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This paper introduces the scalar DCC-HEAVY and DECO-HEAVY models for conditional
variances and correlations of daily returns based on measures of realized variances and
correlations built from intraday data. Formulas for multi-step forecasts of conditional
variances and correlations are provided. Asymmetric versions of the models are devel-
oped. An empirical study shows that in terms of forecasts the scalar HEAVY models
outperform the scalar BEKK-HEAVY model based on realized covariances and the scalar
BEKK, DCC, and DECO multivariate GARCH models based exclusively on daily data.
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1. Introduction

The covariance matrix of daily asset returns is used in
everal applications of financial management. Therefore,
odeling the temporal dependence in the elements of

he covariance matrix, often with the ultimate aim of
orecasting, is a key area of financial econometrics. The
ost widespread model class for this purpose is that of
ultivariate generalized autoregressive conditional het-
roskedasticity (MGARCH) models, wherein the condi-
ional covariance matrix of daily returns is specified as a
eterministic function of past daily returns. A survey of
GARCH models is provided by Bauwens, Laurent, and
ombouts (2006).
The increasing availability of intraday data has led

o the development of so-called High-frEquency-bAsed
olatilitY (HEAVY) models, initially in the univariate case
Engle & Gallo, 2006; Shephard & Sheppard, 2010). In
he multivariate case, such models have been introduced
n the stochastic volatility framework by Jin and Maheu
2013), and in the MGARCH one by Noureldin, Shep-
ard, and Sheppard (2012). In the latter framework, the
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main difference is that the conditional covariance ma-
trix of daily returns is specified in the HEAVY case as a
function of lagged realized covariances, instead of lagged
outer products of daily returns in the MGARCH case. Thus,
multi-step forecasts of daily conditional covariance ma-
trices by HEAVY models require as input forecasts of
realized covariances, which are obtained from a dynamic
model for the realized covariance matrix. HEAVY models
are based on more accurate measurements of covari-
ances than GARCH models, and they improve forecasts
of the conditional covariance matrix of daily returns, as
illustrated by Noureldin et al. (2012). A different class
of models that relate the daily return volatility to a re-
alized volatility measure is the realized GARCH model
of Hansen, Huang, and Shek (2012); this type of model has
been extended to the multivariate setup by Gorgi, Hansen,
Janus, and Koopman (2019) and Hansen, Lunde, and Voev
(2014).

A well-known difficulty with MGARCH and HEAVY
models is that the number of parameters they require
tends to be large, being at least a quadratic function
of the dimension of the return vector. Therefore, when
the dimension is more than a handful of assets, a scalar
parameterization is adopted. For example, Noureldin et al.
(2012), for 10 assets, and Opschoor, Janus, Lucas, and

Van Dijk (2018), for 30 assets, adopt the scalar BEKK
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arameterization of Engle and Kroner (1995). This param-
terization, coupled with a targeting procedure, which is
way to estimate the constant parameter matrices of the
odel, facilitates the estimation of the remaining scalar
arameters enormously, since their number is indepen-
ent of the dimension. The scalar BEKK parameterization
mplies that the conditional variances and covariances
ave the same persistence and the same sensitivity to the
ast realized covariances, which may be unrealistic for a
arge number of assets. A factor HEAVY model, proposed
y Sheppard and Xu (2019), avoids this drawback of the
calar BEKK while keeping the number of parameters
anageable for estimation.
The first contribution of this research is the extension

f the HEAVY class by the DCC specification of Engle
2002) and the DECO of Engle and Kelly (2012). Scalar
CC-HEAVY and DECO-HEAVY models are developed. Like
t was done for the BEKK-HEAVY, these models use well-
nown formulations of the corresponding MGARCH mod-
ls, modifying them by specifying the dynamics of the
aily conditional correlation matrix as a function of past
ealized correlations. Likewise, the model we propose for
he realized correlation matrix is of DCC type, instead of
EKK type. In both parts of the model, there is a decou-
ling of the parameters of the variance dynamics (daily or
ealized) from those of the model for the corresponding
orrelation matrix. The decoupling has been shown to be
dvantageous in several respects for MGARCHmodels: the
calar DCC is a more flexible model than the scalar BEKK
nd usually provides a better empirical fit, even after tak-
ng into account its heavier parameterization; each part
f the model can be estimated by QML in two steps (one
or the variance equations, and one for the correlation),
hich makes it practical for handling a dimension of more
han a handful of assets; and it usually improves the
orecast quality. The same advantages occur in the scalar
EAVY model context, and this is confirmed empirically.
The proposed DCC-HEAVY formulation is different from

he model of Braione (2016), where the dynamics of the
aily correlation matrix are driven by the outer product
f the past degarched returns (which is not a correlation
atrix), while the model for the realized covariances
nd variances is of BEKK type. An advantage of the new
pecifications is that they allow us to forecast directly
he correlations several steps ahead, avoiding an approx-
mation due to the fact that otherwise, correlations are
btained by normalizing quasi-correlations.
Stationarity conditions and formulas for multi-step

orecasts are derived from a vector multiplicative er-
or representation of the DCC-HEAVY model, where the
ynamics are driven by both lagged realized measures
nd outer products of past degarched returns, thus en-
ompassing both DCC-HEAVY and DCC-GARCH. Further-
ore, asymmetric impact and HAR-type terms (see Corsi

2009)) are added to the DCC- and DECO-HEAVY models.
The second contribution of this research is a detailed

mpirical comparison of the BEKK-, DCC-, and DECO-
EAVY and GARCH models. All models are applied to the
tocks in the Dow Jones Industrial Average (DJIA) index.
ike in Shephard and Sheppard (2010), the effects of
he lagged squared returns are insignificant when lagged
 E

939
realized variances are included in the conditional variance
equations. Likewise, the effect of the lagged outer product
of degarched returns is insignificant when the lagged
realized correlation matrix is included in the conditional
correlation equation. Moreover, when applying the model
confidence set approach based on statistical and eco-
nomic loss functions, the empirical results show that
the DCC- and DECO-HEAVY models provide better out-
of-sample forecasts than the DCC-GARCH, DECO-GARCH,
BEKK-GARCH, and BEKK-HEAVY models. Including asym-
metric and HAR terms further improves the DCC- and
DECO-HEAVY model forecasts.

The remainder of the paper is organized as follows.
Section 2 introduces the DCC- and DECO-HEAVY models.
Section 3 provides the multiplicative error representation,
the multi-step forecast formulas, and model extensions.
Section 4 presents the estimation procedure. Section 5
provides the empirical results. Section 6 concludes. A
supplementary appendix includes additional theoretical
and empirical results, in particular for a dataset used
by Noureldin et al. (2012).

2. DCC-HEAVY and DCC-DECO models

In the first subsection, the multivariate HEAVY frame-
work of Noureldin et al. (2012) is recalled, in particular
the scalar BEKK-HEAVY model. The scalar DCC-HEAVY and
DCC-DECO models are defined in the next subsections.

2.1. Multivariate HEAVY framework

Let rt = (r1t , r2t . . . rkt )′ denote the k × 1 daily return
ector of day t corresponding to k assets, and r(j)t =

r(j)1t , r(j)2t . . . r(j)kt )′ the corresponding jth intra-daily re-
urn vector at time j on day t , where j = 1, 2, . . . ,m.
ssuming, for instance, six and a half hours of trading per
ay and five-minute returns, m is equal to 78. The outer
roduct of daily returns is the k× k matrix rt r ′

t . The most
imple realized covariance measure for the k assets on day
is the k × k matrix, defined as

Ct =

m∑
j=1

r(j)t r ′

(j)t . (1)

ssuming that m > k, RCt is positive definite (assuming
hat no asset is a linear combination of other assets).
enote by vt the k × 1 realized variance vector of day t ,
onsisting of the diagonal elements of RCt , and by RLt the
ealized correlation matrix of day t , defined as

Lt = {diag(RCt )}−1/2RCt {diag(RCt )}−1/2, (2)

here diag(RCt ) is the diagonal matrix obtained by setting
he off-diagonal elements of RCt equal to zero, and the ex-
onent −1/2 transforms each diagonal element into the
nverse of its square root. Thus, the off-diagonal elements
f RLt are the realized correlation coefficients for the asset
airs, and its diagonal elements are equal to unity.
A multivariate HEAVY model specifies a dynamic pro-

ess for the conditional covariance matrix Ht of the daily
eturn and another one for the conditional mean Mt of the
ealized covariance matrix of day t:

′
(rt rt |Ft−1) := Ht , (3)
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(RCt |Ft−1) := Mt , (4)

where Ft−1 is the information set generated by the daily
and intra-daily observations, and E(rt |Ft−1) = 0 is as-
sumed for simplicity (otherwise, rt denotes the demeaned
return vector). The link between both expectations comes
from the dependence of Ht on past values of functions of
RCt .

For the specification of the dynamics of Ht and Mt ,
Noureldin et al. (2012) adopt the BEKK-type model to
ensure that the conditional covariance matrix is positive
semidefinite. The scalar version of the model, with the
‘‘targeting’’ parameterization of the constant terms, is

Ht = (1 − βH )H̄ − αHM̄ + αHRCt−1 + βHHt−1, (5)
Mt = (1 − αM − βM )M̄ + αMRCt−1 + βMMt−1, (6)

where the k × k matrices H̄ = E(rt r ′
t ) and M̄ = E(RCt ) are

assumed to be positive definite (PD), and targeting means
that these matrices are replaced by their empirical coun-
terparts. For (6), sufficient restrictions for the positivity of
Mt are that αM ≥ 0, βM ≥ 0, βM = 0 if αM = 0, and αM +

βM < 1. For (5), the restrictions αH ≥ 0, βH ≥ 0, βH = 0 if
αH = 0, and βH < 1 are not sufficient to ensure that (1−

βH )H̄ −αHM̄ , and hence Ht , be positive definite. The issue
is explained in detail in Section A of the supplemental
appendix, where the equivalence between (5) and one of
the covariance targeting parameterizations of Noureldin
et al. (2012) is shown. For estimation, in practice we check
that Ht , rather than (1− βH )H̄ − αHM̄ , is positive definite
in the sample period during the numerical maximizing of
the log-likelihood function, but for both datasets we used,
no lack of PDness occurred.

The scalar BEKK-GARCH model corresponds to Eq. (5)
for Ht above, where RCt−1 is replaced by rt−1r ′

t−1 and M̄
by H̄ , thus using only the daily information.

2.2. DCC-HEAVY model

An alternative to the BEKK specification for Ht and
Mt is the DCC model of Engle (2002). Any covariance
matrix can be written as the product DRD, where D is
the corresponding diagonal matrix of standard deviations,
and R is the correlation matrix.

2.2.1. DCC-HEAVY specification of Ht
Let us denote by ht the k × 1 vector of conditional

variances (that is, the diagonal elements of Ht ), by h1/2
t

the vector of conditional standard deviations (obtained by
taking the square root of each entry of ht ), and by Rt the
corresponding conditional correlation matrix. Then, the
conditional covariance matrix Ht can be written as

Ht = Diag(h1/2
t )Rt Diag(h

1/2
t ), (7)

where, for x being a k × 1 vector, Diag(x) is the k × k
diagonal matrix with the entries of x as diagonal elements.

Assumption (3) for the HEAVY-BEKK is replaced by

E(diag(rt r ′

t )|Ft−1) := Diag(ht ), (8)

E(utu′

t |Ft−1) := Rt , where ut = rt ⊙ h−1/2
t . (9)

Thus, instead of specifying altogether the dynamics of
the conditional variances and covariances of the returns,
940
as for instance in (5), the DCC-HEAVY model specifies
the dynamics of the conditional variances of the returns
and of the conditional correlation matrix (Rt ) of the de-
garched returns (i.e., the observed returns divided by their
conditional standard deviations). Notice indeed that

E(utu′

t |Ft−1) = E(rt r ′

t |Ft−1) ⊙
(
h−1/2
t (h−1/2

t )′
)

= Ht ⊙
(
h−1/2
t (h−1/2

t )′
)

is a matrix with unit diagonal elements and off-diagonal
elements that are the conditional correlation coefficients,
that is, the conditional covariances divided by the cor-
responding conditional standard deviations. This is the
same setting as in the DCC-GARCH model of Engle (2002),
and since a covariance is the product of two standard
deviations and a correlation, the expectation of the co-
variance is not the corresponding function of the expected
standard deviations and expected correlation.

The dynamics of the conditional variance vector are
specified as

ht = ωh + Ahvt−1 + Bhht−1, (10)

where vt−1 is defined below (1), ωh is a k × 1 positive
vector, and Ah and Bh are k × k matrices, such that each
entry of ht is positive. To ease the restrictions necessary
for this and to avoid parameter proliferation, Ah and Bh are
restricted to be diagonal matrices with positive entries on
the diagonal, and the elements on the diagonal of Bh to
be smaller than unity. The diagonality restrictions imply
that each conditional variance depends on its own lag
and the corresponding previous realized variance, as in
the HEAVY-r model of Shephard and Sheppard (2010).
More generally, Ah can be non-diagonal to allow spillover
effects. If Bh is restricted to be diagonal, the model of
the k variances can be estimated in k separate parts (see
Section 4). The DCC-GARCH model of Engle (2002) for
the conditional variances is similar to (10), with r2t−1 (the
squared elements of rt−1) replacing vt−1.

The conditional correlation matrix is specified through
a scalar dynamic equation:

Rt = R̃ + αrRLt−1 + βrRt−1, (11)
R̃ = (1 − βr )R̄ − αr P̄, (12)

here αr ≥ 0, βr ≥ 0, βr = 0 if αr = 0, βr < 1, R̄ is the
× k unconditional correlation matrix of ut , and P̄ is the
× k unconditional expectation of RLt . The elements of R̄
nd P̄ can be set to their empirical counterpart to simplify
he estimation, so that only two parameters (αr and βr )
emain to be estimated. By substituting (12) in (11), Rt is
qual to R̄ + αr (RLt−1 − P̄) + βr (Rt−1 − R̄), and by taking
he unconditional expectation on both sides, E(Rt ) = R̄ if
(RLt ) = P̄ . The specification of Rt is similar in spirit to the
pecification of Ht in (5), by taking into account that E(Rt )
s not equal to E(RLt ), like E(RCt ) is not equal to E(Ht ).

Since R̄, P̄ , and RLt−1 have unit diagonal elements,
nd assuming that the initial matrix R0 is a correlation
atrix, it is obvious that Rt has unit diagonal elements,
ut to be a well-defined correlation matrix it must be
ositive definite (PD). This is not necessarily the case for
he set of values of (αr , βr ) stated above. The issue is
llustrated in Section B of the supplemental appendix. For
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stimation, we proceed (like for the BEKK-HEAVY model)
y checking that Rt (rather than R̃) is positive definite
n the sample period during the numerical maximizing
f the log-likelihood function. Like for the BEKK-HEAVY
odel, for the datasets we used, no issue of a lack of
Dness occurred.
An advantage of the proposed specifications of Rt ,

ased on the realized correlation matrix, is that there is no
eed to transform the covariance matrix of the degarched
eturns into a correlation one, as in the DCC-GARCH
odel of Engle (2002), which is specified by

t = {diag(Qt )}−1/2Qt{diag(Qt )}−1/2, (13)

ith the k × k symmetric PD matrix

t = (1 − αq − βq)Q̄ + αqut−1u′

t−1 + βqQt−1, (14)

here αq ≥ 0, βq ≥ 0, βq = 0 if αq = 0, αq + βq < 1,
nd Q̄ is a k × k PD matrix. Qt is actually the conditional
ovariance matrix of ut , with non-unit diagonal elements,
nd by (13), it is transformed into a correlation matrix.
owever, this parameterization raises two issues, one
bout estimation, the other about forecasting.
First, because E(utu′

t |Ft−1) = Rt ̸= Qt , Q̄ is not
qual to E(Qt ) and therefore is not consistently estimated
y
∑

t utu′
t/T . Thus, using this average to estimate Q̄ as

roposed by Engle (2002), so that only αq and βq remain
o be estimated by QML, introduces an asymptotic bias
n their estimator. See Aielli (2013) for details and an
lternative formulation of (14) that avoids this problem.
Second, at date t , the (s + 1)-step-ahead forecast of

t+s+1 requires Et (ut+su′
t+s) = Et (Rt+s), which is not avail-

ble in closed form due to the nonlinear relation (13) be-
ween Rt+s and Qt+s. By assuming Et (Rt+s) ≈ Et (Qt+s), En-
le and Sheppard (2001) obtain the closed-form forecast
ecurrence relation

t (Rt+s+1) = Q̄ + (αq + βq)Et (Rt+s − Q̄ ) (15)

that starts with Et (Rt+1) = Rt . The correlation forecasts
are thus approximate and biased.

The DCC-HEAVY model differs from the DCC-GARCH
model in three ways: 1) the dynamics of conditional vari-
ances ht are driven by the lagged realized variances vt−1;
2) the conditional correlation Rt is modeled directly rather
than parameterized in a sandwich form as in (13); and
3) the dynamics of the conditional correlation matrix
Rt are driven by the lagged realized correlation matrix.
The last two features allow us to obtain exact closed
forms for s-step-ahead correlation forecasts, as explained
in Section 3.

2.2.2. DCC-HEAVY specification of Mt
The specification of the DCC-HEAVY model requires

defining the dynamics of

Mt = Diag(m1/2
t )Pt Diag(m

1/2
t ), (16)

where mt is the vector containing the main diagonal of
Mt , that is, the conditional means of the realized vari-
ances, and Pt is the corresponding conditional mean of the
realized correlation matrix.
 d
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The conditional expectation of the realized variances is
specified as

mt = ωm + Amvt−1 + Bmmt−1, (17)

here ωm is a positive k × 1 vector, and Am and Bm are
× k matrices that are restricted to be diagonal matrices
ith positive entries, as discussed after (10).
The dynamic process for the conditional expectation of

he realized correlation matrix is defined in the following
ay:

t = (1 − αp − βp)P̄ + αpRLt−1 + βpPt−1, (18)

here αp ≥ 0, βp ≥ 0, βp = 0 if αp = 0, αp + βp < 1, and
¯ is a correlation matrix that is the unconditional mean
f RLt . The elements of P̄ can be set to their empirical
ounterpart to render the estimation simpler. E(RLt ) is not
qual to the unconditional correlation matrix E(Pt ), due
o the nonlinearity of the transformation from covariance
o correlation. However, Bauwens, Storti, and Violante
2012) show that if RCt is computed from a large enough
umber of high-frequency returns, P̄ should be almost
qual to E(RLt ).
Eqs. (10)–(12) and (17)–(18) define the DCC-HEAVY

odel. By setting αr = βr = αp = βp = 0, the model
implifies into a constant conditional correlation HEAVY
odel. Estimation is discussed in Section 4.

.3. DECO-HEAVY model

The DECO-HEAVY model differs from the DCC-HEAVY
n the specification of the conditional correlation matrix
orresponding to Ht and of the conditional mean of the
ealized correlation matrix corresponding to Mt .

The specification of the conditional correlation ma-
rix corresponding to Ht , denoted by RE

t , is based on the
ssumption that all the conditional correlations are the
ame time-varying correlation ρt ∈ (−1/(k − 1), 1),
hosen to be the average of the correlation coefficients of
t = (rt,ij), defined by (11)–(12):

RE
t = (1 − ρE

t )Ik + ρE
t Jk, (19)

E
t =

2
k(k − 1)

∑
i>j

rt,ij. (20)

here Jk is a k×k matrix of ones. The DECO-GARCH model
of Engle and Kelly (2012) uses as the dynamic equicorre-
lation coefficient the average of the DCC-GARCH correla-
tions defined by (13) together with the modification of
(14) proposed by Aielli (2013).

Likewise, the conditional mean of the realized cor-
relation matrix corresponding to Mt , denoted by PE

t , is
specified as:

PE
t = (1 − ρP

t )Ik + ρP
t Jk, (21)

ρP
t =

2
k(k − 1)

∑
i>j

pt,ij. (22)

The main advantage of DECO with respect to DCC,
specially when k is very large, is the availability of an-
lytical expressions of the inverse and determinant of the
quicorrelated matrices, which are used in the compu-
ation of the likelihood function for estimation, and of
conomic loss functions for forecast evaluations. For more
etails, see Engle and Kelly (2012).
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. Representation, forecasting, and extensions

In this section, the DCC-HEAVY and the closely re-
ated DCC-GARCH and DCCX-GARCHX models are rep-
esented as multiplicative error models (MEMs), from
hich stationarity conditions and closed-form formulas

or multi-step forecasts follow directly. An extension of
he DCC-HEAVY model is proposed by adding asymmetric
mpact and HAR terms.

.1. Multiplicative error representation

An MEM for a positive variable xt specifies it as the
roduct of a positive conditional mean and a positive er-
or that follows some distribution with expectation equal
o one. If xt is a squared centered return, the conditional
ean is the conditional variance. This can be extended to

he elements of a vector. In this subsection, the focus is on
he conditional expectation formulation, and not on the
istribution.
For the conditional and realized variance equations,

efine the vectors of 2k × 1 elements xt = [(r2t )
′, v′

t ]
′ and

µt = [h′
t ,m

′
t ]

′. The conditional expectation formulation of
the conditional and realized variance Eqs. (10) and (17) is

E(xt |Ft−1) := µt ,

µt = ω + Axt−1 + Bµt−1, (23)

where

ω=

[
ωh
ωm

]
, A=

[
0 Ah
0 Am

]
, B=

[
Bh 0
0 Bm

]
(24)

and the 0 symbol stands for a k × k matrix of zeros. If

A=

[
Ah 0
0 Am

]
, (25)

the top part becomes the DCC-GARCH model, and the
realized variance model is kept in the bottom part. If

A=

[
Ah Ahm
0 Am

]
, (26)

the model (referred to as DCC-GARCHX) includes in the
top part both the lagged squared return and the lagged
realized variance, encompassing the two previous models.

Defining the 2k × k matrices Yt = [utu′
t , RLt ]

′ and
Φt = [Rt , Pt ]′, the conditional expectation formulation of
the conditional and realized correlation matrix Eqs. (11)
and (18) is

E(Yt |Ft−1) := Φt ,

Φt = Ω + (α ⊗ Jk)Yt−1 + (β ⊗ Jk)Φt−1, (27)

where

Ω=

[
R̃
P̄

]
, α=

[
0 αr
0 αp

]
, β=

[
βr 0
0 βp

]
,

and the 0 symbol is scalar in this case. If α=

[
αq 0
0 αp

]
,

β=

[
βq 0
0 βp

]
, Qt replaces Rt in the definition of Φt , and

the constant term is adapted, then the top part becomes
the ‘‘quasi-correlation’’ Eq. (14) of the DCC-GARCH model,
942
the realized correlation equation being kept in the bottom
part. If

α=

[
αq αr
0 αp

]
, β=

[
βr 0
0 βp

]
, (28)

both ut−1u′

t−1 and RL′

t−1 are included in the top part
(referred to as DCCX-GARCH).

Processes such as defined by (23) and (27) can be writ-
ten as VARMA(1,1) by defining appropriate error terms.
From this representation, it follows that the covariance
stationarity condition is that the largest eigenvalue of
A + B is smaller than unity for (23), and likewise for the
largest eigenvalue of α+β for (27). For the matrices α and
β defined after (27), the previous condition is equivalent
to βr < 1 and αp + βp < 1, as written after (11) and
(18). The unconditional first moment is then obtained by
applying standard results for the VARMA representations.
For example, E(xt ) = (I2k−A−B)−1ω, which gives E(vt ) =

(Ik−Am−Bm)−1ωm and E(r2t ) = (Ik−Bh)−1
[ωh+AhE(vt )] for

he variances of the DCC-HEAVY model. For the correla-
ions, E(RLt ) = P̄ and E(utu′

t ) = [R̃+αrE(RLt )]/(1−βr ) = R̄,
he last equality resulting from (12).

.2. Multiple-step-ahead forecasting

Forecasts of the conditional covariance matrices of
aily returns are used in several financial applications.
he s-step-ahead forecast of Ht+s, computed at date t , is
efined in the case of DCC-type models as

t+s|t = Diag
{
[Et (ht+s)]1/2

}
Et (Rt+s)Diag

{
[Et (ht+s)]1/2

}
,

(29)

here Et (.) is a short notation for E(.|Ft−1). Notice that as
n the DCC model, Ht+s|t is not equal to Et (Ht+s), due to
he nonlinearity of the transformation of covariances into
orrelations and of the square root function.
To obtain Et (ht+s) and Et (Rt+s), the conditional expec-

ation expressions of the previous subsection are useful
o compute Et (µt+s) and Et (Φt+s), denoted by µt+s|t and
t+s|t , respectively.
Starting from (23) leads to Et (µt+s). In moving more

han one step ahead, xt+s|t is not known and needs to
e substituted with its corresponding conditional expec-
ation µt+s|t . Hence,

t+1|t = ω + Axt + Bµt ,

µt+s|t = ω + (A + B)µt+s−1|t for s ≥ 2, (30)

hich can be solved recursively, giving the closed-form
orecast

t+s|t = ω̃ + C s−1µt+1|t for s ≥ 2,

here ω̃ = (I − C)−1(I − C s−1)ω and C = A + B.
Proceeding in the same way for Et (Φt+s) from (27)

ives

t+1|t = Ω + (α ⊗ Jk)Yt + (β ⊗ Jk)Φt ,

Φt+s|t = Ω + ((α + β) ⊗ Jk) Φt+s−1|t for s ≥ 2. (31)

he closed-form forecast is

t+s|t = Ω̃ +
(
cs−1

⊗ Jk
)
Φt+1|t for s ≥ 2,

here Ω̃ = (I − c)−1(I − cs−1)Ω and c = α + β.
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For instance, the DCC-HEAVY model s-step-ahead fore-
casts µt+s|t and Φt+s|t are derived from (30) and (31) by
setting A, B, α, and β to the matrices defined after (23) and
27). The s-step-ahead forecast Et [ht+s] of the conditional
variance vector corresponds to the first k elements of
µt+s|t , and the s-step forecast Et [Rt+s] of the conditional
correlation corresponds to the k× k upper block of Φt+s|t .

3.3. Model extensions

It has long been known that stock markets react dif-
ferently to positive and negative news. The asymmetric
effect is now commonly used to refer to any volatil-
ity model, univariate and multivariate alike, in which
the (co)variances respond asymmetrically to positive and
negative shocks. The DCC-HEAVY model can be extended
by incorporating the asymmetric effect into the variance
and correlation equations. In the variance equation, the
asymmetric effect implies that volatility tends to increase
more following negative return shocks than equally sized
positive shocks. In the correlation equation, the asym-
metric effect implies that the correlation between stock
returns tends to increase when the market turns down.
The extended model is called the ADCC-HEAVY model.

Define dt = (d1t , d2t , . . . , dkt )′, where dit = 1 if rit < 0,
and dit = 0 if rit ≥ 0, for i = 1, . . . , k, and Dt =

dtd′
t − diag(dtd′

t ) (a matrix with diagonal elements equal
to 0). The conditional variance and correlation equations
of the ADCC-HEAVY model are then

ht = ωh + Ahvt−1 + Bhht−1 + Γhdt−1 ⊙ vt−1, (32)
Rt = R̃ + αrRLt−1 + βrRt−1 + γrDt−1 ⊙ RLt−1, (33)
R̃ = (1 − βr )R̄ − (αr P̄ + γr D̄ ⊙ P̄), (34)

where Γh is a k × k diagonal matrix, and D̄ is the sam-
ple mean of Dt . Eq. (32) extends (10); asymmetric ef-
fects correspond to positive values on the diagonal of Γh.
Eqs. (33)–(34) extend (11)–(12). The asymmetric effect
corresponds to a positive value of γr : the impact of the
lagged realized correlation between assets i and j on their
current conditional correlation is equal to αr + γr only if
both ri,t−1 and rj,t−1 are negative. Otherwise, the impact
is reduced to αr if γr is positive. Notice that the diagonal
elements of Dt−1⊙RLt−1 and D̄⊙P̄ are equal to one, so that
the same holds for Rt . Like in the simpler model where
γr = 0, in estimation, (αr , βr , γr ) are constrained to values
such that Rt is PD for all t . In the empirical applications,
this did not create any difficulty.

The same asymmetric effects can be included in the
realized variance and correlation equations. Furthermore,
the heterogeneous autoregressive (HAR) model of Corsi
(2009) has emerged as a simple and powerful way to in-
clude the long-memory feature of realized volatilities. The
model was extended to the multivariate setting by Chiriac
and Voev (2011) and Oh and Patton (2016). Adding HAR
terms to the realized variance and correlation Eqs. (17)
and (18), respectively, results in richer dynamic equa-
tions:

mt = ωm + Amvt−1 + Bmmt−1 + Γmdt−1 ⊙ vt−1

+ Awvw m m

m t−1 + Amvt−1, (35)

943
Pt = P̃ + αpRLt + βpPt−1 + γpDt−1 ⊙ RLt−1

+ αw
p RL

w
t−1 + αm

p RL
m
t−1, (36)

where Γm, Aw
m, and Am

m are k× k diagonal matrices, vw
t−1 =

1
5

∑5
j=1 vt−1−j, vm

t−1 =
1
22

∑22
j=1 vt−1−j, RLw

t−1 =
1
5

∑5
j=1

RLt−1−j, RLmt−1 =
1
22

∑22
j=1 RLt−1−j, and P̃ = (1 − αp −

βp − γr D̄r
− αw

p − αm
p )P̄ . Although Pt has unit diagonal

elements, in estimation, the parameter space must be
constrained to ensure that this matrix is PD for all t . HAR
terms are not added to the conditional covariance and
correlation equations, since these effects are insignificant
in the empirical application.

Other ways to define the asymmetric effect have been
used. For example, one can define dit = 1 when the
stock volatility RCii,t is ‘‘high’’ (above some threshold). In
the correlation equation, that implies that the correlation
between two stock returns increases more when both
stocks are highly volatile than if neither or only one is
highly volatile. Another asymmetric effect is to let all
correlations increase if the market volatility (for instance
measured by VIX) increases; see Bauwens and Otranto
(2016).

Section C of the supplemental appendix provides the
formulas of multiple-step forecasts of the extended mod-
els.

4. Estimation

The DCC- and DECO-HEAVY models are parameterized
with a finite-dimensional p×1 parameter vector θ ∈ Θ ⊂

Rp. Partitioning θ ′ into (θ ′

H , θ ′

M ), where the pH × 1 vector
θH is the parameter vector of the HEAVY model for Ht , and
the pM ×1 vector θM is the parameter vector of the HEAVY
model for Mt , θH and θM can be estimated separately, as
they are variation-free in the sense of Engle, Hendry, and
Richard (1983). Moreover, each of these estimations can
be split into two steps, as explained below.

4.1. Estimation of θH

To get a quasi-likelihood function, we add to assump-
tion (8)–(9) the hypothesis that the distribution of the
innovation of the return vector is multivariate Gaussian:

ut |Ft−1 ∼ N(0, Rt ), (37)

implying that rt |Ft−1 ∼ N(0,Ht ), with Ht defined in (7).
Neglecting irrelevant constants, the quasi-log-likelih-

ood function for T observations, given initial values, is

QLH (θH ) = −
1
2

T∑
t=1

(
log |Ht | + r ′

tH
−1
t rt

)
(38)

= −
1
2

T∑
t=1

(
2 log |Diag(h1/2

t )| + log |Rt | + u′

tR
−1
t ut

)
.

his function can be maximized numerically in a single
tep, but for large k, the large dimension of the parameter
pace makes this difficult. A two-step estimation can be
ased on a partition of θH into θH1, the parameters of

the variance Eq. (10), and θH2, the parameters of the cor-
relation Eq. (11). The two-step procedure was proposed
by Engle (2002) for the DCC-GARCH model.
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The first step consists in estimating θH1 by maximizing
he quasi-log-likelihood obtained by replacing Rt in the
econd line of (38) by the identity matrix, so that the
bjective function does not depend on θH2:

LH1(θH1) = −
1
2

T∑
t=1

(
2 log |Diag(h1/2

t )| + u′

tut

)
. (39)

The matrix Ah of (10) can be non-diagonal to allow spillo-
ver effects, but the matrix Bh must be diagonal to allow
a separate estimation of the k equations. In the case
of GARCH models with the same structure, Francq and
Zakoian (2016) provide the asymptotic properties of the
separate (equation-by-equation) estimation of the vari-
ance equations. In our empirical analysis, both Ah and Bh
are restricted to be diagonal.

The second step maximizes (38) with respect to θH2,
fixing θH1 to the value θ̂H1 obtained at the first step. The
second step objective function can be written as

QLH2(θH2;θ̂H1) = −
1
2

T∑
t=1

(
log |Rt | + û′

tR
−1
t ût

)
, (40)

where ût = rt ⊙ ĥ−1/2
t , and ĥt means that ht defined in

(10) is evaluated at θH1 = θ̂H1.
The two-step estimator is presumably a consistent but

inefficient estimator of the parameter θH under condi-
tions (such as asymptotic identification, strict stationarity,
and ergodicity of the time-series processes) similar to
those stated in Engle and Sheppard (2001) for the DCC-
GARCH model. The two-step estimation method is nu-
merically tractable for large k, if R̄ and P̄ are targeted,
i.e., estimated by their empirical counterparts, as pro-
posed below (12). The impact of the targeting is a loss
of efficiency. Noureldin et al. (2012) discuss this issue for
the BEKK-HEAVY model, which is estimated in a single
step. Further work to derive rigorously the asymptotic
distribution of the single- and two-step estimators of the
DCC-HEAVY, with and without targeting, is needed and
beyond the scope of this paper. In Section 4.3, we provide
the results of a simulation study of the properties of the
two-step estimator.

4.2. Estimation of θM

Since a realized covariance matrix is symmetric pos-
itive definite, a natural choice of distribution to form a
likelihood function for the realized covariance process
is the Wishart distribution. This assumption has been
used in several papers, e.g., Bauwens, Braione, and Storti
(2016), Bauwens et al. (2012), Chiriac and Voev (2011),
Golosnoy, Gribisch, and Liesenfeld (2012), Gouriéroux,
Jasiak, and Sufana (2009), and Noureldin et al. (2012).

We assume that conditionally on the past informa-
tion set, RCt follows a central Wishart distribution of
dimension k, and we denote this assumption by

RCt |Ft−1 ∼ Wk(ν,Mt/ν), (41)

where ν is the degrees-of-freedom parameter restricted
by ν > k − 1. The chosen parameterization implies that

E(RC |F ) := M .
t t−1 t

944
Using the expression of a Wishart density function,
and of Mt in (16), the quasi-log-likelihood function for a
sample of T observations, given initial conditions, is

QLM (θM ) = −
v

2

T∑
t=1

[
log |Mt | + tr(M−1

t RCt )
]

(42)

= −
v

2

T∑
t=1

{
2 log |Dm,t | + log |Pt | + tr[(Dm,tPtDm,t )−1RCt ]

}
,

where θM is the vector of the parameters that appear in
(17) and (18), and Dm,t stands for Diag(m

1/2
t ). In the above

expression, terms that depend on ν but do not depend
on θM are not included. The parameter ν is considered
a nuisance parameter that can be neglected to estimate
θM , and practically it can be set to unity without loss of
information, since the score for θM is proportional to the
value of this parameter.

As shown by Bauwens et al. (2012), the Wishart as-
sumption provides a quasi-likelihood function, which can
serve as an objective function to get a single-step esti-
mator. They also show that the DCC-HEAVY model part
for the realized covariance matrix can be estimated in
two steps. The parameter space θM is split into θM1 for
the parameters in the realized volatility model and θM2
for the parameters in the realized correlation model. We
denote by QLM1 the quasi-log-likelihood where Pt in (42)
is replaced by the identity matrix and ν is set to unity:

QLM1(θM1) = −
1
2

T∑
t=1

[
2 log |Dm,t | + tr(D−1

m,tRCtD−1
m,t )

]
.

(43)

This estimation is split into k separate estimations when
the matrices Am and Bm of (17) are restricted to be diag-
onal.

We denote by QLM2 the quasi-log-likelihood where θM1
is fixed at the value θ̂M1 obtained at the first step:

QLM2(θM2;θ̂M1)

= −
1
2

T∑
t=1

{
log |Pt | + tr[(P−1

t − Ik)D̂−1
m,tRCt D̂−1

m,t ]

}
, (44)

where D̂m,t means that D̂m,t is evaluated at θM1 = θ̂M1. The
parameter vector θM2 includes αp, βp, and the elements of
P̄ . The latter can be targeted by the unconditional mean of
the realized correlations, as discussed after (18), in which
case the second-step maximization is done with respect
to two parameters and is therefore feasible for large k.

4.3. Properties of the QML estimator by simulation

Shephard and Sheppard (2010) provide the formula of
the asymptotic Gaussian distribution and its covariance
matrix for the QML estimator of the univariate HEAVY
model, with and without targeting. Noureldin et al. (2012)
provide the same type of result for the BEKK-HEAVY
model. The asymptotic theory of Shephard and Shep-
pard (2010) is relevant for the estimators of the parame-
ters of the variance equations of the DCC-HEAVY model,
since these equations are univariate models. A complete
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Table 1
Simulation results for the two-step QMLE of the DCC-HEAVY parameters.

T = 2000 T = 4000

Ah Bh Am Bm Ah Bh Am Bm

Min RB −2.83 −4.89 −0.18 −2.11 −2.02 −2.31 −0.09 −1.13
Med RB 2.15 −3.47 0.23 −0.53 1.28 −1.73 0.12 −0.25
Max RB 13.44 8.04 3.02 −0.27 6.32 6.10 1.61 −0.12
Min RMSE x100 19.28 12.91 1.73 1.84 12.73 8.13 1.22 1.27
Med RMSE x100 25.04 16.41 1.87 2.01 17.69 11.54 1.31 1.43
Max RMSE x100 33.43 19.69 2.68 2.70 23.94 14.51 1.62 1.63

αr βr αm βm αr βr αm βm

True 0.069 0.866 0.042 0.946 0.069 0.866 0.042 0.946
RB −3.229 −0.031 −0.139 −0.199 −1.534 −0.037 −0.416 −0.095
RMSE x100 0.463 0.882 0.041 0.196 0.290 0.593 0.033 0.099
N. test 0.001 0.01 0.62 0.82 0.32 0.50 0.91 0.57

Min: minimum; Max; maximum; Med: median; RB: relative bias (in percentages); RMSE: root mean squared error; see
the definitions in (45) For the variance parameter vectors (Ah , Bh , Am , Bm): the values are the minimum, median, and
maximum of the RB and RMSE across the 29 parameters in each vector. N. test: p-value of the Jarque–Bera normality test
of the sampling distribution. The reported values are obtained from 1000 simulated samples of the data generating process
defined in Section 4.3.
s
m
c

d
i
t
t
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symptotic distribution theory for the single-step and
wo-step QML estimators of θH and θM of the DCC-HEAVY
odel, with or without targeting, is beyond the scope of

his paper. Some results of a simulation study are reported
elow, focusing on the bias, the root mean squared error,
nd the normality of the sampling distribution of the two-
tep estimator in the case of targeting, as defined in the
revious subsections and used in Section 5.
The parameters of the process from which the data are

enerated are taken from the empirical results reported in
he next section. The data-generating process is defined
y (16)–(18) for the Mt part; once mt is computed as (17)
nd Pt as (18), Mt is computed as defined by (16). Next, a
ealized covariance matrix RCt is simulated according to
41), where ν is set to 50. The corresponding diagonal vt
nd correlation matrix RLt are the ‘‘observed’’ (simulated)
ata for date t and are also used as inputs to compute
t+1, Pt+1, ht+1, and Rt+1. For the Ht part, Ht is simulated

as Nk(0,Ht ), where Ht is computed as defined by (7);
for this, ht is computed as in (8) and Rt as in (11)–(12).
The dimension k is equal to 29, like in the empirical
application of Section 5. A sample of T observations is
generated and used for estimation; we set T = 2000
and 4000 to illustrate the impact of increasing the sample
size. The largest sample size of 4000 is chosen close to
the sample size of the application in Section 5, and the
smallest is close to the sample size of the application
reported in Section F of the supplemental appendix. For
each T , the data simulation and the parameter estimation
is repeated 1000 times, delivering 1000 estimates of each
parameter.

Table 1 provides a synthetic view of the simulation
results. The relative bias (RB) and root mean squared error
(RMSE) are defined as

RB(φ̂) = 100 ×
1
S

S∑
s=1

(φ̂s − φ0)
φ0

,

RMSE(φ̂) =

√1
S

S∑
s=1

(φ̂s − φ0)2,

(45)
945
for the estimator φ̂ of the parameter φ (an element of θ )
having the true value φ0 and estimated by φ̂s for the sth
imulated dataset. The RMSE values indicated in the table
ust be divided by 100 to obtain the actual values. Some
omments about the results follow.
The RMSE in absolute values and the relative biases

ecrease (with two minor exceptions for the RMSE)) as T
ncreases, which indicates the likely consistency of the es-
imator. Each RMSE for T = 4000 is approximately equal
o (actually, a bit smaller than) the corresponding one
or T = 2000 divided by the square root of 4000/2000,
hich indicates that convergence occurs at the rate

√
T .

The Jarque–Bera normality tests of the sampling distribu-
tions of the correlation parameter estimators indicate that
normality is not rejected (except for αr and βr at T =

2000). In brief, the results indicate that the consistency
and the asymptotic normality are likely properties of the
QML estimator; notice that the QML estimator is actually
an ML estimator, since the estimated model is correctly
specified in the simulation study.

For the estimators of the parameters of the variance
equations, the relative median biases and RMSE are gen-
erally small in absolute values; for T = 4000, the largest
median bias is −1.73%. The results for the estimator of
each equation are in Tables D1 and D2 of Section D of
the supplemental appendix. For the correlation parameter
estimators, the largest bias is −1.53% at T = 4000, and the
other biases are smaller than 1%. The RMSEs are small and
of the same order of magnitude as the standard errors of
the estimates of Section 5: for example, for α̂h, the RMSE is
equal to 0.0029 in Table 1 for T = 4000, and the standard
error is equal to 0.0065 (based on Table 3) for T = 4318.

5. Empirical application

5.1. Data description

High-frequency data for 29 stocks belonging to the
Dow Jones Industrial Average (DJIA) index are used; the
30th stock was dropped, since it was not permanently in
the index during the sample period. The sample period
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Fig. 1. The figure shows the log realized volatilities of JP Morgan (JPM) and Exxon Mobil (XOM), the log realized covariance, and the realized
correlation between these stocks, over the sample period 03/01/2001–16/04/2018.
is 3 January 2001 to 16 April 2018 with a total of 4318
trading days, and the data source is the TAQ database.

The stock names and tickers are: Apple Inc. (AAPL),
merican Express Company (AXP), The Boeing Company
BA), Caterpillar Inc. (CAT), Cisco Systems, Inc. (CSCO),
hevron Corporation (CVX), The Walt Disney Company
DIS), DowDuPont Inc. (DWDP), General Electric Com-
any (GE), The Goldman Sachs Group, Inc. (GS), Home
epot Inc. (HD), International Business Machines Corpo-
ation (IBM), Intel Corporation (INTC), Johnson & John-
on (JNJ), JPMorgan Chase & Co. (JPM), The Coca-Cola
ompany (KO), McDonald’s Corporation (MCD), 3M Com-
any (MMM), Merck & Co., Inc. (MRK), Microsoft Cor-
oration (MSFT), Nike, Inc. (NKE), Pfizer Inc. (PFE), The
rocter & Gamble Company (PG), The Travelers Compa-
ies, Inc. (TRV), United Health Group Incorporated (UNH),
nited Technologies Corporation (UTX), Verizon Commu-
ications Inc. (VZ), Walmart Inc. (WMT), and Exxon Mobil
orporation (XOM).
The daily realized covariance matrices are computed

s explained at the beginning of Section 2, using five-
inute returns. The synchronization of intraday prices of

he 29 stocks was done using five-minute intervals; the
rice closest (from the left) to the respective sampling
oint was taken; and the first and last 15 min of the day
9:30–16:00) were excluded, so that m = 72 in (1).
946
Descriptive statistics are provided in Table E1 of the
supplemental appendix. For each stock, it reports the
time-series averages and standard deviations of its squared
returns and realized variances, and the means and stan-
dard deviations of the time-series averages of its realized
covariances and correlations with the other 28 stocks.
Each average realized variance does not account for the
overnight variation and is therefore a fraction (in most
cases 50 to 60 percent) of the corresponding average
squared return.

Fig. 1 shows a representative example of time-series
plots of the realized variances of two stocks (JPM and
XOM) and the corresponding realized covariances and
correlations.

The focus of the empirical application is a forecasting
comparison of the conditional covariance and correlation
matrices, and the conditional variances of the 29 stocks
using a set of models. Before reporting the results of the
comparisons, estimation results are reported for the DCC
and DECO models.

5.2. Estimation results for the full period

Table 2 presents summary statistics (median, mini-
mum, and maximum) of the first-step parameter esti-
mates (except the constant terms) of the 29 variance
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Table 2
Summary of parameter estimates of the variance equations for 29 stocks.

GARCH GARCHX HEAVY-h HEAVY-m
(23)-(25) (23)-(26) (10) (17)

Ah Bh Ah Ahm Bh Ah Bh Am Bm

Min 0.024 0.830 0.002 0.103 0.199 0.353 0.199 0.297 0.514
Med 0.072 0.916 0.028 0.698 0.507 0.781 0.481 0.369 0.606
Max 0.117 0.971 0.068 1.748 0.885 1.748 0.775 0.470 0.695
λmax 0.995 0.996 0.996
λmin 0.927 0.199 0.199

Minimum (Min), median (Med), and maximum (Max) are the summary statistics of the estimates; λmax
and λmin are, respectively, the largest and smallest eigenvalues of the corresponding A + B matrix; see
(23)–(26) for their definition for the GARCH, GARCHX, and HEAVY models. All estimates are provided
in Table E2 of the supplementary appendix. For Ah of GARCHX, the statistics are for the 21 non-zero
estimates (8 estimates are equal to 0).
a
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quations of the GARCH, GARCHX, HEAVY-h, and HEAVY-
models. The estimates for each stock, and the asso-

iated robust t-statistics, are given in Table E2 of the
upplemental appendix.
The estimates of the Bh parameters in the HEAVY-h

odel are smaller than in the GARCH model (median
f 0.481 versus 0.916), while the estimates of the Ah
arameters are much larger (medians of 0.781 versus
.072). The influence of these differences is visible in the
ottom panel of Fig. 2, which shows (in log) the time
eries of the average (over the 29 stocks) of the corre-
ponding fitted conditional variances. The GARCH path is
moother than the HEAVY-h path, and the latter fluctu-
tes locally more strongly than the former, responding
aster to recent changes of volatility. Similar differences
ccur for each stock. The GARCH parameter estimates
re much more homogeneous across the different stocks
han the HEAVY-h estimates. The values of the HEAVY-m
arameter estimates are more similar to HEAVY-h than to
ARCH, though they are much more homogeneous than
or HEAVY-h.

In the nesting GARCHX model, the coefficient (in Ah)
f the lagged squared return is set to zero for eight stocks
ut of 29 because a non-negativity constraint is imposed
nd is binding; for these stocks, GARCHX estimates are
dentical to HEAVY-h. For the 21 other stocks, the es-
imate is positive (between 0.002 and 0.068), with t-
tatistics below 1.5 in 12 cases (out of 21), and in four
ases larger than 2. Even though the t-statistic has a non-
tandard distribution, since the null hypothesis of zero
s on the boundary of the parameter space, these results
uggest that for almost all stocks, the estimate is not
ignificant. On the contrary, the estimate of the lagged
ealized variance coefficient (in Amh) is positive (between
.103 and 1.748, with 0.698 as the median value) and the
ssociated t-statistics are usually large enough to suggest
hey are significant (only three are below 2.5). The log-
ikelihood gain of GARCHX over HEAVY-h is equal to 5 for
he 21 additional parameters, and hence it appears to be
inor. On the contrary, the gains of GARCHX and HEAVY-
over GARCH are substantial (41 and 36, respectively).
otice that GARCH and HEAVY-h are not nested, but they
ave the same number of parameters, so choosing be-
ween them using their log-likelihood values is equivalent
o a choice based on model choice criteria. In brief, these
esults suggest that the conditional variance dynamics
947
re better captured by the lagged realized variance than
y the lagged squared return, confirming the findings
f Shephard and Sheppard (2010).
Table 2 also reports the smallest and largest eigenval-

es of the matrix A+B (see Section 3.1) corresponding to
ach model (GARCH, GARCHX, and HEAVY). The largest
igenvalue is smaller than 1, and hence the covariance
tationarity condition is satisfied for the variance equa-
ions of each model. For the HEAVY and GARCHX models,
he largest eigenvalue comes from the Mt part of the
model.

Table 3 presents the second-step parameter estimates
of the correlation models: DCC-GARCH, DCCX-GARCH,
DCC-HEAVY-R (Eqs. (11)–(12)), DCC-HEAVY-P (Eq. (18)),
and the corresponding DECO versions. For the DCC mod-
els, these estimates are broadly in line with those of the
variance equations. The estimate of βr in the DCC-HEAVY-
R model is smaller than that of βq in the DCC-GARCH
model (0.869 versus 0.988), and the estimate of αr is
larger than that of αq (0.068 versus 0.003), implying
less smooth and more reactive fitted correlations. The
paths of average fitted correlations and covariances of
the three models are shown on Fig. 2. The paths of the
DECO-HEAVY-R model are much less smooth and more
reactive to recent information than for DCC-HEAVY-R,
due to a smaller estimate of βr (0.552 versus 0.869) and
a larger one of αr (0.447 versus 0.068). The paths for
the DCC-GARCH are smoother and less reactive than in
the HEAVY models. The described path differences are
stronger for each pair of stocks, since averaging reduces
the variability.

In the nesting DCCX- and DECOX-GARCH models, the
coefficient estimates of the lagged realized correlation
(0.068 and 0.447) are of the same magnitude as in the
DCC- and DECO-HEAVY-R (0.061 and 0.369), with large
t-statistics (9.40 for DCCX and 5.09 for DECOX). The co-
efficient estimate of the lagged return cross-product is
very close to zero (with a t-statistic of 10.59) in DCCX,
while it is equal to 0.029 (with a t-statistic of 1.94) in
DECOX. The maximized second-step log-likelihood values
of DCCX-GARCH (−5115) and DCC-HEAVY (−5119) are
slightly different, but they are much larger than the value
of DCC-GARCH (−5143). For the DECO models: DECO-
HEAVY (−5307) and DECOX-GARCH (−5306) are very
lose, but DECO-GARCH (−5319) is lower. Thus, lagged
ealized correlations can be considered as more important
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Fig. 2. The figure shows the pairwise average of log-covariances and correlations estimated in the second step with DCC-GARCH and DCC/DECO-
HEAVY-H, over the sample period 03/01/2001–16/04/2018. The bottom graph shows the average of the log-variances of the 29 stocks, estimated in
the first step of DCC-GARCH and DCC-HEAVY.
drivers of the conditional correlations rather than return
cross-products.

The maximized log-likelihood values and their decom-
osition into the variance and correlation parts are re-
orted in Table 3. The decompositions suggest that the
CC-HEAVY and DECO-HEAVY dominate the DCC-GARCH
odel in both the variance and correlation parts. How-
ver, most of the in-sample gain comes from the variance
art. The overall improvement is substantial. DCC-HEAVY
948
improves slightly more than DECO-HEAVY. Notice that
these models have the same number of parameters, so
comparisons using log-likelihood values are equivalent to
comparisons using model choice criteria.

5.3. Forecasting comparisons

A comparison of models can be made by evaluating the
in-sample and out-of-sample forecasting performances
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Table 3
Parameter estimates (and robust t-statistics) of the correlation equations.
DCC-GARCH DCCX-GARCH DCC-HEAVY-R DCC-HEAVY-P
(14) (27)-(28) (11)-(12) (18)

αq βq αq βq αr αr βr αm βm

0.003 0.988 0.006 0.876 0.061 0.068 0.869 0.041 0.948
( 8.56) (457.39) (10.59) (56.76) ( 9.40) (10.40) (54.65) (30.59) (506.6)

Log-likelihood decomposition (DCC-HEAVY vs. DCC-GARCH)

DCC-GARCH DCCX-GARCHX DCC-HEAVY HEAVY Gains
Variance −7785 −7644 −7649 136
Correlation −5143 −5115 −5119 24
Total −12927 −12759 −12768 159

DECO-GARCH DECOX-GARCH DECO-HEAVY-R DECO-HEAVY-P

αq βq αq βq αr αr βr αm βm

0.046 0.937 0.029 0.615 0.369 0.447 0.552 0.347 0.607
(3.25) (42.66) ( 1.94) (10.02) ( 5.09) ( 7.97) ( 9.86) (16.33) (23.80)

Log-likelihood decomposition (DECO-HEAVY vs. DECO-GARCH)

DECO-GARCH DECOX-GARCHX DECO-HEAVY HEAVY Gains
Variance −7785 −7644 −7649 136
Correlation −5319 −5306 −5307 12
Total −13104 −12950 −12956 148

The HEAVY Gains are the differences of log-likelihood between the DCC/DECO-HEAVY model to the
DCC/DECO GARCH model.
f the models using the model confidence set (MCS)
f Hansen, Lunde, and Nason (2011). An MCS identi-
ies a set of models having the best forecasting per-
ormance at a chosen confidence level, based on a loss
unction. Six models are compared: DCC-GARCH, DCC-
EAVY, DECO-GARCH, DECO-HEAVY, BEKK-GARCH, and
EKK-HEAVY. Out-of-sample s-step-ahead forecasts of the

29-dimensional covariance and correlation matrices are
computed, for s = 1, 5, and 22; for horizons 5 and 22, they
are iterated forecasts. For DECO models, the correlations
are computed from DECO itself, not from the underlying
DCC.

5.3.1. Loss functions
Statistical and economic loss functions are adopted

along the lines proposed by Becker, Clements, Doolan,
and Hurn (2015). For the covariance matrix forecasts,
two statistical loss functions are used, which compare the
covariance matrix forecasts with respect to the actual (un-
observed) covariance matrix Σt+s. The first one is based
on the negative of the Wishart log-density function:

QLIK a
t,s(Σt+s,Ha

t+s|t ) = tr[(Ha
t+s|t )

−1Σt+s] + log |Ha
t+s|t |,

(46)

where Ha
t+s|t denotes the s-step forecast using model a

conditional on time t information. The second loss func-
tion is based on the square of the Frobenius norm of the
difference between the forecast and benchmark matrices
(see, e.g., Golosnoy et al. (2012)), defined by

FNa
t,s = ∥Σt+s − Ha

t+s|t∥ =

∑
i,j

(σij,t+s − ha
ij,t+s)

2 (47)

Since Σt+s is unobservable, the observed realized covari-
ance matrix RCt+s is used as a proxy for it. These statistical
loss functions provide a consistent ranking of volatility
models in the sense of Patton (2011) and Patton and
949
Sheppard (2009), as they are robust to noise in the proxy;
see also Laurent, Rombouts, and Violante (2013).

For the correlation matrix forecasts, the QLIK and FN
losses are computed from the same formulas as for co-
variances, that is (46) and (47). The only difference is that
forecasted correlations and realized correlations replace
forecasted covariances and realized covariances, respec-
tively.

Once a time series of Th,s (covariance or correlation)
forecasts is obtained for a model, the corresponding losses
and their time-series average are computed:

QLIK a
s =

1
Th,s

Th,s∑
t=1

QLIK a
t,s, and FNa

s =
1
Th,s

Th,s∑
t=1

FNa
i,t,s. (48)

This is performed for each model and each forecast hori-
zon, so that models can be ranked by the MSC procedure
and an MCS at a chosen confidence level can be identified.

For the variance forecasts of different models, we use
the univariate loss functions

UQLIK a
i,t,s =

vi,t+s

ha
i,t+s|t

− log

(
vi,t+s

ha
i,t+s|t

)
− 1, (49)

and

MSEa
i,t,s = (vi,t+s − ha

i,t+s|t )
2, (50)

where vi,t+s is the observed realized variance of stock i at
date t + s, and ha

i,t+s|t is the corresponding s-step forecast
of model a, based on information available at date t . Once
the time-series average of each loss function has been
computed for each stock, the mean across stocks is taken
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Table 4
MCS for loss functions of out-of-sample covariance forecasting.

FN MCS QLIK MCS GMV MCS MV MCS
Rank Rank Rank Rank

s = 1
DCC-GARCH 16.792 5 12.007 6 0.226 7 0.309 7
DCC-HEAVY 13.292 1 8.821 1 0.193 1 0.272 1
DECO-GARCH 16.513 6 14.182 9 0.237 10 0.330 10
DECO-HEAVY 13.667 4 11.059 4 0.214 3 0.308 4
BEKK-GARCH 23.140 9 15.016 8 0.213 4 0.302 3
BEKK-HEAVY 28.312 10 13.559 7 0.227 8 0.329 8
ADCC-GARCH 16.768 8 12.077 5 0.228 6 0.311 5
ADCC-HEAVY 13.304 2 8.842 2 0.196 2 0.276 2
ADECO-GARCH 16.780 7 14.125 10 0.239 9 0.336 9
ADECO-HEAVY 13.697 3 11.084 3 0.215 5 0.312 6
s = 5
DCC-GARCH 18.008 5 13.268 6 0.228 7 0.314 7
DCC-HEAVY 15.907 4 11.703 2 0.203 2 0.286 2
DECO-GARCH 17.824 6 15.242 9 0.237 10 0.332 9
DECO-HEAVY 16.135 3 11.850 3 0.206 3 0.292 3
BEKK-GARCH 23.637 9 15.298 7 0.216 5 0.307 5
BEKK-HEAVY 29.791 10 14.711 8 0.234 9 0.337 10
ADCC-GARCH 18.126 8 13.395 4 0.229 6 0.316 6
ADCC-HEAVY 15.299 2 11.384 1 0.203 1 0.286 1
ADECO-GARCH 18.209 7 15.255 10 0.239 8 0.337 8
ADECO-HEAVY 15.062 1 12.937 5 0.211 4 0.302 4
s = 22
DCC-GARCH 20.720 5 15.798 4 0.230 6 0.319 5
DCC-HEAVY 21.863 8 17.310 7 0.220 3 0.313 3
DECO-GARCH 20.426 4 17.327 9 0.235 9 0.329 8
DECO-HEAVY 22.029 6 17.217 8 0.221 4 0.315 4
BEKK-GARCH 25.201 9 16.109 3 0.224 5 0.320 6
BEKK-HEAVY 32.171 10 16.463 5 0.243 10 0.351 10
ADCC-GARCH 21.204 7 16.327 6 0.233 7 0.328 7
ADCC-HEAVY 18.487 2 14.890 1 0.215 1 0.305 1
ADECO-GARCH 20.879 3 18.081 10 0.236 8 0.337 9
ADECO-HEAVY 18.418 1 15.251 2 0.219 2 0.313 2

Values of loss functions in bold identify models in the 90% level MCS when the comparison is limited to the first
six models. Underlined values identify models in the 90% level MCS when the comparison is done for all models.
A value in bold but not underlined is thus in the MCS of the first six models, but is excluded when considering all
models. The MCS rankings are for the global comparison.
and used in the MCS procedure. That is,

UQLIK a
s =

1
Th,sk

Th,s∑
t=1

k∑
i=1

QLIK a
i,t,s, and

MSEa
s =

1
Th,sk

Th,s∑
t=1

k∑
i=1

MSEa
i,t,s.

(51)

The economic loss functions are relevant for the co-
ariance matrix forecasts. They are based on forecasted
ortfolio performances. The same economic loss func-
ions as Engle and Kelly (2012) are used: global minimum
ariance portfolio (GMV), and minimum variance port-
olio (MV); see also Engle and Colacito (2006). These
oss functions are based on the variances of the forecasts
f portfolio returns. A superior model produces optimal
ortfolios with lower forecast variance. Given a covari-
nce matrix forecast Ha

t+s|t , the GMV portfolio weight
vector ŵa

t+s is computed as the minimizer of the portfolio
variance (wa

t+s)
′Ha

t+s|tw
a
t+s subject to the constraint that

he weights add to unity. Once this is done for each
orecast date, the GMV loss function is the average of the
950
portfolio variances over the forecast period:

GMV a
s =

1
Th,s

Th,s∑
t=1

(ŵa
t+s)

′Ha
t+s|tŵ

a
t+s. (52)

The MV portfolio is obtained by minimizing the port-
folio variance subject to the additional constraint that the
expected portfolio return be larger than a chosen value.
Following (Engle & Kelly, 2012), this value is fixed at
q = 10% and the expected portfolio return (µ) at the
mean of the data. The MV loss is defined like (52) but
with the optimal weight vectors corresponding to the MV
minimizations. The optimal GMV and MV weights are
analytically known functions of Ha

t+s|t , and of µ and q for
MV (see, e.g., Engle & Kelly, 2012).

5.3.2. Results
To compute out-of-sample forecasts, each model is re-

estimated every fifth observation based on rolling sample
windows of 3000 observations, resulting in a total of Th =

1318 out-of-sample forecasts for s = 1, 1314 for s = 5,
and 1297 for s = 22.

Table 4 reports the out-of-sample forecast losses, de-
fined by (48), and the economic loss functions for the



L. Bauwens and Y. Xu International Journal of Forecasting 39 (2023) 938–955
Table 5
MCS for loss functions of out-of-sample correlation and variance forecasting.

Correlation Variance

FN MCS QLIK MCS MSE MCS UQLIK MCS
Rank Rank Rank Rank

s = 1
DCC-GARCH 6.119 8 20.833 3 2.544 3 0.509 4
DCC-HEAVY 5.505 4 20.450 2 2.210 2 0.386 2
DECO-GARCH 5.787 6 21.283 8
DECO-HEAVY 5.364 1 21.081 5
ADCC-GARCH 6.037 7 20.817 4 2.752 4 0.504 3
ADCC-HEAVY 5.478 3 20.417 1 2.205 1 0.385 1
ADECO-GARCH 5.719 5 21.266 7
ADECO-HEAVY 5.379 2 21.121 6
s = 5
DCC-GARCH 6.161 8 20.852 4 2.838 3 0.561 3
DCC-HEAVY 5.741 4 20.527 3 2.659 2 0.501 2
DECO-GARCH 5.959 7 21.023 7
DECO-HEAVY 5.574 1 21.713 8
ADCC-GARCH 6.100 6 20.844 5 3.097 4 0.562 4
ADCC-HEAVY 5.728 3 20.480 2 2.347 1 0.488 1
ADECO-GARCH 5.915 5 20.982 6
ADECO-HEAVY 5.609 2 20.383 1
s = 22
DCC-GARCH 6.258 8 20.851 7 3.359 2 0.661 2
DCC-HEAVY 6.061 2 20.623 5 3.916 4 0.710 4
DECO-GARCH 6.237 7 20.536 1
DECO-HEAVY 6.112 4 21.111 8
ADCC-GARCH 6.224 6 20.830 6 3.706 3 0.676 3
ADCC-HEAVY 6.025 1 20.560 2 2.865 1 0.620 1
ADECO-GARCH 6.112 3 20.564 4
ADECO-HEAVY 6.154 5 20.564 3

Values of loss functions in bold identify models in the 90% level MCS when the comparison is limited to the first
six models. Underlined values identify models in the 90% level MCS when the comparison is done for all models.
A value in bold but not underlined is thus in the MCS of the first six models, but is excluded when considering all
models. The MCS rankings are for the global comparison.
different models. The boldface values identify the models
that belong to the 90% model confidence set (MCS90,
hereafter) for each loss function when the comparison is
limited to the six symmetric models mentioned in the
first paragraph of this subsection. The comparisons, in-
cluding the four asymmetric models included in the table,
are presented in Section 5.4, and the MCS ranks in the
table pertain to the comparisons of all models.

At forecast horizons 1 and 5, DCC-HEAVY belongs to
the MCS90 for all loss functions, DECO-HEAVY belongs to
it for a subset of loss functions, and all the other models
are out of each MCS90. At horizon 22, no HEAVY model
is in the MCS90 of FN and QLIK; MCS90 includes DCC-
GARCH and DECO-GARCH for FN, and DCC-GARCH and
BEKK-GARCH for QLIK For the GMV and MV loss functions,
MCS90 consists of DCC-HEAVY and DECO-HEAVY.

Table 5 reports the MCS90 sets for correlation and
variance forecasts separately, excluding the BEKK mod-
els for these comparisons, and using only the statistical
loss functions, since the economic loss functions use the
covariance matrix.

For correlations, DCC-HEAVY is in the MCS90 of both
loss functions at the three horizons. DECO-HEAVY is also
in the MCS90 of FN at the three horizons, and DECO-
GARCH is in the QLIK MCS90 set at horizon 22.

For variances, the loss values defined by (49) are re-
ported in the ‘‘Variance’’ part of Table 5. Notice that DECO
951
models are irrelevant (being the same as DCC in the first
step of estimation). The results reveal that DCC-HEAVY
is alone in MCS90 for both MSE and QLIK at horizons 1
and 5. At horizon 22, only DCC-GARCH is in both MCS90
sets. Shephard and Sheppard (2010) report that the per-
formance of HEAVY with respect to GARCH deteriorates
as the forecast horizon increases.

To trace where the forecast gains occur, Table 6 reports
the ratios between the losses of the DCC-HEAVY and
DCC-GARCH models, and likewise for the DECO models.
One can see that the DCC/DECO-HEAVY models outper-
form the DCC/DECO-GARCH models both in covariance,
correlation and variance forecast losses at the forecast
horizons 1 and 5 (with a single exception for DECO). The
improvements are larger for horizon 1 than 5, and smaller
for DECO than for DCC (except in one case). They can be
important: e.g., DCC-HEAVY reduces the covariance and
variance QLIK losses by 10% at least and up to 25%. At
horizon 22, the GARCH models have the smallest losses,
except for correlations where the differences are less than
2.5%. The loss improvements of GARCH with respect to
HEAVY are between 7% and 17% when they occur.

In brief, the forecast comparisons clearly favor the
DCC-HEAVY model at the short forecast horizons for all
loss functions, and to a lesser extent the DECO-HEAVY
model, at the expense of the BEKK-HEAVY and the three
GARCHmodels. At the longest forecast horizon, the results
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Table 6
Loss ratios between DCC-HEAVY and DCC-GARCH: Out-of-sample forecasting.

DCC-HEAVY DECO-HEAVY
vs. DCC-GARCH vs. DECO-GARCH

FN QLIK FN QLIK

Covariance s = 1 0.792 0.735 0.828 0.780
s = 5 0.883 0.882 0.905 0.777
s = 22 1.055 1.096 1.078 0.994

Correlation s = 1 0.900 0.982 0.927 0.991
s = 5 0.932 0.984 0.935 1.033
s = 22 0.968 0.989 0.980 1.028

MSE UQLIK

Variance s = 1 0.869 0.759
s = 5 0.937 0.892
s = 22 1.166 1.074
For the Variance panel, the results of DCC and DECO are identical.
depend on the loss function; moreover, there is a clear
worse performance of DCC-HEAVY relative to DCC-GARCH
for variance and covariance forecasts at this horizon.

The in-sample forecasting results are reported in the
supplemental appendix (Tables E3–E4). They do not differ
much from the out-of-sample results.

5.4. Asymmetric and HAR terms in DCC/DECO-HEAVY

The out-of-sample forecast performance of the DCC-
HEAVY model deteriorates with respect to DCC-GARCH
when the forecast horizon increases, switching from bet-
ter to worse at some horizon between 5 and 22. DCC-
HEAVY makes use of forecasts of realized variances and
correlations. If the realized variance or correlation equa-
tions are incorrectly specified, the forecast error is brought
to the conditional covariance and correlation forecasts.
These forecast errors get larger when the forecast hori-
zon is longer. To improve the forecast performance of
DCC-HEAVY in multiple-step-ahead forecasts, the ADCC-
HEAVY model defined by (32)–(34)–(35)–(36) is worth
trying. The HAR terms are useful to capture the long-
memory feature of realized variances and correlations.

5.4.1. Estimation results
The parameter estimates of the asymmetric variance

equations are reported in the supplemental appendix (Ta-
bles E5 and E6). For the conditional variances, the coef-
ficient estimates of the asymmetric term (the diagonal
elements of Γh in (32)) are positive for 22 stocks, with
t-statistics above 2 for eight of them. For the realized vari-
ances, the coefficient estimates of the asymmetric term
(the diagonal elements of Γm in (35)) are all positive, with
-statistics larger than 2.5 for 28 stocks. The coefficient
stimates of the weekly HAR term are positive (with a
ingle, insignificant exception) but only 14 of them have
-statistics above 2, indicating a moderate impact of this
erm. On the contrary, the monthly HAR term is positive
or all stocks and appears to be strongly significant (with
ne exception).
The estimates of the asymmetric correlation equations

re reported in Table 7. For the conditional correlations,
he estimate of γr is positive in the ADCC (0.025) and very
ignificant (t-statistic, 6.51). This means that the impact of
952
each lagged realized correlation on the next conditional
correlation is stronger (being equal to 0.062 + 0.025)
when both lagged returns of the corresponding assets
are negative than otherwise (being then equal to 0.062).
Nevertheless, the additional statistically significant im-
pact of 0.025 is not very important on the next-period
correlation, since it increases it by 2.5% of the previous
period correlation (if both lagged returns are negative):
that means an increase of 0.0125 if the previous correla-
tion is 0.5. For the ADECO model, the impact is of 2% and
statistically insignificant.

For the realized correlations, the estimate of γp is
positive and significant in both models (HAR-ADCC and
HAR-ADECO), which means that the impact of each lagged
realized correlation on the next conditional mean of the
realized correlation is stronger (being equal to 0.063 +

0.010 in the HAR-ADCC) when both lagged returns of the
corresponding assets are negative than otherwise (being
then equal to 0.063). The same remark applies as above,
about the limited value of the expected correlation change
this implies between two consecutive days.

Concerning the HAR terms, the weekly term impact is
negative (−0.033) and significant in HAR-ADCC, and posi-
tive (0.075) and insignificant in HAR-ADECO. The monthly
term impact is negative in HAR-ADCC but positive in
HAR-ADECO, being significant in both models. Anyway,
the effective daily changes of expected correlations these
terms imply are small in HAR-ADCC and moderate in
HAR-ADECO.

5.4.2. Forecast comparisons
For covariance forecasts, Table 4 reports the loss func-

tion values for the four asymmetric models (ADCC-HEAVY,
ADECO-HEAVY, ADCC-GARCH, and ADECO-GARCH) in ad-
dition to the six symmetric models. The MCS90 for each
loss function and horizon is identified by the underlined
values; a bold underlined value is thus in the MCS90 for
the 10 models, and in that of the first six models, while
a bold value, not underlined, is in the MCS90 of the first
six models but is removed from the MCS90 when the 10
models are compared.

The changes of the MCS90 due to the inclusion of the
four asymmetric models in the comparisons are in favor of
HEAVY models: the asymmetric HEAVY models are added
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Table 7
Parameter estimates (and robust t-statistics) of the asymmetric correlation equations.
ADCC-HEAVY-R HAR-ADCC-HEAVY-M
(33)-(34) (36)

αr βr γr αp βp γp αw
p αm

p

0.062 0.857 0.025 0.063 0.964 0.010 −0.033 −0.005
(11.05) (52.60) ( 6.51) (40.27) (353.68) (12.05) (−18.36) (−3.06)

ADECO-HEAVY-R HAR-ADECO-HEAVY-P

αr βr γr αp βp γp αw
p αm

p

0.438 0.573 0.020 0.195 0.511 0.173 0.075 0.100
( 6.78) ( 9.70) ( 0.54) ( 9.40) ( 8.53) (13.53) ( 1.55) ( 5.32)
Table 8
Loss ratios between ADCC-HEAVY and DCC-GARCH: Out-of-sample forecasting.

ADCC-HEAVY ADECO-HEAVY
vs. DCC-GARCH vs. DECO-GARCH

FN QLIK FN QLIK

Covariance s = 1 0.792 0.736 0.830 0.782
s = 5 0.850 0.858 0.845 0.849
s = 22 0.892 0.943 0.902 0.880

Correlation s = 1 0.895 0.980 0.929 0.992
s = 5 0.930 0.982 0.941 0.970
s = 22 0.963 0.986 0.987 1.001

MSE UQLIK

Variance s = 1 0.867 0.758
s = 5 0.827 0.869
s = 22 0.853 0.937

For the Variance panel, the results of DCC and DECO are identical.
Table 9
Loss ratios between ADCC-HEAVY and ADCC-GARCH: Out-of-sample forecast-
ing.

ADCC-HEAVY ADECO-HEAVY
vs. ADCC-GARCH vs. ADECO-GARCH

FN QLIK FN QLIK

Covariance s = 1 0.793 0.732 0.816 0.785
s = 5 0.844 0.850 0.827 0.848
s = 22 0.872 0.912 0.882 0.843

Correlation s = 1 0.907 0.981 0.940 0.993
s = 5 0.939 0.983 0.948 0.971
s = 22 0.968 0.987 1.007 1.000

MSE UQLIK

Variance s = 1 0.801 0.765
s = 5 0.758 0.868
s = 22 0.773 0.916

For the Variance panel, the results of DCC and DECO are identical.
to the MCS90 of some loss functions and horizons, but no
asymmetric GARCH model is added for any loss function
and horizon. For example, at horizons 5 and 22, ADCC-
HEAVY is in the MCS90 sets for all loss functions; only
the ADECO-HEAVY model also belongs to these sets in
the case of the FN loss. The asymmetric HEAVY models
attenuate or even reverse the worse performance of their
symmetric counterparts relative to DCC at the three hori-
zons, as can be seen by comparing the covariance loss
ratios reported in Tables 8 and 9 and the corresponding
values in Table 6.

For correlation forecasting, Table 5 also includes the
asymmetric models in the comparisons. The changes of
953
the MCS90 due to this are mixed: at horizon 1, only the
asymmetric versions of the HEAVY models that were in
the initial MCS90 are added; at horizon 5, ADECO-HEAVY
is added for both losses and ADCC-HEAVY for QLIK loss);
at horizon 22, ADCC-HEAVY is added for FN loss, being
alone in MCS90; for QLIK loss, ADCC-HEAVY, ADECO-
GARCH, and ADECO-HEAVY are added, DCC-HEAVY being
removed and DECO-GARCH kept. The correlation loss ra-
tios reported in Tables 8 and 9 differ slightly from those
of Table 6, indicating that the asymmetric versions of the
models do not much improve the symmetric versions.

For variance forecasting (Table 5), the main change in
the MCS90 due to the inclusion of asymmetric models is
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hat ADCC-HEAVY is added for both loss functions and all
orizons, even being the only model in the sets at hori-
ons 5 and 22. This model ranked first in all comparisons.
learly, ADCC-HEAVY improves variance forecasting, es-
ecially at horizons larger than 1. Loss ratios show that
his improvement is important at horizon 22; for exam-
le, for MSE loss, it goes from −16.6% in Table 6 to +14.7%

in Table 8 and +22.7% in Table 9.

6. Conclusions

Multivariate volatility models that specify the dynam-
ics of the daily conditional covariance matrix as a function
of realized covariances have emerged in the literature
since 2012. They are a valuable alternative to multivariate
GARCH models wherein the dynamics depend on lagged
squared returns and their cross-products, because real-
ized variances and covariances are more precise measures
of daily volatility.

Perhaps surprisingly, with the partial exception of
Braione (2016), no dynamic conditional correlation for-
mulation of a HEAVY model has been proposed in the
literature, where BEKK-type formulations are used in the
papers of Noureldin et al. (2012) and Opschoor et al.
(2018). Our contribution fills this gap by developing DCC-
type HEAVY models. Such models have the advantage,
with respect to BEKK models, of separating the specifica-
tion of the conditional variances from the specification of
the conditional correlations. The same advantage occurs
in the specifications of the expected realized variances
and correlations. As for GARCH DCC models, this results
in more flexible models, in the sense that the dynamics
of variances differ between assets and from the dynamics
of correlations. Sticking to scalar models for correlations,
the models remain parsimonious in parameters.

An illustrative empirical application for 29 assets illus-
trated the value of the flexibility of DCC and DECO ver-
sions of HEAVY models. These models, including exten-
sions to include asymmetric effects, have superior fore-
casting performance with respect to BEKK formulations.
As always in this type of empirical exercise, this finding
is contingent on the dataset used and cannot be claimed
to be valid in general. A robust conclusion is that HEAVY
models dominate GARCH versions in terms of forecast-
ing performance. An additional application to the data
of Noureldin et al. (2012) is reported in Section F of the
supplemental appendix and broadly confirms the empiri-
cal conclusions.

This research did not develop the asymptotic theory
of the QML estimator of the parameters of the DCC-
and DECO-HEAVY models. A small-scale simulation study
illustrated that the usual properties of consistency and
asymptotic normality are likely to hold.
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