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Atomic force microscopes (AFM) and nanoindenters have been used for decades to
evaluate mechanical properties of thin films at the nanoscale. It is argued that the elastic
solutions to the indentation problem, which are most often associated with the names of
Galin or Sneddon, may be used for extracting elastic contact modulus of bulk samples and
continual films, while their application to contact between an AFM probe and a polymer
brush is a priori questionable. This is because the character of compression of a polymer
brush is drastically different from the response of an elastic half-space to indentation. In the
present paper, a number of controversial issues related to the interpretation of the AFM
data obtained for polymer brushes tested with a rigid probe are studied. In particular, a
correct relation has been established between the constitutive equation for a single
polymer brush in compression with a bare rigid surface and the constitutive equation
for two identical polymer brushes in compression under the assumption of lack of
interpenetration of compressed brushes. It is shown that the so-called apparent elastic
modulus of a polymer brush introduced based on the Hertzian force-displacement relation
depends on the indenter radius and, thus, may not serve as a characteristic of polymer
brush. Also, the Derjaguin’s approximation-based method of identifying the point of initial
contact is given in opposition to controversial methods, which are broadly based on the
Hertzian contact mechanics.
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1 INTRODUCTION

In recent years, polymer brushes, i.e., end-grafted polymer layers (Milner, 1991), have found wide use
in engineering, including lubrication (Espinosa-Marzal et al., 2013; Yu et al., 2016), antibiofouling
(Yang and Zhou, 2017), sensing and wetting control (Ritsema van Eck et al., 2022). The discovery of
the so-called stimulus-responsive polymer brushes (Luzinov et al., 2004; Chen et al., 2010), which can
exhibit controllable and reversible changes in conformation and structure due to certain external
stimuli, has brought great opportunities for a range of applications (Benetti et al., 2009; Orski et al.,
2011). In particular, motivated by the development of intelligent nanofibrillar interfaces and inspired
by the gecko’s adhesive switching (Gorb, 2008; Zhang et al., 2021), chemically responsive polymer
brushes were utilized to alter the interfacial contact with the aim of in situ reversible friction
switching (Ma et al., 2015).

The mechanical testing of polymer brushes and other physically adsorbed ultrathin polymer
layers can be conveniently assessed using atomic force microscopy (AFM) (Butt et al., 1999; Mendez
et al., 2009), though the analysis of the AFM data still poses certain challenges. It is known (Halperin
and Zhulina, 2010) that the interpretation of force versus distance curves obtained for polymer
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brushes via AFM strongly depends on the geometry of the AFM
probe. Similar indentation problems for linearly elastic layers has
been addressed in a number of publications (Dimitriadis et al.,
2002; Yang, 2003; Argatov, 2011), and the marked distinction
between the cases of relatively thick (Aleksandrov and Vorovich,
1960; Hayes et al., 1972; Argatov et al., 2013) and thin
(Aleksandrov, 1969; Jaffar, 1989; Barber, 1990; Chadwick,
2002; Argatov et al., 2016; Borodich et al., 2019) elastic layers
has been formally enshrined based on the ratio ε = a/L of the
contact radius a and the layer thickness L. In particular, it was first
rigorously established by Aleksandrov and Vorovich (1960) that
the compression deformation of a thin compressible (with the
material Poisson’s ratio not very close to 0.5) elastic layer is
asymptotically equivalent to that of a linear Winkler–Fuss elastic
foundation, which in part mimics the deformation of polymer
brushes, which are composed of individually deforming polymer
chains. However, the application of the mentioned above elastic
solutions for polymer brushes is limited by the fact that their
deformations in compression testing lie outside the linear
elastic range.

When realizing the fact that polymer brushes predominantly
operate under large compressive deformations, it becomes
convenient to make use of spherical indenters of relatively
large radius (in comparison with the brush layer thickness),
e.g., colloidal probes (Butt et al., 2005), instead of standard
pyramidal indenters. In such a way, the interpretation of the
AFM force versus distance curves can be based on the
approximation developed by Derjaguin (1934), which (in
application to polymer brushes) utilizes the so-called planar
force law (Halperin and Zhulina, 2010). And though this
approach is per se known, there are still some points to clarify
about the evaluation of the Derjaguin approximation for
indenters of arbitrary shapes.

Further, in recent years, the AFM has emerged as a powerful
technique for testing of biointerfaces (Huber et al., 2005; Boyd
et al., 2021). In the absence of theoretical predictive expressions
(constitutive models) for describing the compressive
deformations of biofilms, a simple exponential decaying
approximation (Israelachvili, 1992) is widely used to determine
the biofilm thickness. However, while the mentioned exponential
approximation was introduced for the Alexander–de Gennes
(AdG) model (Alexander, 1977; de Gennes, 1987), its relation
to other compression constitutive models was not discussed
before. It should be made clear that the present study cannot
serve as an introduction to the mathematical equations of the
AFM indentation procedures, as our focus is on certain
ambiguities or controversies still surrounding the
interpretation of the AFM data on the indentation of polymer
brushes. We refer to the review by Butt et al. (2005) and the
references therein for an overview of the AFM technique and
basics of its interpretation and applications.

Another controversial aspect regarding the interpretation of
the AFM data for polymer brushes concerns the application of the
solution developed by Sneddon (1965) for evaluating the so-
called equivalent (Tranchida et al., 2011) or apparent
(Kutnyanszky and Vancso, 2012) elastic modulus and
determining the contact point (Parra et al., 2007; Melzak et al.,

2010). Without dwelling on mathematical details, it is only to be
noted that the general solution of the elastic contact problem,
which is often associated with the name of Sneddon, assumes the
elastic half-space approximation for a tested sample (see, e.g.,
Borodich (2014); Argatov and Mishuris (2018); Popov et al.
(2019)), which is in direct contradiction to both the geometry
and mechanics of polymer brushes.

1.1 Preliminaries for Non-Mathematically
Inclined Researchers
Polymer brushes can be formed by polymer chains with one end
bonded to a substrate surface, provided the grafting density is
high enough to make the chains aligned in the direction
perpendicular to the surface (Milner, 1991). Thus, the polymer
layer thickness, L, is the only macro-geometrical parameter of a
polymer brush. In many cases, the substrate can be assumed to be
absolutely rigid, and it is called a wall.

When two polymer brushes are brought in contact under a
compressive load, the wall separation distance, D, becomes a
primary dimensional variable that controls the level of
compressive deformation induced in the polymer layers,
whereas the compressive pressure, p, (load per apparent area
of contact) is the main loading parameter. The relation between p
and D will be called a constitutive equation.

The following exponential approximation (Israelachvili,
1992)) is a popular simple form of the constitutive equation
for compression of two identical brushes:

p � 100
s3

kBT exp −πD
L

( ). (1)

Here, kB is Boltzmann’s constant, T is the temperature, and s is
the average distance between grafted polymer chains. It should be
noted that while formula (1) was suggested as an approximation
for the Alexander–de Gennes (AdG) model (Alexander, 1977; de
Gennes, 1987), it still remains unclear whether an exponential-
type approximation has a more or less universal character.

When the constitutive equation is experimentally determined
from the compression of two identical brushes, the question arises
how to derive from it the constitutive equation for a single
polymer brush in contact with a bare rigid wall. This question
is considered herein under the assumption of non-penetration
between the compressed polymer brushes (O’Shea et al., 1993).

Atomic Force Microscopy (AFM) provides a convenient way
of evaluating the deformation response of soft matter to
indentation at the nanoscale (Butt et al., 2005). In regard to
polymer brushes, the use of a spherical colloidal probe of
relatively large diameter (compared to the brush thickness),
which is attached to the AFM cantilever, was proposed as a
special AFM probe instead of conventional AFM indenter of
pyramidal shape. The main difficulty in extracting the
constitutive equation for a polymer brush from the AFM data
is that the contact pressure, p, exerted by the probe on the upper
surface of a polymer brush layer is not uniform and the contact
radius, a, is also unknown and should be determined as a part of
the solution of the corresponding indentation problem. What is
directly measured in the AFM indentation (via bending of the
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AFM cantilever) is the contact force, F, which is the total
compression load, i.e.,

F � 2π ∫a
0

p r( )r dr. (2)

The equilibrium Eq. 2 applies for an arbitrary axisymmetric
indenter that produces an axisymmetric (depending on the polar
radius r with respect to the point of initial contact) pattern of the
contact pressure distribution over a circular area of contact,
whose radius is denoted by a.

In principle, a part of a polymer brush of a given apparent area
consists of a finite number of polymer chains, which interact with
the surface of an AFM probe in a discrete fashion, and thus,
formula (2) employs a continuum approximation for the contact
interaction between the AFM probe and a tested polymer brush,
which is widely adopted thanks to its simplicity.

On the other hand, the discrete structure of a polymer brush
prompts the development of mechanistic models of the
Winkler–Fuss type that represent a polymer brush as a set of
springs (Villanueva et al., 2014). From a continuum viewpoint,
the main underlying assumption of such an approach is that the
contact pressure p at a given point inside the contact region is
determined only by the local compression, that is by the distance
from the AFM probe’s surface to the wall, to which the tested
polymer brush is attached. In the literature on indentation of
polymer brushes (Halperin and Zhulina, 2010), the
corresponding solution to the indentation problem is called
the Derjaguin approximation, though originally it was
introduced by Derjaguin (1934) for the analysis of attractive
forces acting between two surfaces.

Usually, the solution of the indentation problem is thought of
as a closed-form relation between the contact force F and the
indenter displacement, which will be denoted by d (see below,
Figure 5). At the point of initial contact, we have d = 0, and the
wall separation distance, D, of the AFM probe’s apex that just
touches the upper surface of a tested polymer brush is equal to the
brush thickness L in the initial (undeformed) state. In the loaded
state, we have the simple relation d = L − D between the indenter
(probe) displacement d and the wall separation distance of the
indenter D, which is measured at the indenter’s apex.

The specificity of the AFM technique poses a difficulty in
detecting the initial contact point, because the indenter
displacement d cannot be monitored directly, and the
inception of the cantilever deflection due to the resistance to
indentation becomes a primary prerequisite for the identification
of the point of initial contact. It is of interest to note that there is a
collision between the need to know the form of constitutive
equation (at least for the range of small deformations) for solving
the problem of detecting the initial contact and an a priori lack of
such model for a (generally novel) polymer brush under testing.
This collision is apparently a reason that the elastic solutions to
the indentation problem, which are most often associated with
the names of Galin (2008) and Sneddon (1965), as well as the
simple force-displacement relation from the Hertzian theory are
applied for polymer brushes in direct violation of the underlying

assumptions of the Hertzian contact mechanics. It should be also
emphasized that exponential approximations like 1) are not
applicable for the purpose of the accurate identification of the
initial contact point, because formula (1) predicts that the contact
pressure remains positive forD = 2L, whereas it should vanish for
two brushes in the initial (unloaded) contact.

The rest of the paper is organized as follows. In Section 2, we
introduce a general form of the constitutive relation for polymer
brushes in compression, which is suggested by the classical
Alexander–de Gennes model and the constitutive models of
nonlinear elasticity operating with the concept of stretch ratio.
The superiority of the introduced approach is illustrated in
Section 2.1 on the example of the so-called hybrid
mechanistic compression model (Villanueva et al., 2014) by
rewriting its equations in a very simple form. The main result
of this section is a correct relation between the constitutive
equations in the cases of a single polymer brush in
compression with a bare rigid surface and two identical
polymer brushes in compression under the assumption of lack
of interpenetration of compressed brushes. In Section 3, we
consider the exponential approximation introduced by
Israelachvili (1992) for the AdG model, which can be applied
for estimating the brush layer thickness. A controversial issue
arises when the exponential approximation is used outside the
range of validity of the AdG model. Here we consider two
methods of evaluating the parameters of the exponential
approximation for an arbitrary constitutive function. In
Section 4, we outline Derjaguin’s approximation for the
contact force produced by an AFM indenter pressed onto a
polymer brush and represent it in terms of the indenter area
function. Section 5, Section 6 are devoted to controversies
about the identification of the point of initial contact and the
apparent elastic modulus by using the methods, which are
broadly based on the Hertzian contact mechanics. Finally, in
Section 7, we outline a discussion of the presented results and
formulate our conclusions.

2 CONSTITUTIVE EQUATION

To fix our ideas, we consider the Alexander–de Gennes (AdG)
model (Alexander, 1977; de Gennes, 1987) which predicts the
following repulsive pressure between two neutral polymer
brushes pressed against each other:

pAdG, symm D( ) � kBT

s3
2L
D

( )9/4

− D

2L
( )3/4[ ] for D< 2L. (3)

Here, p is the compressive pressure, kB is Boltzmann’s constant, T
is the absolute temperature, L is the equilibrium thickness of a
single polymer brush, s is the average distance between adjacent
grafting points, and D denotes the wall surface separation (see
Figure 1). Observe (O’Shea et al., 1993) that the first term in
brackets in Eq. 3 represents the osmotic repulsion due to
increasing polymer concentration as the wall surfaces, onto
which the polymer brushes are grafted, are pressed together
(when the distance D decreases), whereas the second
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(negative) term accounts for the decrease in elastic energy of the
polymer chains as they are compressed.

Equation 3 relates the pressure p the wall separation distance
D in the case of compression of two identical polymer brushes
(see the left part of Figure 1). It is of genuine interest to derive
from Eq. 3 the constitutive relation that describes the
compression of a single polymer brush by a flat rigid surface
(see the right part of Figure 1). Under the assumption of lack of
interpenetration of compressed brushes, Eq. 3 was reduced by
O’Shea et al. (1993) to the following equation in the case of
contact interaction of one polymer brush with a bare,
nonadsorbing rigid surface:

pAdG, asymm D( ) � kBT

2s3
L

D
( )9/4

− D

L
( )3/4[ ] for D< L. (4)

It is to note that, while in Eq. 3 the variable D denotes the
distance between the two wall surfaces, onto which two identical
polymer brushes are grafted, in Eq. 4 the same variable D denotes
the distance between one wall surface and a bare rigid surface. As
it is seen from the notation, Eq. 4 is supposed to correspond to the
AdG model as well.

As it was formulated by Block and Helm (2008), the
constitutive equation for the asymmetric case Eq. 4 is
obtained from the constitutive equation for the symmetric case
Eq. 3 by replacing 2L by L and dividing the prefactor by 2.

It is our intention to show that the passage from Eq. 3, Eq. 4
is in error. To be more precise, the factor 2 in the denominator
of the prefactor in Eq. 4, which is indicated in red color, is
erroneous. Indeed, let us start with the asymmetric case and
represent the constitutive equation for compression
deformation of a single polymer brush in contact with a
rigid plane in a general form as

p � p1f λ( ), (5)
where we have introduced the notation

λ � D

L
, (6)

and f(λ) is a dimensionless constitutive function.
Now, let us consider the relation inverse to Eq. 5, that is

λ � f−1 p

p1
( ), (7)

where p is the applied compressive pressure, and f−1 denotes the
inverse function of f(λ).

In view of Eq. 6, Eq. 7 can be rewritten in the form

Dasymm � Lf−1 p

p1
( ), (8)

which relates the wall separation distance Dasymm to the applied
pressure p in the case of a single polymer brush.

Now, let us consider the symmetric case (Figure 1). Under the
assumption of non-penetration for the brush/brush contact, the
distance between the two walls, Dsymm, equals the sum of the two
brush thicknesses under compression, which acan be evaluated
according to Eq. 8, so that

Dsymm � 2Dasymm. (9)
It is to emphasize that Eq. 9 holds true for two identical

brushes in contact.
Thus, from Eq. 8, Eq. 9, it follows that

Dsymm � 2Lf−1 p

p1
( ), (10)

By inverting Eq. 10, we arrive at the relation

p � p1f
Dsymm

2L
( ), (11)

or, which is the same, as

psymm D( ) � p1f
D

2L
( ) for D< 2L. (12)

At the same time, the constitutive equation in the asymmetric
case, in view of Eq. 5, Eq. 6, can be represented as

pasymm D( ) � p1f
D

L
( ) for D< L. (13)

It is to point out that Eq. 12, Eq. 13 possess exactly the same
prefactor p1, and this fact contradicts the rule formulated above
for deriving Eq. 4 from Eq. 3.

FIGURE 1 | Schematic of compression of two polymer brushes.

Frontiers in Mechanical Engineering | www.frontiersin.org June 2022 | Volume 8 | Article 9312714

Argatov et al. Atomic Force Microscopy of Polymer Brushes

https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Observe that from Eq. 6, Eq. 9, we find that

λ � Dasymm

L
� Dsymm

2L
. (14)

The dimensionless parameter λ has a mechanical meaning of
the stretch ratio. In view of the assumption made above that both
distances Dasymm and Dsymm were evaluated for the same
compressive pressure p, Eq. 14 state that the compressive
deformation realized in the symmetric and asymmetric cases
(for a single brush or two identical brushes) will be the same for
the same applied loading.

Thus, the constitutive relation in the form of Eq. 5 applies in
both cases, provided the stretch ratio λ is defined as the ratio of
the total compression thickness (Dasymm or Dsymm) to the total
equilibrium thickness (L or 2L) of polymer layer (one brush or
two brushes), which is under compression. It is to emphasize that
we assume that the self-interaction of polymer chains in each
brush would be the same in the cases of one compressed brush
and two identical compressed brushes, provided that there is no
interpenetration of the polymer brushes as they are brought
together.

Remark 2.1. It should be emphasized (Milner, 1991) that
strictly speaking the constitutive Eq. 3 should be written in
the form pAdG, symm ~ (kBT/s3)(λ−9/4 − λ3/4), where a tilde, ~,
denotes the omission of a dimensionless constant of order
unity. The same applies to the scaling equations similar to Eq. 18.

2.1 Hybrid Mechanistic Compression Model
As an example of the constitutive equation for compression of
polymer brush systems, we consider the so-called hybrid
mechanistic compression model developed by Villanueva et al.
(2014). Under the assumption that each chain in a polymer brush
is identical and contributes independently to its mechanical
response to indentation, the total force produced by an
indenter will be given by

Ftot � −∑Nc

i�1
kiΔzi, (15)

where ki is the stiffness of the ith chain, Δzi is its indentation, and
Nc is the total number of compressed chains.

Let us apply Eq. 15 to the case of uniform compression, when

Δzi � − L −D( ), (16)
where L is the equilibrium thickness of the polymer brush, and D
is the wall separation distance. It is to emphasize that, according
to the adopted rule of signs (Villanueva et al., 2014), the chain
indentation Δzi is taken to be the negative of the change in brush
thickness (see Eq. 16).

By the definition, the corresponding contact pressure can be
evaluated as

p � Ftot

Atot
, (17)

where Atot is the total apparent area of contact.
In many situations, it may be assumed that

Atot � Ncs
2, (18)

where s is the average distance between grafted chains, so that the
grafting (adsorption) density, Nc/Atot, equals 1/s

2.
From Eqs. 15–18, it follows that

p � ki
s2

L −D( ), (19)

where ki denotes the chain stiffness, which may depend on the
level of compression.

According to the model developed by Villanueva et al. (2014),
we have

ki � π

4
K 2s

s

RF
( )5/3

− Δzi
RF
s( )10/3 + RF

s( )5/3Δzis
⎛⎜⎝ ⎞⎟⎠. (20)

Here, K is the bulk modulus of the polymer material, RF = n3/5l is
the Flory radius, l is the length of a single monomer, and n is the
number of monomers in the polymer chain.

In the polymer brush regime (s < RF), the brush thickness can
be estimated as L = nl5/3s−2/3 (Alexander, 1977), so that

RF

s
� L

s
( )3/5

. (21)

Thus, the substitution of (20) into Eq. 19, in view of Eq. 16,
Eq. 21, yields the very simple result

p � π

4
K

L

D
− D

L
( ). (22)

Finally, with the notation introduced above for the stretch
ratio (see Eq. 6), the constitutive equation of the
Villanueva–Huang–Sirbuly (VHS) model 22) can be
represented in the form

p � p1
1
λ
− λ( ), (23)

where p1 = (π/4)K is the prefactor.
Thus, the example of the VHSmodel is clearly indicative of the

usefulness of operating with the stretch ratio while formulating
the constitutive equation (compare our Eq. 23 with Eqs. 19,20,
which are equivalent provided that Eq. 21 holds).

2.2 Examples of Constitutive Equations
In view of (3), the Alexander–de Gennes (AdG) theory
(Alexander, 1977; de Gennes, 1987) predicts that

fAdG λ( ) � λ−9/4 − λ3/4. (24)
Further, in the framework of the Milner–Witten–Cates

(MWC) theory (Milner et al., 1988), which accounts for a
paraboloidal density profile of polymer chain units, we have

fMWC λ( ) � λ−2 − 2λ + λ4 � λ−1 − λ2( )2. (25)
In the non-entropic model developed by Drozdov (Drozdov,

2005) for an ensemble of non-interacting chains grafted on a rigid
plane, the constitutive function can be written as
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fD λ( ) � λ−2 − 1( ) − 1 + 1�
2

√( ) λ2 − 1( ). (26)

Finally, according to Eq. 23, the Villanueva–Huang–Sirbuly
(VHS) model implies that

fVHS λ( ) � 1
λ
− λ. (27)

Figure 2 shows the relative constitutive curves for the models
outlined above. We would like to emphasize that the
normalizations of the functions fAdG(λ), fMWC(λ), fD(λ), and
fVHS(λ) are arbitrary.

Let us observe common features in the constitutive functions
(24)–(27). First of all, the compressive pressures are always
positive and vanish in the equilibrium (unloaded state), when
λ = 1, so that we have

f λ( )> 0, λ ∈ 0, 1( ), (28)
and

f 1( ) � 0. (29)
Second, all constitutive Eq. 24–27 show that

f′ λ( )< 0, λ ∈ 0, 1( ). (30)
In other words, the compression response of a polymer brush

is monotonic.
However, we have f′(1) = 0 for the MWC model, which

predicts much softer response of a polymer brush at small
levels of compression than other models considered above.

3 EXPONENTIAL APPROXIMATION

Let us return to the symmetric AdG model (3). It was observed
(Israelachvili, 1992; Butt et al., 1999) that for D/2L in the range

0.2–0.9, the functional dependence pAdG, symm(D) is roughly
exponential, that is

pAdG, symm D( ) ≈ 100
s3

kBT exp −2π D

2L
( ). (31)

In the general case, when the constitutive relation is given by
Eq. 5, it makes sense to consider the analogous approximation

p

p1
≈ Λ exp −bλ( ), (32)

where Λ and b are constant parameters determined by fitting the
approximation Eq. 32 to the function f(λ) in some interval λ ∈ (λ1,
λ2), where 0 < λ1 < λ2 < 1.

By using a least square optimization approach, we arrive at the
problem

∫λ2
λ1

ln f λ( )( ) − lnΛ + bλ[ ]2dλ → min ,

from where it follows that

b � 6 λ2 + λ1( )
λ2 − λ1( )2 F1 − 2F2

λ2 + λ1
( ), (33)

lnΛ � 4 λ22 + λ2λ1 + λ21( )
λ2 − λ1( )2 F1 − 6 λ2 + λ1( )

λ2 − λ1( )2 F2, (34)
where we have introduced the notation

F1 � 1
λ2 − λ1

∫λ2
λ1

ln f λ( )( ) dλ, F2 � 1
λ2 − λ1

∫λ2
λ1

ln f λ( )( )λ dλ.
(35)

Another approach for evaluating the parameters of the
exponential approximation Eq. 32 can be based on the
approximation

1
f λ( )

df
dλ

λ( ) ≈ − b, (36)

which follows from the approximate relation (32).
Thus, in view of (36), the parameter b can be evaluated as

b � −f′ λp( )
f λp( ) , (37)

where f′(λ) is the derivative of the function f(λ), and λ* is some
middle point inside the interval (λ1, λ2). We note that, in light of
Eq. 28, Eq. 30, the right hand side of Eq. 37 is positive.

Moreover, we put

Λ � f λp( )exp bλp( ), (38)
where b is given by formula (37).

Figure 3 illustrates how the right-hand side of Eq. 37 varies for
the constitutive models Eqs. 24–27. It is of interest to observe that
each of the curves shows the existence of a local minimum, with
which the point λ = λ* can be associated. We note that the
horizontal dashed line corresponds to the exponential

FIGURE 2 | Examples of constitutive equations: AdG (Alexander, 1977;
de Gennes, 1987)— Eq. 24; MWC (Milner et al., 1988)— Eq. 25; D (Drozdov,
2005) — Eq. 26; VHS (Villanueva et al., 2014) — Eq. 27.
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approximation Eq. 31. From Figure 3, it is readily seen that the
dimensionless parameter b in the general exponential
approximation Eq. 32 varies in a rather wide range (roughly
speaking, between π and 2π). It is clear that the value of the ratio
f′(λ)/f(λ) is independent of the normalization of the function f(λ).

Figure 4 illustrates the application of the formulas presented
above for the Alexander–de Gennes model. We note that Line 3 is
a tangent line at the point of concave/convex deflection. The small
difference between Lines 1 and 2 is explained by two factors:
rounding errors in formula (31) and the fact that it was obtained
by direct fitting the AdG curve, whereas Line 2 fits the semilog
plot of the AdG curve.

Remark 3.1. We recall that the engineering normal strain, ε, is
defined as the ratio (D − L)/L, so that λ = 1 + ε. Therefore, the

range of small engineering deformations corresponds to the
values of the stretch ratio close to 1. The constitutive relation
for small deformations reckons on Taylor’s series of the function
f(1 + ε) for small values of the variable ε. In view of Eq. 29, this
expansion starts with the term f′(1)ε. At the same time, the value
of f′1) depends on the normalization of the function f(λ) via the
choice of the prefactor p1 in Eq. 5. That is why to compare the
model predictions in the range of small deformations, we
consider the quantity f′(1)/f(0.5), which is independent of the
normalization adopted for the constitutive function via the choice
of the prefactor p1 in Eq. 5. That. It can be easily verified that the
following relations hold (up to three digits after the decimal
point):

fAdG′ 1( )
fAdG 0.5( ) � −0.721, fVHS′ 1( )

fVHS 0.5( ) � −1.333,
fD′ 1( )
fD 0.5( ) � −1.256.

It is also to note that p > 0, λ < 1, and ε < 0 in compression,
while p < 0, λ > 1, and ε > 0 in stretching. Hence, theMWCmodel
is not applicable for describing the deformation of a polymer
brush under stretching in adhesive contact with a bare, adsorbing
rigid surface.

4 DERJAGUIN’S APPROXIMATION

In this section, we are looking at the problem of evaluating the
contact force that is produced by inserting an AFM probe into a
polymer brush. To simplify our discussion, we first, following
Butt et al. (1999), take advantage of the exponential
approximation Eq. 32 that formally extends the constitutive
relation to the entire interval λ ∈ (0, + ∞).

Moreover, we consider the special case of a paraboloidal
indenter, when the indenter surface equation in cylindrical
coordinates (Figure 5) can be represented as

z � D + r2

2R
, (39)

where r is the polar radius, z is the normal coordinate, D is the
wall separation distance of the indenter apex. We note that the
paraboloidal approximation (39) is widely used in the Hertzian
contact mechanics for describing spherical surfaces in local

FIGURE 3 | Variation of the right-hand side of Eq. 37 for the constitutive
models presented in Figure 2.

FIGURE 4 | The AdG constitutive function and its exponential
approximates: Line 1 represents formula (31), Lines 2 and 3 are obtained
using Eqs. 33, 34 and Eqs. 37, 38, respectively.

FIGURE 5 | Schematic of indentation of a polymer brush.
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contact (Johnson, 1987), while being applicable for the
indentation depths much smaller than the contact radius.

By accounting for the rotational symmetry, the total contact
force, F, can be evaluated from the contact pressure p as follows
(Butt et al., 1999):

F ≈ 2π∫∞
0

pr dr � 2π ∫∞
D

pr
dr
dz

dz. (40)

According to Eq. 39, we obtain R dz = r dr, whereas, in view of
(32), we have p ≈ p1Λ exp(−bz/L), where L is the brush thickness.
In such a case, formula (40) implies that

F ≈ 2πp1RL
Λ
b
exp −bD

L
( ). (41)

Formula (41) represents (in a general form) the
corresponding result first derived by Butt et al. (1999) for the
special exponential approximation (31). When the exponential
approximation (32) is used, the upper limit of the integration in
the above formula can be extended to infinity, and, therefore,
formula (40) overestimates the contact force.

Observe that by getting rid of the exponential approximation,
the second relation (40) can be rewritten in the form

F � ∫L
D

p z( )A′ z( ) dz, (42)

where A′(z) is the derivative of the cross-sectional area A = πr2.
We note that the Derjaguin approximation in a form similar to
(42) was presented by Halperin and Zhulina (2010). It can be
shown that in applications to polymer brushes, the Derjaguin
approximation (42) holds also for non-axisymmetric
indenters.

In nanoindentation, the shape of real pyramidal indenters is
characterized by the indenter area function, A(h), where h is the
distance from the indenter apex measured inside the indenter
along its axis (Figure 6). In other words, by setting h = z − D, the
following relation will take place:

A z( ) � A z −D( ). (43)
Thus, in view of (43), we transform formula (42) as follows:

F � ∫L
D

p z( )A′ z −D( ) dz. (44)

Here, A′(h) is the derivative of the function A(h).
Apparently, the Derjaguin approximation in the form (44)

represents a new result.
We note that for a paraboloidal indenter, A(h) � 2πRh and

A′(h) ≡ 2πR, so that formula (44) reduces to the solutions
previously presented elsewhere (Taunton et al., 1990).

4.1 Derjaguin’s Approximation for a
Monomial Indenter
Following Galin (1946) and Borodich (2014), we consider an
axisymmetric indenter whose surface in the displaced (loaded)
state is given by

z � D + Brβ. (45)
We note that for β = 2 and B = 1/(2R), Eq. 45 reduces to Eq. 39,
which corresponds to a paraboloidal indenter.

For a monomial indenter, the indenter area function is
given by

A h( ) � π
h

B
( )2/β

, (46)

so that

A′ h( ) � 2π
βB

h

B
( ) 2−β( )/β

. (47)

In view of Eqs. 5, 44, 47, the Derjaguin approximation for a
monomial indenter takes the form

F � 2πp1

β

L

B
( )2/β ∫1

D/L

f λ( ) λ − D

L
( ) 2−β( )/β

dλ. (48)

It is to note that the indenter shape parameter B has the
following physical dimension: [B] = L1−β, where L denotes the
dimension of length, and thus, the dimension of (L/B)2/β does not
depend on the value of the parameter β and coincides with the
dimension of area.

5 IDENTIFICATION OF THE CONTACT
POINT

The AFM measurements are used to identify the constitutive
relation (5) from the AFM indentation data (Butt et al., 2005),
based on the assumed force-distance curve (44). However, the
problem is that the wall separation distance D, that is the distance
between the AFM tip (or, more precisely, the apex point of the
indenter contact surface) and the rigid base (wall), to which the
tested polymer brush is attached, cannot be directly measured in
nanoindentation testing.

To proceed, we introduce the indentation depth (see Figure 5)

FIGURE 6 | Definition of the indenter area function.
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d � L −D. (49)
We note that in many cases the brush thickness L may not be
known in advance and must be evaluated from the force-
displacement curve.

Let Zp and Zc denote the hight position of the piezoelectric
translator and the deflection of the cantilever to which the
AFM probe is attached. The cantilever deflection is assumed to
be positive for the compressive contact force, so that

F � kcZc, (50)
where kc is the cantilever stiffness.

Following Butt et al. (2005), we count Zp positive if it is
retracted away from the tested sample and introduce the distance,
D, as the sum of the cantilever deflection Zc and the piezo
position Zp, that is

D � Zp + Zc. (51)
In the absence of surface (attractive) forces, the force-distance

curve (F vs.D) is divided into the following two parts. In the non-
contact part of the force-distance curve, F = 0 and, therefore, in
view of (50), we have Zc � 0 and D � Zp. In the contact part,
when the AFM probe indents the tested sample, the following
relation holds (Butt et al., 2005):

D −D0 � −d, (52)
where D0 denotes the contact point.

Thus, in the non-contact part we have

F � 0 for D≥D0. (53)
In the contact part, in view of Eqs. 44, 49, 52, we obtain

F � ∫L
L+D−D0

p z( )A′ z − L −D +D0( ) dz for D≤D0. (54)

Now, let F(d) denote the force-indentation curve (F vs. d) for
a given pair (polymer brush/AFM tip). In view of Eqs. 44, 49, we
have

F d( ) � ∫L
L−d

p z( )A′ z − L + d( ) dz. (55)

Then, using the notation introduced above, the force-distance
curve (F vs. D), which is given by Eqs. 53, 54, can be represented
as follows:

F � 0, D≥D0,
F D0 −D( ), D≤D0.

{ (56)

Thus, the fitting of the experimental force-distance curve (F vs.
D) with formulas (55) and 56, using the appropriate constitutive
relation for the tested polymer brush, provides not only the
parameters of the constitutive model but also the contact
point D0.

5.1 Force-Indentation Law for a Monomial
Indenter
The problem of identification of the contact point requires the
knowledge of the function F(d) for relatively small indentations
(to be more precise, for small values of the ratio d/L or, which is
the same, for values of the stretch ratio λ close to unit). That is
why, it is of practical interest to derive from Eq. 55 the
corresponding approximate relation. With this aim, we
consider the Taylor expansion

f λ( ) � f 1( ) + f′ 1( ) λ − 1( ) + f′′ 1( )
2!

λ − 1( )2 +/

In view of Eqs. 29, 30, we put

f λ( ) ≃ f1 1 − λ( )], λb1, (57)
where f1 and ] are constant parameters, and λ approaches 1 from
the left.

As it was shown in Section 2.2, we have ] = 2 for the MWC
model and ] = 1 for the other constitutive models considered
above, including the AdG model. So, in what follows, we may
assume that 1 ≤ ] ≤ 2.

Let us also introduce the compressive engineering strain as

ε � d

L
. (58)

Now, by taking into account Eqs. 49, 58, it can be verified that
the substitution of (57) into Eq. 48 yields.

F � 2π
β

L

B
( )2/β

p1f1 ∫
ε

0

ξ] ε − ξ( ) 2−β( )/β dξ,

so that

F ≃ F1
d

L
( )α

, (59)

where we have introduced the notation

α � 1 + ] + 2 − β

β
, (60)

F1 � 2π
β

L

B
( )2/β

p1f1B 1 + ],
2
β

( ), (61)

and B(x, y) is the beta function.
We note that, in view of (61), the prefactor in Eq. 59 scales as

F1 ~ p1L
2 with a dimensionless proportionality constant

depending on both the indenter shape and the constitutive law.
Observe that Eq. 59 is the force-displacement relation of the

power-law type, which in the mechanics of elastic contact is
encountered for indenters of self-similar form (Borodich, 1993).

It is well known (Johnson, 1987) that the case α = 3/2
corresponds to the Hertzian force-displacement relation for a
paraboloidal indenter, when β = 2. It is to note that Eq. 59 with α
= 3/2 is sometimes (predominantly in applied experimental
studies) referred to as the Sneddon equation (Tranchida et al.,
2006). Figure 7 shows the results of fitting the experimental data
obtained by Tranchida et al. (2011) using a spherical AFM tip. It
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is readily seen that Eq. 59 with α = 2, which corresponds to the
combination β = 2 (paraboloidal indenter) and ] = 1 (e.g., AdG
model), provides a better fit than the Hertzian equation (α = 3/2).
Furthermore, it is readily imaginable that if the value of ] is
allowed to be varied in the closed interval [1, 2], the quality of the
fit of the red solid curve in Figure 7 can be substantially
improved.

It should be noted that a three times smaller fitting range was
used by Tranchida et al. (2011). However, it is clear that the larger
the fitting range, the more robust is fitting itself, and therefore, the
more effective will be the determination of of the contact point.

Observe that, when the indenter shape exponent β varies from
1 to infinity, the indenter shape changes from the conical shape to
that of a flat-ended cylindrical indenter (see, e.g., Argatov and
Mishuris (2018)). At the same time, the exponent parameter α in
Eq. 59 decreases from 2 + ] to ], and therefore, α varies in the
range from 1 to 4, provided ] ∈ [1, 2].

Thus, depending on the compression constitutive model for a
tested sample, the force-indentation Eq. 59, in view of (58),
represents a power law of the form F = F1ε

α with an exponent α
ranging from 1 to 4, depending on the indenter shape. In
particular, as it was shown by Borodich et al. (2003), the
shape of real pyramidal indenters used for nanoindentation
(that is the local shape near the indenter apex at the
nanoscale) can be approximated by a monomial indenter with
β = 1.7532, so that we will have α = 2.141 for the AdGmodel and α
= 3.141 for the MWC model. It is important to note that the tip
bluntness depends on its working position (Baqain et al., 2022).

5.2 Data Analysis of Force-Indentation
Curves
When assuming the power law 59) for the initial response of a
polymer brush to indentation, the indentation-force relation,
which is inverse to Eq. 59, can be represented as

d � L
F

F1
( )1/α

. (62)

In view of Eqs. 51, 52, we have

D0 − Zp � Zc + d, (63)
where Zp and Zc are directly measured during AFM indentation
testing.

Thus, from Eqs. 50, 62, 63, it follows that

D0 − Zp � Zc + L
kc
F1

( )1/α

Z1/α
c . (64)

It is to note that the zero cantilever deflection (in the absence
of the contact load) is assumed to be zero, so that the contact force
F equals zero for Zc � 0.

Up to notation and choice of positive direction for the hight
position of the piezoelectric translator, Eq. 64 coincides with the
resulting equation derived by Parra et al. (2007) for the relation
between the cantilever deflection and the sample relative distance.

6 APPARENT ELASTIC MODULUS

When applying a power law like (59), that is

F ~ dα, (65)
for polymer brushes, one can argue that it may not matter where
it comes from, if this power law approximation fits AFM data, at
least for a certain level of initial indentation. However, such
argumentation is not so innocent, when it concerns determining
the so-called apparent (or equivalent) elastic modulus of a
polymer brush (Tranchida et al., 2011; Kutnyanszky and
Vancso, 2012).

Let us first recall the Hertzian force-displacement relation

F � 4E
3 1 − ]2( )

��
R

√
d3/2, (66)

where E and ] are Young’s modulus and Poisson’s ratio of a tested
bulk elasticmaterial,R is the radius of spherical indenter. To bemore
precise, Eq. 66 follows from the axisymmetric theory of local contact
between three-dimensional elastic solids developed by Hertz (1882),
if one of the contacting solids is assumed to be absolutely rigid (it is
called indenter) and another one is assumed to be modeled as an
elastic half-space (without any characteristic size).

It was first established by Love (1939) that the force-
displacement relation for a conical indenter pressed against an
elastic half-space has the power-law form (65) with α = 2. We
note that for a conical indenter, the area function is given by
A(h) � πh2 tan2Θ, where Θ is the half-apex angle of the cone. As
it follows from the solution derived by Love (1939), the
dependence of the contact force F on the elastic constants in
the case of a conical indenter is the same as that in the Hertzian
Eq. 66.

In the spacial case of a monomial indenter, when the indenter
area function has the form of Eq. 46with β = 2n, and n is a natural

FIGURE 7 | Fitting the AFM indentation data (Tranchida et al., 2011) for
poly(diethylene glycol methylether methacrylate) (PDEGMA) brush (dry
thickness 40 nm) acquired in buffer: Solid blue line, α =3/2, and solid red line, α
=2. A red square symbol indicates the end of the fitting range.

Frontiers in Mechanical Engineering | www.frontiersin.org June 2022 | Volume 8 | Article 93127110

Argatov et al. Atomic Force Microscopy of Polymer Brushes

https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


number, the solution to the contact problem was published by
Shtaerman (1939). In the general case of a monomial indenter
(when β is a real number not less than unit), the solution was
obtained by Galin (1946), from where it follows that

F ~
E

1 − ]2( )B
−1/βd β+1( )/β, (67)

where B and β are parameters of the indenter area function (46).
Now, returning to the question of determining the so-called

apparent elastic modulus of a polymer brush (Tranchida et al.,
2011; Kutnyanszky and Vancso, 2012) using a spherical (strictly
speaking, paraboloidal) indenter and the Hertzian formula (66),
that is

Eapparent ~
F��
R

√
d3/2

, (68)

we would like to emphasize that this approach is erroneous not
only owing to the fact that a linear elasticity theory-basedmodel is
not appropriate for polymer brushes. The main problem with this
approach is that it leads to erroneous results, because the
apparent modulus Eapparent obtained in this way will depend
on the indenter radius.

However, similar to the concept of elastic modulus, as a
characteristic of material, the apparent elastic modulus should
serve as a characteristic of polymer brush itself. This means that
the apparent modulus may depend on the brush thickness but
should be independent of the indenter radius, otherwise it does
not make any sense to introduce such a quantity for comparative
studies.

On the other hand, as it is seen from our model (see Eqs.
59–61, which is specified for a paraboloidal indenter (β = 2 and
B = 1/(2R)), we have that

F ~ RLp1
d

L
( )1+]

. (69)

By comparing formula (69) with (66), we conclude that even
in the hypothetical case ] = 1/2, when the right-hand side of (69)
formally depends on the indentation depth as d3/2, formula (68)
introduces a quantity which strongly depends on the indenter
radius, and therefore, the apparent elastic modulus Eapparent
introduced based on the Hertzian model (using formula (68)
and the method of least-squares fitting to the initial curve of the
force-indentation curve) may not serve as a reliable characteristic
of a polymer brush, to say nothing of the evident fact that
formula (68) does not take any account of the brush thickness.

7 DISCUSSION AND CONCLUSIONS

As it is shown above, the interpretation of the AFM data requires
specifying the AFM tip geometry at the nanoscale, because the
brush layer thickness is often limited to several tens of
nanometers (Tranchida et al., 2011). Since in the regime of
Derjaguin’s approximation, polymer brushes resist to
compression like the Winkler–Fuss non-linear elastic layer, the

indenter area function is shown to be ideally suitable for
characterizing the tip geometry.

Also, we advocate for using the notion of the stretch ratio, λ, to
characterize compressive deformation of a polymer brush. In this
way, the constitutive equation for compression of two identical
brushes, psymm = p1f(λ), under the condition of non-penetration is
naturally related to the constitutive equation for compression of
one brush, pasymm = p1f(λ), provided the stretch ratio is defined by
the formulas λ = D/2L (for two brushes) and λ = D/L (for one
brush), respectively. It should be emphasized that the prefactor p1
is the same in both cases, otherwise, it would contradict Newton’s
third law.

It is shown that the general exponential approximation (32)
can be introduced for any constitutive model, satisfying the
necessary conditions (28)–(30), which are fulfilled by each of
the models considered above. Because the dimensionless
parameter b is found to vary between π and 2π for these
models, it can be expected that, generally speaking, the
application of the specific exponential approximation (31)
provides a rather coarse estimate for the brush thickness,
unless the constitutive AdG model is known to be accurate the
tested brush.

Moreover, we have shown that the initial response of a
polymer brush to indentation is well approximated by a power
law (59) with the exponent parameter α ranging from 1 to 4
depending on both the constitutive model and the indenter
geometry. This fact explains why the application of Galin’s
solution (67), which predicts a power-law-like force-
displacement relation, may not fail in the identification of the
contact point. However, the application of the Galin–Sneddon
general solution, which by its very nature is based on the Hertzian
contact mechanics, for evaluating an elastic modulus of a polymer
brush is not justified at all.

It was shown that the introduction of the apparent elastic
modulus of a polymer brush based on the Hertzian formula (68)
does not withstand scrutiny. However, the question still remains:
how to characterize polymer brushes with a single dimensional
parameter?When the constitutive equation for a polymer brush is
presented in the form (5) (with a dimensionless function f(λ) of a
dimensionless argument λ), it becomes clear that the prefactor p1
is the only dimensional parameter (with the dimension of
Young’s modulus), whose value, however, depends on the
normalization of the function f(λ). In particular, one can fix
that f(0.5) = 1. Then, the compression pressure measured for the
wall separation distance equal to the half of the thickness of the
polymer brush layer (i.e., D = L/2 so that D/L = 0.5) will exactly
produce the value of p1. However, this approach may be
inconvenient when the brush layer thickness is not known in
advance.

Further, by analogy with (68) but using formula (69), the
characteristic elastic modulus can be introduced as

Echaract ~
F

RL

L

d
( )α

, (70)

where the exponent α is determined by fitting the power-law
approximation (69) to the AFM indentation data in a certain
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initial range of indentation depths. Nevertheless, an effective
application of formula (70) also requires knowledge of the
polymer brush thickness L.

Yet another way to characterize the deformation properties of
polymer brushes under normal compression can be based on the
application of the exponential approximation (32) for fitting the
experimental data. As it was shown above, the parameter b does
not depend on the normalization of the constitutive function f(λ)
(see, e.g., relation (36)). Hence, formula (32) can be rewritten in
the form

p � 100Echaract exp −bλ( ), (71)
where the exponential prefactor has units of pressure. It is to note
that the value of the characteristic elastic modulus Echaract
introduced in such a way will somewhat depend on the
method of fitting the exponential approximation (71) to the
experimental data (see the discussion at the end of Section 3),
and therefore, the fitting method should be clearly specified. At
the same time, the value the polymer brush thickness is not
required, when applying formula (71) for introducing the
characteristic elastic modulus.

To conclude, the Derjaguin approximation assumes that a
polymer brush resists to compressive deformation produced
by an AFM probe as the Winkler–Fuss non-linear elastic layer
(each end-grafted polymer chain contributes independently to
the total mechanical response). As such, neither the Hertzian
contact mechanics nor Sneddon’s theoretical framework,
which are based on the approximation of a tested sample by
a linearly elastic half-space, can serve as appropriate

mathematical models for correct interpreting the AFM-
based testing of polymer brushes.
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