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Abstract 

The remaining useful life (RUL) prediction is of significance to the health management of 

bearing. Recently, deep learning has been widely investigated in bearing RUL prediction due 

to its great success in sequence learning. However, the improvement of the prediction accuracy 

of the existing deep learning algorithms heavily relies on feature engineering such as 

handcrafted features generation and time-frequency transformation, which increase the 

complexity and difficulty of the actual deployment. In this paper, a novel spatial attention-based 

convolutional Transformer (SAConvFormer) is proposed to establish an accurate bearing RUL 

prediction model based on the raw vibration data without priori knowledge or feature 

engineering. In this algorithm, firstly, a convolutional neural network (CNN) enhanced by 

spatial attention mechanism is proposed to squeeze the feature maps and extract the local and 

global features from raw bearing vibration data effectively. Then, the extracted senior features 

are fed into a Transformer network to further explore the sequential patterns relevant to the 

bearing RUL. An experimental study using the XJTU-SY rolling bearings dataset revealed the 

merits of the proposed deep learning algorithm in terms of RMSE and MAE in comparison 

with other state-of-the-art algorithms. 

 

Keywords: Remaining useful life; Prognostic and health management; Deep learning; 

Transformer network; CNN. 
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1. Introduction 

With the rapid development of industrial Internet-of-things (IIoT) and artificial intelligence 

(AI), asset prognostic and health management (PHM) has developed rapidly in recent years [1, 

2]. The advance of IIoT allows a large number of condition monitoring data to be collected, 

which can be analysed via the emerging AI techniques. With the advance of the above 

techniques, condition-based maintenance has been developed rapidly, which has been widely 

studied in the modern industrial system in recent years [3]. Bearing is an important component 

in a large number of rotating machinery in the industry. The failure of the bearing may result 

in the machinery shutdown, breakdown of the production line and casualty [4]. The RUL of 

bearing can indicate the health status of bearing. With an accurate prediction of bearing RUL, 

appropriate maintenance can be scheduled before catastrophic failure occurs, and therefore the 

maintenance cost can be lower and the productivity of the machine can be improved [3]. 

 

Data-driven approaches are effective to model the RUL from measured data using machine 

learning techniques [5]. With the development of deep learning, various algorithms such as 

CNN [6], long-short term memory networks (LSTM) network [7], and autoencoder [8] have 

shown merits in automatic feature extraction. Recently, the studies of combining feature 

engineering or statistical approach with deep learning algorithms have gained increasing 

attention in bearing RUL prediction. For example, extracting time or frequency domain features 

using wavelet transform or fast Fourier transform can boost the RUL prediction accuracy using 

deep learning, while the priori knowledge of wavelet transforms or fast Fourier transform is 

required [9]. It increases the complexity of the modelling process and raises the bar for actual 

deployment. Hence, an end-to-end modelling algorithm is necessary to be investigated to get 

accurate RUL prediction without priori knowledge. 

 

It is well known that attention plays an important role in human perception [10]. Deep learning 

is a type of algorithm inspired by human perception. However, most deep learning algorithms 
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do not have an effective mechanism to locate the key position of the input data [11]. Attention 

mechanism was proposed to identify the importance of each feature in the input data [12]. The 

variants of the attention mechanism such as self-attention [13], spatial attention [14], and 

channel attention [15] have been widely investigated in deep learning algorithms to promote 

algorithm performance. Spatial attention [14] can be introduced into CNN to enhance the global 

patterns learning ability, which is essential in the bearing RUL modelling. Multi-head self-

attention mechanism is the core part of the Transformer network, which is effective in learning 

the feature from different aspects [13]. CNN can aggregate the local information at lower layers, 

while it is short of global patterns learning. In contrast, the Transformer network is able to 

access any part of the historical data regardless of distance, which enables the network to 

capture the long-term dependency. However, the Transformer network is not sensitive to the 

local contexts [16, 17], which contains important patterns highly relevant to the asset's health 

status. An accurate RUL prediction needs the contribution of both global and local patterns 

mining from the vibration data [9]. Meanwhile, the high sampling frequency of vibration data 

poses a challenge in computational cost to the Transformer network. Feeding a long sequence 

into a Transformer network can lead to a high computational cost and low modelling 

performance. Hence, it is worthwhile to explore a computationally efficient and end-to-end 

Transformer network which is able to extract both global and local patterns from the vibration 

data so to achieve accurate RUL prediction.  

 

In this study, an end-to-end RUL modelling algorithm called SAConvFormer, which can 

achieve accurate RUL prediction based on the raw vibration data without extra feature 

engineering was proposed. In the lower level of SAConvFormer, spatial attention is adopted to 

enhance the global patterns extraction of CNN. With the global and local features captured by 

spatial attention enhanced CNN, the subsequent Transformer block is able to model RUL 

accurately. The main contribution of this study is three-fold: (1) Different from the existing 

studies that heavily rely on extra feature engineering, this study proposed an end-to-end 

algorithm to directly model the RUL based on the raw vibration data; (2) Since directly feeding 
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the long sequence of raw vibration data into a Transformer network leads to a huge 

computational cost and the challenge of modelling training, spatial attention mechanism was 

introduced to CNN so to capture both local and global patterns and reduce the feature size; (3) 

A Transformer block was adopted to further processed the extracted features from the spatial 

attention based CNN (SA-CNN) so to obtain an accurate prediction of bearing RUL. The 

overall structure of the paper is organised as follows: Section 2 reviews the related works on 

RUL modelling and the applications of attention mechanism in PHM. Section 3 details the 

methodology of this paper. Section 4 introduces the experimental setup and the experimental 

results are demonstrated in Section 5. Finally, Section 6 discusses, and Section 7 concludes. 

 

2. Literature Review 

2.1. The studies of RUL prediction  

Recently, deep learning has been widely investigated in PHM. The studies of deep learning in 

RUL modelling mainly consisted of two types which are direct RUL modelling and health-

index (HI) based RUL modelling. Direct RUL modelling is that mapping the relationship 

between input data and RUL using deep learning directly. Wang et al. [18] proposed a deep 

separable convolutional network for machinery residual connection RUL prediction. A 

separable convolutional layer joint with residual connection was designed as a process block. 

By stacking multiple process blocks, a deep neural network was obtained to learn the hidden 

representations in the raw sensor data. CNN as a prevailing deep learning algorithm has been 

widely studied in industrial applications [19-22]. Li et al. [21] proposed a WaveletKernelNet 

architecture, where a continuous wavelet convolutional layer was designed as the first hidden 

layer in CNN. In the continuous wavelet convolutional layer, the convolutional operation and 

continuous wavelet transform were combined to extract the useful features in the sensor signal. 

Another study that focuses on time-frequency features is that Li et al. proposed [22] a multi-

scales CNN for the RUL modelling. In this study, the raw signal data was first transformed into 
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image-style input, which was then processed using multiscale CNN.  

 

HI-based RUL modelling aims to obtain the health degradation curve of an asset in the first 

place and then estimate the RUL according to the health status. The HI-based RUL modelling 

approach has the restriction that the relation between the multi-sensor data and the asset 

degradation needs to follow a specific distribution such as linear or exponential [5]. In order to 

overcome this limitation, Wang et al. [23] proposed an indirect gradient descent algorithm to 

train a deep neural network and a long-short term memory network to fuse multi-sensor signals 

to obtain the asset HI. With the pre-determined failure threshold and the estimated HI, the RUL 

can be predicted. Zhao et al. [24] proposed a normalised CNN algorithm to identify the 

degradation point in the bearing life cycle. The proposed CNN model is able to extract the 

salient features from the raw signal data of bearing. Liu et al. [25] combined the advantage of 

the LSTM network with statistical process analysis to predict the degradation of bearings. First,  

the time-domain features were extracted and segmented using statistical process analysis. The 

root-means-square value of vibration was adopted as the degradation degree. Subsequently, the 

data was fed into the LSTM network to get the degradation prediction. She et al. [26] reported 

a HI construction method based on a sparse auto-encoder with regularization model for rolling 

bearings. The proposed model extracts the original features for the construction of the HI. With 

minimal quantization error, features with the highest trendability are selected for constructing 

an HI by sorting them based on their trendability. 

 

Besides modelling RUL using pure deep learning algorithms, combining deep learning with 

other statistical approaches or machine learning approaches has been considered by different 

researchers. In order to take advantage of both the data-driven approach and the statistical 

approach, Wang et al. [27] proposed a hybrid approach for bearing RUL prediction modelling. 

In this approach, relevance vector machine regressions with different kernel parameters were 

firstly adopted to represent the degradation of bearing vibration data. Then an exponential 
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model coupled with the Fr´echet distance was utilised to predict the bearing RUL. Li et al. [6] 

proposed an end-to-end RUL prediction algorithm that combined LSTM and encoding-

decoding framework for the data processing model. Then the processed data is subsequently 

fed into a temporal convolutional network based on the CNN. Tang et al. [28] proposed a new 

RVM model, called the weight-tracking relevance vector machine. To prevent overfitting, an 

adaptive sequential optimal feature selection method is proposed within the proposed model. 

 

 Furthermore, an adaptive modification method is proposed to improve the RUL prediction 

accuracy. Huang et al. [9] proposed a deep convolutional neural network-bootstrap integrated 

method for bearing RUL prediction. In this approach, the time-frequency features were 

obtained via continuous wavelet transform. A multi-modal network was used to process the 

time-frequency features and handcrafted features. Then a bootstrap scheme was adopted to get 

the RUL prediction with prediction interval. Gao et al. [29] proposed an enhanced LSTM 

network and combined it with ensemble empirical mode decomposition (EEMD) energy 

moment entropy. In this approach, the energy moment entropy of the intrinsic mode functions 

were extracted as the input of the enhanced LSTM network. Zou et al. [30] proposed a multi-

domain adversarial network-based approach to reduce the discrepancy between different 

working conditions in RUL prediction transfer learning. The data samples are first selected via 

particle swarm optimisation algorithm, before the Hilbert envelope spectrum and degradation 

signal spectrum were extracted. The extracted features were sent into the proposed network to 

reduce the discrepancy in feature distribution between target and source domains. Besides the 

literature above, researchers also have proposed various types of deep learning algorithms in 

component or machinery RUL prediction, such as Bi-LSTM network [31], dilated-CNN [32], 

deep attention residual neural network [33] and deep adversarial neural networks [34]. 

 

2.2. The studies of attention mechanism in PHM 

Recently, the attention mechanism has been widely investigated in deep learning since it was 
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proposed in 2014 [12]. RNN has shown advantages in processing sequential data. The main 

focus of the attention mechanism is the combination with RNN, which has shown merits in 

PHM. Liu et al. [3] proposed a new feature-based attention mechanism that can adaptively 

weigh the features of the input data. With the deployment of the proposed attention mechanism, 

the Bi-directional gated recurrent unit (GRU) network can achieve better performance in 

turbofan engine RUL modelling. Duan et al. [35] designed a Bi-GRU autoencoder with an 

attention mechanism and skipped connection to locate the important features and reduce the 

decoding burden. In this study, the Bi-GRU autoencoder was designed to learn the sequential 

features within the multi-sensor data in an unsupervised manner. Chen et al. [36]embedded the 

attention mechanism into the LSTM network, which is helpful to learn the importance of 

features and time steps. Besides the studies of applied attention mechanism in RNN, CNN is 

another structure that attention mechanism can work with. Wang et al. [37] proposed a temporal 

CNN with soft thresholding and attention mechanism for machinery RUL prediction. In the 

algorithm, CNN with dilation operation and causal padding were adopted to capture the 

sequential features. Meanwhile, soft thresholding was proposed to modify the activation 

function so as to obtain more useful features. Huang et al. [38] proposed a frequency Hoyer 

attention-based CNN. In this network, adaptive weighting of the feature map is calculated using 

the frequency Hoyer attention, which can extract the hidden representation of vibration data 

from different perspectives. 

 

With the advance of the multi-head self-attention mechanism, a Transformer neural network 

was proposed in 2017 [13]. The structure of the Transformer gets rid of RNN and CNN and 

extracts sequential patterns based on the attention mechanism. This is an effective way to realise 

parallel computing and long-term sequential feature extraction. In PHM, Liu et al. [39] 

proposed a multi-modal Transformer neural network for tool wear estimation. In this approach, 

three statistical features of tool-wear signals, which are maximum, mean, and variation, were 

first extracted. Then the three types of features were then fed into three sub-networks 

individually. The subnetwork was a modification of a standard Transformer block, which uses 
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the LSTM layer to replace the fully connected layer. The output of the sub-networks was then 

concatenated and sent into a fully connected layer for tool wear estimation. Mo et al. [40] 

modified the standard Transformer for modelling the RUL of a turbofan engine. By introducing 

a gated convolution unit, the proposed algorithm is able to capture the local context of the data. 

In the proposed architecture, a gated convolutional unit layer was deployed as the first hidden 

layer, followed by a linear layer and position encoding operation. Then the data was fed into a 

Transformer block to further extract the senior features. Finally, the output of Transformer 

block was sent into a linear layer to yield the predicted RUL. Chen et al. [41] proposed a 

Transformer-based framework for vibration signal classification. In this framework, the time-

frequency spectrum features were extracted from raw signal data using discrete Fourier 

transform and short-term Fourier transform. Then the extracted features were further processed 

via Mel filter bank and discrete cosine transform. Finally, the processed features were fed into 

a modified Transformer network which a Bi-LSTM layer was introduced in the hidden layers.  

 

It can be seen from the state-of-the-art that most studies of deep learning in PHM strongly rely 

on feature engineering or statistical process to improve the RUL prediction accuracy, which 

imposes a challenge in deploying these approaches in the real world. Another issue is that the 

research on Transformer in PHM is limited, and most of them require extra feature engineering. 

Different from existing studies, this paper proposed a new deep learning algorithm called 

SAConvFormer, which takes advantage of both SA-CNN and Transformer encoder. The 

proposed algorithm can be deployed to build an end-to-end bearing RUL prediction model 

without priori knowledge.  

 

3. Methodology 

 

The general flowchart of the experiment is illustrated in Figure 1. Firstly, the data is collected 

from the experiment platform. Secondly, the first prediction time (FPT) of bearing is 
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determined. Thirdly, the data is pre-processed via sliding window processing and training/ 

testing data split. Then the training data is fed into the proposed SAConvFormer algorithm to 

train a bearing RUL prediction model. Finally, the testing set is sent into the trained model to 

obtain the RUL prediction. The details of each stage are explained in the following sub-sections.  

Vibration data collection FPT determination Data pre-processing

FPT

T1

T2

T3

Proposed network

Data Normalization

Train/Test Split

RUL prediction
Sliding window processing

Training set
Testing 

set

 

Figure 1. The flow chart of the methodology 

 

3.1. FPT determination 

The bearing degradation can be roughly classified as healthy stage and unhealthy (degradation) 

stage [1]. The boundary between the healthy stage and the unhealthy stage is FPT. The health 

of bearing before FPT decreases slowly, which is challenging to capture its degradation pattern 

via the analysis of vibration signal. In contrast, the bearing degrades rapidly after FPT, where 

the change of vibration signal is significant. Hence, the vibration data before FPT is truncated 

since its degradation pattern is feeble, and FPT is deemed as the degradation start point in the 

bearing life cycle. With an accurate determination of FPT, the modelling performance of 

bearing RUL can be leveraged. 

 

Among different approaches to determining the FPT of bearing, the kurtosis-based fault 

detection method is one of the most effective and convenient approaches that has been widely 

adopted [5]. The kurtosis-based approach is able to capture the feeble degradation patterns in 

the early stage. Moreover, it is also advantageous in the robustness of the random noise. The 
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detail of this approach is shown as follows: 

(1) Assuming the early stage of bearing running period is in the healthy stage. Calculating the 

mean value 𝜇𝜇 and standard deviation 𝜎𝜎 of the kurtosis of the vibration data in this period. 

(2) Computing the threshold of the anomaly detection point. When the measured kurtosis is 

out of the interval [𝜇𝜇 − 3𝜎𝜎 ,𝜇𝜇 + 3𝜎𝜎], it is considered an anomaly point. 

(3) Defining the tolerance of anomaly points number. Taking three as an instance. It means 

that if there are three contiguous measured signals out of the pre-set interval, it is considered 

as the degradation start point, which is the FPT. 

 

3.2. Data pre-processing 

After the FPT is determined, the data in the healthy stage is truncated. Subsequently, the data 

need to be pre-processed. Firstly, the lifetime and RUL of the bearings vary from each other, 

while the degradation data of each bearing is recorded from 100% healthy stage to complete 

failure. Directly allocating the RUL as the data label cannot represent a bearing’s actual healthy 

stage. Hence, the RUL of each bearing is scaled to the range from 0 to 1, which is more 

representative of the actual degradation. Furthermore, the stoppage of each bearing can be 

different, which is determined according to the maximum vibration amplitude of each bearing. 

Therefore, the vibration data in each bearing need to be normalised to the range from 0 to 1as 

well. 

 

Since the vibration data is collected continuously at a high sampling rate, treating each 

observation point as a data instance is not reasonable because the sequential dependency 

between regional observation points is ignored. One of the widely used approaches to get the 

data instance is sliding window processing. Given a window length and strides, the time 

window slides from the start point of the signal to the end of the signal, and each sliding 

generates a data instance. By adopting the sliding window strategy, each data instance contains 

multiple data points, which contains more information. The parameters of length and strides 
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need to be determined in the actual case [42]. After the sliding window processing, the data is 

then split into a training set and a testing set for modelling training and testing. The details of 

the data spilt are detailed in Section 4.2. 

 

3.3. Proposed network 

In this sub-section, the details of the proposed SAConvFormer algorithm are elaborated. The 

proposed algorithm consists of a feature extraction block for sequential features extraction and 

a Transformer block for sequential patterns mining. The overall architecture of SAConvFormer 

is shown in Figure 2. 

SAConvFormer Network
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Spatial attention 
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Max pooling layer

Convolutional layer

Spatial attention 
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Layer normalization 
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Figure 2. The architecture of the proposed algorithm 
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3.3.1. Feature extraction block 

The Feature extraction block consists of convolutional layers, spatial attention modules and 

max-pooling layers. Besides reducing the input dimension and extracting the important features, 

the first convolutional layer in the feature extraction block is used to fuse the input of multiple 

sensor data. With the application of the spatial attention module, the spatial patterns between 

different convolutional features can be located, which is beneficial to the feature extraction. 

Furthermore, max-pooling layers are used to reduce the dimension of extracted features.  

 

Convolutional layer: The multi-vibration signals are prepared in a two-dimensional format. 

Specifically, the horizontal vibration and vertical vibration signals of a bearing are stacked as 

the input data of the convolutional layer, which is able to extract the features relevant to the 

bearing RUL. A convolutional layer consists of multiple learnable kernels to generate new 

feature maps. The convolutional operation can be expressed as: 𝑥𝑥𝑗𝑗𝑙𝑙 = 𝜎𝜎(∑ 𝑥𝑥𝑖𝑖𝑙𝑙−1 ∗ 𝑘𝑘𝑖𝑖𝑗𝑗𝑙𝑙𝑖𝑖∈𝑀𝑀𝑗𝑗 + 𝑏𝑏𝑗𝑗𝑙𝑙)                                                 (1) 

where * represents convolutional operation, and 𝑥𝑥𝑖𝑖 is ith input feature map. 𝑘𝑘 is one of the 

convolutional kernels, which can be deemed as a filter. 𝑏𝑏 is an additive bias. 𝑀𝑀𝑗𝑗  is a feature 

map of the convolutional layer. 𝑙𝑙 is the index of the convolutional layers. 𝜎𝜎() is the activation 

function. 

 

Pooling layer: The pooling layer is normally located after the convolutional layer, which is 

adopted to subsample the feature map and locate the most significant features. There are various 

types of pooling strategies, such as maximum polling and average pooling. The max-pooling 

operation takes the maximum value in the selected region, while average-pooling takes the 

average value instead. With the adoption of the pooling layer, the computational load can be 

lowered without sacrificing the important information in the feature maps. 

 

Spatial attention module: Spatial attention is an effective and efficient attention module that 
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can be helpful in the feature extraction of CNN [14]. The spatial attention module aims to locate 

the position of the informative part of features via mining the inter-spatial relationship between 

features, which enhances the global feature extraction of CNN. The flow chart of getting spatial 

attention is shown in Figure 3. To obtain spatial attention, average-pooling and max-pooling 

along the channel axis are adopted to get a new feature descriptor by concatenating the output 

of both pooling operations. Then the new feature descriptor is fed into a convolutional layer to 

yield a spatial feature map, which the important features are assigned with higher weights and 

the unimportant features are assigned with lower weights. Specifically, the channel information 

from the last convolutional layer is aggregated by a feature map generated by two pooling 

operations and a convolutional operation. The spatial attention feature map can be computed 

as: 𝑀𝑀𝑠𝑠(𝐹𝐹) = 𝜎𝜎(𝑓𝑓𝑛𝑛∗𝑛𝑛�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙(𝐹𝐹);𝑀𝑀𝑀𝑀𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙(𝐹𝐹)�)                                      (2) 

where 𝜎𝜎 denotes the sigmoid activation function and 𝑓𝑓() is the convolution operation with the 

kernel size is 𝑛𝑛 ∗ 𝑛𝑛. 

Input features F                   

Max pooling

Avg pooling Concatenate

Convolution
Channel-refined 

features F’
Sigmoid 

activation
Spatial 

attention Ms  

Figure 3. The flow chart of getting spatial attention 

 

3.3.2. Transformer network 

With the advance of the multi-head self-attention mechanism, the Transformer network is able 

to capture the long- and short-term dependency within data. A standard Transformer network 

consists of a position encoding layer, a multi-head self-attention layer, two layer-normalisat ion 

layers, and a fully connected layer. The skip connection is adopted in the Transformer network 
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to overcome the gradient vanish problem [43]. The ability of the Transformer network to learn 

the sequential pattern within data is deficient since the self-attention mechanism is not sensitive 

to the positional information within the data. In order to address this issue, the position encoding 

layer is utilised to provide the sequential information so that the sequential pattern within the 

data can be captured. Because of that, the structure is advantageous in parallel computing and 

long-term sequential pattern mining [13]. In this study, the input of the Transformer network is 

the output of the feature extraction block, in which the sequential pattern is captured via spatial 

attention and convolution layer. Hence, positional encoding is not a necessary component in 

this study. The number of training parameters in Transformer network is relevant to its input, 

which is the output of the SA-CNN. If the input of the Transformer network is too large, it may 

cause a huge computation cost and difficulty for the Transformer network to learn the sequential 

patterns. Meanwhile, if the input of the Transformer network is too small, it may cause 

information loss and result in unsatisfactory performance. Hence, the structure of the SA-CNN 

needs to be well designed in order to send the appropriate size of input data to the Transformer 

network. 

 

The multi-head self-attention layer is the key component in the Transformer network. The 

extracted features from the feature extraction block are firstly sent to the multi-head self-

attention layer, which adopts multiple self-attention modules to learn the important features 

from different perspectives. In order to get the attention output, the relationship between a query 

and a set of key-value pairs to output needs to be determined. The attention output is a weighted 

sum of the values, which can indicate the location of the important features. The weights are 

obtained via the computation of a compatibility function of the query with the corresponding 

key. The standard self-attention layer obtains the attention score via computing the query vector 𝑞𝑞, key vector 𝑘𝑘 and value vector 𝐴𝐴. When a new input 𝑖𝑖 is fed into a self-attention attention 

layer, the attention score is calculated as: 𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆 = 𝑠𝑠𝐴𝐴𝑓𝑓𝑠𝑠𝑠𝑠𝑀𝑀𝑥𝑥(𝑞𝑞𝑖𝑖 ∗ 𝑘𝑘𝑖𝑖) ∗ 𝐴𝐴𝑖𝑖                                              (3) 
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Unlike the standard self-attention layer, multi-head self-attention deploys three matrices 𝑄𝑄,𝐾𝐾 

and 𝑉𝑉 to replace the vectors 𝑞𝑞, 𝑘𝑘 and 𝐴𝐴. The rich and complex information within the matrix is 

beneficial to comprehensively determine the feature importance from different aspects. Given 

an input data 𝑋𝑋 = [𝑥𝑥1,  𝑥𝑥2 , … , 𝑥𝑥𝑛𝑛]. A linear transformation is first deployed to the input data 

to yield the matrices 𝑄𝑄,𝐾𝐾  and 𝑉𝑉, which can be expressed as: 𝑄𝑄 = 𝑋𝑋𝑊𝑊𝑞𝑞                                                               (4) 𝐾𝐾 = 𝑋𝑋𝑊𝑊𝑘𝑘                                                              (5) 𝑉𝑉 = 𝑋𝑋𝑊𝑊𝑣𝑣                                                               (6) 

, where 𝑊𝑊𝑞𝑞 , 𝑊𝑊𝑘𝑘and 𝑊𝑊𝑣𝑣  are trainable projection matrices. 

 

Then the derived matrices 𝑄𝑄,𝐾𝐾 and 𝑉𝑉 are used as the input of scaled dot-product attention. 

The attention score of a head is then computed as: 𝐻𝐻𝑆𝑆𝑀𝑀𝐻𝐻_𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆1 =
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠฀Q×𝐾𝐾𝑇𝑇฀×V√𝑑𝑑                                                 (7) 

, where 𝐻𝐻 is a scalable factor. 

 

In order to obtain the attention score from different perspectives, multiple heads are used to 

generate different attention scores. Then the attention scores obtained from different heads are 

concatenated, which can be formulated as: 𝑀𝑀𝑀𝑀𝑙𝑙𝑠𝑠𝑖𝑖𝐻𝐻𝑆𝑆𝑀𝑀𝐻𝐻(𝑄𝑄,𝐾𝐾 ,𝑉𝑉) = 𝐶𝐶𝐴𝐴𝑛𝑛𝑆𝑆𝑀𝑀𝑠𝑠(𝐻𝐻𝑆𝑆𝑀𝑀𝐻𝐻𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆𝑆𝑆1 ,𝐻𝐻𝑆𝑆𝑀𝑀𝐻𝐻𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆𝑆𝑆2 , … ,𝐻𝐻𝑆𝑆𝑀𝑀𝐻𝐻𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆𝑆𝑆𝑠𝑠)𝑊𝑊𝑠𝑠          (8) 

, where 𝑠𝑠 is the number of heads, and 𝑊𝑊𝑠𝑠 is a trainable weighted matrix. 

 

The output of the multi-head self-attention is then concatenated with its own input and then 

processed by a layer normalisation layer to avoid overfitting [44], which can be expressed as 

follows: 𝑦𝑦𝑛𝑛𝑠𝑠𝑆𝑆𝑠𝑠 = 𝐿𝐿𝑀𝑀𝑦𝑦𝑆𝑆𝑆𝑆𝐿𝐿𝐴𝐴𝑆𝑆𝑠𝑠[𝑋𝑋 + 𝑀𝑀𝑀𝑀𝑙𝑙𝑠𝑠𝑖𝑖𝐻𝐻𝑆𝑆𝑀𝑀𝐻𝐻 (𝑋𝑋)]                                      (9) 

, where 𝑋𝑋 is the input to the multi-head self-attention layer.  
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Subsequently, the extracted features 𝑦𝑦𝑛𝑛𝑠𝑠𝑆𝑆𝑠𝑠  are sent into two feed-forward layers with skip-

connection. Finally, another layer-normalisation operation is adopted to generate the output of 

the Transformer network. The operation can be expressed as: 𝑦𝑦𝑠𝑠𝑆𝑆𝑆𝑆𝑑𝑑𝑠𝑠𝑠𝑠𝑆𝑆𝑒𝑒𝑠𝑠𝑆𝑆𝑑𝑑 = 𝐿𝐿𝑀𝑀𝑦𝑦𝑆𝑆𝑆𝑆𝐿𝐿𝐴𝐴𝑆𝑆𝑠𝑠[𝑦𝑦𝑛𝑛𝑠𝑠𝑆𝑆𝑠𝑠 + (max(0, 𝑦𝑦𝑛𝑛𝑠𝑠𝑆𝑆𝑠𝑠𝑊𝑊1 + 𝑏𝑏1)𝑊𝑊2 + 𝑏𝑏2)]     (10) 

, where 𝑊𝑊1 and 𝑊𝑊2are the weight of the feedforward layers, and 𝑏𝑏1and 𝑏𝑏2are the bias of the 

feedforward layers. 

 

With the process of the Transformer block, the long-term dependency within data can be further 

exposed. In the next stage, the output of the Transformer block is flattened and fed into two 

fully connected layers to yield an RUL prediction.  

 

4. Experimental Setup 

4.1. Data Collection and Pre-processing 

The XJTU-SY rolling bearings datasets [27] were adopted in this experiment. The XJTU-SY 

dataset consists of 15 rolling element bearings’ run-to-failure sub-datasets. The datasets were 

collected via an accelerated degradation test. The testing platform is shown in Figure 4. In the 

accelerated degradation test, there are three operational conditions which are 2100rpm (35Hz) 

and 12kN, 2250rpm (37.5Hz) and 11kN, and 2400rpm (40Hz) and 10kN. In order to collect the 

vibration signals, two accelerometers were installed in the horizontal and vertical direction on 

the housing of the rolling element bearing. The sampling frequency of the accelerometers is 

25.6kHz, with the sampling duration set as 1.28s. The sampling interval was set as 1min. The 

experiment stopped when one of the accelerometers’ maximum amplitudes exceeded 10∗ 𝐴𝐴ℎ , 

where 𝐴𝐴ℎ  is the maximum amplitudes in the normal operation stage. In the accelerated 

degradation test, four common failure modes of bearings were recorded, which are inner race, 

wear, cage fracture, outer race wear, and outer race fractures. 
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Digital force display Motor speed controller Vertical accelerometer Tested bearing

Horizontal accelerometerHydraulic loadingSupport bearingAC motor

Support shaft

 

Figure 4. The tested platform of the rolling element bearing 

 

The details of the 15 run-to-failure bearings are listed in Table 1. After the mechanism analysis 

of all the bearing data, it is worthwhile to mention the characteristic of Bearing1_4 and 

Bearing3_2. Bearing 1_4 experienced a sudden failure, and the degradation pattern was only 

partly recorded. Bearing3_2 suffered from various types of failures, and there is a great 

variation in the vibration signal. Therefore, the data of both bearings were not considered in 

this study. There are 13 bearings datasets in three different operational conditions that were 

used in the modelling stage. The FTP of each bearing is calculated according to the kurtosis-

based approach. The tolerance of anomaly points number was set as three in this study. It can 

be seen the FTPs and the actual degradation time were listed in the fourth and fifth columns of 

Table 1.  
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Table1. The details of the XJTU-SY dataset 
Operational 

condition 
Bearing index 

Bearing lifetime 

(minutes) 

FTP  

(minutes) 

RUL after FTP 

(minutes) 
Fault element 

35Hz/ 

12kN 

Bearing1_1 123 76 47 Outer race 

Bearing1_2 161 44 117 Outer race 

Bearing1_3 158 60 98 Outer race 

Bearing1_4 122 - - Cage  

Bearing1_5 52 39 13 
Inner race and 

outer race 

37.5Hz/ 

 11kN 

Bearing2_1 491 455 36 Inner race 

Bearing2_2 161 48 113 Outer race 

Bearing2_3 533 327 206 Cage  

Bearing2_4 42 32 10 Outer race 

Bearing2_5 339 141 198 Outer race 

40Hz/ 

 10kN 

Bearing3_1 2538 2344 194 Outer race 

Bearing3_2 2496 - - 

Inner race, ball, 

cage and outer 

race 

Bearing3_3 371 340 31 Inner race 

Bearing3_4 1515 1418 97 Inner race 

Bearing3_5 114 9 105 Outer race 

 

4.2. Experimental and Model Setup 

After the determination of FPT, the data was further pre-processed via data normalisation and 

sliding window processing. The window length was set as 1024 data points, and the strides 

were set as 256 data points. The data label is RUL, which was normalised to the scale from 0 

to 1. The data was then split into the training set and testing set. The modelling was 

implemented based on different operational conditions. For the dataset in each operational 

condition, the leave-one-out cross-validation strategy was adopted to yield more 

comprehensive results. Taking the modelling of Bearing1_3 as an example, the datasets of 

Bearing1_1, Bearing1_2, and Bearing1_5 were used as training set, and the dataset of 

Bearing1_3 was adopted as testing set. Subsequently, the data instances in the training set were 

reshuffled to increase the data integrity. In the model training stage, the modelling was repeated 

five times and the mean value and standard deviation of the results were marked for further 

analysis. 

 

The setting of the network parameters can significantly affect the algorithm performance. The 

parameters of the proposed network are shown in Figure 5. Besides the network structure, the 
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training parameters also need to be determined. Firstly, Adam was adopted as the optimiser. 

The learning rate, batch size and training epoch were set as 0.001, 500 and 100, respectively. 

Early stopping strategy was adopted to get the best results during the training process. Secondly, 𝑙𝑙2 regularisers [45] were added to the model to avoid overfitting. Meanwhile, the He normal 

initialiser was selected to initialise the parameters of the network, which is helpful to the 

convergence of the training process. Finally, the mean square error was selected as the loss 

function since it is suitable for the regression mission. 

(None, 1024, 2, 1) Input layer

Batch normalization 

128, ReLU 

kernal size= (16, 2)
Conv2D

Spatial attention

256, ReLU 

kernal size= (16, 1)
Conv2D

Maxpooling(8, 1)

Spatial attention

Maxpooling (8, 1)

Transformer encoder
(1000, 256)

Heads=6
kernal size= 16

kernal size= 16

Fully connected 1000, ReLU 

Fully connected 1, Linear

Dropout=0.3

Dropout=0.3

Dropout=0.3

Dropout=0.3

Dropout=0.3

Dropout=0.3

 

Figure 5. The parameters setting of SAConvFormer 

 

In the experiment, two scenarios were designed to demonstrate the performance of the proposed 

algorithm. In scenario 1, an ablation experiment was set up. As mentioned in Section 3.3.2, the 

convolutional kernel size and pooling size are two key parameters in SA-CNN, which affect 

the input size of the Transformer network. In this scenario, two convolutional layers and two 

max-pooling layers were adopted in SA-CNN. Different convolutional kernel sizes and pooling 

sizes were adopted to yield RUL predictions. Bearing 1_1 was adopted to reveal the impact of 

kernel size and pooling size on the performance of SAConvFormer. After that, all the 13 bearing 
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datasets were used to evaluate the performance of the benchmarking algorithms. The difference 

between the lifetime and degradation trends of these three datasets are obvious, which can be 

used to evaluate the performance of the algorithm in different operational conditions. The 

Horizontal vibration signals of the two datasets are illustrated in Figure 6. 

 

Figure 6. Demonstration of the horizontal vibration signals of (a) Bearing 1_1 and (b) Bearing 

2_4 

 

Three benchmarking algorithms, which are standard CNN, spatial attention-based CNN, and 

CNN +Transformer network, were adopted to evaluate the impact of different components on 

the algorithm performance. The standard CNN was designed by replacing the Transformer 

network with a fully connected layer and removing the spatial attention layers in 

SAConvFormer. Based on standard CNN, adding spatial attention layers can obtain spatial 

attention-based CNN. Meanwhile, removing the spatial attention layers in SAConvFormer can 

yield a CNN +Transformer encoder. It should be noted that the vanilla Transformers network 

was not adopted in the ablation experiment. The parallel computing mechanism of the 

Transformers network leads to a huge computational load in the modelling process based on 

the extremely long sequential input data. As a result, it takes a long time to update the model 

parameters and the training loss is hard to converge. 

 

In scenario 2, the results of the proposed algorithm were compared with the results released 

from the state-of-the-art studies and prevailing algorithms investigated in RUL modelling. The 
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benchmarking algorithms and approaches for bearing RUL modelling include: 

(1) BiLSTM network [31]: a neural network that consists of three bi-directional LSTM layers, 

and a fully connected layer. The number of nodes in the hidden layers was set as 1000. 

(2) Dilated CNN [32]: a neural network that consists of four dilated convolutional layers and 

a fully connected layer. The number of nodes in the dilated convolutional layers and fully 

connected layer were set as 128 and 1000. 

(3) Multiscale CNN [46]: using time-frequency representation of the signals as input. It 

consists of three convolution, three max-pooling layers, and two fully connected layers. A 

skip connection is applied in the last convolution layer.  

(4) DCNN-bootstrap [9]: using time-frequency representation of the signals as input. It consists 

of four convolution layers and two fully connected layers. This network is embedded in a 

bootstrap-based framework that can quantify the RUL prediction interval.  

 

The algorithms and approaches prevailing in PHM were adopted in this scenario to indicate the 

performance of the proposed algorithm. All tests were conducted on an Intel i9-10920X 

3.50Ghz CPU with Nvidia GeForce RTX 3090 graphics card. 

 

4.3. Evaluation Metrics 

 In order to evaluate the performance of the proposed algorithm with other benchmarking 

algorithms, mean-absolute-error (MAE) and root-mean-square-error (RMSE) were selected as 

the evaluation metrics. The MAE is the mean value of the absolute value of the deviation from 

the arithmetic mean of all individual observations. It can avoid the error counteraction issue of 

different observations. The MAE can be expressed as: 

𝑀𝑀𝐴𝐴𝑀𝑀 =
∑ �𝑠𝑠𝑖𝑖−𝑠𝑠𝑝𝑝 �𝑛𝑛𝑖𝑖=1 𝑛𝑛                                                            (11) 

, where 𝑛𝑛 is the number of observations, 𝑥𝑥𝑖𝑖 is the actual value and 𝑥𝑥𝑝𝑝 is the predicted value. 
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RMSE can measure the difference between the prediction values and the actual values. It also 

can reflect the divergence of the prediction error. The expression of RMSE is: 

RMSE=�∑ (𝑠𝑠𝑖𝑖−𝑠𝑠𝑝𝑝)2𝑛𝑛𝑖𝑖=1 𝒏𝒏                                                         (12) 

 

5. Experimental Results 

5.1. Scenario 1: Ablation experiment of the proposed algorithm  

The setting of SA-CNN is highly relevant to the algorithm performance of SAConvFormer and 

the model parameters. The impact of different convolutional kernel sizes and pooling sizes on 

the algorithm performance and the network parameters of SAConvFormer are shown in table 

2. From the results, what evident is that the adoption of a small pooling size causes the large 

training parameters of the network and the higher RMSE and MAE. When the pooling size was 

set at 4, the network parameters reached over 15M, which requires a large computational cost. 

In contrast, the large pooling size, which is 16, can reduce the model parameters greatly, while 

the RMSE and MAE achieved by SAConvFormer are over 0.152 and 0.122, respectively. 

Meanwhile, in the comparison of convolutional kernel size, it can be seen that when the kernel 

size was set at 32, the algorithm performance of SAConvFormer was promoted. The best RMSE 

and MAE obtained in this experiment are 0.125 and 0.104, respectively, when the kernel size 

was set at 32 and the pooling size was set at 8. Meanwhile, in this setting, the number of network 

parameters is 5.9M, which is under the average of all the experiments. Hence, 32 and 8 were 

adopted as the setting of convolutional kernel size and pooling size in the following experiments.  

Table 2. The impact of different SA-CNN settings on the performance of SAConvFormer 
Conv_kernal_size Pooling_size # Parameters  Output_size of 

SA-CNN 

RMSE MAE 

8 4 17.9M (61,256) 0.159±0.0095 0.142±0.0091 

8 8 6.1M (120, 256) 0.138±0.0096 0.115±0.0087 

8 16 3.1M (3, 256) 0.182±0.0089 0.161±0.0086 

16 4 17.7M (59, 256) 0.152±0.0170 0.128±0.0156 

16 8 5.9M (13, 256) 0.142±0.0083 0.123±0.0086 

16 16 3,3M (3, 256) 0.173±0.0174 0.146±0.0168 

32 4 16.9M (54, 256) 0.136±0.0053 0.121±0.0048 
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32 8 5.9M (11, 256) 0.125±0.0088 0.104±0.0079 

32 16 3.4M (1, 256) 0.152±0.0126 0.122±0.0134 

64 4 15.4M (44, 256) 0.182±0.0096 0.162±0.0099 

64 8 6,.0M (7, 256) 0.131±0.0193 0.109±0.0178 

 

In this scenario, four algorithms which are CNN, SA-CNN, CNN+ Transformer and 

SAConvFormer were adopted to reveal the impact of the spatial attention layer and Transformer 

on the algorithm performance in terms of RMSE and MAE. The experiments used all the 13 

bearing datasets to evaluate the performance of the four algorithms. The modelling results are 

shown in Figure 7 and Figure 8. It can be seen from Figure 7, that with the enhancement of 

spatial attention, the RMSE of RUL prediction in most bearing datasets using SA-CNN are 

promoted. Only Bearing 2_4, Bearing 3_1, and Bearing 3_3 shows worse RMSE with the 

introduction of SA-CNN. With the introduction of Transformer network to CNN, the RMSE of 

all the experiments were decreased. Among all the bearing datasets, the experiment 

implemented based on Bearing 3_5 dataset achieved the greatest promotion, which is 0.158, 

while the decrease of RMSE of Bearing 3_5 is the smallest, which is mere 0.006. With the 

enhancement of spatial attention and the Transformer network, SAConvFormer achieved the 

lowest RMSE in most of the experiments (11 out of 13). The RMSEs achieved by 

SAConvFormer are higher than CNN +Transformer scheme in the experiments of Bearing 2_4 

and Bearing3_1. CNN is the baseline model in this scenario. In comparison with CNN, 

SAConvFormer lowered the algorithm performance in terms of RMSE by around 0.08 in all 

the experiments. The greatest progress of the experiments in terms of RMSE is Bearing 3_3 

dataset experiment, which progress is 54.7%. 

 

Figure 8 illustrates the comparison of algorithm performance in terms of MAE. Similar to the 

results of RMSE, spatial attention decreased the MAE of most experiments, except Bearing1_3, 

Bearing1_5, Bearing2_4 and Bearing3_3. The introduction of Transformer greatly reduced the 

algorithm performance in terms of MAE in nine bearing datasets experiments, while the MAEs 

of Bearing 1_2, Bearing 2_4, and Bearing 3_3 increased. Meanwhile, similar to the results of 
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RMSE, SAConvFormer achieved the lowest RMSE in most of the experiments (10 out of 13). 

In general, the proposed algorithm achieved the average progress, which is around 0.038 in all 

the experiments in terms of MAE.  

 

Figure 7. The comparison of algorithm performance in terms of RMSE 

 

 

Figure 8. The comparison of algorithm performance in terms of MAE 

 

Figures 7 and 8 demonstrated that the experiment of Bearing 2_2 using SAConvFormer 

achieved the best algorithm performance in terms of RMSE and MAE, which are 0.065 and 
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0.051, respectively. The prediction results of the Bearing 2_2 experiment using SAConvFormer 

was shown in Figure 9. The diagonal line in the figures is the actual RUL of the bearing 1_1 

after FPT. The RMSE and MAE in Figure 8 are calculated based on the prediction value and 

actual value. Kalman filtering [47], as an effective denoising tool, was used to smooth the 

prediction value to make a clear comparison between the prediction and actual values. It can be 

seen that the prediction is close to the actual RUL in most stages, while the prediction error in 

the range from 2000 to 3000 is slightly enlarged.  

 

 

Figure 9. The prediction results for Bearing 2_2 

 

In order to further compare the performance of the algorithms adopted in this scenario, the four 

algorithms’ prediction values of Bearing 1_1 were plotted in Figure 10. It is obvious that the 

prediction value of all the algorithms experienced a sharp decline in the vicinity of 250s, which 

can be caused by the sudden acceleration of the bearing failure. The prediction of CNN has the 

largest error in all the cases. With the help of spatial attention, the prediction error of SA-CNN 
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is smaller than CNN. SA-CNN showed better performance in the period from 750s to 1500s. 

In the middle and the later periods of the bearing lifecycle, the prediction of CNN and SA-CNN 

are similar, where the degradation trend is not significant. With the introduction of Transformer 

to CNN, the prediction error in the first half is decreased, while the prediction error in the 

second half is still considerable. When the spatial attention and Transformer were jointly 

adopted, it can be seen that the prediction error of SAConvFormer was further reduced in all 

the stages in comparison with the algorithms above.  

 

Figure 10. The prediction results for bearing 1_1: (a) CNN; (b) SA-CNN; (C) 

CNN+Transformer; (d) SAConvFormer 

 

5.2. Scenario 2: Comparison with the state-of-the-art algorithms and methods 

In this scenario, two prevailing algorithms, which are BiLSTM [31] network and Dilated CNN 

[32] were chosen as the benchmark algorithms. Besides, two prevailing bearing RUL modelling 

methods based on MSCNN [46] and DCNN-MLP [9] were also adopted to evaluate the 
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effectiveness of the proposed algorithm.  

 

The comparison of algorithm performance in terms of RMSE and MAE for all the bearing 

datasets is illustrated in Figure 11. In the experiments of 35Hz/12kN operational condition 

(Bearing 1_1 to Bearing 1_5), it is obvious that the BiLSTM network gets the worst algorithm 

performance in all the datasets. The algorithm performance in terms of RMSE and MAE of 

BiLSTM in Bearing 1_5 is dramatically high, which are 0.510 and 0.428. However, in most of 

the results of 37.5Hz/11kN operational condition (Bearing 2_1 to Bearing 2_5), the algorithm 

performance of BiLSTM surpasses that of Dilated CNN and MSCNN. In the results of the 

40Hz/10kN operational condition (Bearing 3_1 to Bearing 3_5), BiLSTM shows better 

performance in RMSE and worse performance in MAE. Meanwhile, dilated CNN shows stable 

algorithm performance in the experiments of 35Hz/12kN operational condition, while its 

algorithm performance in terms of RMSE and MAE are higher than that of MSCNN, DCNN-

MLP and SAConvFormer. 

 

In comparison with the MSCNN and DCNN-MLP based methods that used time-frequency 

images and handcrafted features as input, the proposed SAConvFormer can achieve better 

performance in terms of RMSE and MAE in all the bearing datasets. DCNN-MLP achieves 

better performance in terms of RMSE and MAE in comparison with the rest algorithms. 

SAConvFormer showed great merits in the results of the 35Hz/12kN operational condition. The 

difference between RMSE in SAConvFormer and DCNN-MLP for Bearing 1_1, Bearing 1_2, 

and Bearing 1_4 is 0.077, 0.067 and 0.094, respectively. In the results of the 37.5Hz/11kN 

operational condition, DCNN-MLP and SAConvFormer tend to yield better results, where the 

RMSE and MAE are situated around 0.100. the merits of SAconvFormer are not obvious. The 

largest margin between the RMSE and MAE of SAConvFormer and DCNN-MLP in this group 

are merely 0.047 and 0.040. For the datasets such as Bearing 3_1 and Bearing 3_5, the MAE 

of all the benchmarking algorithms and methods are out of the range of 0.200. However, 

SAConvFormer can achieve the MAE of 0.190 and 0.151. 
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Figure 11. The comparison of algorithm performance in terms of RMSE and MAE for all the 

bearing datasets 

 

6. Discussion 

The combination of CNN and Transformer takes advantage of both algorithms. CNN is 

effective in feature extraction and dimension reduction, while the extracted features are only 

processed by fully connected layers, which are short of sequence learning capability. 

Meanwhile, it is challenging to directly apply the Transformer network for the modelling based 

on bearing vibration data because the length of the input sequence is extremely long, which 
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leads to the high computation cost of the algorithm. The high level and low dimension features 

extracted from CNN are processed in the Transformer, which can greatly leverage the algorithm 

performance. Furthermore, the introduction of spatial attention is beneficial for the global 

feature extraction of CNN. The standard CNN does not investigate the relationship between 

different feature maps, which causes the information loss of the global patterns. This issue can 

further impede the sequence learning of the Transformer network since the sequence 

information was not extracted in CNN. Hence, the proposed SAConvFormer can achieve 

satisfactory performance in the bearing RUL prediction modelling. In scenario 1, the optimal 

setting of SA-CNN was determined. The output of SA-CNN has a great impact on the algorithm 

performance of SAConvFormer. Under the context that the structure of the Transformer block 

is fixed, with smaller convolutional kernel size and pooling size, the output size of SA-CNN 

tends to be larger, which causes high computation cost and inaccurate RUL prediction. When 

the convolutional kernel size and pooling size increase, the output size of SA-CNN tends to be 

smaller, which impedes the Transformer block to learn the hidden patterns relevant to RUL. 

The results of the ablation experiment reveal the impact of each component in SAConvFormer 

on performance improvement. It can be seen that the introduction of Transformer can greatly 

promote the algorithm performance in the experiments of Bearing 1_1 and Bearing 2_4, while 

its algorithm performance in Bearing 3_1 was worse. The introduction of spatial attention can 

lower the RMSE and MAE in all three experiments, while its impact is not as considerable as 

Transformer in the experiment of Bearing 1_1 and Bearing 2_1. The introduction of spatial 

attention can slightly lower the RMSE and MAE in the experiment of Bearing 3_1. With the 

combination of Transformer and spatial attention, SAConvFormer achieve the reduction of 

RMSE and MAE by 23.7% and 16.9% in the experiment of Bearing 3_1, which indicated the 

effectiveness of the proposed algorithm. Besides, the results of Bearing 2_1 to Bearing 2_5 are 

generally better than that of the experiments. The Bearing 2_2 achieved the best algorithm 

performance in terms of RMSE and MAE, which are 0.065 and 0.051. Two reasons might cause 

the good performance of this experiment. Firstly, the bearing degradation patterns in 

37.5Hz/11Kn working conditions can be obvious, where the SAConvFormer is able to identify. 
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The second reason can be there are five bearing datasets available in the group of 37.5Hz/11Kn 

working conditions, while only four bearing datasets are available in the group of 35Hz/12kN 

and 40Hz/10kN. With more training data, the performance of SAConvFormer can be leveraged. 

With more available datasets in the future, the impact of data size on the algorithm performance 

will be investigated in future works. 

 

In scenario 2, the results of the benchmarking experiments demonstrated that the proposed 

algorithm shows merits in all the bearing experiments. The largest margin between the proposed 

algorithm and the second-best algorithm in terms of RMSE and Mae are 0.077 and 0.079, while 

the smallest margin is 0.005 and 0.004. The advantage of SAConvFormer is considerable in the 

experiment of Bearing 3_5. Bearing 3_5 has an extremely short lifecycle which is 114mins. 

The characteristic of this dataset poses a challenge for the algorithms to learn its degradation 

patterns. The benchmarking algorithms can only get RMSE and MAE about 0.25 and 0.22, 

while the proposed algorithm can achieve RMSE and MAE about 0.210 and 0.152. 

 

Another merit of the proposed algorithm is its applicability. In the benchmarking experiments, 

BiLSTM and dilated CNN used the same input data of the proposed algorithm, while MSCNN 

and DCNN-MLP utilised the time-frequency image as input data. The time-frequency 

transformation can expose the frequency-domain features that are relevant to the bearing failure. 

In the existing studies, using time-frequency transformation and other signal processing 

approaches to generate new features can promote the algorithm performance, while it requires 

extra domain knowledge and procedures. In this study, the proposed SAConvFormer only use 

the raw vibration data as input to construct an end-to-end RUL prediction model without priori 

knowledge, which is easy to deploy in the actual industrial scenario.  

 

Currently, the proposed algorithm can only be applicable in the degradation stage of bearing. 

Before the deployment of the proposed algorithm, the determination of FPT is still needed. The 

FPT determination adopted in this study is the Kurtosis-based approach, which is widely used 
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in the bearing RUL prediction modelling. If the determination of FPT and the degradation 

modelling can be jointly processed in the same model, the deployment of the RUL prediction 

model can be further simplified in the real world, which will accelerate the application of the 

data-driven RUL prediction approach. Hence, a comprehensive algorithm that can jointly 

determine the FPT and predict the RUL will be investigated in the future. Meanwhile, the 

distribution of RUL was not considered in this study. The estimation of the RUL uncertainty 

relies on the deployment of statistical or reliability models, which requires prioi knowledge and 

extra efforts. In the future, investigating an end-to-end RUL modelling approach that can 

measure the uncertainty of the predicted results is necessary.  

 

7. Conclusion 

Bearing is an essential part of the industry. An accurate RUL prediction can bring tangible 

benefits to bearing maintenance management. The existing studies of bearing RUL prediction 

heavily relied on feature engineering to improve the prediction accuracy, which increases the 

complexity and difficulty in actual deployment. In this study, an end-to-end bearing RUL 

modelling algorithm called SAConvFormer was proposed to establish an RUL prediction 

model without priori knowledge. The major findings of this study are: (1) the adoption of CNN 

and spatial attention mechanism is effective in extracting the local and global sequential 

features, which are then processed by a Transformer network; (2) the Transformer network is 

able to learn the global patterns which is relevant the bearing health status; (3) compared to the 

existing RUL modelling algorithms and methods, the proposed algorithm has demonstrated its 

merit in the experiments. Based on the promising performance of the SAConvFormer, the 

bearing maintenance strategy can be optimised to avoid catastrophic breakdown, achieve better 

job scheduling, and lower maintenance costs. In future works, the joint determination of FPT 

and RUL and the estimation of the RUL uncertainty will be further investigated. 
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