Figures 6.4–6.8); including their respective

confidence intervals. At ε≥ 0.02, the τ -leaping algorithm started to perform badly across

the parasite-fish groups as the error bound increased towards ε = 0.1 (see Figures 6.9–
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6.13). Figure 6.14 shows that at ε = 0.008 or ε = 0.01, the τ -leaping algorithm was

relatively fast but not very significant from the computational time of the exact SSA.

This may be due to either the smaller number of simulation repetitions (100 repetitions)

or the number of parasites from the simulations being relatively small over time at the pre-

specified parameter values (which were randomly chosen). Thus, the leaping condition

was not met most of the time for just these simple explorations. However, it has already

been shown in Chapter 4 that once the leap condition is met, τ -leaping is much faster

compared to the exact SSA (otherwise, the latter is used the proposed hybrid τ−leaping

algorithm given by Algorithm 6). Based on the simulation accuracy and computational

speed, ε= 0.01 can be a reasonable choice of the error bound for subsequent simulations

from the multidimensional stochastic model.

Table 6.2: Fixed parameter values for choosing an error bound

Parameters Fixed values

Base simulation parameters
b11 0.668
b12 0.018
b21 0.668
b22 0.018
b31 0.668
b32 0.018
d11 0.008
d12 0.071
d21 0.008
d22 0.071
d31 0.008
d32 0.071
m 0.083
r 0.001
s 0.009
κ 182

Additional simulation parameters
ε1 0.545
ε2 0.333
ε3 0.001
r1 0.351
r2 0.196
r3 0.994
s1 0.041
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Figure 6.3: Mean square error from the Hybrid τ -leaping algorithm at different error
bounds.
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Figure 6.4: Mean comparison between exact SSA and Hybrid τ -leaping simulations at
ε= 0.002.
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Figure 6.5: Mean comparison between exact SSA and Hybrid τ -leaping simulations at
ε= 0.004.
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Figure 6.6: Mean comparison between exact SSA and Hybrid τ -leaping simulations at
ε= 0.006.
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Figure 6.7: Mean comparison between exact SSA and Hybrid τ -leaping simulations at
ε= 0.008.
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Figure 6.8: Mean comparison between exact SSA and Hybrid τ -leaping simulations at
ε= 0.01.
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Figure 6.9: Mean comparison between exact SSA and Hybrid τ -leaping simulations at
ε= 0.02.
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Figure 6.10: Mean comparison between exact SSA and Hybrid τ -leaping simulations at
ε= 0.04.
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Figure 6.11: Mean comparison between exact SSA and Hybrid τ -leaping simulations at
ε= 0.06.
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Figure 6.12: Mean comparison between exact SSA and Hybrid τ -leaping simulations at
ε= 0.08.
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Figure 6.13: Mean comparison between exact SSA and Hybrid τ -leaping simulations at
ε= 0.1.
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Figure 6.14: Comparison between computational time between exact SSA and Hybrid
τ -leaping simulation at different error bounds 0< ε≤ 0.1.
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6.3 ABC fitting of the novel stochastic model

6.3.1 Introduction

This section presents the results of the ABC fitting of the multidimensional stochastic

model with 23 parameters (outlined in section 6.2.1) using the weighted-iterative ABC

at pre-specified tolerance thresholds and ABC-SMC total time steps as well as the mod-

ified regression adjustment (with L2 regularisation) for estimating the posterior means

(motivated by findings from the numerical experiments presented in section 5.3.5). The

results of ABC fitting of the complex stochastic simulation model as well as the ABC

post-processing analysis using the modified local-linear regression with L2 regularisation

are presented in section 6.3.2. Finally, section 6.3.3 presents the findings on hypothesis

testing in relation to research questions 5-9 based on the adjusted posterior samples of

the underlying model parameters.

6.3.2 ABC fitting of the novel multidimensional stochastic model

The complex stochastic model (with multi-parameters described in Table 6.1) was then

successfully fitted using the proposed weighted-iterative ABC with sequential Monte

Carlo and adaptive importance sampling outlined by Algorithm 4 at N = 500 (see Fig-

ure 6.15); where the overall ABC computational time was 46485.99 seconds. The modified

local-linear regression model with L2 regularisation (described in section 5.3.4.2) was fur-

ther used to obtain the adjusted posterior mean estimates of the model parameters (using

equation 5.33). The ABC posterior distributions at were also adjusted based on equa-

tion 5.34, and the corresponding 95% credible intervals of the adjusted mean estimates

were obtained for each parameter of the complex stochastic simulation model. Due to

high multicollinearity between some of the regression predictors (in the neighbourhood

of the observed summary statistics) as shown by Figure 6.16, Beaumont et al. [27] local-

linear regression was impossible to implement.
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Consequently, the proposed regression adjustment was able to deal with the high mul-

ticollinearity by shrinking the regression coefficients, resulting in predictors with minor

contributions to the posterior samples (the outcome variable) having coefficients close

to zero (but not equal to zero) in order to minimise their respective standard errors.

Table 6.3 summarises the unadjusted and adjusted posterior mean estimates of the un-

derlying model parameters with their respective 95% credible intervals. It can be observed

from Table 6.3 that the width of the estimated 95% credible intervals based on the ad-

justed posterior distribution are relatively smaller compared to that of the unadjusted

ABC posterior distribution. The goodness-of-fit density plots of the unadjusted and ad-

justed posterior distributions of the 23 parameters against the sequentially improving

priors are shown by Figures 6.17–6.20. It can be concluded based on the fitted model

that the effective (infrapopulation) carrying capacity at each of the four main body re-

gions of the host (i.e., tail, lower region, upper region and head) is between 93 and 117

with an average number of 104 parasites per region (see Table 6.3).

Remark. The adjusted posterior distributions from the proposed regression adjustment

method with L2 regularisation are further used to test several research hypotheses which

aim to provide specific answers to the research questions numbered 5-9 (see section 6.3.3).
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Figure 6.15: Goodness-of-fit density plots of the (marginal) approximate posterior dis-
tributions (in black) for the 23 parameters of the complex stochastic model against the
sequentially improving prior distributions at N = 500 (on logarithmic scale).

230



Table 6.3: Unadjusted and adjusted posterior mean estimates of the 23 parameters of
the multidimensional stochastic model with their respective 95% credible intervals (C.I.).

Parameters Unadjusted mean 95% C.I. Adjusted mean 95% C.I.

Base simulation parameters
b11 0.3664 0.3133—0.4093 0.3651 0.3120—0.4071
b12 0.0181 0.0153—0.0191 0.0531 0.0407—0.0554
b21 0.3682 0.3124—0.3987 0.3632 0.3121—0.3983
b22 0.1236 0.1010—0.1659 0.1249 0.1011—0.1661
b31 0.3778 0.3097—0.4515 0.5913 0.5275—0.7080
b32 0.0444 0.0353—0.0502 0.0447 0.0353—0.0502
d11 0.0110 0.0089—0.0126 0.0108 0.0089—0.0127
d12 4.7294 3.8521—5.4808 4.2187 3.4749—4.8169
d21 0.0594 0.0465—0.0818 0.0798 0.0667—0.1133
d22 0.4346 0.3474—0.5247 0.4450 0.3466—0.5260
d31 0.0141 0.0107—0.0186 0.0143 0.0107—0.0187
d32 0.5179 0.4467—0.6026 0.5212 0.4471—0.6031
m 0.0307 0.0276—0.0338 0.0231 0.0211—0.0242
r 2.15×10−4 1.79×10−4—2.63×10−4 2.16×10−4 1.77×10−4—2.60×10−4

s 1.09×10−3 9.95×10−4—1.26×10−3 1.13×10−3 1.04×10−3—1.26×10−3

κ 103.597 93.503—116.387 104.546 93.439—116.291

Additional simulation parameters
ε1 9.85×10−4 7.99×10−4—1.12×10−3 1.22×10−3 1.01×10−3—1.40×10−3

ε2 1.00×10−3 7.69×10−4—1.25×10−3 9.62×10−4 7.69×10−4—1.26×10−3

ε3 0.1427 0.1136—0.1857 0.2778 0.2417—0.3569
r1 0.1034 0.0088—1.2791 0.1029 0.0088—0.1279
r2 0.3824 0.3240—0.4859 0.4009 0.3505—0.5216
r3 3.74×10−3 3.09×10−3—4.11×10−3 3.69×10−3 3.09×10−3—4.12×10−3

s1 0.0588 0.0480—0.0685 0.0591 0.0481—0.0685
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Figure 6.16: Correlation matrix plot indicating high multicollinearity between some of the
17 regression predictors (denoted by Si, 1≤ i≤ 17 in the neighbourhood of the observed
summary statistics) in the modified regression-adjusted ABC (with L2 regularisation).
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Figure 6.17: Goodness-of-fit density plots of the unadjusted (in black) and adjusted (in
green) posterior distributions of model parameters: b11, b12, b21, b22, b31, and b32 against
the sequentially improving prior distributions (on logarithmic scale).
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Figure 6.18: Goodness-of-fit density plots of the unadjusted (in black) and adjusted (in
green) posterior distributions of model parameters: d11, d12, d21, d22, d31, and d32 against
the sequentially improving prior distributions (on logarithmic scale).
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Figure 6.19: Goodness-of-fit density plots of the unadjusted (in black) and adjusted (in
green) posterior distributions of model parameters: m, r, r1, r2, r3, and s against the
sequentially improving prior distributions (on logarithmic scale).
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Figure 6.20: Goodness-of-fit density plots of the unadjusted (in black) and adjusted
(in green) posterior distributions of model parameters: s1, ε1, ε2, ε3, and κ against the
sequentially improving prior distributions (on logarithmic scale).
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6.3.3 Bayesian hypothesis testing based on adjusted posterior samples

6.3.3.1 Introduction

Classical null hypothesis significance testing (NHST) often uses a dichotomous decision

rule to conclude on a parameter value of interest (i.e., the null value) based on either

Pvalue of a test statistic or an estimated confidence interval of the underlying parameter.

For the latter method (which is preferred over the highly criticised Pvalue-dependent

NHST decision [186]), we reject the parameter value under the null hypothesis if it falls

outside a confidence interval. Nonetheless, confidence intervals cannot correctly capture

the uncertainty about parameters and usually suffer from coverage probability issues

[317]. Other studies attempt to apply similar logic to Bayesian posterior distributions

and reject a parameter value if it falls outside a credible posterior interval [182]. Accord-

ing to Kruschke and Liddell [182], this standard decision rule causes two statistical issues.

First, it can only reject and never accept a parameter value. Second, even if a null value

is true, the decision process will eventually reject it, given large posterior samples of the

underlying parameter. Other studies have proposed a more accurate decision rule, anal-

ogous to frequentist equivalence testing [263, 316]. This new Bayesian approach requires

the integration of a region of practical equivalence (ROPE) around the null value and an

estimated 100(1−α)% highest density interval (HDI) [182]. Consequently, it has been

recommended that if an HDI is used to evaluate null values as part of a decision rule, the

decision should also rely on a ROPE around the null value [180, 213]. In other words,

a null value should not be rejected simply because it falls outside an HDI, as observed

in previous studies [181]. Therefore, it has been recommended to reject the null only

when HDI strictly falls outside the ROPE (meaning the parameter’s most credible values

are not practically equivalent to the null value). We then accept the null if the HDI lies

entirely within the ROPE, and we remain indecisive if there is an overlap [182, 269]. For

a wide range of Bayesian decisions using ROPE (including more technical reports), see

work by Schwaferts and Augustin [269].
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In the current study, we simultaneously used the ROPE and HDI (which is dubbed in

the literature as ROPE+HDI) to test relevant hypotheses concerning differences between

some underlying parameters of our novel stochastic simulation model with the help of the

adjusted posterior samples and the bayestestR package in R [204]. McElreath [213] and

Kruschke [180] have recommended an 89% HDI to be an ideal choice compared to the

usual 95% HDI for Bayesian hypothesis testing with ROPE. According to Kruschke [180]

the 95% HDI might not be the most appropriate for Bayesian posterior distributions due

to potentially lacking stability if not enough posterior samples are drawn (as observed

in the current study). Hence, an appropriate ROPE and an 89% HDI are considered for

testing sets of hypotheses, respectively. Results from the Bayesian hypothesis test will

aid in providing answers to research questions 5-8. Now, let suppose a null hypothesis

H0 : θ1 = θ2 (or d = θ1− θ2 = 0), where θg ∈ R denotes model parameters corresponding

to some independent groups g = 1,2 (possibly identically distributed). The alternative

hypothesis is defined as H1 : θ1 6= θ2 (or d= θ1−θ2 6= 0). Let AI = {[a,b] | a,b ∈Θ,a < b}

represent the action space w.r.t the HDI of the posterior distribution of d= θ1− θ2, and

let AR = [−0.5σd,0.5σd] denote the ROPE range [recommended by 226], where σd is the

standard deviation of the posterior samples of d. Let also suppose γ = P (AI ⊆ AR | d)

denote the ROPE coverage probability (or the probability that elements of AI fall within

AR given the posterior samples of d). Following Kruschke and Liddell [182], we also reject

or accept H0 according to the following HDI+ROPE decision rule:

ROPE equivalence decision =



reject H0, γ = 0

indecisive, 0< γ < 1

accept H0, γ = 1.

The null hypothesis and the ROPE+HDI test described above can be modified to compare

differences between model parameters corresponding to more than two groups similarly

(as done to the subsequent sections). For the main accompanying R codes on the Bayesian

hypothesis testing based on the adjusted posterior samples, see Appendix G.9.
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6.3.3.2 Assessing differences between the birth rate model parameters

We first tested three major hypotheses in relation to the birth rate parameters of the

fitted stochastic model based on ROPE+HDI Bayesian tests (Table 6.4). The null hy-

potheses tested were as follows:

H01: bi1− bj1 = 0, for i 6= j and 1≤ i, j,≤ 3.

H02: bi2− bj2 = 0, for i 6= j and 1≤ i, j,≤ 3.

H03: bi1− bj2 = 0, for i= j and 1≤ i, j,≤ 3.

For the first null hypotheses (H01), there were no enough evidence to either accept or

reject H01. Thus, it can be inferred that the birth rates of young gyrodactylids (i.e.,

daughters yet to reproduce) may or may not be significantly different across the three

parasite strains. However, second (H02) and third (H03) null hypotheses where rejected,

respectively. This confirms that the birth rates of old parasites (i.e., mothers) differ sig-

nificantly across the three parasite strains with the old Gt parasites having the highest

birth rate (with the birth rate of old Gb>Gt3 ); whereas the birth rate of young parasites

are significantly greater than the mothers irrespective of their strain (Table 6.4).

Because gyrodactylids are protogynous (with female reproductive organs developing be-

fore the male organs) and the first daughter (i.e., the younger parasite) most likely born

asexually, this long-lived strategy guarantees that a high proportion of the older popu-

lation has a functional male system, whereas asexually derived younger parasites make

up a lesser proportion of the entire population [128]. This could explain the indecision

regarding H01.
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Table 6.4: Results from the test of statistical differences between the birth rate parame-
ters.

Parameter 89% HDI ROPE range ROPE coverage (%) Decision

First hypotheses
b11− b21 -0.0426 — 0.0376 -0.0142 — 0.0142 62.5 indecisive
b11− b31 -0.0802 — 0.0729 -0.0308 — 0.0308 12.5 indecisive
b21− b31 -0.0740 — 0.0760 -0.0276 — 0.0276 37.5 indecisive

Second hypotheses
b12− b22 -0.1372 — -0.0833 -0.0107 — 0.0107 0 rejected
b12− b32 -0.0333 — -0.0182 -0.0029 — 0.0029 0 rejected
b22− b32 0.0591 — 0.1091 -0.0101 — 0.0101 0 rejected

Third hypotheses
b12− b12 0.3024 — 0.3903 -0.0173 — 0.0173 0 rejected
b21− b22 0.1825 — 0.2955 -0.0220 — 0.0220 0 rejected
b31− b32 0.2694 — 0.4125 -0.0275 — 0.0275 0 rejected

6.3.3.3 Assessing differences between the death rate model parameters

Also, we tested three major hypotheses concerning the death rate model parameters (Ta-

ble 6.5). The null hypotheses tested were as follows:

H04: di1−dj1 = 0, for i 6= j and 1≤ i, j,≤ 3.

H05: di2−dj2 = 0, for i 6= j and 1≤ i, j,≤ 3.

H06: di1−dj2 = 0, for i= j and 1≤ i, j,≤ 3.

With the exception of the fifth null hypotheses (H04) which was inconclusive for one of

its tests, Table 6.5 showed that the other null hypotheses (H05 and H06) were rejected.

These findings implies that, in the absence of host immune response, the death rate of

the wild G. turnbulli is significantly higher than the other two parasite strains. However,

in the presence of host response (due to potentially rapid infrapopulation growth, high

parasite virulence or intense competition for resources), laboratory-bred G. turnbulli had

the highest rate of death (with that of that of Gb>Gt). It can also be inferred across all
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the parasite strains that the immune response induced death rates was far greater than

the case of no response.

In addition to the low birth rate of old Gt3 parasite strain comparatively (as discovered

in section 6.3.3.2), the high death of Gt3 parasites and low death rate of the two wild

parasite strains after adaptive immune response, can also explain the low parasite mean

intensity and relatively low parasite load found in the Gt3 parasite population over time

as discovered in the spatial-temporal analysis (refer to Chapter 2). Although temperature

also controls population dynamics of gyrodactylids, it has been shown in other studies of

Gyrodactylus that adaptive host immunity (which develops in most fish populations) is

responsible for the extinction of gyrodactylid populations on a fish host [see 265].

Table 6.5: Results from the test of statistical differences between death rate parameters.

Parameter 89% HDI ROPE range ROPE coverage (%) Decision

Fourth hypotheses
d11−d21 -0.0674 — -0.0362 -0.0062 — 0.0062 0 rejected
d11−d31 -0.0072 — 0.0013 -0.0017 — 0.0017 37.5 indecisive
d21−d31 0.0338 — 0.0677 -0.0072 — 0.0072 0 rejected

Fifth hypotheses
d12−d22 3.5664 — 4.9886 -0.2647 — 0.2647 0 rejected
d12−d32 3.4814 — 4.9070 -0.2597— 0.2597 0 rejected
d22−d32 -0.1465— 0.0087 -0.0312— 0.0312 0 rejected

Sixth hypotheses
d12−d12 -5.3631— -3.9705 -0.2538—0.2538 0 rejected
d21−d22 -0.4622— -0.2694 -0.0373 — 0.0373 0 rejected
d31−d32 -0.5764 — -0.4370 -0.0286 — 0.0286 0 rejected
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6.3.3.4 Assessing differences between the movement rate adjustment parameters

We further tested differences between movement rate adjustment parameters across the

three parasite strains (Table 6.6). The strain-specific movement rate adjustment parame-

ters are expected to account for the unique caudal-rostral preferences of the gyrodactylid

strains in the simulation model (as confirmed in Chapter 2). Here, the null hypotheses

were defined as follows:

H07: εi− εj = 0, for i 6= j and 1≤ i, j,≤ 3.

Table 6.6 reveals an inconclusive decision concerning the statistical difference between

Gt3 and Gt movement rate adjustment parameters (possibly because they belong to the

same species); however, the Gb movement rate adjustment parameter was significantly

higher than the two strains of G. turnbulli. It can be inferred that the stochastic model

was able to distinguish between the unique microhabitat preferences of the two distinct

Gyrodactylus species previously justified in Section 2.3.2 (after initial infection at the

caudal region of the host). Thus, the high movement rate of Gb parasite strain may

be a possible reason why Gb parasites could rapidly move towards the rostral regions of

their fish host (starting from the caudal region) over time, as discovered in the spatial-

temporal analysis concerning the parasites’ microhabitat preference (and it tends to prefer

the head region of their host as the infection progresses). Nonetheless, the low movement

rate associated with the two G. turnbulli strains after initial infection at the host’s caudal

region may imply that they are relatively less mobile (possibly due to tail preference) and,

thus, tend to stay at the host’s tail region for a more extended period.
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Table 6.6: Results from the test of statistical differences between the movement rate
adjustment parameters.

Parameter 89% HDI ROPE range ROPE coverage (%) Decision

Seventh hypotheses
ε1− ε2 -0.00023 — 0.00024 -0.00009 — 0.00009 37.5 indecisive
ε1− ε3 -0.1738 — -0.1140 -0.0115 — 0.0115 0 rejected
ε2− ε3 -0.1737 — -0.1139 -0.0114 — 0.0114 0 rejected

6.3.3.5 Assessing differences between the immune response rate adjustment parame-

ters as well as the sex-specific host mortality parameter

Finally, we tested two different hypotheses in relation to the immune response rate ad-

justment parameters and the sex-specific host mortality parameter, respectively. The

null hypotheses of these tests are defined as:

H08: ri− rj = 0, for i 6= j and 1≤ i, j,≤ 3.

H09: s1 = 0.

Table 6.7 summarises the results on H08 and H09. It was found that the immune response

rate adjustment parameters were significantly different, and the model parameter s1 (i.e.,

host mortality rate adjustment for male fish relative female fish) was significant from zero.

These resulted helped to make inference on whether the adaptive host immune response

is sex and host-dependent, and whether the mortality rate of male fish is not higher than

female fish (based on the stochastic simulation and evidence drawn from the empirical

data during ABC fitting). It can be inferred from Table 6.7 that male fish are more likely

to die than female fish (which was kept as a reference category in the simulation model).

It can also be deduced that the immune response rate of OS fish was significantly greater

than that of both Trinidadian stocks (with an immune response rate of LA fish > UA fish)

and the male stock (relative female fish). The high immune response rate of OS stock
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against the gyrodactylid infection over time may confirm the findings from the previously

fitted multi-state Markov model (see section 2.3.3.2), where the Ornamental fish was

found to be less likely to die from gyrodactylid infection compared to the Trinidadian

stocks (with LA fish less likely to die than UA fish) . It also suggests why OS fish had a

higher mean parasite intensity as the infection progressed, leading to a potentially higher

rate of adaptive immune response (relative to the other host populations). On the other

hand, the high immune response of the male fish may also explain why the multi-state

Markov model predicted the time for male fish to remain infected to be relatively lower

than the infected female fish across all parasite strains, fish stocks, and host sizes.

Table 6.7: Results from the test of statistical differences between the immune response
rate adjustment parameters and sex-specific host mortality parameter.

Parameter 89% HDI ROPE range ROPE coverage (%) Decision

Eighth hypotheses
r1− r2 -0.3521 — -0.2301 -0.0267 — 0.0267 0 rejected
r1− r3 0.0854 — 0.1221 -0.0068 — 0.0068 0 rejected
r2− r3 0.3219 — 0.4711 -0.0323 — 0.0323 0 rejected

Ninth hypothesis
s1 0.0483 — 0.0676 -0.0038 — 0.0038 0 rejected
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Chapter 7

Conclusions

This chapter first summarises how we addressed the research questions of the study

(section 7.1). An overview of the entire study, highlighting the main contributions (which

are of both mathematical and biological relevance), is provided in section 7.2. Finally,

we outline directions for future works on the gyrodactylid-fish system in section 7.3.

7.1 Summary of answers to the study’s research questions

The study focused on the infection dynamics of a gyrodactylid-fish system by using

novel mathematical and stochastic simulation models to add to our understanding of the

system. For the first time in the current study, we have provided answers to the nine

major research questions (outlined in section 1.6):

• The first research question wanted to determine whether the caudal and rostral

preferences of the gyrodactylid strains were consistent over time and across different

fish stocks with the help of existing empirical data. Here, we adapted a rank-based

multivariate Kruskal-Wallis test coupled with its post-hoc tests and informative

graphical summaries (in Chapter 2) to investigate the spatial and temporal parasite

distribution of three different gyrodactylid strains across three host populations

(OS, LA and UA stocks). Two out of the three parasite strains were Gyrodactylus

turnbulli, a laboratory-bred strain (Gt3 ) and a wild turnbulli strain (Gt); whereas

the third strain was G. bullatarudis, also a wild type. We revealed that Gt3 and

Gb strains preferred the caudal and rostral regions respectively across different fish

stocks; however, Gt strain changed microhabitat preference over time, indicating

microhabitat preference of gyrodactylids is host and time-dependent.

• The second research question asked whether fish sex, fish size, fish stock, and para-
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site strain affect gyrodactylid infection progression (host recovery and host mortality

over time). By adopting a time-inhomogeneous multi-state Markov model (MSM),

we improved previous estimates of survival probabilities (under Chapter 2). We fur-

ther showed that: i) parasite-related mortalities are host, sex, and time-dependent,

and ii) fish size is the key determinant of host recovery.

• The third research question wanted to know the average infection time of infected

fish conditioned on the significant predictors. Here, we derived exact mathematical

expressions (in the time-inhomogeneous case) to estimate other relevant epidemio-

logical quantities such as the mean time of host to remain infected and probability

of infected host to either recover or die conditioned on the significant predictors.

For the first time, we showed that the average time of host infection before recovery

or death was between 6 and 14 days.

• The fourth research question sought to determine the parasite virulence (quantified

by both host mortality and recovery) of the gyrodactylid strains time-varying and

dependent on the covariates (fish sex, fish size, fish stock and parasite strain). We

provided answers to this in Chapter 2 by quantifying parasite virulence of three

different strains as a function of host mortality and recovery across different fish

stocks and sexes based on fitted MSM. We found that a longer period of host

infection leads to a higher chance of host recovery and a small chance of host

mortality. Male fish from the three host populations consistently had a higher

rate of host mortality than female fish stocks over time. Parasite virulence was

thus significantly time-dependent and generally increased towards the end of the

infection period.

• The subsequent research questions (5 to 9) wanted to i) determine if the birth rates

(for young and old parasites) and death rates (with or without immune response) of

Gyrodactylus parasites were significantly different across the three parasite strains,

ii) determine whether an adaptive immune response from gyrodactylid infection pro-

gression, sex and host-dependent, iii) determine whether the mortality rate of male
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fish from gyrodactylid infection significantly higher than female fish, iv) ascertain

whether the microhabitat preferences of Gyrodactylus turnbulli and G. bullatarudis

parasite species driven by their rate of movement on their fish host, and finally v)

determine the effective population carrying capacity of Gyrodactylus parasites at

the major body regions of their fish host.

To address all research questions, we developed a more sophisticated (individual-

based) stochastic simulation model. We parameterised the model to include spatial

information and other relevant information about parasite fecundity, age group

(young or old parasite), parasite mortality, parasite mobility, and host immune

response. This also motivated the need to propose a more robust ABC method-

ology (defined in Chapter 5) to fit this complex stochastic model (with over 23

parameters) in Chapter 6. We also adopted an auxiliary stochastic model, which

simplifies the more sophisticated simulation model (in Chapter 4) to aid in refining

our modified sequential ABC samplers (by providing good theoretical justification

of the auxiliary model, including its parameter estimation techniques, amongst oth-

ers). After ABC fitting of the complex simulation model and further correcting the

resulting posterior (based on another modified regression adjustment methodol-

ogy), it was found that the effective carrying capacity at the host’s major body

regions was between 93 and 117 parasites (with an average value of 104). Given

the adjusted posterior samples of model parameters, we used a developing Bayesian

hypothesis test (whose decision rule relies on a region of practical equivalence and

the highest density interval) to test underlying hypotheses. Based on a statistical

test of differences between appropriate model parameters, we provided specific an-

swers to the remaining research questions (i-iv) by testing nine sets of hypotheses

in section 6.3.3.
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7.2 Main biological and mathematical contributions

This interdisciplinary research work has made novel contributions to the gyrodactylid-fish

system and the mathematical or ecological modelling community. First, we have offered

new epidemiological insights into the gyrodactylid-fish system by analysing empirical data

in Chapter 2. By adopting a multi-state Markov model for the first time in a parasito-

logical study, we have justified the need to realistically model the host’s entire infection

history (before death eventually occurs) and estimate other relevant quantities concerning

parasite virulence and host survival. Three open biological questions concerning parasite

microhabitat preference, host survival, and parasite virulence were mathematically an-

swered. We identified host-parasite strain-specific microhabitat preferences, discovered

determinants of host survival, and quantified host-specific parasite virulence as a function

of both host mortality and recovery.

Improving upon the multi-state Markov model (developed in Chapter 2) and the existing

agent-based model for the gyrodactylid-fish system, we developed and calibrated our novel

individual-based stochastic simulation model in Chapter 6 (with documented R scripts

made publicly available on GitHub). This novel simulation model is robust enough to

help simulate the infection dynamics of three different parasite strains over the external

surfaces of three different host populations within a standard 17-day infection period.

Furthermore, based on specified demographic information (such as parasite strain, fish

type, fish sex, and fish size) and specified model parameters, the developed stochastic

simulation model can provide information regarding parasite numbers at the major body

locations (tail, lower region, upper region, and head) of fish over time for a given host

population. In addition, the fish survival status and the exact time to fish mortality are

other essential outputs of the simulation model. Hence, this proposed individual-based

stochastic model can facilitate experimental data collection and help investigate specific

biological questions and the system’s complexity that may be difficult to control and

implement experimentally.
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Considering the linear birth-death process with catastrophe extinction (B-D-C process)

as an auxiliary model to the novel stochastic simulation model in Chapter 4, we analyt-

ically derived, for the first time with numerical justifications and in silico experiments,

the exact transition function and theoretical moments of the B-D-C process in the setting

of discretely observed processes. We further established three efficient approaches (based

on maximum likelihood estimation, generalised method of moments and the embedded

Galton-Watson estimation method) to estimate the B-D-C model parameters. Also, we

demonstrated an approach to simulate the B-D-C process with discrete-state space via

τ -leaping, for the first time in a hybrid manner, by separately setting up the catastrophe

event (where the entire population extinct within an infinitesimal time interval) different

from the birth and death events using standard Monte Carlo technique. The motivation

behind the hybrid setup was that, in simulating continuous-time Markov processes, the

state variable could not change by more than one within an infinitesimal time interval.

Findings from the B-D-C parameter estimation and its hybrid τ -leaping simulation pro-

vided additional insights on accelerating the novel stochastic simulation model (based on

its proposed leap size) and aided in the computation of some components of the multidi-

mensional summary statistics during ABC fitting.

The current study also proposed a modified sequential Monte ABC algorithm (dubbed

weighted-iterative ABC) which: i) adaptively integrates importance weights for impor-

tance sampling and summary statistics weights (based on accepted simulations by com-

puting the harmonic mean between previous and current summary statistics weights due

to mismatch in their respective proposal densities via the iterative ABC procedure with

importance sampling) to improve ABC posterior approximations, ii) adopt a weighted

distance metric for estimating discrepancy between high-dimensional simulated and ob-

served summary statistics (in the case where the summary statistics have a bi-dimensional

space), iii) employ a computationally efficient multivariate normal perturbation kernel

(with bandwidth matrix optimally determined), and iv) then separately adjust the re-
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sulting ABC posterior using a modified heterogeneous local-linear regression with L2

regularisation, robust enough to deal with high multicollinearity and supercollinearity in

the neighbourhood of the observed summaries. In the instance of high multicollinearity

during ABC posterior adjustment, the standard local-linear regression based on weighted

least-squares is impossible to implement due to matrix singularity issues. However, the

proposed posterior correction in the current study is implementable in the presence of

high multicollinearity by shrinking regression coefficients of predictors with less impor-

tance. Additionally, the proposed ABC post-processing method can effectively deal with

supercollinearity (where the predictors outnumber the posterior samples) as opposed to

the standard local-linear regression developed by Beaumont et al. [27] which may result

in poor estimates (as revealed in this study). The ABC methodologies proposed in this

study can aid in the parameter estimation of either complex or simple likelihood-free

models sequentially across a whole population.

7.3 Future research directions

The proposed mathematical and stochastic simulation models can be extended and adapted

for different host-parasite systems and other ecological systems. Furthermore, the modi-

fied population-based ABC posterior estimation methodologies can be employed to cali-

brate other multi-parameter models with many correlating or independent high-dimensional

summary statistics. Specifically, the following are future works concerning the novel

stochastic simulation model, the modified sequential Monte Carlo ABC with adaptive

importance sampling and the gyrodactylid-fish system:

• Within the complex stochastic simulation model (developed in Chapter 6), we as-

sumed that the rate of localised host immune response (which occurs temporally

as a function of the number of parasites at any of the host body locations) also

depends on fish sex (with two levels) and type of fish (with three levels). Thus,

the current study only considered the additive impact of the covariates (fish sex

and fish type) on the immune response rate without considering interaction effects.
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In contrast, future studies should also consider the multiplicative or interaction ef-

fects of these covariates on the rate of localised immune response and compare the

modified model with the current version with additive immune response rates.

• In the modified sequential Monte Carlo ABC algorithm with importance sampling,

we pre-specified or fixed the set of decreasing tolerance thresholds and the final

ABC stopping time (with ten ABC time steps and tolerances). Future studies can

propose an adaptive or automated stopping rule so that the ABC algorithm termi-

nates after posterior convergence to improve its computational speed by minimising

the number of sequential ABC iterations. In addition, the set of decreasing toler-

ance thresholds can be determined adaptively based on either some quantiles of

the distances of accepted proposal samples from the previous time step or some

quantiles of the effective sample size values. The impact of different optimal per-

turbation kernels, such as component-wise perturbation kernels, other multivariate

perturbation kernels (such as multivariate uniform kernels) and local perturbation

kernels with or without nearest neighbours can also be investigated further for the

modified ABC algorithm to identify other good choices of the perturbation kernel.

• Moreover, the novel stochastic simulation model’s simulation time axis (or prefer-

ably the observed time points) can be extended further to make predictions beyond

the standard 17-day infection period. Other researchers are yet to study this ex-

citing and crucial biological modelling problem concerning the gyrodactylid-fish

system across an entire host population. The extended model can help discover

what happens to infected fish beyond the standard 17-days by assessing how in-

fections are maintained in the long term among different host populations. The

extended model should also be fitted using the proposed ABC methodologies with

the help of observed experimental data.

• Based on our proposed simulation model, future studies can further conduct bio-

logical experiments that are challenging to explore experimentally because of simi-

larities between gyrodactylids and other unfavourable conditions. This can be done
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by modifying our stochastic simulation model to investigate mixed gyrodactylid

parasite populations or co-infections on a single or population of fish based on

what is already known about these gyrodactylid species (i.e., G. turnbulli and G.

bullatarudis parasites). In addition, relevant ecological questions can be explored

regarding how the two (very different) Gyrodactylus species interact or compete and

which one temporally wins at an individual host and population levels.

• Finally, future studies can use a social network model coupled with the proposed

stochastic simulation model to describe the infection dynamics of a fish popula-

tion and their interactions. The social network model should capture the parasite

load for each fish over time, but must not necessarily give the exact spatial loca-

tions of parasites on an individual host. The model must then be calibrated using

approximate Bayesian computation (ABC).
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Appendix A: Detailed visualization of fish heatmaps over eight body

regions of fish over time

Figure A.1: Detailed visualization of fish heatmaps over eight body regions of fish across
parasite strains and fish stocks from day 1 to 7.
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Figure A.2: Detailed visualization of fish heatmaps over eight body regions of fish across
parasite strains and fish stocks from day 9 to 15.

Figure A.3: Detailed visualization of fish heatmaps over eight body regions of fish across
parasite strains and fish stocks on day 17.
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Appendix B: Grouped barcharts showing variations in mean intensities

at four main body regions of fish over time

Figure A.4: Grouped barcharts showing variations in mean intensities at four main body
regions of fish across parasite strains and fish stocks over surviving fish from day 1 to 7.
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Figure A.5: Grouped barcharts showing variations in mean intensities at four main body
regions of fish across parasite strains and fish stocks over surviving fish from day 9 to 15.

Figure A.6: Grouped barcharts showing variations in mean intensities at four main body
regions of fish across parasite strains and fish stocks over surviving fish on day 17.
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Appendix C: R Codes for Exact SSA of the B-D-C process

C.1: Function for updating events of the B-D-C process via exact SSA

SSA_ update _event=function(X,fish_ status ,rate ,total_rate){
# Let b,d & c be the birth , death and catastrophe parameters
#X be the number of parasites

# fish _ status <- 1 # fish starts out alive

if (total_rate == 0) {
return(list(X = X, t_incr = Inf)) # zero population

}

# Determine event occurence from single draw
u<- runif(1,0, total_rate)
if (u<abs(rate [1])){

# birth of parasites
X<-X+1

} else if(u<abs(rate [1]+ rate [2])){
# death of parasites
X<-X-1

} else {
# catastrophe or death of fish
X<-0
fish_ status <-2

}
t_incr <- rexp(1, total_rate) # time increment
# Returns parasite numbers , time step and survival status

return(list(X = X, t_incr=t_incr ,fish_ status=fish_ status ))

}
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C.2: Function for exact stochastic simulation (SSA)
# Function for exact simulation of the B-D-C process
Exact_BDC <- function(X0,b,d,c,ti=0,tmax =30){
# Let ti be the initial time ( set at 0)
# tfinal be the final simulation time

rate <- numeric (3) # event rates
# stop simulation if total population exceeds this limit

pop_ max <- 10000
# Time variable
#ti <- 0; tmax <-30;
save _ti <- 1:tmax # Discrete times to store simulation
save _TF <- rep(FALSE , length(save _ti))
# parasite pop over time
pop <- matrix(NA ,1,length(save _ti))
# host host status at each time point
alive <- rep(2, length(save _ti))
alive_ti <- 1 # fish starts out alive
X<-X0
pop_ti <- sum(X)
while(sum(save _TF) < length(save _ti)){

# Calculate rate of events
# probability of birth
rate [1] <- b*X
# probability of death
rate [2] <- d*X
# probability of catastrophe
rate [3] <- c*X
# tota rate
total_rate <- rate [1]+ rate [2]+ rate [3]

if(sum(pop_ti) > pop_ max){
cat("Popmax_exceeded","\n")
break

}
if(alive_ti == 2) break

output <-SSA_ update _event(X,fish_ status=alive_ti,
rate=rate ,total_rate=total_rate)

# Update time to next event
ti <- ti + output$t_incr
# break if there is negative population
if (X < 0) break

# Events to occur
save _ new <- which ((ti >= save _ti) & ! save _TF)
for (i in save _ new){

pop[,i]<- pop_ti
alive[i] <- alive_ti

}
save _TF <- (ti >= save _ti)
X<- output$X
pop_ti <- sum(X)
alive_ti <- output$fish_ status

}
# Returns the parasite numbers & survival status over time
return(list(pop=pop ,alive = alive))

}
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Appendix D: Julia codes for computing the log-likelihood function

D.1: Computing constants of the B-D-C transition function

module BDCfit # begin module
using PolynomialRoots
export logL
function BDCconsts(lambda , mu, rho , t)
# lambda , mu , rho are B-D-C parameters respectively
# Computing constants of BDC process at time t

rts = sort(real(roots([mu ,-(lambda+mu+rho),lambda ])))
v0 = rts[1]
v1 = rts[2]
sigma = exp(-lambda*(v1 - v0)*t)
k1 = v0*v1*(1 - sigma)/(v1 - sigma*v0)
k2 = (v1*sigma - v0)/(v1 - sigma*v0)
k3 = (1 - sigma)/(v1 - sigma*v0)
return [k1, k2, k3]

end
function gamma _n_j(nmax)
# calculates gamma ^n_j for n = 1, ... , nmax and j = 1, ... ,n

# used by ProbBDC
gnj = zeros(BigInt , nmax , nmax)
gnj[1,1] = 1
if nmax > 1

for n = 2:nmax
gnj[n,1] = n*gnj[n-1,1]

end
for j = 2:nmax

for n = j:nmax
gnj[n,j] = gnj[n-1,j-1] + (n+j-1)*gnj[n-1,j]

end
end

end
return gnj

end
function delta_m_j(mmax , k1, k2, k3)
# calculates delta ^m_j for n = 1, ... , mmax and j = 1, ... ,n
# used by ProbBDC ; k1 , k2 , k3 will be output from BDCconsts

k = (k2 + k1*k3)/k1/k3
dmj = zeros(BigFloat , mmax , mmax)
dmj[1,1] = k
if mmax == 1

return dmj
else

for m = 2:mmax
dmj[m,1] = k*m
for j = 2:m

dmj[m,j] = k*(m - j + 1)*dmj[m,j-1]
end

end
return dmj

end
end
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D.2: Computing the B-D-C transition function
function ProbBDC(lambda , mu, rho , t, mmax , nmax)

# P(X_t=n | X_0=m) for -1 <= m <= mmax and
# -1 <= n <= nmax
# where -1 indicates extinction by catastrophe
cc = BDCconsts(lambda , mu, rho , t)
k1 = cc[1]
k2 = cc[2]
k3 = cc[3]
k4 = (k1 + k2)/(1 - k3)
P = zeros(Float64 , mmax+2, nmax +2)
P[1,1] = 1
P[2,2] = 1
k1_powers = zeros(BigFloat , mmax)
k3_powers = zeros(BigFloat , nmax)
k4_powers = zeros(BigFloat , mmax)
facts = zeros(BigFloat , nmax)
k1_powers [1] = k1
k4_powers [1] = k4
P[3,1] = Float64 (1 - k4)
P[3,2] = Float64(k1)
for m = 2:mmax

k1_powers[m] = k1*k1_powers[m-1]
k4_powers[m] = k4*k4_powers[m-1]
P[m+2,1] = Float64 (1 - k4_powers[m])
P[m+2,2] = Float64(k1_powers[m])

end
k3_powers [1] = k3
facts [1] = 1
for n = 2:nmax

k3_powers[n] = k3*k3_powers[n-1]
facts[n] = n*facts[n-1]

end
gnj = gamma _n_j(nmax)
dmj = delta_m_j(mmax , k1, k2, k3)
for m = 1:mmax

for n = 1:nmax
x = BigFloat (0)
for j = 1:( min(m,n))

x = x + gnj[n,j]*dmj[m,j]
end

P[m+2,n+2] = Float64(x*k1_powers[m]*k3_powers[n]/facts[n])
end

end
return P

end
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D.3: Computing the B-D-C log-likelihood function

function logL(lambda , mu, rho , x)
# calculate the log likelihood for params :
# lambda , mu , rho and data x
# each row of x are population at times :
# t= 1, 3, 5, 7, 9, 11 , 13 , 15 , 17
# assume population at time 0 is 2;
# state -1 indicates catastrophe

mmax1 = 2
nmax1 = Int64(max(maximum(x[:,1]), 2))
P1 = ProbBDC(lambda , mu, rho , 1, mmax1 , nmax1)
mmax2 = Int64(max(maximum(x[:,1:8]), 2))
nmax2 = Int64(max(maximum(x), 2))
P2 = ProbBDC(lambda , mu, rho , 2, mmax2 , nmax2)
el = 0
for i = 1:size(x, 1) # logL for observation i

# time 0 to time 1 transition
el = el + log(P1[4, Int64(x[i ,1]+2)])
for j = 1:8

# time 2j -1 to time 2j+1 transition
el = el + log(P2[Int64(x[i,j]+2), Int64(x[i,j+1]+2)])

end
end
return el

end

end # module

E.1: Function for updating B-D-C Hybrid τ -leaping simulation

(see Appendix E)
# Function to update tau - leaping

tauleap_ update <- function(X,tau ,fish_ status ,rate ,total_rate){
# Inputs :
#X= parasite number , tau = leap size , rate = event rates
# fish _ status = survival status , total _ rate = total rate
if(runif (1) < rate [3]*tau){ # catastrophe

X <- 0
fish_ status <-2

}else{ # births and deaths
X <- X + rpois(1, rate [1]*tau)
- rpois(1,rate [2]*tau)

}
# Returns the parasite numbers & survival status
return(list(X = X,fish_ status=fish_ status ))

}
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Appendix E: R Codes for B-D-C Hybrid τ -leaping algorithms
E.2: Function for τ -leaping based on Gillespie 2001
HTL2001 <- function(X0,b,d,c,error ,ti=0,tmax =30){

#ti <-0 # initial time , X0= initial population size
# tmax <-30 # final time
rate <- numeric (3) # store event rates
save _ti <- 1:tmax # Times to simulate
# host fish status at each time point
alive <- rep(2, length(save _ti))
alive_ti <- 1 # fish starts out alive
save _TF <- rep(FALSE , length(save _ti))
# parasite pop at observed time point
pop <- matrix(NA ,1,length(save _ti))
X<-X0;pop_ti <- sum(X)
while(ti<tmax){

# Computing event rates ( birth , death & catastrophe )
rate [1] <- b*X;rate [2] <- d*X;rate [3] <- c*X
# representing a0(x) or total rate
total_rate <- rate [1]+ rate [2]+ rate [3]
# Computing tau on Gillespie (2001)
tau <-(error*(b+d))/(abs(b-d)* max(b,d))
# Switching condition
leap_condition <- 2/total_rate # leap condition
# Running Tau - leaping
if(tau >leap_condition ){# Execute tau - leaping

ti <- ti + tau # update time
output <-tauleap_ update(X,tau=tau ,fish_ status=alive_ti,
rate=rate ,total_rate=total_rate)
X<-output$X

} # end of tau - leaping
# Running exact SSA algorithm if tau <= leap _ condition

else {# Execute exact SSA
output <SSA_ update _event(X,fish_ status=alive_ti,
rate=rate ,total_rate=total_rate)
X<- output$X;ti <- ti +output$t_incr# update time

if (X < 0) break # break if there is negative population
if (alive_ti == 2) break
# saving output
save _ new <- which ((ti >= save _ti) & ! save _TF)
for (i in save _ new){

pop[,i]<- pop_ti; alive[i] <- alive_ti
}

save _TF <- (ti >= save _ti)
X<- X;pop_ti<- sum(X);alive_ti <- output$fish_ status

}
# Returns the parasite numbers & survival status over time
return(list(pop=pop ,alive=alive))

}
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E.3: Function for τ -leaping based on Gillespie and Petzold (2003)

HTL2003 <- function(X0,b,d,c,error ,ti=0,tmax =30){
#ti <-0 # initial time , X0= initial population size
# tmax <-30 # final time
rate <- numeric (3) # store event rates
Leap_sizes <- NULL # store leap size
save _ti <- 1:tmax # Times to simulate
# host fish status at each time point
alive <- rep(2, length(save _ti))
alive_ti <- 1 # fish starts out alive
save _TF <- rep(FALSE , length(save _ti))
# parasite pop at observed time point
pop <- matrix(NA ,1,length(save _ti))
X<-X0;pop_ti <- sum(X)
while(ti<tmax){

# Computing event rates ( birth , death & catastrophe )
rate [1] <- b*X;rate [2] <- d*X;rate [3] <- c*X
# representing a0(x) or total rate
total_rate <- rate [1]+ rate [2]+ rate [3]
# Computing tau on Gillespie & Petzold 2003
Leap_sizes [[1]] <- (error*(b+d))/(abs(b-d)* max(b,d))
Leap_sizes [[2]] <- X*(error*(b+d))^2/((b+d)* max(b^2,d^2))
tau <- min(Leap_sizes [[1]], Leap_sizes [[2]])# leap size
# Switching condition
leap_condition <- (1/(10*total_rate)) # leap condition
# Running Tau - leaping
if(tau >leap_condition ){# Execute tau - leaping

ti <- ti + tau # update time
output <-tauleap_ update(X,tau=tau ,fish_ status=alive_ti,
rate=rate ,total_rate=total_rate)
X<-output$X

} # end of tau - leaping
# Running exact SSA algorithm if tau <= leap _ condition

else {# Execute exact SSA
output <SSA_ update _event(X,fish_ status=alive_ti,
rate=rate ,total_rate=total_rate)
X<- output$X; ti <- ti +output$t_incr# update time

if (X < 0) break # break if there is negative population
if (alive_ti == 2) break
# saving output
save _ new <- which ((ti >= save _ti) & ! save _TF)
for (i in save _ new){

pop[,i]<- pop_ti;alive[i] <- alive_ti
}

save _TF <- (ti >= save _ti)
X<- X;pop_ti<- sum(X);alive_ti <- output$fish_ status

}

# Returns the parasite numbers & survival status over time
return(list(pop=pop ,alive=alive))

}
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Appendix F: R Codes for the modified weighted-iterative ABC & ABC

Post-Processing Regression Analysis
F.1: Functions for population projection & weighted distances

## 1. Function for population projection
# until day 17 after host mortality

#ga= gamma which is tuning parameter ( set at 0.9)
project <- function(pop_ single , alive_ single , ga) {

# project parasite numbers beyond fish mortality
n <- length(alive_ single)
k <- sum(alive_ single == 1)
if (k == n) return(pop_ single)
if (k == 0) return(matrix(0, nrow=4, ncol=n))
if (k == 1) return(matrix(pop_ single[,1], nrow=4, ncol=n))
z <- log(colSums(pop_ single [,1:k],na.rm=T))
al <- sum( (z[k] - z[1:(k-1)]) * ((k -1):1)
* ga^((k-1):1) ,na.rm=T) /
sum( ((k -1):1)^2 * ga^((k-1):1) ,na.rm=T)

pop_ single[,(k+1):n] <- pop_ single[,k] %*%
t( exp( (1:(n-k))*al ) )

return(pop_ single)
}

# converting function to byte - code compilation
project_compiler=cmpfun(project)

## 2. Function for computing weighted distance
# between simulated and observed summary statistics

w_ distance <- function(S1, S2, weight) {
n<- dim(S1)[1]
# squared difference between matrix S1 & S2
Squared_ diff _ mat <- (S1-S2)^2
# Multiplying vector to weights
Weighted_sq_ diff <- lapply (1:dim(S1)[1],

function(k) weight*Squared_ diff _ mat[k, ])
# total weighted distances ( WSS )
WSS <- do.call("sum",Weighted_sq_ diff)
# return a scaled weighted sum of squares distance
return(sqrt(WSS/n))

}

# converting function to byte - code compilation
distance _compiler=cmpfun(w_ distance)
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F.2(i): External functions for Galton-Watson & GMM estimators for

B-D-C parameter estimation
# 1. Function for computing BDC constants and PGF
BDCconsts <- function(lambda , mu, rho ,t) {
# Constants used in calculating distribution of BDC process at time t

roots <- sort(Re(polyroot(c(mu, -(lambda+mu+rho), lambda ))))
v0 <- roots [1]
v1 <- roots [2]
sigma <- exp(-lambda*(v1 - v0)*t)
k1 <- v0*v1*(1 - sigma)/(v1 - sigma*v0)
k2 <- (v1*sigma - v0)/(v1 - sigma*v0)
k3 <- (1 - sigma)/(v1 - sigma*v0)
return(list(k1=k1, k2=k2, k3=k3, sigma=sigma , v0=v0, v1=v1))

}

# 2. Function for the probability generating function G(z,t)
PGF_z<- function(lambda ,mu,rho ,t,z,m){

#v0 <-(( lambda +mu+ rho )- sqrt ( (( lambda +mu+ rho )^2) -4 * mu * lambda )) / (2* lambda )
#v1 <-(( lambda +mu+ rho )+ sqrt ( (( lambda +mu+ rho )^2) -4 * mu * lambda )) / (2* lambda )
constants=BDCconsts(lambda ,mu,rho ,t)
v0<- constants$v0
v1<- constants$v1
sigma <- constants$sigma
num <-(v0*v1*(1-sigma ))+(z*(v1*sigma -v0))
den <- v1 -(sigma*v0)-(z*(1-sigma))
return( (num/den)^m)

}

#3. Analytical probability of death due to catastrophe
# Estimating C(t)=P( catastrophe resulting in 0 population | host death )
Prob_catastrophe <- function(lambda ,mu,rho ,t,z=1,m=2){

constant <- 1-PGF_z_compiler(lambda=lambda ,
mu=mu,rho=rho ,t=t,z=z,m=m)
# return the probability of catastrophic extinction
return(constant)

}

#4. Function of the Exact mean /1st moment of the BDC process
First_moment <- function(b,d,c,t,m){

#b,d,c are the birth , death and catastrophe rates ; m=X0 =2 and t= time
roots <- sort(Re(polyroot(c(d, -(b+d+c), b))))
v0 <- roots [1]
v1 <- roots [2]
sigma <-exp(-b*(v1-v0)*t)
k1<-(v0*v1*(1-sigma))/(v1 -(sigma*v0))
k2<-((v1*sigma)-v0)/(v1 -(sigma*v0))
k3<-(1-sigma)/(v1 -(sigma*v0))
expectation=m*(((k1+k2)/(1-k3))^(m-1))*(k2+(k1*k3))*(1-k3)^-2
return(expectation)# returns 1st moment

}
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F.2(ii): External functions for Galton-Watson & GMM estimators for

B-D-C parameter estimation

# 1. Function of the 2nd moment of the BDC process
Second_moment <- function(b,d,c,t,m){

roots <- sort(Re(polyroot(c(d, -(b+d+c), b))))
v0 <- roots [1]
v1 <- roots [2]
sigma <-exp(-b*(v1-v0)*t)
k1<- (v0*v1*(1-sigma))/(v1 -(sigma*v0))
k2<-((v1*sigma)-v0)/(v1 -(sigma*v0))
k3<-(1-sigma)/(v1 -(sigma*v0))

expectation <- m*(((k1+k2)/(1-k3))^(m-1))*(k2+(k1*k3))*(1-k3)^-2

Second_derivative_pgf <-((2*m*k3*(k2+k1*k3))*
((k1+k2)/(1-k3))^(m-1)*(1-k3)^-3 +
m*(m-1)*(k2+k1*k3)^2*
((k1+k2)/(1-k3))^(m-2)*(1-k3)^-4)
Variance <-(Second_derivative_pgf+ expectation )-( expectation )^2

Second_moment_results <- Variance + expectation ^2
return(Second_moment_results)# returns 2nd moment

}

# 2. Function of the 3rd moment of the BDC process

Third_moment <- function(b,d,c,t,m){
roots <- sort(Re(polyroot(c(d, -(b+d+c), b))))
v0 <- roots [1]
v1 <- roots [2]
sigma <-exp(-b*(v1-v0)*t)
k1<-(v0*v1*(1-sigma))/(v1 -(sigma*v0))
k2<-((v1*sigma)-v0)/(v1 -(sigma*v0))
k3<-(1-sigma)/(v1 -(sigma*v0))
expectation <- m*(((k1+k2)/(1-k3))^(m-1))*(k2+(k1*k3))*(1-k3)^-2

Second_derivative_pgf <-((2*m*k3*(k2+k1*k3))
*((k1+k2)/(1-k3))^(m-1)*(1-k3)^-3 +
m*(m-1)*(k2+k1*k3)^2*
((k1+k2)/(1-k3))^(m-2)*(1-k3)^-4)

Third_derivative_pgf <- 6*m*(k2+k1*k3)*(k3^2)*
(((k1+k2)/(1-k3))^(m-1))*(1-k3)^( -4)+

6*m*(m-1)*((k2+k1*k3)^2)*k3*
(((k1+k2)/(1-k3))^(m-2))*(1-k3)^( -5)+
m*(m-1)*(m-2)*((k2+k1*k3)^3)*
(((k1+k2)/(1-k3))^(m-3))*(1-k3)^(-6)

Variance <-(Second_derivative_pgf+ expectation )-( expectation )^2

Second_moment_results <- Variance + expectation ^2

Third_moment_results <- Third_derivative_pgf
+(3*Second_moment_results )-(2*expectation)

return(Third_moment_results)# returns 3rd moment
}
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F.2(iii): External functions for Galton-Watson & GMM estimators for

B-D-C parameter estimation
# 1. Set the catastrophe state -1 to 0
zero.catastrophe <- function (x) {

x[x<0] <- 0
return(x)

}

# 2. Set the ratio Z(i)/Z(i -1) to 1 if NA
#( due to case of 0/0 in Z(i)/Z(i -1))
one.ratio <- function (x) {

x[is.na(x)|x==Inf|x==-Inf] <- 1
return(x)

}

# 3. functions for sample moments
sample _ mean _1st<- function(x) sum(x)/ length(x)
sample _ mean _2nd<- function(x) sum(x^2)/ length(x)
sample _ mean _3rd<- function(x) sum(x^3)/ length(x)

### Computing the 2- step GMM estimates ####

time <-seq(1,17,by=2)

# 4. Objective function for 1st step of GMM
g_objectivefunc_firstStep <- function(x,prob_ sample ,

fixed=c(FALSE ,FALSE ,FALSE)) {
Prob_catastrophe_analytical <- rep(NA,length=length(time))
params <-fixed
function(p){
params[!fixed]<-p
# The three parameters to be optimized
b1<-params [1]
d1<-params [2]
c1<-params [3]

# Computing theoritical prob of catastrophe
for(i in seq _along(time )){

Prob_catastrophe_analytical[i]<-Prob_catastrophe(
lambda=b1,mu=d1,rho=c1,t=time[i])

}

m1 <- First_moment(b=b1,d=d1,
c=c1,t=seq(1,17,by=2),m=2)-
apply(zero.catastrophe(x),1,sample _ mean _1st)
m2 <- Second_moment(b=b1, d=d1,
c=c1,t=seq(1,17,by=2),m=2)-
apply(zero.catastrophe(x),1,sample _ mean _2nd)
m3 <- Third_moment(b=b1, d=d1,
c=c1,t=seq(1,17,by=2),m=2)-
apply(zero.catastrophe(x),1,sample _ mean _3rd)

Catastrophe_Prob <- Prob_catastrophe_analytical - prob_ sample

gbar_theta <-c(mean(m1),mean(m2),mean(m3),mean(Catastrophe_Prob))

Objective_func <- t(gbar_theta)%*%gbar_theta

}

}
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F.2(iv): External functions for Galton-Watson & GMM estimators for

B-D-C parameter estimation
### Computing the 2- step GMM estimates ( continued ) ####

# First step of GMM
GMM_firstStep <- function(prob_ sample ,x){

objec_func <- g_objectivefunc_firstStep(x=x,prob_ sample=prob_ sample)
initial <-c(2, 1, 0.001)# initial values to optimize over
estimates <-constrOptim(initial , objec_func , NULL ,

ui=rbind(c(1,0,0), # lambda >0
c(0,1,0), # mu >0
c(0,0,1) # rho > 0

),
ci=c(0,0,0), method=’Nelder -Mead’)$ par

return(estimates)
}

# Second step of GMM
# Second - step of the GMM optimization
# Function to calculating the weight matrix
Weight <- function(x,prob_ sample ,estimate1 ){
est_step1 <- c(estimate1)
Prob_catastrophe_analytical1 <- rep(NA,length=length(time))
# Computing theoretical prob of catastrophe
for(i in seq _along(time )){

Prob_catastrophe_analytical1[i]<- Prob_catastrophe(
lambda=est_step1[1],mu=est_step1[2],
rho=est_step1[3],t=time[i])

}

m1 <- First_moment(b=est_step1[1],
d=est_step1[2],c=est_step1[3],t=seq(1,17,by=2),m=2)
-apply(zero.catastrophe(x),1,sample _ mean _1st)
m2 <- Second_moment(b=est_step1[1],
d=est_step1[2],c=est_step1[3],t=seq(1,17,by=2),m=2)
-apply(zero.catastrophe(x),1,sample _ mean _2nd)
m3 <- Third_moment(b=est_step1[1],d=est_step1 [2]
,c=est_step1[3],t=seq(1,17,by=2),m=2)
-apply(zero.catastrophe(x),1,sample _ mean _3rd)
Catastrophe_Prob <- Prob_catastrophe_analytical1 - prob_ sample

g<- cbind(m1,m2,m3,Catastrophe_Prob)

covariance_ matrix <- cov(g)
# Setting off - diagonals to 0 to obtain an
# invertible weighting ( diagonal ) matrix
#by assuming that the moment conditions are uncorrelated
covariance_ matrix[lower.tri(covariance_ matrix )] <- 0
covariance_ matrix[upper.tri(covariance_ matrix )] <- 0

# Finding inverse for the covariance diagonal matrix
# finding reciprocal of entries
weightmatrix <- 1/covariance_ matrix
weightmatrix[lower.tri(weightmatrix )] <- 0
weightmatrix[upper.tri(weightmatrix )] <- 0
weightmatrix

}
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F.2(v): External functions for Galton-Watson & GMM estimators for

B-D-C parameter estimation
### Computing the 2- step GMM estimates ( continued ) ####
# Second optimization step
g_objectivefunc_2ndStep <- function(x,prob_ sample ,
weighting_ matrix ,fixed=c(FALSE ,FALSE ,FALSE)) {

Prob_catastrophe_analytical <-rep(NA,length=length(time))
params <-fixed
function(p){

params[!fixed]<-p
# The three parameters to be optimized
b1<-params [1]
d1<-params [2]
c1<-params [3]

# Computing theoritical prob of catastrophe
for(i in seq _along(time )){

Prob_catastrophe_analytical[i]<- Prob_catastrophe(lambda=b1,mu=d1,
rho=c1,t=time[i])

}

m1 <-First_moment(b=b1, d=d1,c=c1,t=seq(1,17,by=2),m=2)
-apply(zero.catastrophe(x),1,sample _ mean _1st)
m2 <-Second_moment(b=b1, d=d1,c=c1,t=seq(1,17,by=2),m=2)
-apply(zero.catastrophe(x),1,sample _ mean _2nd)
m3 <-Third_moment(b=b1, d=d1,c=c1,t=seq(1,17,by=2),m=2)
-apply(zero.catastrophe(x),1,sample _ mean _3rd)

Catastrophe_Prob <-Prob_catastrophe_analytical - prob_ sample

gbar_theta <-c(mean(m1),mean(m2),mean(m3),
mean(Catastrophe_Prob))

Objective_func <- t(gbar_theta)%*%
weighting_ matrix%*%gbar_theta

}

}

# second step of GMM
GMM_2ndStep <- function(prob_ sample ,x,weighting_ matrix ){

objec_func <- g_objectivefunc_2ndStep(x=x,
prob_ sample=prob_ sample ,weighting_ matrix=
weighting_ matrix)
# initial values to optimize over
initial <-c(2, 1, 0.001)
estimates=constrOptim(initial , objec_func , NULL ,

ui=rbind(c(1,0,0), # lambda >0
c(0,1,0), # mu >0
c(0,0,1) # rho > 0

),
ci=c(0,0,0), method=’Nelder -Mead’)$ par

return(estimates)
}
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F.2(vi): External functions for Galton-Watson & GMM estimators for

B-D-C parameter estimation

# Restructuring data format for GW - GMM BDC estimation
RestructureData_BDC <- function(pop ,alive ,group){

# Inputs : pop = parasite population per
# region over time
# alive = survival status over time
# group = parasite - fish groups

# to store parasite numbers over
# time as a dataframe for each parasite - fish
ParasiteData_combined <- NULL

# to store survival status as a
# dataframe for each parasite - fish
SurvStatus_combined <- NULL

# Set NA in pop to state 0 denoting host
# death for the B-D-C estimation

for(pf in seq _along(group )){

ParasiteData_combined [[pf]]<- matrix(NA,
nrow=9, ncol=numF[[pf]])
# Array for time steps fish was alive
# for each combination
SurvStatus_combined [[pf]]<- matrix(NA,
nrow=9, ncol=numF[[pf]])
for(i in 1:numF[[pf]]){

# total parasites over time for each
# fish belonging to each parasite - fish group
# state -1 in the BDC denote host death
ParasiteData_combined [[pf]][,i]<-
na.zero(apply(pop[[pf]][i,,],2,sum))
SurvStatus_combined [[pf]][,i]<-
alive[[pf]][i, ]
}

}
return(list(PopTime_group=ParasiteData_combined ,
SurvTime_group=SurvStatus_combined ))

}
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F.2(vii): External functions for Galton-Watson & GMM estimators for

B-D-C parameter estimation

# Function for finding Maximum likelihood estimates
# for the catastrophe rate given the GW estimate of
# birth and death rates for the B-D-C model
MLE_catastrophe <- function(b_est ,d_est ,dead_fish_ time){

log _like <-0
# LogLikelihood function to maximize
Catastrophe_Loglik <- function(param){

rho <-param [1]

# log likelihood function for catastraphe rate
for(i in dead_fish_ time){
# sum across all dead fish for each group

if(i>=3){#if the time to death >=3
log _like <-log _like+
na.zero(log(Prob_catastrophe(lambda=b_est ,
mu=d_est ,rho=rho ,t=i))-
Prob_catastrophe(lambda=b_est ,
mu=d_est ,rho=rho ,t=(i-2)))

}else{#if the time to death =1
log _like <-log _like+
na.zero(log(Prob_catastrophe(lambda=b_est ,
mu=d_est ,rho=rho ,t=i)-
Prob_catastrophe(lambda=b_est ,mu=d_est ,
rho=rho ,t=0)))

}

}
log _like

}

Catastrophe_Loglik_compiler=cmpfun(Catastrophe_Loglik)

## Inequality constraints : rho >0

estimates <-maxLik(logLik=Catastrophe_Loglik_compiler ,
start=c(rho= 1e-5))

# returning estimates of catastrophe rate
return(as.vector(estimates$estimate ))

}

# External scripts
source("MLE_catastrophe -script.r")
source("GMM -1st2nd -Steps -script.r")
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F.3: Function for computing the B-D-C model parameters as extra ABC

summary statistics using Galton-Watson & GMM estimations

GW_GMM_BDCestimator <- function(X0,pop ,alive ,group){
#X0= initial parasites

Parasite_ data <- NULL; survival_ data <- NULL
#re - structuring the format of the data into the
# 9 parasite - fish groups
data <- RestructureData_BDC(pop=pop ,alive=alive ,group=group)

time <-seq(1,17,by=2)
# Parasite _ data [[ pf ]][ , fish _ index ]
Prob_catastrophe_analytical=Prob_catastrophe_ sample=

matrix(0,nrow=length(time),ncol=length(group))
## Initialize GMM ###

# Computing catastrophic probability analytically
# & based on the sample data

# computing sample probability of catastrophe

time _ index <- seq _along(time)
for (pf in seq _along(group )){

Parasite_ data[[pf]]<- data $PopTime_group[[pf]]
survival_ data[[pf]]<- data $SurvTime_group[[pf]]
for(i in time _ index ){

if(any(survival_ data[[pf]][i ,]==2)== TRUE){
# print ( paste (" time =" , time [i ]))
fish_dead_sim <- length(which(
survival_ data[[pf]][i, ]==2))
# print ( fish _ dead _ sim )
Prob_catastrophe_ sample[i,pf]<-
fish_dead_sim/ dim(survival_ data[[pf ]])[2]

}
}

}
# Let Zi _t be the population for fish i at time t
# Let alive _ status be the survival status of each fish
Z=NULL; alive_ status=NULL
for(pf in seq _along(group)) {

Z[[pf]]<- list()
alive_ status [[pf]]<- list()

}

##GW_ GMM _ BDCestimator function continues at the next page ##
+++
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# Continuation of GW _ GMM _ BDCestimator function
for(pf in seq _along(group )){

for(k in 1:numF[[pf]]){
Z[[pf]][[k]]<- Parasite_ data[[pf]][,k]
alive_ status [[pf]][[k]]<-survival_ data[[pf]][,k]

}
}

# Computing the mean and variance for the
# Galton - Watson process based on fish survival

# And for each k replicate
mean _GW=NULL; var _GW=NULL; mean _ sum _num=NULL;
mean _ sum _den=NULL;var _ sum=NULL

# Computing the mean of GW process
for(pf in seq _along(group))

# initial summation for the GW mean
mean _ sum _num[[pf]]= mean _ sum _den[[pf]]=0

for(pf in seq _along(group )){
for(k in 1:numF[[pf]]){

if(all(survival_ data[[pf]][,k]==1)== TRUE){

mean _ sum _num[[pf]]<- mean _ sum _num[[pf]]+
sum(Z[[pf]][[k]][1:9])# sum from t1 - t17
mean _ sum _den[[pf]]<- mean _ sum _den[[pf]]+
sum(Z[[pf]][[k]][1:8])+ X0 # sum from t0 - t15

}
}

mean _GW[[pf]]<- one.ratio(mean _ sum _num[[pf]]/
mean _ sum _den[[pf]])#if 0/ 0=1

}
# computing the variance of GW process
# initial summation for GW variance

for(pf in seq _along(group)) var _ sum[[pf]]<-0
for(pf in seq _along(group )){

for(k in 1:numF[[pf]]){
if(all(survival_ data[[pf]][,k]==1)== TRUE){

var _ sum[[pf]]<-var _ sum[[pf]]+
sum(Z[[pf]][[k]][1:9]*
(one.ratio(Z[[pf]][[k]][1:9]/
c(X0,Z[[pf]][[k]][1:8])) -
mean _GW[[pf ]])^2)

}
}

var _GW[[pf]]<- var _ sum[[pf]]/
(numF[[pf]]* length(time))
}

### GMM estimation ###
birth_rate=NULL;death_rate=NULL; c_estimates <-
NULL;delta_t=2;
BDC_estimates=NULL
GMM_resultsStep1=NULL; GMM_resultsStep2=NULL;
weighting_ matrix _ cov=NULL; method=NULL

# Estimating the catastrophe rate
# using MLE when m >1 for GW estimation
# time at death for each fish i and
# replicate / simulation run k
t_death <-NULL;
for(pf in seq _along(group )){ t_death[[pf]]<-rep(NA,length=numF[[pf]]) }

for(pf in seq _along(group )){
for(k in 1:numF[[pf]]){

# time to death
t_death[[pf]][k]<- time[which(
survival_ data[[pf]][,k]==2)[1]]

}
}

##GW _ GMM _ BDCestimator function continues at the next page ##
+++
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# Continuation of GW _ GMM _ BDCestimator function
for(pf in seq _along(group )){### begining of GW and GMM

if(mean _GW[[pf]]>1){# ### Consider GW if mean _GW >1
method [[pf]]<-"GW␣estimation"

birth_rate[[pf]]<-((log(mean _GW[[pf]])
/(2*delta_t))*(one.ratio(var _GW[[pf]]

/(mean _GW[[pf]]*(mean _GW[[pf]] -1))) +1))
death_rate[[pf]]<- ((log(mean _GW[[pf]])
/(2*delta_t))*(one.ratio(var _GW[[pf]]/
(mean _GW[[pf]]*(mean _GW[[pf]] -1))) -1))

# Computing MLE of catastrophe rate
# based on estimated birth and death rates

if(all(is.na(t_death[[pf ]]))== FALSE){
#if at least some fish are dead

# estimates of the catastrophe rate
c_estimates [[pf]]<-MLE_catastrophe_compiler(
b_est=birth_rate[[pf]],d_est <-death_rate[[pf]],
dead_fish_ time=na.omit(t_death[[pf]][k]))

}else if(all(is.na(t_death[[pf ]]))== TRUE){
#if no fish is dead

c_estimates [[pf]]<-0
}

BDC_estimates [[pf]]<-c(birth_rate[[pf]],
death_rate[[pf]],c_estimates [[pf]])

}else if(mean _GW[[pf]] <=1){ # Consider GMM
method [[pf]]<-"GMM␣estimation"

# First stage of GMM
GMM_resultsStep1 [[pf]]<- GMM_firstStep(
prob_ sample=Prob_catastrophe_ sample[,pf],
x=as.data.frame(Parasite_ data[[pf]]))

weighting_ matrix _ cov[[pf]]<-Weight(x=
as.data.frame(Parasite_ data[[pf]]),
prob_ sample=Prob_catastrophe_ sample[,pf],
estimate1=GMM_resultsStep1 [[pf]])

# Second stage of GMM
GMM_resultsStep2 [[pf]]<- GMM_2ndStep(
prob_ sample=Prob_catastrophe_ sample[,pf],
x=as.data.frame(Parasite_ data[[pf]]),
weighting_ matrix=weighting_ matrix _ cov[[pf]])

BDC_estimates [[pf]]<- GMM_resultsStep2 [[pf]]
} # ### GMM estimation ends

} # ### end of GW and GMM
# Returning the B-D-C parameters and method used

BDC_estimates_df <-do.call("rbind", BDC_estimates)
return(list(BDC_estimates=BDC_estimates_df,
method_used=unique(unlist(method ))))

}
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F.4(i): Functions for initial prior & sampling proposals
# Prior distribution of model parameters (on log scale )

prior <- function () {
lb1 <- runif(2, -4, 1)# birth of parasites ( Gt3 )
# birth rate for young parasites based on lb ( Gt3 )
logb11 <- max(lb1)
logb12 <- min(lb1)# birth rate for older parasites based on lb1 ( Gt3 )

lb2 <- runif(2, -4, 1)# birth of parasites (Gt)
logb21 <- max(lb2) # birth rate for young parasites based on lb2 (Gt)
logb22 <- min(lb2)# birth rate for older parasites based on lb2 (Gt)

lb3 <- runif(2, -4, 1)# birth of parasites (Gb)
logb31 <- max(lb3)# birth rate for young parasites based on lb3 (Gb)
logb32 <- min(lb3)# birth rate for older parasites based on lb3 (Gb)

ld1 <- runif(2, -5, 2) # death rates ( Gt3 )
logd11 <- min(ld1)# death rate without an immune response ( Gt3 )
logd12 <- max(ld1)# death rate with immune response ( Gt3 )

ld2 <- runif(2, -5, 2)# death rates (Gt)
logd21 <- min(ld2)# death rate without an immune response (Gt)
logd22 <- max(ld2)# death rate with immune response (Gt)

ld3 <- runif(2, -5, 2) # death rates (Gb)
logd31 <- min(ld3)# death rate without an immune response (Gb)
logd32 <- max(ld3)# death rate with immune response (Gb)

logm <- runif(1, -4, 1) # movement rate

logr <- runif(1, -10, 1)# immune response rate ( base rate )

# immune response ( adjustment for LA fish )
logr1 <- runif(1, -10, 1)
logr2 <- runif(1, -10, 1)# immune response rate ( adj for OS fish )
logr3 <- runif(1, -10, 1)# immune response rate ( adj for male fish )

logs <- runif(1, -8, -2)# fish mortality rate ( base rate )

logs1 <- runif(1, -8, -2)# fish mortality ( adj for male fish )

loge1 <- runif(1, -8, log (2)) # movement rate adj ( Gt3 )

loge2 <- runif(1, -8, log (2))# movement rate adj (Gt)

loge3 <- runif(1, -8, log (2))# movement rate adj (Gb)

log _ kappa <- runif(1, 4.5, 6.5)# effective carrying capacity

# Returns the prior samples on log scale
return(c(logb11 , logb12 ,logb21 , logb22 ,logb31 ,
logb32 ,logd11 , logd12 ,logd21 , logd22 ,logd31 , logd32 ,
logm , logr ,logr1 ,logr2 ,logr3 ,logs ,logs1 ,loge1 ,
loge2 ,loge3 ,log _ kappa ))

}

# view next page for the perturbation kernel function
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# MVN kernel given optimal bandwidth matrix H
# For peturbation
MultivNorm_rkernel <- function(Num ,bandwidth_ matrix ){

dim _k<- dim(bandwidth_ matrix )[2]
mean _ vector <- rep(0,dim _k)
# return random noise from MVN kernel
return(tmvtnorm :: rtmvnorm(n=1, mean=mean _ vector ,
sigma=bandwidth_ matrix ,
lower=rep(-.1,dim _k),upper=rep(.1,dim _k),
algorithm=c("gibbs")))

}

## Function for importance proposal sampling
post <- function(samp=tha_post ,importance_weight=weight ,

optimal_bw_ matrix=Sigma_optimal_t){

## new proposal based on accepted priors ( samp )##
# number of previous accepted samples
n <- dim(samp )[1]
sample.particle <- sample(n, 1,prob=importance_weight)
# Perturbing sampled particle based on MVN kernel
KDE_sampler <- samp[sample.particle , ]

+MultivNorm_rkernel(Num=1,
bandwidth_ matrix=optimal_bw_ matrix)

new _proposal <- KDE_sampler; x<- new _proposal

# birth rate of young > old
x[1:2] <- sort(x[1:2], decreasing=TRUE)
x[3:4] <- sort(x[3:4], decreasing=TRUE)
x[5:6] <- sort(x[5:6], decreasing=TRUE)
# death rates ( without and with immune response )
x[7:8] <- sort(x[7:8], decreasing=FALSE)
x[9:10] <- sort(x[9:10] , decreasing=FALSE)
x[11:12] <- sort(x[11:12] , decreasing=FALSE)
return(x)

}
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F.4(ii): Functions for computing initial summary statistics weights &

setting other initial conditions for the modified ABC

## Computing initial weights ###
A0 <- matrix(0, 4, 2)
A0[1, 1] <- 2 # Intial parasites at the tail
B0 <- rep(1, 4) # initial immune response at 4 body regions

# Transition matrix
J<- matrix(c(0, 1, 0, 0,

1/2, 0, 1/2, 0,
0, 1/2, 0, 1/2,
0, 0, 1, 0), 4, 4, byrow=TRUE)

# initial summary statistics weights estimate
dimS <-17 # length of summary statistics for ABC
n0 <- 100 # number of simulations for initial weights
# saving summary statistic for each group sim realisation
# for computing intial weights for ABC fitting
SummaryStats_sim <- NULL;SummaryStats_sim_combined <-NULL

for (i in 1:n0) {
theta <- prior()
output <- SimGroup_tauleap(theta1=theta ,
fish_sex=fishSex ,fish_type=Fish_stock ,
strain=Strain ,fish_size=fishSize ,error =0.01)

#B-D-C parameter estimates for the
# parasite - fish groups based on simulated data
# for each simulation realisation
BDC_estimates_sim <-GW_GMM_BDCestimator(X0=2,
pop=output$pop_sim ,output$alive_sim ,
group=parasite_fish)$BDC_estimates

# Computing the summary stats for each sim realisation
SummaryStats_sim[[i]] <- Summary_stats(
pop=output$pop_sim ,alive=output$alive_sim ,
BDC_estimates=BDC_estimates_sim)
# combining for all summary stats of
# parasite - fish groups for each simulation realisation
SummaryStats_sim_combined [[i]]<-do.call("rbind",
SummaryStats_sim[[i]])
}

# dimension is rows =( n0 * total _ fish ) by cols =17
S0<- do.call("rbind",SummaryStats_sim_combined)
# initial weight ( inverse of summary statistics )
w <- 1/ apply(S0, 2, var , na.rm = TRUE)
print(w)# printing initial weights
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F.4(iii): Functions for returning priors, summaries and distances

# Function for returning priors , summaries and distances
ABC <- function(fork , pftn , n, w ) {

# pftn is prior function or sampling proposals
# n is number of samples or proposals
# w are summary statistics weights
dimS <-17 # dimension or number of ABC summary statistics
number_of_parameters <- 23 # number of model parameters
# matrix of prior distributions
theta <- matrix(nrow = n, ncol = number_of_parameters)
# storing the summary stats across all simulations
S_i <- NULL
#S is a matrix ( nrow = n* total _fish , ncol = dimS )
d <- rep(NA, n)# weighted distance
SummaryStats_sim <- NULL
w<- w/ sum(w) # normalising summary statistics weights

for (i in 1:n) {
theta[i,] <- pftn()
output <- SimGroup_tauleap(theta1=theta[i,],fish_sex=fishSex ,
fish_type=Fish_stock ,strain=Strain ,fish_size=fishSize ,
error =0.01)
#B-D-C parameter estimates for the parasite - fish groups
# based on simulated data & simulation realisations
BDC_estimates_sim <- GW_GMM_BDCestimator(X0=2,
pop=output$pop_sim ,output$alive_sim ,
group=parasite_fish)$BDC_estimates
# Computing the all summary stats for each group
SummaryStats_sim[[i]]<-Summary_stats(pop=output$pop_sim ,
alive=output$alive_sim ,BDC_estimates=BDC_estimates_sim)
# combining for all summary stats of parasite - fish
# groups for each simulation realisation
SummaryStats_sim_combined <-do.call("rbind",
SummaryStats_sim[[i]])
# Combining the observed summaries for the groups
SummaryStats_obs_combined <- do.call("rbind", summaries_obs)

# Storing weighted distances between summaries
#of observed and simulated data
S_i[[i]] <- SummaryStats_sim_combined
d[i] <- w_ distance(S1=S_i[[i]],
S2=SummaryStats_obs_combined , weight=w)

}
# summary stats matrix ( nrow = n* total _fish ,
# ncol = dimS )
S<-do.call("rbind",S_i)
# returns priors ( theta ), simulated summaries (S)
#& distances (d)
return(list(theta=theta , S=S, d=d))

}

312



F.4(iv): The modified weighted-iterative ABC (with SMC & SIS)
# Function to obtain the final posterior distribution iteratively
# using the ABC () function
Weighted_iterative_ABC <- function(N=500, dimS=17,
fish_total=Total_fish ,numCores=numCores ,
ABC_ time _steps =10){

# N= total number of samples
n_cores <- numCores;n<- N/n_cores # Run on n cores
# number of parameters to be estimated
number_of_parameters <- 23
# Storing importance weight for sequential sampling
import_ weights <- NULL
# Storing weights corresponding to accepted samples
w_accepted <- NULL
# saving number of particles for each iteration
dim _tha_post <-NULL
# saving summaries of all fish for each simulation
S_i <- NULL
# ABC _ time _ steps = time for the algorithm to terminate
eps <-NULL # storage for index of accepted particles
# proportion of sample to retain during SIS
if(N <1000){

epsilon <- c(0.5 ,0.43 ,0.4 ,0.35 ,0.3 ,
0.2 ,0.1 ,0.08 ,0.06 ,0.02)

}else if(N >=1000){
epsilon <-c(0.5 ,0.3 ,0.2 ,0.1 ,0.08 ,
0.07 ,0.06 ,0.03 ,0.02 ,0.01)

}
d_i<-NULL;d<-NULL# storing weighted distances
# For storing parameter values at time t
theta_i<- NULL;theta <-NULL
# for density plots (256 used here is
# the number of equally spaced points
#at which the density is to be estimated )
# range of prior distribution (on log scale )
x <- seq(from = -10, to = 7, length.out = 256)
fx <- array(dim=c(ABC_ time _steps+1,
number_of_parameters , 256))
time0 <- proc.time()

for (t in 1:ABC_ time _steps) {
cat("ABC_time_steps", t, "\n")
if (t == 1) {

pftn <- prior
ABC_out <- mclapply (1:n_cores , ABC ,
pftn=pftn , n=n, w=w, mc.cores=n_cores)
for (i in 1:n_cores) {

theta_i[[i]] <- ABC_out[[i]]$theta
S_i[[i]] <- ABC_out[[i]]$S
d_i[[i]] <- ABC_out[[i]]$d

}
}else{#if t >1

# Calculate optimal MVN kernel bandwidth matrix
# parameter values for a new proposal sample
#N0= number of accepted particles
#N1= total number of proposal samples

+++
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# Calculate optimal MVN kernel bandwidth matrix H
# denoted by Sigma _ optimal _t
# eps [[t ]]= index of accepted samples
#w_ accepted [[t ]]= weights of accepted particles
# tha _ post = accepted proposals at time t
Sigma_optimal_t <- matrix(0,nrow=number_of_parameters ,
ncol=number_of_parameters)

N1<-dim(theta[[t -1]])[1]
N0<- dim(tha_post )[1]
for(i in 1:N1) {

for(k in 1:N0){
Sigma_optimal_t <- Sigma_optimal_t+
(import_ weights [[t -1]][i]*w_accepted [[t -1]][k]
*(matrix(tha_post[k,]-theta[[t -1]][i, ])
%*%t(matrix(tha_post[k,]-theta[[t -1]][i, ]))))

}
}

# Sampling from MVN Perturbation kernel
weight <-w_accepted [[t-1]]
pftn <- function () post(tha_post ,weight ,
Sigma_optimal_t)
ABC_out <- mclapply (1:n_cores , ABC ,
pftn=pftn , n=n, w=w, mc.cores=n_cores)
for (i in 1:n_cores) {

theta_i[[i]] <- ABC_out[[i]]$theta
S_i[[i]] <- ABC_out[[i]]$S
d_i[[i]] <- ABC_out[[i]]$d

}
# Combining theta at time t
theta[[t]]<- as.matrix(na.zero(
do.call("rbind",theta_i)))#N by 23 matrix
#Re - weighting for importance sampling
import_ weights [[t]]<-rep(NA,
length=dim(theta[[t]])[1])

# Evaluating the perturbation kernel
# for each particle at time t

dMVN_func <- function(i)
mvtnorm :: dmvnorm(x=theta[[t]][i, ],
mean = theta[[t -1]][i, ],sigma =Sigma_optimal_t)
K_normal_kernel <- mclapply (1: dim(theta[[t]])
[1],dMVN_func ,mc.cores=n_cores)
# ### KDE of proposal distn ####
# Estimating the optimal bandwidth
density _proposals <- matrix(NA,

nrow=length(import_ weights [[t]])
,ncol=number_of_parameters)
N1<- length(unlist(K_normal_kernel ))

+++
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for(i in seq _along(import_ weights [[t]])){
density _proposals[i, ]<-
ks::kde(x = theta[[t]][i, ],eval.points =
theta[[t]][i, ])$estimate
# KDE value for each proposal sample
par.weight.numerator <- mean(density _proposals[i, ])
par.weight.denominator <- sum(import_ weights [[t-1]]
[1:N1]* unlist(K_normal_kernel ))
import_ weights [[t]][i]<- par.weight.numerator/
par.weight.denominator

}
# normalizing weights
import_ weights [[t]]<- import_ weights [[t]]/
sum(import_ weights [[t]])

}
# Combining results from the ncores

# N by 23 matrix
theta[[t]]<- as.matrix(
na.zero(do.call("rbind",theta_i)))#N by 23 matrix

d[[t]]<- na.zeros(do.call("c",d_i))# length of N
# number of draw for posterior samples
small_draws <- epsilon[t]*N
# adding the computed distance as extra column of theta
theta_dist <- cbind(theta[[t]],d[[t]])
# smallest distance index
eps[[t]]<- order(theta_dist [ ,24])[1: small_draws]

# choose posterior samples
tha_post <-theta_dist[eps[[t]],][,-24]
dim _tha_post[[t]]<- dim(tha_post )[1]
# initialize importance weight for sequential sampling
if(t==1) import_ weights [[1]] <- rep(1/N,length=N)

# Weights corresponding to accepted proposal samples
w_accepted [[t]]<- import_ weights [[t]][eps[[t]]]
w_accepted [[t]]<- w_accepted [[t]]/
sum(w_accepted [[t]])# normalising accepted weights

# update summary statistics weights
# max least distance
eps_dist_ max <- sort(d[[t]])[ small_draws]
# combining the summaries [(N* fish _ total ) by 17 matrix ]
S<-na.omit(do.call("rbind",S_i))
w1inv <- apply(S[rep(d[[t]],fish_total)<=eps_dist_max ,]
,2, var , na.rm = TRUE)
w <- na.zero(2/(1/w + w1inv))

+++
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# densities
if (t == 1) {

for (k in 1: number_of_parameters ){
fx[1,k,]<- density(theta [[1]][ ,k], from=-10, to=7, n=256)$y
# saving the densities for each iteration
write.csv(fx[1, ,],file =
paste0("density_post_", 1, ".csv"))

}
}
for (k in 1: number_of_parameters ){

fx[t+1,k,]<- density(tha_post[, k],from=-10, to=7, n=256)$y
# saving the densities for each iteration
write.csv(fx[t+1, ,], file =
paste0("density_post_", t+1, ".csv"))

}
### saving importance weights

write.csv(import_ weights [[t]],
file = paste0("importance_weights_",t, ".csv"))
# accepted particles at each iteration
write.csv(tha_post , file =
paste0("theta_post_", t, ".csv"))
# saving weighted distance
write.csv(d[[t]],file =
paste0("weighted_distance_", t, ".csv"))

}
timef <- proc.time()-time0
CPUtime <-sum(as.vector(timef )[-3])
write.csv(CPUtime ,file=paste0("CPUtime_", N, ".csv"))
# Returns estimated densities & final posterior
return(list(fx=fx,final_posteior=tha_post))

} # end of the weighted - iterative ABC algorithm

# External functions in the posterior adjustment func .

# Gaussian kernel with bandwidth delta
guass_kernel <- function(dist ,delta){

# bandwidth = delta for regression adjustment
#is optimally determined using the kedd package
kern <-(sqrt(2*pi*delta))* exp(-(dist ^2)/(2* delta ^2))
return(kern)

}

#To deal with any possible unknown irregularity
na.inf.zero <- function(x){

x[is.na(x)|is.finite(x)== FALSE]<- 0
return(x)

}
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F.4(v): Function for proposed ABC post-processing analysis

# Function for the modified local - linear regression
# based on weighted ridge regression
require("kedd")
Post_Ridge_reg_adj <- function(post_distn ,summary _obs){

#k= biasing parameter or penalty parameter
# post _ dtn is the posterior sample
# w are summary statistics weights
# storing the summary stats across simulations
S_i <- NULL
no_of_parameters <- 23
# storing adjusted posterior means
posterior_ mean _adj <- rep(NA,no_of_parameters)
# Combining the summary stats for
# the observed data for the parasite - fish groups
SummaryStats_obs_combined <- do.call("rbind",
summaries_obs)
m<- dim(post_distn )[1]# m= number of posterior samples
d<- rep(0, m)# weighted distances given observed data
p<- dim(summary _obs )[2] # dimension of summary statistics
Unadj_dist <- post_distn
SummaryStats_sim <- NULL
X_Design_ matrix <- matrix(NA, ncol=p,nrow=m) # design matrix
# Weights based on Gaussian kernel
# for local - linear regression adjustment
W<- matrix(0, ncol=m,nrow=m)
# saving weighted column means of design matrix
X_bar=numeric(length=p)
for (i in 1:m) {

theta <- as.vector(unlist(post_distn[i,]))
output_sim <- SimGroup_tauleap(theta1=theta ,
fish_sex=fishSex ,fish_type=Fish_stock ,
strain=Strain ,fish_size=fishSize ,error =0.01)
#B-D-C parameter estimates for the
# parasite - fish groups based on simulated data
# for each simulation realisation
BDC_estimates_sim <- GW_GMM_BDCestimator(X0=2,
pop=output_sim$pop_sim ,

output_sim$alive_sim ,
group=parasite_fish)$BDC_estimates

# Computing the summary stats for each
# group simulation realisation
SummaryStats_sim[[i]] <- Summary_stats(
pop=output_sim$pop_sim ,alive=output_sim$alive_sim ,
BDC_estimates=BDC_estimates_sim)

# combining for all summary stats of
# parasite - fish groups for each simulation realisation
SummaryStats_sim_combined <-do.call("rbind",
SummaryStats_sim[[i]])
mean _ diff <- apply(SummaryStats_sim_combined -
summary _obs ,2,mean ,na.rm = TRUE)

+++
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# storing each row of design matrix X
X_Design_ matrix[i, ]<- mean _ diff

# Computing weights based on
# Storing weighted distances between
# summaries of observed and simulated data )
S_i[[i]] <- SummaryStats_sim_combined
# Updating summary statistics weights
w <- apply(S_i[[i]], 2, var , na.rm = TRUE)
w<- w/ sum(w) # normalising summary weights
d[i] <- w_ distance(S1=S_i[[i]],
S2=summary _obs , weight=w)

}

distances <-na.inf.zero(d)
# Adaptively choosing the bandwidth
#of the Gaussian kernel based on the distances
bandwidth <- kedd::h.amise(x=distances ,
deriv.order =0,kernel = c("gaussian"))$h
diag(W)<- guass_kernel(dist= distances ,delta=bandwidth)
theta_post <- as.matrix(post_distn)
# ( normalising ) main diagonal of Weighting matrix
weights <- diag(W)/ sum(diag(W))

# Transforming X and Y ( posterior distribution
# and summary statistics )
for(j in seq _along(posterior_ mean _adj)){

# For each jth model parameter , j =1 ,2 ,...23
X<- X_Design_ matrix
Y<- theta_post[ ,j]

# Step 1 ( Mean centring X and Y)
for (k in 1:p) X_bar[k]<- sum(weights *X[,k])

for (k in 1:p) {
X[, k]<- X[, k]-X_bar[k]

}
# finding the weighted mean of Y and mean centring
Y_bar <- sum(weights *Y)
Y<- Y- Y_bar

+++
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# Step 2: scaling ( centred X and Y) by weights

for(k in 1:p) X[, k]<- sqrt(weights)*X[, k]
Y<- sqrt(weights)*Y

# Choose optimal value of k ( the penalty paramters )
# Using cross validation glmnet
# Setting the range of lambda values
options(warn = -1)
lambda_ seq <- 10^seq(2, -2, by = -.1)
ridge_cv <- cv.glmnet(X, Y, alpha = 0,
lambda =lambda_ seq)

# Best lambda value
best_lambda <- ridge_cv$lambda.min
k<-best_lambda
# calculate beta estimates corresponding
#to summary statistics X ( standardised coefficients )
beta _ridge_std <- solve(t(X) %*%W%*%X+
k* diag(p)) %*% t(X)%*%W%*%Y

# calculating beta estimates of predictors
beta _ridge <- solve(t(X) %*%W%*%X+ k* diag(p))
%*% t(X)%*%W%*%Y

# calculate intercept estimates ( adjusted posterior mean )
posterior_ mean _adj[j]<- exp(Y_bar - X_bar%*% beta _ridge)

# Adjusting the posterior distribution
Unadj_dist[,j]<- post_distn[, j]-X_Design_ matrix
%*% beta _ridge

}

posterior_ mean _uadj <- exp(apply(post_distn ,2,mean))
Posterior_ mean _output <- data.frame(Adj_posterior_ mean=
posterior_ mean _adj ,Uadj_posterior_ mean=
posterior_ mean _uadj)

# returns the design data matrix , adjusted & unadjusted
# means , and the adjusted posterior distribution
return(list(X_Design_ matrix=X,
Posterior_ mean _output=Posterior_ mean _output ,
Adjusted_posterior_dist=Unadj_dist))

}
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Appendix G: R Codes for the multidimensional simulation model
G.1: Description of state variables and simulation parameters

## 1. State variables ##

# A[j,k] gives the number of parasites at location j, age k, where
# j = 1 for Tail population
# j = 2 for Lower region population
# j = 3 for Upper region population
# j = 4 for head population
# k = 1 for young parasites ( yet to give birth )
# k = 2 for old parasites ( have given birth )

# B[j] = immune response at location j (1 for no response ; 2 for a response )

# X = state of fish (1 for alive ; 2 for dead )

## 2. Base simulation parameters ##

# b1[k,el] = birth rate for parasites age k, when immune state is el ( for Gt3 )
# b2[k,el] = birth rate for parasites age k, when immune state is el ( for Gt)
# b3[k,el] = birth rate for parasites age k, when immune state is el ( for Gb)
# d1[k,el] = death rate for parasites age k, when immune state is el ( for Gt3 )
# d2[k,el] = death rate for parasites age k, when immune state is el ( for Gt)
# d3[k,el] = death rate for parasites age k, when immune state is el ( for Gb)
# m[k,el] = movement rate for parasites age k, when immune state is el

# e = the adjustment to the movement rate for forward / backward movement
# r = rate a single parasite increases immune state ( base rate )
# kappa = effective carrying capacity per unit area of each body region
# s = rate a single parasite causes fish mortality

## 3. Additional simulation parameters ##

# r1 = immune response rate adjustment for LA fish ( ref : UA fish )
# r2 = immune response rate adjustment for OS fish ( ref : UA fish )
# r3 = immune response rate adjustment for male fish ( ref : female fish )
# e1 , e2 , e3 = movement rate adjustment depending on

parasite type (Gt3 ,Gt, Gb respectively)
#s = must depend on total parasite numbers , fish sex and fish size
#s1 = host mortality rate with adjustment for male fish ( ref : female )

## 4. Experiment descriptors ##

# fish _ type (1 for UA , 2 for LA & 3 for OS)
# Parasite type (Gt3 , Gt & Gb)
# fish _ sex (1 for female fish & 2 for male fish )
# f= area of each body part ( depends on size and gender )
# a= fish size

# Function to convert NA ’s to 0 where necessary
na.zero <- function(x){

x[is.na(x)]<-0
return(x)

}

# Loading packages (R packages to install )
library(transport)# for Wasserstein distance computation
library(parallel)# for parallizing R codes
RNGkind("L’Ecuyer -CMRG")# Dealing with distinct seed numbers
library(compiler)# byte code compilation
library("maxLik")# for MLE / optimization
library("R.utils")
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G.2: Function for computing event rates
# Function for computing rates based on fish sex , fish type and parasite strain
compute_rates_func <- function(A, B, b1,b2,b3, d1,d2,d3, m,

r,r1,r2,r3,s,s1,e1,e2,e3,
kappa ,f,a,fish_sex ,fish_type ,strain ){

# Matrix of immune rates ( additive effect of covariates )
r_ matrix <- matrix(c(r,r+r1,r+r2,r+r3,r+r1+r3,r+r2+r3),nrow=2,ncol=3,byrow=T)

#r_ selected = selected rate based on adjustments ( adj ) for fish sex & fish type
# selecting the immune response rate depending on fish sex and fish type
if(fish_sex=="F" & fish_type=="UA"){r_selected <- r_ matrix [1,1]}# base rate
if(fish_sex=="F" & fish_type=="LA"){r_selected <-r_ matrix [1,2]}# adj for LA fish
if(fish_sex=="F" & fish_type=="OS"){r_selected <-r_ matrix [1,3]}# adj for OS fish
if(fish_sex=="M" & fish_type=="UA"){r_selected <-r_ matrix [2,1]}# adj for male fish
if(fish_sex=="M" & fish_type=="LA"){r_selected <-r_ matrix [2,2]}# adj for M & LA
if(fish_sex=="M" & fish_type=="OS"){r_selected <-r_ matrix [2,3]}# adj for M & OS

# selecting which host mortality rate & body areas given fish sex
if(fish_sex=="F"){

s_selected <- s # base host mortality rate
#f= body _ area
f<-as.vector(f[,1])# body areas for female fish

}
if(fish_sex=="M"){

s_selected <- s+s1 # host mortality rate with adjustment for male fish
#f= body _ area
f<-as.vector(f[,2])## body areas for male fish

}
# selecting microhabitat preference rate depending on parasite strain
if(strain =="Gt3"){e_selected <- e1}
if(strain =="Gt"){e_selected <- e2}
if(strain =="Gb"){e_selected <- e3}

# selecting birth and deaths rates depending on parasite strain
if(strain =="Gt3"){b_selected <-b1; d_selected <-d1}
if(strain =="Gt"){b_selected <- b2; d_selected <- d2}
if(strain =="Gb"){b_selected <- b3; d_selected <- d3}

# birth rates ; death rates ; movement rates ; immune response
QB <- matrix(0, 4, 2) # QB[k,j] = birth rate for parasites location j age k
QD <- matrix(0, 4, 2) # QD[k,j] = death rate for parasites location j age k
QM_forward <- matrix(0, 4, 2) # QM[k,j] = movement rate for j age k
QM_backward <- matrix(0, 4, 2)
QI <- rep(0, 4) # QI[j] = rate at which location j increases immune response
for (j in 1:4) {

QI[j] <- sum(A[j, ]) * r_selected
for (k in 1:2) {

QB[j, k] <- A[j, k] * (1-(A[j, k]/(f[j]*a* kappa )))*b_selected[k, B[j]]
QD[j, k] <- A[j, k] * (1-(A[j, k]/(f[j]*a* kappa )))*d_selected[k, B[j]]
QM_forward[j, k] <- A[j, k] *m[k, B[j]]*e_selected
QM_backward[j, k] <- A[j, k] *m[k, B[j]]*(1-e_selected)

}
}

# total rates
laB <- sum(QB) # total birth rate
laD <- sum(QD) # total death rate
laM_forward <- sum(QM_forward) # total rate for forward movement
laM_backward <- sum(QM_backward) # total rate for backward movement
laI <- sum(QI)# total rate of immuune response
laX <- sum(A) * s_selected # host fish mortality rate
# overall total
la <- na.zero(abs(laB + laD + laM_forward+laM_backward+ laI + laX))

# Returns rates in relation to birth , death , movement ,
# immune response , host mortality and total rate (la)

return(list(laB=laB ,laD=laD ,laM_forward=laM_forward ,
laM_backward=laM_backward ,laI=laI ,laX=laX ,
la=la,QB=QB,QD=QD,QM_forward=QM_forward ,
QM_backward=QM_backward ,QI=QI))

}
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G.3: Function for extracting parasite numbers & experimental descrip-

tors of the empirical data
Experiment_descriptors <- function(empirical_ data){
### Fish - parasite combinations / groups ###
parasite_fish <-c("Gt3 -OS","Gt3 -LA","Gt3 -UA","Gt-OS","Gt-LA","Gt-UA","Gb-OS","Gb-LA","Gb-UA")
levels(empirical_ data $Sex_fish)<-c("F","M")

empirical_ data $LowerRegion <-empirical_ data $LB+empirical_ data $Pelvic+
empirical_ data $Anal+empirical_ data $Dorsal
empirical_ data $UpperRegion <-empirical_ data $UB +Combined_ data $Pectoral

### Data across the four recategorized body regions ###
Data_fourRegions <-empirical_ data[,c(1,15,16,8,9,10,12,13,11,14)]
# head ( Data _ fourRegions ,n =4)

### Data across parasite strains ###
Gt3_ data <-Data_fourRegions[Data_fourRegions$Parasite_strain =="Gt3",]
Gt_ data <-Data_fourRegions[Data_fourRegions$Parasite_strain =="Gt",]
Gb_ data <-Data_fourRegions[Data_fourRegions$Parasite_strain =="Gb",]

#To store extracted information
Parasite_fish_ data=NULL;fishID=NULL;
numF=NULL;pop_obs=NULL;alive_obs=NULL;
fishSize=NULL;fishSex=NULL;Size=NULL;Sex=NULL; Parasite_strain=NULL;Strain=NULL;
Fish_type=NULL;Fish_stock=NULL

## Data of each parasite strain across fish stocks ##
Parasite_fish_ data[[ parasite_fish [1]]] <- split(Gt3_data ,Gt3_ data $Fish_strain)$"OS"
Parasite_fish_ data[[ parasite_fish [2]]] <- split(Gt3_data ,Gt3_ data $Fish_strain)$"LA"
Parasite_fish_ data[[ parasite_fish [3]]] <- split(Gt3_data ,Gt3_ data $Fish_strain)$"UA"
Parasite_fish_ data[[ parasite_fish [4]]] <- split(Gt_data ,Gt_ data $Fish_strain)$"OS"
Parasite_fish_ data[[ parasite_fish [5]]] <- split(Gt_data ,Gt_ data $Fish_strain)$"LA"
Parasite_fish_ data[[ parasite_fish [6]]] <- split(Gt_data ,Gt_ data $Fish_strain)$"UA"
Parasite_fish_ data[[ parasite_fish [7]]] <- split(Gb_data ,Gb_ data $Fish_strain)$"OS"
Parasite_fish_ data[[ parasite_fish [8]]] <- split(Gb_data ,Gb_ data $Fish_strain)$"LA"
Parasite_fish_ data[[ parasite_fish [9]]] <- split(Gb_data ,Gb_ data $Fish_strain)$"UA"

for (pf in 1: length(parasite_fish )){
# Assigning unique ID for data
fishID [[pf]]<- unique(Parasite_fish_ data[[ parasite_fish[pf]]]$Fish_ID)
# Total number of fish used for data
numF[[pf]] <- length(fishID [[pf]])
# Observed data or matrix across 4 regions
pop_obs[[pf]] <- array(dim = c(numF[[pf]], 4, 9))
# Array for time steps fish was alive for each combination
alive_obs[[pf]] <- array(dim = c(numF[[pf]], 9))
#NB: Fish size & sex over time
# Array of fish size across the 9 time steps for each combination
Size[[pf]]<- array(dim = c(numF[[pf]], 9))
Sex[[pf]]<- array(dim = c(numF[[pf]], 9))
Parasite_strain [[pf]]<- array(dim = c(numF[[pf]], 9))
Fish_type[[pf]]<- array(dim = c(numF[[pf]], 9))

for(i in 1:numF[[pf]]){
pop_obs[[pf]][i,,] <-
t(Parasite_fish_ data[[ parasite_fish[pf]]]
[Parasite_fish_ data[[ parasite_fish[pf]]]
$Fish_ID== fishID [[pf]][i], 1:4])
alive_obs[[pf]][i, ] <- ifelse(is.na(pop_obs[[pf]][i,1,]), 2, 1)
Size[[pf]][i, ]<-
Parasite_fish_ data[[ parasite_fish[pf]]]
[Parasite_fish_ data[[ parasite_fish[pf]]]
$Fish_ID== fishID [[pf]][i], 9]

#1= Female fish & 2= Male fish
Sex[[pf]][i, ]<-
paste(Parasite_fish_ data[[ parasite_fish[pf]]]
[Parasite_fish_ data[[ parasite_fish[pf]]]
$Fish_ID== fishID [[pf]][i], 10])
Parasite_strain [[pf]][i, ]<-
paste(Parasite_fish_ data[[ parasite_fish[pf]]]
[Parasite_fish_ data[[ parasite_fish[pf]]]
$Fish_ID== fishID [[pf]][i], 7])
Fish_type[[pf]][i ,]<-
paste(Parasite_fish_ data[[ parasite_fish[pf]]]
[Parasite_fish_ data[[ parasite_fish[pf]]]
$Fish_ID== fishID [[pf]][i], 8])

}

### Experiment descriptors ####
fishSize [[pf]]<- apply(Size[[pf]],1,unique)
fishSex [[pf]]<- apply(Sex[[pf]],1,unique)
Strain [[pf]]<- apply(Parasite_strain [[pf]],1,unique)
Fish_stock[[pf]]<- apply(Fish_type[[pf]],1,unique)

}

# return data on experiment descriptors ( fish size , sex ,
# fish type & strain ) for each parasite - fish group
return(list(fishSize=fishSize ,fishSex=fishSex ,
Strain=Strain ,Fish_stock=Fish_stock ,numF=
numF ,fishID=fishID ,pop_obs=pop_obs ,
alive_obs=alive_obs ,fishID=fishID ))
}
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G.4: Function for updating exact SSA
# Function for updating exact SSA
# For for updating simulation events across the 4 body regions
(Tail , Lower region , Upper region , Head)

SSA_ update _event <- function(A,B,J,X,laB ,laD ,laM_forward ,
laM_backward ,laI ,laX ,la,QB,QD,
QM_forward ,QM_backward ,QI) {

# Inputs :
# A[j,k] gives the number of parasites at location j, age k, where
# B[j] = immune response at location j (1 for no response ; 2 for a response )
#J is transition matrix
#X is survival status (1= alive , 2= dead )
# And all rates in relation to birth ,
# death , movement , immune response , host mortality
# and total rate (la)

if (la == 0) {
return(list(A = A, B = B, t_incr_SSA = Inf , X = X)) # zero population

}

U <- runif(1, 0, la) # uniform random number / generator

if (U < laB) {# birth
i <- sample(8, 1, prob = abs(QB))
j <- ((i-1) %% 4) + 1 # location
k <- ((i-1) %/% 4) + 1 # age
if (k == 1) {

A[j, 2] <- A[j, 2] + 1
} else {

A[j, 1] <- A[j, 1] + 1
}

} else if (U < sum(c(laB ,laD))) {# death
i <- sample(8, 1, prob = abs(QD))
j <- ((i-1) %% 4) + 1 # location
k <- ((i-1) %/% 4) + 1 # age
A[j, k] <- A[j, k] - 1

} else if(U < sum(c(laB ,laD ,laM_forward ))){# forward movement

i <- sample(8, 1, prob = abs(QM_forward ))
j <- ((i-1) %% 4) + 1 # location
k <- ((i-1) %/% 4) + 1 # age
j_ new <- sample(4, 1, prob =abs(J[j,]))# new location
A[j, k] <- A[j, k] - 1
A[j_new , k] <- A[j_new , k] + 1

} else if (U < sum(c(laX ,laI ,laB ,laD ,laM_forward )) ){# backward movement
i <- sample(8, 1, prob = abs(QM_backward ))
j <- ((i-1) %% 4) + 1 # location
k <- ((i-1) %/% 4) + 1 # age
j_ new <- sample(4, 1, prob =abs(J[j,]))# new location
A[j, k] <- A[j, k] - 1
A[j_new , k] <- A[j_new , k] + 1

}else if(U < sum(c(laB ,laD ,laM_forward ,laM_backward ,laI)) ){# immune response

i <- sample(4, 1, prob = abs(QI))
B[i] <- 2

} else {# fish death
X <- 2

}
t_incr_SSA <- rexp(1, la) # time increment for exact SSA

# Output : returns A[j,k] the number of parasites
# at location j, age k
# where B[j] = immune response at location j
#(1 for no response ; 2 for a response )
# t_ incr _ SSA = time increment for exact SSA
# X survival status

return(list(A = A, B = B,t_incr_SSA=t_incr_SSA , X = X))
}
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G.5: Function for updating hybrid τ -leaping
# Function for updating tau - leaping
taulealping_ update _event <- function(A,B,J,X,laB ,laD ,

laM_forward ,laM_backward ,laI ,laX ,la
,QB,QD,QM_forward ,QM_backward ,QI,tau){

# Inputs :
# A[j,k] gives the number of parasites at location j, age k, where
# B[j] = immune response at location j (1 for no response ; 2 for a response )
#J is transition matrix
#X is survival status (1= alive , 2= dead )
# tau is the leap size
# And all rates in relation to birth ,
# death , movement , immune response , host mortality
# and total rate (la)

U <- runif(1, 0, la)
if(U<laX) X <-2 # Fish mortality
else if(U<sum(c(laX ,laI ))){# Immune response

j <- sample(4, 1, prob = abs(QI))
B[j] <- 2

} else if (U<sum(c(laX ,laI ,laB ,laD ,laM_forward ))){
# brith , death or forward movement

i <- sample(8, 1, prob = abs(QB+ QD+QM_forward ))
j <- ((i-1) %% 4) + 1 # current location
k <- ((i-1) %/% 4) + 1 # age
j_ new <- sample(4, 1, prob =abs(J[j,]))# new location
A[j,k]<- A[j,k] + rpois(1,abs(laB*tau))-
rpois(1,abs(laD*tau))
-rpois(1,abs(laM_forward*tau))
A[j_new ,k]<- A[j_new ,k]
+rpois(1,abs(laB*tau))
-rpois(1,abs(laD*tau))
+rpois(1,abs(laM_forward*tau))

} else if (U< sum(c(laX ,laI ,laB ,laD ,laM_forward ,laM_backward ))){
# birth , death or backward movement

i <- sample(8, 1, prob = abs(QB+ QD+QM_backward ))
j <- ((i-1) %% 4) + 1 # current location
k <- ((i-1) %/% 4) + 1 # age
j_ new <- sample(4, 1, prob =abs(J[j,]))# new location
A[j,k]<- A[j,k]+rpois(1,abs(laB*tau))-
rpois(1,abs(laD*tau))-
rpois(1,abs(laM_backward*tau))
A[j_new ,k]<-A[j_new ,k]
+rpois(1,abs(laB*tau))-rpois(1,abs(laD*tau))
+rpois(1,abs(laM_backward*tau))

}

# Output : returns A[j,k] gives the number of parasites at location j, age k,
# where B[j] = immune response at location j
#(1 for no response ; 2 for a response )
# X= survival status

return(list(A = A, B = B, X = X))

}
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G.6: Function for simulating infection dynamics for a single fish
#tau - leaping simulation for a single fish
sim_tauleap_singlefish <- function(A0, B0,J, b1,b2,b3,

d1,d2,d3, m, r,r1,
r2,r3,s,s1,e1,e2,e3,kappa ,

f,a,fish_sex ,fish_type ,strain ,error){
# Inputs : inital conditions , parameter values , fish sex ,
# fish type , parasite strain and error bound
#f= body area ( dependent on fish sex and size )
# parasite _ fish =c(" Gt3 -OS " ," Gt3 -LA " ," Gt3 -UA",
#"Gt -OS " ,"Gt -LA " ,"Gt -UA " ,"Gb -OS " ,"Gb -LA " ,"Gb -UA ")
# strain - parasite type to be simulated
parasite_fish <- paste(strain ,"-",fish_type)
pop=NULL; alive =NULL; exploded=NULL;Leap_sizes=NULL;
A<-A0; B<- B0
# observed discrete times
save _ti <- c(1, 3, 5, 7, 9, 11, 13, 15, 17)
save _TF <- rep(FALSE , length(save _ti))
ti<- 0 # initial time
# parasite pop at each location ( rows ) & timepoint ( cols )
pop[[ parasite_fish]] <- matrix(NA, 4, length(save _ti))

# host fish status at each time point
alive[[ parasite_fish]] <- rep(2, length(save _ti))
pop_ti <- rowSums(A)
# host survival status ( alive =1; dead =2)
alive_ti <- 1
exploded [[ parasite_fish]] <- FALSE
# stop the simulation if total population > pop _ max
pop_ max <- 10000
X <- 1 # fish starts out alive

while(sum(save _TF) < length(save _ti)){
# ### Computing the rates ######

computed_rates <-compute_rates(A=A, B=B,b1=b1,b2=b2,
b3=b3, d1=d1,d2=d2,d3=d3,m=m,r=r,r1=r1,r2=r2,r3=r3
,s=s,s1=s1,e1=e1, e2=e2,e3=e3,kappa=kappa ,f=f,a=a,
fish_sex=fish_sex ,fish_type=fish_type ,strain=strain)

laB <-computed_rates$laB
laD <-computed_rates$laD
laM_forward <-computed_rates$laM_forward
laM_backward <-computed_rates$backward
laI <-computed_rates$laI
laX <-computed_rates$laX
la<-computed_rates$la
QB<-computed_rates$QB
QD<-computed_rates$QD
QM_forward <-computed_rates$QM_forward
QM_backward <-computed_rates$QM_backward
QI<-computed_rates$QI

## sim _ tauleap _ singlefish function continues at next page ##
++++
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# sim _ tauleap _ singlefish function continuation

# Determining the switching condition between the exact SSA
# and the Tau - leaping algorithm

# selecting birth and deaths rates
# depending on parasite strain for leap size

if(strain =="Gt3"){b_selected <-b1; d_selected <-d1}
if(strain =="Gt"){b_selected <- b2; d_selected <-d2}
if(strain =="Gb"){b_selected <- b3; d_selected <-d3}

# finding average birth & death rates ( eqn 6.1)
b_avg <- mean(b_selected [,1]);d_avg <- mean(d_selected[, 1])
Leap_sizes [[1]] <-(error*(b_avg+d_avg))/
(abs(b_avg -d_avg)* max(b_avg ,d_avg))

Leap_sizes [[2]] <- sum(A)*(error*(b_avg+d_avg ))^2
/((b_avg+d_avg)* max(b_avg^2,d_avg ^2))

# the leap size : time increment for tau - leaping
tau <- na.zero(min(Leap_sizes [[1]], Leap_sizes [[2]]))
leap_condition <- na.zero ((1/(10*la)))
if (sum(pop_ti) > pop_ max) {

exploded [[ parasite_fish]] <- TRUE
break }

if (alive_ti == 2) break
# Running tau - leaping if tau >leap _ condition

if(tau >leap_condition ){ # Execute tau - leaping
out <-taulealping_ update _event(A=A,
B=B,J=J,X=X,laB=laB ,laD=laD ,laM_forward=laM_forward ,

laM_backward=laM_backward ,laI=laI ,laX=laX ,
la=la,QB=QB,QD=QD,QM_forward=QM_forward ,
QM_backward=QM_backward ,QI=QI,tau=tau)
X<- out$X;A<- out$A;B<- out$B;
time _increment=tau

} # end of tau - leaping
else if(tau <=leap_condition ){
# Execute exact SSA if tau <= leap _ condition

out <- SSA_ update _event(A=A,B=B,J=J,X=X,
laB=laB ,laD=laD ,laM_forward=laM_forward ,
laM_backward=laM_backward ,laI=laI ,laX=laX ,
la=la,QB=QB,QD=QD,QM_forward=QM_forward ,
QM_backward=QM_backward ,QI=QI)
# time increment for SSA
time _increment <- out$t_incr_SSA
X<- out$X; A<- out$A;B<- out$B

} # end of exact SSA
ti <- ti +time _increment # updating time ti
save _ new <- which ((ti >= save _ti) & ! save _TF)

for (i in save _ new) {
pop[[ parasite_fish]][,i] <- pop_ti
alive[[ parasite_fish ]][i] <- alive_ti}
save _TF <- (ti >= save _ti)
pop_ti <- rowSums(A)
alive_ti <- X

# break if parasite number <0 at any body region
if(any(pop_ti <0) ==TRUE) break

}
# Output : returns pop ( parasite pop at each location and time )
# alive : survival status of fish
# exploded : explosion status
#( whether parasite numbers > pop _ max =10000)
# parasite _ fish : the host - parasite group being simulated
return(list(pop = pop[[ parasite_fish]],
alive = alive[[ parasite_fish]],

exploded =exploded [[ parasite_fish]],
parasite_fish=parasite_fish))
}
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G.7: Exporting external scripts and extracting relevant information from

the empirical data for group simulation
#tau - leaping simulation for a group of fish
### exporting external scripts ###
# Script of function for computing event rates
source("Computing -rates -script.r")
# Script of function for updating exact SSA
source("Update -exactSSA -script.r")
# Script of function for updating tau - leaping
source("Update -tauleaping -script.r")
# Script of function experimental descriptors
# ( fish type , strain , fish size , fish sex &
# areas of the 4 body regions )
source("Descriptors -Data -script.r")
# Script of function for simulating parasites
# only a single fish over time and across body regions
source("Simulation -single -fish -script.r")

# Importing empirical data
Combined_ data <- read.csv(file="Parasite_Data.csv")

# Importing data for area of the 8
# body parts across 18 fish ( measured in mm ^2)
Bodyparts_area <- read.csv(file="Area_Fish_bodyParts.csv")
# Experimental descriptors
Descriptors <-Experiment_descriptors(empirical_ data=

Combined_ data)
fishSize <- Descriptors$fishSize # fish size
fishSex <- Descriptors$fishSex # fish sex
Strain <- Descriptors$Strain # parasite strain
Fish_stock <-Descriptors$Fish_stock # fish stock
# total fish for each parasite - fish group
numF <- Descriptors$numF
# fish IDs for each parasite - fish group
fishID <- Descriptors$fishID
# observed parasite numbers for each parasite - fish group
pop_obs <- Descriptors$pop_obs
# observed surviva status for each parasite - fish group
alive_obs <- Descriptors$alive_obs
# body areas for female ( column 1) & male ( column 2) fish
Area_normalized <-Body_area(Area_ data=Bodyparts_area)

# Initial simulation inputs for A ( parasite numbers )
# and B ( immune status )
A0 <- matrix(0, 4, 2)
A0[1, 1] <- 2 # Intial parasites at the tail
# initial immune response at 4 body regions
# (1= no response , 2= response )
B0 <- rep(1, 4)
# Transition matrix ( between body regions )
J<- matrix(c(0, 1, 0, 0,

1/2, 0, 1/2, 0,
0, 1/2, 0, 1/2,
0, 0, 1, 0), 4, 4, byrow=TRUE)
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G.8: Function for simulating infection dynamics for a group of fish cor-

responding to the empirical data
#To simulate group of fish for each parasite - fish combination as observed
#in the empirical data

SimGroup_tauleap <- function(theta1 ,fish_sex ,
fish_type ,strain ,fish_size ,error){

# Inputs : theta1 = parameter values from prior distribution
# fish _ sex = sex of fish
# fish _ type = type of fish
# strain = parasite strain
# fish _ size = fish size
# error = error bound of tau - leaping
pop_sim <-NULL; alive_sim <- NULL;
exploded_sim <-NULL;results <-NULL;group <-NULL

for(pf in 1:9){
pop_sim[[pf]]<- array(dim = c(numF[[pf]], 4, 9))

# Array for time steps fish was alive for each combination
alive_sim[[pf]]<- array(dim = c(numF[[pf]], 9))

# Array for time steps parasites > pop _ max for each combination
exploded_sim[[pf]]<- array(dim = c(numF[[pf]], 9))

for(i in 1:numF[[pf]]){
results [[pf]]<-sim_tauleap_singlefish(A0=A0,
B0=B0,J=J,b1=matrix(exp(theta1 [1:2]) , 2,2),
b2=matrix(exp(theta1 [3:4]) , 2, 2),
b3=matrix(exp(theta1 [5:6]) , 2,2),
d1=matrix(exp(theta1 [7:8]) , 2, 2, byrow=TRUE),
d2=matrix(exp(theta1 [9:10]) , 2,2,byrow=TRUE),
d3=matrix(exp(theta1 [11:12]) ,2 , 2,byrow=TRUE),
m=matrix(exp(theta1 [13]), 2,2),
r=exp(theta1 [14]),r1=exp(theta1 [15]),
r2=exp(theta1 [16]),r3=exp(theta1 [17]),
s=exp(theta1 [18]),s1=exp(theta1 [19]),
e1=exp(theta1 [20]),e2=exp(theta1 [21]),
e3=exp(theta1 [22]), kappa=exp(theta1 [23]),
f=Area_normalized ,a=fish_size[[pf]][i],
fish_sex=fish_sex[[pf]][i],
fish_type=fish_type[[pf]][i],
strain=strain [[pf]][i],error=error)
pop_sim[[pf]][i, ,]<- results [[pf]]$pop
alive_sim[[pf]][i, ]<- results [[pf]]$alive
exploded_sim[[pf]][i, ]<- results [[pf]]$exploded

group[[pf]]<-results [[pf]]$parasite_fish
}

}
# Output : returns
#( pop _ sim = parasite pop per region and time )
# alive _ sim : survival status of fish
# exploded _ sim : explosion status
#( whether parasite numbers > pop _ max =10000)
# group : the host - parasite groups being simulated

return(list(pop_sim=pop_sim ,alive_sim=alive_sim ,
exploded_sim=exploded_sim , group= unlist(group )))

}
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G.9: Function for performing ROPE+HDI Bayesian hypothesis testing

# Function to perform Region of Practical Equivalence ( ROPE ) and Highest
# Density Interval ( HDI )
require(bayestestR)
ROPE_Cred_Int <- function(theta_distn_diff ,
parameter_ labels , ci_percent =0.89){

if(is.list(theta_distn_ diff )== FALSE){
# standard deviation of differenced posterior samples

sigma_d<- sd(theta_distn_ diff)
output <-bayestestR :: equivalence_test(

# ROPE range recommended by Norman et al (2003)
theta_distn_diff , range =c(-.5*sigma_d,.5*sigma_d),
ci = ci_percent ,ci_method = "HDI")

final_output <- cbind(parameter_ labels ,output)
names(final_output )[1] <- "Parameter"
return(final_output)
}

# theta _ distn _ diff =a list of posterior samples of
# differences of parameters of interest
output <- list() # save ROPE + HDI results
for(i in seq _along(parameter_ labels )){
# standard deviation of differenced posterior samples
sigma_d<- sd(theta_distn_ diff[[i]])

# ROPE range is recommend by Norman et al (2003)
output [[i]]<- bayestestR :: equivalence_test(
theta_distn_ diff[[i]],range =c(-.5*sigma_d,.5*sigma_d),
ci = ci_percent ,ci_method = "HDI")

}

# Function returns ROPE interval ,
# ROPE Percentage or coverage probability ,
# ROPE equivalence decision and the corresponding HDI

final_output <- do.call("rbind",output)
final_output <- cbind(parameter_ labels ,final_output)
names(final_output )[1] <- "Parameters"
return(final_output)

}
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