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Abstract 

Purpose 

Ensuring high on-shelf availability at low inventory costs remains an important challenge in retailing. 

Inaccurate inventory records, i.e., discrepancies between the stock records displayed in the inventory 

system and the stock quantity actually found in the retail store, have been identified as one of the most 

important drivers of retail stockouts in the past. The purpose of this work is to investigate the causes of 

positive inventory discrepancies in retailing, i.e., where there is more inventory on-hand than identified 

by the inventory system. 

Design/methodology/approach 

Based on input from retailers, we develop a simulation model of a retail store that considers various 

error-prone processes and study in a full factorial test design how the different operational errors may 

drive inventory discrepancies, paying special attention to the sources of positive inventory record 

inaccuracies. 

Findings 

This enables us to gain insights into the process parameters retailers need to adjust to avoid inventory 

records becoming inaccurate. In addition, we analyze how positive inventory discrepancies relate to 

stockouts to further our understanding of the role so-called phantom products may play. 

Originality 

While negative inventory discrepancies (where the stock that is available in the store is less than what 

the system displays) and their sources (theft, shrinkage, etc.) have been discussed quite frequently in 

the literature, the causes of positive inventory discrepancies (where the available inventory exceeds the 

system inventory) have received much less attention. 

Keywords: Inventory record inaccuracies, Inventory discrepancy, Retailing, Simulation, Stockcount 
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Introduction 

On-shelf out-of-stocks continue to pose a major challenge in retailing. The literature has 

reported average out-of-stock rates of around 7-10% (Corsten and Gruen, 2003; Aastrup and 

Kotzab, 2009; Avlijas et al., 2015), with this share remaining surprisingly constant over the 

last decades (Aastrup and Kotzab, 2010). Stockouts can have severe negative effects on the 

company. While some customers may decide to buy a substitute product during a stockout, 

other customers may prefer to buy the item at another store, postpone the purchase, or decide 

not to buy the item at all, which reduces sales (Corsten and Gruen, 2003). In addition to an 

immediate loss in sales, stockouts can also impact future sales since customers experiencing a 

stockout are less likely to purchase from the same retailer in the future (Goyal et al., 2016). 

Besides affecting sales, stockouts may influence various indirect costs, for example the cost of 

staff attending shoppers who are unable to find an out-of-stock item (Ehrenthal and Stölzle, 

2010). 

The literature has discussed various causes of stockouts, including forecasting errors, ordering 

errors, distribution center or manufacturer problems, transport delays, or shelf replenishment 

issues (Bertolini et al., 2015; Ehrenthal and Stölzle, 2010). Some researchers hypothesized that 

stockouts are predominantly caused by internal drivers, with external drivers playing a much 

smaller role (Corsten and Gruen, 2003). One internal driver of stockouts that is at the core of 

this work are inventory record inaccuracies (IRI). 

IRI can be defined as the discrepancy between the recorded and the actual (physically available) 

inventory in a store or warehouse (DeHoratius and Raman, 2008; Chuang et al., 2016; Goyal 

et al., 2016). Inaccurate inventory records may be caused by selling and restocking errors, 

replenishment errors, the misplacement of items, transaction errors, or theft (Kang and 

Gershwin, 2005; DeHoratius and Raman, 2008; Su et al., 2021). IRI can also be induced by 

the dynamics of the inventory system itself, e.g., due to time-consuming processes that modify 
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the inventory system and that occur simultaneously, creating a potential for mismatches in the 

system (Kull et al., 2013; Barratt et al., 2018). IRI are a severe problem in retailing, with earlier 

empirical research indicating that the share of stock keeping units (SKUs) affected by IRI may 

reach 65% (Kang and Gershwin, 2005; DeHoratius and Raman, 2008). SKUs suffering from 

IRI may display both negative and positive inventory discrepancies (Rekik et al., 2019a; 

2019b). In the case of negative inventory discrepancies, the number of units of a particular 

SKU available in the store is less than the quantity recorded in the stock management system, 

whereas in the case of positive inventory discrepancies, the actually available quantity exceeds 

the recorded one. If a SKU suffers from negative inventory discrepancies, the SKU may get 

ordered too late, triggering stockouts later in the ordering cycle. If positive inventory 

discrepancies prevail for a particular SKU, the SKU may get ordered too early, leading to 

unnecessarily high inventory levels at the time of the replenishment. Surprisingly though, such 

unnecessarily high stock levels do not necessarily prevent out-of-stock situations (Rekik et al., 

2019a). Amongst other reasons, this is because the inventory system is not aware of where such 

extra stock is (say in backrooms where the customer is unable to access it), preventing the store 

from selling these units. 

While IRI has been discussed quite frequently in the literature especially in recent years, prior 

research either focused on negative inventory discrepancies (Rekik and Sahin, 2012; Cannella 

et al., 2015; Rekik et al., 2015) or on absolute discrepancies that do not differentiate between 

positive and negative deviations (Fleisch and Tellkamp, 2005). Positive inventory 

discrepancies, despite being very common in retailing (Barratt et al., 2018; Rekik et al., 2019a), 

have received much less attention. In particular, there is a lack of research on the drivers of 

positive inventory discrepancies. Intuitively, one would expect that extra stock in the retail 

store leads to additional units that can be sold. Rekik et al. (2019a), however, have shown 

empirically that removing positive inventory discrepancies from the records may lead to a sales 
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increase, which may point towards the fact that surplus inventory occurs somewhere in the 

store or backroom where the customer is unable to access it. Rekik et al. (2019a) therefore 

hypothesized that positive IRI are as important as negative, and impact sales to a similar extent. 

Ton and Raman (2010) referred to such ‘hidden’ products as ‘phantom products’. A more 

detailed investigation of the factors driving positive IRI, where surplus inventory occurs, and 

how this interacts with stockouts, has not been conducted yet. 

The work at hand therefore aims to expand the knowledge on the causes of IRI in a retailing 

context with a special focus on positive inventory discrepancies. We develop a simulation 

model of a retail store that considers various error-prone processes occurring in the store and 

investigate how the different errors may drive (in particular: positive) inventory discrepancies. 

This enables us to gain insights into the process parameters retailers need to adjust to avoid 

stock records becoming inaccurate. In addition, we include different types of stocktakes 

performed at the retail store into the simulation model to further our understanding of how 

counting stock contributes to lowering (positive) IRI over time. 

The remainder of the paper is structured as follows. The next section discusses the related 

literature, and Section 3 outlines the details of our simulation methodology. Section 4 

statistically analyses the data obtained during the simulation runs and presents managerial 

insights on the causes of positive IRI. Section 5 summarizes our work and presents an outlook 

of future research opportunities. 

 

Literature review 

IRI has attracted the attention of researchers for many decades. One of the first works to 

investigate IRI is the one of Rinehart (1960), who studied the extent and the causes of inventory 

discrepancies at a supply facility of the US Federal Government. The researcher found that up 

to 50% of the items displayed some kind of inventory record error, and that the by far most 
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important driver of IRI were processes whose actual function was to correct the discrepancies, 

such as adjustments of the stock records. Kang and Gershwin (2005) performed weekly stock 

counts at a retailer over an eight-week time horizon and found that on average, 49% of the 

stock records of the retailer suffered from IRI. DeHoratius and Raman (2008) collected 

stocktake data at 37 stores of a major US retailer and analyzed the distribution of errors, both 

within and across stores. They found that 65% of the inventory records they analyzed were 

inaccurate. The absolute difference between the stock on the shelf and the inventory record was 

35% of the average number of units found on the shelf for a particular SKU. Rekik et al. (2019a) 

conducted an experiment at seven major European retailers in which they counted the retailers’ 

inventories at specific points in time over a 24-week time horizon. The researchers again found 

that about 60% of the stock records they analyzed were inaccurate at the time of the stocktakes, 

with about half of these SKUs suffering from negative and the other half suffering from positive 

inventory discrepancies. The authors also investigated the sales increase that could be achieved 

by reconciling stock records during a stocktake and found that removing both negative and 

positive discrepancies can lead to a major sales increase. 

To protect themselves against the negative effects of IRI, companies can identify and eliminate 

the sources of errors, correct the errors, for example during stocktakes, or reflect the existence 

of errors in the (design of the) stock replenishment policies (Hardgrave et al., 2009; Rekik et 

al., 2019a). One topic that has attracted some attention in the past is the use of RFID in 

preventing and correcting IRI. Goyal et al. (2016) and Bertolini et al. (2015) compared RFID-

supported counts to manual and barcode-supported counts and found that RFID led to a sharp 

decrease in both IRI and stockouts. Morey and Dittman (1986) proposed methods for 

calculating the optimal frequency of stock audits needed to meet a given accuracy level. Stock 

control policies that take account of inaccurate inventory data were proposed by Kang and 

Gershwin (2005) and Rekik et al. (2019b). Kang and Gershwin (2005) developed a continuous 
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review inventory control model that takes account of inventory shrinkage. The authors then 

evaluated different methods for protecting the company against IRI, such as additional safety 

stocks, manual stock counts, or the use of RFID that was assumed to eliminate shrinkage. Rekik 

et al. (2019b) proposed a periodic order-up-to level inventory system subject to IRI and showed 

how the stock control policy should be adjusted to minimize the total expected inventory cost 

subject to a service level constraint. They also proposed a method for estimating the inventory 

error from data the company may collect over time. 

Works that are particularly relevant to the manuscript at hand developed simulation models to 

explain how IRI occur in retail supply chains or to investigate how managerial actions can 

contribute to reducing IRI. Fleisch and Tellkamp (2005) developed a simulation model for a 

three-stage retail supply chain and considered several factors causing IRI in their model, 

namely theft, incorrect deliveries, misplaced items, and unsalable items. The authors compared 

the case where IRI accumulate over time to a situation where inventory records are reconciled 

at the end of each period. The results of the study show that removing inaccuracies from stock 

records can leverage the performance of the entire supply chain. Gumrukcu et al. (2008) also 

simulated a supply chain consisting of a retailer, a distribution center, and a supplier, and 

compared the cost of carrying additional inventory to the case where cycle counting is used to 

detect IRI. They found that cycle counting is particularly effective for low-demand-high-cost 

items. Condea et al. (2012) investigated how RFID can improve shelf replenishments in a retail 

store suffering from shrinkage. The authors considered a scenario where RFID is used to detect 

cases moving from the backroom to the salesroom; the information collected this way is used 

for scheduling shelf replenishments. The performance of this system was compared to a system 

where inventory is checked on shelves in periodic manual stocktakes. The results of the study 

imply that depending on data (reading) quality, RFID has the potential to lower total cost and 

increase service levels. If reading mistakes occur, then backroom replenishments that rely 
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exclusively on RFID data may trigger too many replenishments; a heuristic developed by the 

authors that helps to eliminate unnecessary replenishments improves the performance of the 

system in this case. Thiesse and Buckel (2015) also compared an RFID-based store 

replenishment system to a periodic review system and extended earlier works by considering 

two different RFID tagging strategies, namely item level and case level tagging, and by 

considering constraints on shelf space and service levels. Their results show that case level 

tagging is much more susceptible to reading errors; item level tagging, in turn, does not suffer 

that much from reading errors. Kull et al. (2013) studied the influence of high daily IRI 

variation on inventory and service levels of a multi-channel retailer. Their simulation model 

considered two different types of IRI drivers, namely transaction-dependent errors and 

transaction-independent errors. The results of their study imply that using across-SKU IRI 

variation to infer actual IRI variation is an overestimate that may lead to excessive on-hand 

inventory. In addition, they showed that referring just to the mean IRI in replenishing an 

inventory system is not sufficient, as the variance of IRI can exceed the mean in many cases. 

Finally, Barratt et al. (2018) developed a simulation model to gain insights into how employee-

system interaction causes IRI. One main result was that visual complexity caused by higher 

inventory levels complicate IRI correction. Albeit focusing on distribution centers, their results 

are relevant for IRI research in retail stores as well. 

Our overview of the literature shows that IRI has been analyzed from different perspectives 

and using a variety of methodologies in the past, including simulation. Positive inventory 

discrepancies and their causes have, despite their importance in practice (Rekik et al. 2019a), 

not attracted much attention so far. The work at hand contributes to closing this research gap 

by developing a simulation model that helps to explain how different decisions and errors 

occurring in retail stores (e.g., shelf sizes, selling of items in case packs) may cause positive 

inventory discrepancies or modulate their intensity. We extend prior research that investigated 
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causes of IRI (Raman et al., 2001; Fleisch and Tellkamp, 2005; Kull et al., 2013; Barratt et al., 

2018). The main contribution of our work is the investigation of new influence factors of 

positive IRI and the analysis of interaction effects between them in a single simulation. 

 

Simulation model 

Practitioner workshop 

To practically ground our simulation model and to improve the interpretation of its results, we 

conducted a workshop with professionals from eight different retail companies and 

associations. The objective of the workshop was to motivate our research questions, highlight 

the importance of considering positive IRI, and verify our research design and the parameter 

values used in the simulation runs. In the workshop, the participants discussed possible 

influence factors and the relevance of positive IRI in retail stores, and quantified examples of 

order-delivery-discrepancies, misplacements of items and checkout errors. It was found that 

practitioners generally focus more on negative IRI because it tends to create more availability 

issues. However, also positive discrepancies are considered relevant due to potential losses in 

sales. The participants also stated that the checkout quality has a direct influence on IRI and 

provided multiple examples for possible error causes (e.g., product recognition errors, incorrect 

barcodes on the items, scanning errors like over- and underscanning). Especially the use of 

case packs poses a problem at the checkout. These packs increase the overall complexity of 

handling items as there are multiple “levels of aggregation” that can lead to problems with 

stock taking and inventory management on the shopfloor. For example, multiple single items 

entering the store could get registered as case packs, creating positive IRI. One of the retailers 

pointed out that positive IRI also originate from items being misplaced while the affected 

product is counted in a partial stocktake.  
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The workshop clearly highlighted the importance of the topic investigated in this paper. All 

error classes mentioned during the workshop were considered in the simulation model. The 

empirical grounding of the simulation model enables us to reflect the results and verify the 

outcome integrity in light of the practitioner feedback we received. 

General framework 

We develop a discrete event-controlled simulation model that is roughly based on the retail 

store model of Condea et al. (2012) that consists of a backroom and a salesroom, an automatic 

inventory system that handles reorders and shelf replenishments, and basic inventory 

management processes to simulate item and information flow. The model was implemented in 

the software Tecnomatix Plant Simulation. The retail store investigated in this paper is 

illustrated in Figure 1. Solid arrows represent the flow of physical goods, whereas dotted 

arrows represent information that is exchanged between the different areas, linking IRI sources 

to the product and information flow (see subsection “sources of IRI” below).  

Items arriving at the retail store from a supplier or a distribution center of the retailer are stored 

in the backroom without being scanned individually, and the inventory system is updated 

directly based on the ordered amount. The backroom inventory is used to replenish the shelves 

in the salesroom, where each item sold by the store has a dedicated shelf area with a certain 

storage capacity. While the “regular” flow of products is from the backroom to the salesroom, 

items may also flow in the opposite direction, e.g., if misplaced items are found again during a 

stocktake. 

Figure 1: Conceptual model of the retail store including IRI sources 

The inventory control system monitors the replenishment of the store for all items. We assume 

that the retailer uses a reorder threshold, order quantity (r, Q) continuous review inventory 

control policy (Kull et al., 2013), as this is a policy that is, according to the authors’ experience, 
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frequently used in retailing. In this case, an order quantity Q is placed at the suppliers once the 

total available inventory of an item reaches the reorder threshold r. We assume that the quantity 

actually delivered to the store can differ from the order quantity Q due to errors (𝑄 + error), 

with the error being normally distributed. The error has an expected value of zero, and its 

variance depends on Q, which means that higher order quantities may lead to higher deviations 

of the delivery quantity from Q.  

Once a customer enters the salesroom, a shopping list is generated. A binomial distribution 

determines the item classes that will be bought, and then the number of requested units of each 

item class is generated according to a geometric distribution to account for the fact that retail 

customers often buy small item quantities. 

Each time an item has been sold with the sale registered at the checkout counter, the stock 

record quantity of that item is reduced. Once a shelf replenishment threshold of an item has 

been reached (note that this is different from the store reorder threshold that initiates store 

reordering), a replenishment order is triggered at the backroom and the shelf is fully replenished 

(Condea et al., 2012). The simulation model also tracks the “real” inventory in the system that 

is subject to errors; the “real” inventory, however, is not known to the stock control system that 

only has access to information that a real-world retail store would have as well.  

Sources of IRI 

The simulation model considers various sources of IRI. For each IRI source, an individual 

probability distribution is used. The implementation of the IRI sources (in terms of type and 

probability distribution) was taken from the related literature (Raman et al., 2001; Fleisch and 

Tellkamp, 2005; Condea et al., 2012) as well as from initial individual discussions with loss 

protection managers from a group of retailers. All considered sources of IRI were 
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compressively discussed, validated and approved in the subsequent practitioner workshop. The 

following error classes and sources of IRI are considered in the simulation model: 

▪ Wrong deliveries: A store may receive more or fewer items than ordered, for example 

because of errors that occurred during the ordering process (modelled using a normal 

distribution) or due to damage during transport (modelled using a binomial 

distribution); 

▪ Checkout errors: At the checkout counter, errors may lead to wrong adjustments of the 

stock records. We consider transaction errors (an item is not scanned or scanned 

multiple times; modelled using a geometric distribution), customer theft (an item leaves 

the store without being scanned, modelled using a binomial distribution), and case pack 

errors (an individual item is scanned as a case pack or vice versa, modelled using a 

binomial distribution); 

▪ Shrinkage: Items disappear in the store due to employee theft or spoilage not registered 

in the inventory system (modelled using an Erlang distribution for the event to occur 

and a combination of a binomial and a geometric distribution to determine the affected 

products and the number of stolen/spoiled items); 

▪ Misplacement errors: Customers or employees put items into wrong shelf locations, 

either in the salesroom or the backroom (modelled using a binomial distribution for the 

products and a uniform distribution for the shelf). 

The literature also discusses stock count errors as a possible source of IRI where employees 

count the wrong number of items during stocktakes (Barratt et al., 2018; DeHoratius and 

Raman, 2008). Stock count errors were, however, not included in the simulation model due to 

their obvious effects on IRI that would only compromise statistical analysis without providing 

meaningful insights. For example, systematically counting more items than actually available 
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in the store will inevitably lead to positive IRI. Note that if no systematic errors occur during 

stocktakes (i.e., employees do not have a tendency to count too much or too little) and the result 

of each stocktake fluctuates evenly around the real value, the statistical results are not affected 

as these errors cancel out in the long run.  

Formulation of research questions 

To analyze the influence of a set of model parameters that were identified as especially 

important in the literature review and the practitioner workshop on the behavior of the system, 

we formulate research questions (RQs) and test them using a statistical model: 

• RQ 1: Do case packs have higher positive IRI than individual units? 

• RQ 2: How do shelf sizes (backroom and salesroom) and thresholds (store reordering and 

salesroom replenishing) affect positive IRI?  

• RQ 3: How do sales affect positive IRI?  

• RQ 4: How do different rates of misplacement in the backroom and salesroom affect 

positive IRI? 

• RQ 5: How does time affect positive IRI (within and across stocktake cycles)? 

• RQ 6: Is there a relationship between stocktake frequency and positive IRI?  

Note that the RQs are not only investigated independently but also in combination to allow 

testing of interesting interaction effects between them (e.g., do case packs introduce positive 

IRI in conjunction with higher misplacement rates etc.). This allows us to gain more granular 

insights into the sources of positive IRI than the extant literature. Also note that not only the 

existence of a link is investigated, but also the extent of the effect. In formulating the RQs, we 

excluded parameters that have a direct effect on IRI. For example, if the theft probability is 

increased in the model, then shrinkage will increase as well, which reduces sales. 
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Implementation of stock counts 

Stock counts are mandatory under commercial law for most companies, and they are also an 

effective measure for removing errors from the stock records of a company. Given that stock 

counts are very labor-intensive and, hence, expensive, companies aim at optimizing the trade-

off between the cost of stock counts and the reduction of IRI-induced errors due to improved 

inventory information (Kök and Shang, 2007). In this paper, we assume that the retailer may 

schedule stock counts to correct inventory data in the stock control system. The simulation 

model considers the following stock count policies: 

1. Bi-annual stock counts: Every six months, the entire store is counted (complete stock 

count). 

2. Stock counts during failed replenishments: If the system wants to replenish a shelf in 

the salesroom but fails to find sufficient items in the backroom (despite the system 

indicating that sufficient items are available), and if no orders are outstanding, then a 

stock count is triggered for the affected product class(es) (partial stock count). This 

strategy avoids inventory freezing. 

3. Stock counts during backroom overflows: If the store receives a shipment but is not able 

to store the full charge of items in their dedicated zone(s) in the backroom, as this zone 

is already full, then a stock count is triggered for the affected product class(es) (partial 

stock count). This strategy avoids the very rare situation where inventory for a particular 

SKU becomes excessive. During normal operations where only a limited number of 

items exceeds the capacity of a backroom shelf, no stock count is triggered. 

In addition to verifying and eventually correcting stock records, the purpose of stock counts in 

our model is also to identify misplaced products and to bring them back to their correct storage 

location in the backroom. Wrong storage locations may also be corrected 
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• when a new shipment arrives at the backroom of the store. With a given probability 

(binomial distribution) the misplaced items in the respective backroom shelves are 

detected and brought back to their correct location; 

• when a shelf is replenished. With a given probability (binomial distribution) the 

misplaced items in the respective salesroom shelves are detected and brought back to 

their correct location. 

Simulation times 

The simulation model assumes that almost all considered processes require time to be 

completed. This applies to delivery, receiving, store reordering, shelf replenishment, shopping, 

paying, stock counts, correcting errors, and customer arrivals. These random times may 

leverage the effect of inaccurate data. For example, replenishing a shelf takes a certain time, 

and during this replenishment process, further sales may be lost. All times are stochastic and 

drawn from an Erlang distribution, except for the bi-annual stock count which is assumed to 

be completed instantly without affecting other store functions. Also, we assume that all chosen 

process times are the same for all products/product categories. 

Experiment design 

In the simulation, we study nine model parameters (listed in Table 1) that are necessary to 

answer the RQs. The impact of these parameters on IRI is tested in a full factorial design (see 

e.g., Fleisch and Tellkamp, 2005). For each parameter, we assume that it can either adopt a 

high or a low value, or that the respective model parameter is implemented or not implemented 

(e.g., a high vs. a low probability of misplacement, or the SKU is stored in a case pack vs. it is 

stored as individual units on the shelf). Considering nine parameters with two possible values 

each leads to 29 = 512 scenarios we study in the simulation. The experiment was set up to 

consider 512 different products, with each product corresponding to one of the scenarios, and 
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to study how the different products behave over time. This allows gaining insights into how the 

different parameters impact the behavior of the system and thus IRI. The simulation model 

captures two types of inventories over time: the inventory recorded in the stock management 

system and the “real” inventory that corresponds to the number of items physically available 

in the store. The difference between both is the inventory discrepancy for product i on day t 

(that can be both positive or negative): 

Inventory discrepancyit = real inventoryit – recorded stockit 

Table 1 summarizes the different model parameters that are varied for the full factorial test 

design. Please note that there are more model parameters that are kept constant during all 

simulation runs. The inventory discrepancy for every product is sampled on a daily basis and 

then averaged for a time period of 30 days to smooth the high volatility. Note that the results 

of the IRI sampling will be used exclusively for the statistical analysis and do not enter the 

simulated inventory system of the retail store, which operates unaffected by this sampling. 

Every 180 days, a complete stocktake (bi-annual stock count) is carried out to update the 

records and find misplaced items, but not to restore the initial stock level, leaving us with six 

observations for every product in one stock-taking cycle. This facilitates the statistical analysis 

by filtering high-frequency components from the time series and thus reducing complexity 

while still retaining data points between stocktakes to represent the overall IRI trend. The 

averaging may lead to the cancelling out of positive and negative IRI, but it preserves the 

overall trend in the long run. Since the simulation model relies heavily on statistical 

distributions to model processes, the number of model repetitions for every time step needs to 

be selected carefully. To derive a feasible number of repetitions for the simulation run, a short 

test run of 30 days was evaluated. The results suggest that with only 100 repetitions, the 

confidence interval of the mean IRI can already be reduced significantly, while more 

repetitions lead to quickly decreasing benefits compared to the computational effort. Based on 
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this test run, the number of repetitions was set to 500 to get the confidence interval below 0.2 

while also providing some headroom. Next, the overall simulation time was determined after 

analyzing a short test run with only 32 products. For the test run, the confidence interval change 

for the mean IRI was calculated for an increasing number of stocktake cycles (mean over all 

products; the last 30 days prior to the stock count were used due to the highest variance of the 

sample). The results show that the mean confidence interval quickly drops below 0.9 within 

just six cycles before the improvement decelerates drastically compared to the computational 

effort. Therefore, the simulation time was set to 10 stocktake cycles to provide reasonable data 

input while also enabling some additional headroom. 

Other assumptions made in developing the simulation model are the following: 

• The dimensions of the items on stock (such as size of cartons) are not considered. Shelf 

capacities are therefore formulated just as a function of the number of items. 

• To avoid initialization biases, the model starts after a complete stock count with a fully 

replenished store and ends after another complete stock count.  

• The model considers a temporary storage area where items are kept in case the shelf 

capacity for an item class in the backroom and the salesroom has been reached. During 

the validation phase of the simulation model, we verified that the temporary storage 

area did not exceed its capacity during any run and that it did not hold unrealistic 

amounts of items at the same time. 

Table 1: Model parameters for full factorial test design 

Results 

Descriptive results 

Figure 2a plots the mean inventory discrepancy for every month and every item individually 

during the simulation timeframe. As can be seen, inventory discrepancies are almost centered 
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on 0 (mean = -0.7, median -2.07) with an asymmetric variance. In addition, it can be observed 

that the overall variance increases almost linearly within each stocktake cycle until it is reset 

after the bi-annual stock count. The result is a seasonal pattern of inventory discrepancies, 

where discrepancies are the highest just before the stock count and the lowest after the stock 

count has taken place. Another interesting observation from Figure 2a is that discrepancies are 

larger in the positive direction. This could be the result of misplaced items that can potentially 

drive positive discrepancies if the inventory level is updated incorrectly. Figure 2b illustrates 

the example of a misplaced shipment that leads to large positive discrepancies. After the 

shipment has been misplaced, the associated products are no longer found in the store, and 

consequently the system orders anew after the error is detected. This leads to a high positive 

inventory discrepancy. The missing units are then discovered towards the end of the 

experiment, and the records are reconciled.  

Figure 2: a) Mean inventory discrepancies; b) Misplaced item causing high positive 

inventory discrepancies 

Additionally, an analysis of individual item classes in our data reveals that the inventory 

discrepancy develops almost linearly (increasing and decreasing) between the bi-annual stock 

counts. The general behavior of IRI observed in the results of the simulation study confirm the 

empirical findings of Rekik et al. (2019a), who also found that IRI increase linearly after a 

stock count (as opposed to Rinehart (1960), who observed a degressive increase). 

Statistical model 

We now use a linear model for analyzing how the different model parameters influence the 

dependent variable (inventory discrepancies). Due to the experiment design, we use all model 

parameters as well as all interaction terms as independent variables. In addition, variables that 

identify the stocktake cycles as well as the observations within each cycle were added to 
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account for autocorrelation of the time series. The first and last observation within each cycle 

were discarded due to undesirable inconsistencies caused by the bi-annual stock count (e.g., 

settling phase of the simulation model after the stocktake, imprecise assignment of some 

variables to a specific stocktake cycle close to the stocktake, etc.). To be able to answer RQ 6, 

we later also expand the model with the number of registered stocktakes as an independent 

variable to predict inventory discrepancies. 

Results of the regression analysis 

The results of the basic regression analysis (interaction effects are not displayed) are 

summarized in Table 2. We observed that about 75.5% of the variance of the inventory 

discrepancies can be explained by the independent variables (𝑅2~0.755). The 𝑝-values 

(heteroscedasticity-consistent standard errors were used) of several variables indicate that the 

results are highly significant. The encoding of the model treats all “low” characteristics (see 

Table 1) as the control group. Therefore, the intercept 𝛽0 = -4.505 shows the mean IRI in case 

all simulation parameters are set to their “low” characteristic. All other estimates describe the 

relative impact of the independent variables on IRI when switched to the “high” characteristic. 

The analysis thus investigates the case where the independent variables change from “low” to 

“high”. Tables that show the results of the regression analysis for each individual research 

question can be obtained from the authors upon request. 

Table 2: Partial results of the regression analysis 

Answering the research questions 

Using the results of the regression analysis, we are now able to answer the research questions:  

RQ 1: Do case packs have higher positive IRI than individual units? 

The model suggests that the casing of items is a major driver of positive IRI, with cased items 

increasing IRI by 10.761 units. This supports the results of our workshop where the participants 
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mentioned that case packs cause handling errors, such as checking out a single item as a case 

pack. Further supporting the strong positive link between items sold in case packs and positive 

IRI, we can see that in-between the bi-annual stock counts, IRI increases monotonically by 

about 2.7 units per time step if the item is sold in case packs.  

Other interactions show significant influences as well. Shelf sizes (CB and CS) and both 

thresholds (RE and RO) show significant negative interaction estimates with our case pack 

parameter, indicating that items sold in case packs are more likely to result in more positive 

IRI when shelf sizes (CB, CS) are smaller and thresholds (RE, RO) are lower. Our 

understanding of this behavior is that small shelves and thresholds lead to more shelf stockouts, 

which matches the results of Eroglu et al. (2011). From the workshop with the retailers, we 

know that in case of stockouts, retailers tend to carry out partial stocktakes of the affected item 

classes to correct the inventory records. More stockouts lead to more stocktakes, which creates 

more opportunities to falsely update the inventory records in a positive direction when items 

from that class are misplaced. 

The findings also suggest a strong positive relationship with a high misplacement rate of items, 

showing that cased items are more likely to suffer from higher positive IRI than uncased items. 

This result is intuitive, as misplacing a case pack directly leads to a higher count of misplaced 

items. Especially the misplacement of case packs during the replenishment of the salesroom 

shelves impacts IRI considerably (4.533). This could also be traced back to the mechanism 

outlined before, as misplacements of items in the wrong salesroom shelf can lead to a perceived 

stockout in addition. However, while the misplacement of case packs during the replenishment 

of the salesroom shelves impacts IRI considerably, case packs misplaced by customers and 

during the reorder process in the backroom do not seem to influence IRI substantially, most 

likely due to their smaller impact on the emergence of stockouts on the salesfloor. This result 
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is in line with the statements of the workshop participants, who predicted that misplacements 

by customers would only have a negligible effect overall. 

RQ 2: How do shelf sizes (backroom and salesroom) and thresholds (store reordering and 

salesroom replenishing) affect positive IRI? 

The main effects for shelf sizes and thresholds suggest that IRI increase monotonically over 

time for smaller shelf sizes (CB and CS) and lower store reorder thresholds (RO), indicating 

an overall positive effect on IRI. Additionally, there are important interactions with other 

influence factors that can alter the impact on IRI considerably. In this regard, we observed a 

strong relationship between the shelf sizes and thresholds and the misplacement rate of items 

during the replenishment of the salesroom shelves. The estimates suggest that small shelf sizes 

and thresholds lead to more positive IRI in combination with higher misplacement rates during 

the shelf replenishment process. This is most likely also due to the effect we discussed above 

already – more replenishments lead to more stockouts and a higher potential to falsely update 

inventory record in the positive direction. The cross-interaction effects between the four 

parameters (CB, CS, RE, RO) support this argument and were also estimated to have a positive 

impact on the overall IRI. 

RQ 3: How do increased sales affect positive IRI? 

Our results suggest that higher sales, altogether, induce more negative IRI (base effect = -1.504) 

that further decreases monotonically in-between the bi-annual stock counts. This outcome 

confirms the results of DeHoratius and Raman (2008), who showed that higher item sales lead 

to more IRI; we extend their analysis, however, by also considering the direction of IRI. Our 

model shows that the direction of IRI that result from higher customer demand depends on the 

accumulation of different errors within the store. In general, higher customer demand increases 

the frequency of processes in the store (e.g., more salesfloor replenishments, more store reorder 
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processes, etc.) and therefore boosts inherent errors. For example, our results suggest that a 

higher customer demand in combination with a higher misplacement rate during shelf 

replenishments induce more positive IRI (2.461). This result is intuitively appealing, as a larger 

customer purchase quantity leads to more frequent salesroom replenishments, creating more 

chances for item misplacements. However, the interaction estimate between cased items and 

customer demand (-1.181) indicates more negative IRI due to more negative errors during 

checkout. 

RQ 4: How do different rates of misplacement (misplacement of items in the backroom, 

salesroom, and by customers) affect positive IRI? 

Overall, only the main effects of the rate of misplaced items during the replenishment of 

salesroom shelves show a significant (positive) impact on IRI that increases about linearly in 

time in-between the bi-annual stock counts (~1.9 per time step). In contrast to that, the estimates 

for products misplaced by customers or during the reordering process in the backroom are, 

overall, not significant or of very small magnitude. This confirms the results of Fleisch and 

Tellkamp (2005), who found an improvement in IRI for lower misplacement rates. Extending 

their results, our model suggests multiple relevant interaction effects between other influence 

factors and higher misplacement rates (see RQ1, RQ2, and RQ3). Our model suggests that 

cased items as well as smaller shelf sizes (CB, CS) and lower replenishment and reordering 

thresholds (RO, RE) favor more positive IRI when combined with high misplacement rates 

during salesroom replenishments. Additionally, higher sales lead to higher IRI estimates in 

combination with more frequent item misplacement.  

RQ 5: How does time affect positive IRI (within and across stocktake cycles)? 

Across the bi-annual stocktake cycles, no significant IRI patterns could be identified. As Figure 

2a shows, the time series is stationary and behaves almost identical for the different cycles. 
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However, our model emphasizes the importance of using the time dimension to describe the 

data within a stocktake cycle, as the interaction effects as well as the base time effects could 

be estimated with very high significance. The development of IRI shows a linear behavior over 

time after the bi-annual stocktake for most of the investigated factors. This shows that the 

induced errors are consistent over time (considering both impact strength and direction) and do 

not induce large gaps or leaps or even change effective direction. Previous works observed 

different development patterns of IRI after stocktakes. Our simulation supports the findings of 

Rekik et al. (2019a) and contributes to our understanding of how IRI develops over time. 

RQ 6: Is there a relationship between stocktake frequency and positive IRI? 

An alternative model that only investigates the relationship between the stocktake frequency 

and IRI reveals that the stocktake frequency is also a suitable predictor of IRI. The average 

number of stocktakes per time step alone was able to explain about 59.1% of the variance in 

IRI (R2 ~ 0.591). A plot of this relationship (see Figure 3) also suggests a slight saturation 

effect. Therefore, an additional quadratic term was fitted, increasing the R2 of the model to 

60.1%. The plot also indicates that the estimated slopes differ substantially for the different 

time steps. To account for this behavior, a mixed model was fitted to allow for different slopes 

over the different points in time. A Likelihood-Ratio test calculated a Pseudo-R2 of 70.6 %.  

The very significant negative estimate (𝑝-value < 2e-16) of the quadratic term implies an 

inverse U-shape. In combination with the negative intercept estimate (-3.313), this supports the 

concern that was raised by the retailers examined by Rekik et al. (2019a) and the extant 

literature that a certain amount of stocktakes can true up the stock records effectively 

(DeHoratius and Raman, 2008; Hardgrave et al., 2013; Chuang et al., 2016), while too many 

stock counts can deteriorate the stock record quality (Rinehart, 1960). We confirm and extend 

these insights, as the quadratic estimate also suggests that this effect saturates as the number of 

stocktakes becomes large. 
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Figure 3: Relationship between stock taking per time step and (positive and negative) IRI 

 

Conclusion 

Main insights 

This paper contributes to the literature on inventory record inaccuracies (IRI) in retailing by 

investigating the causes of positive inventory discrepancies in retail stores. A simulation model 

of a retail store was developed that considers a comprehensive set of IRI sources, different 

stock count policies as well as various error-prone processes occurring in the store. A workshop 

involving retail practitioners was conducted to validate the simulation model and to help 

interpret the results. The main insights obtained in this work can be summarized as follows. 

First, the misplacement rate of items was shown to be one of the main drivers of positive IRI. 

While this result might seem obvious at first glance, it is also meaningful to compare the 

different types of misplacements and their impact on IRI for the retail store. The results indicate 

that misplacement of products during shelf replenishments has the largest effect on positive 

IRI, while item misplacement by customers or misplacement of incoming orders in the 

backroom did not show the same magnitude and significance. Possible reasons could be that 

the magnitude and/or frequency of misplacements is too low to be reliably observable in the 

data or the rectification of the errors happens too quickly before discrepancies can manifest 

themselves. In this context, it is also important to note that misplacements alone never lead to 

positive IRI, but only in interaction with processes that falsely update the inventory systems 

(e.g., partial stocktakes). The simulation showed an improvement of IRI with an increasing 

frequency of stocktakes, while too many stocktakes impose the risk of falsely updating the 

inventory records due to overlooking misplaced items, creating positive discrepancies. We also 

saw that case packs have a very significant positive impact on discrepancies. Especially in 
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interaction with the misplacement of items during shelf replenishments, a large positive effect 

could be observed in the simulation data. This indicates additional error processes for items in 

case packs that act primarily in a positive direction (e.g., wrong counting during checkout or 

easier misplacement of multiple items at once). The simulation also confirms the findings of 

Rekik et al. (2019a) that IRI develops linearly over time after a stocktake. 

The results of our simulation should be helpful for managers to better understand the drivers 

of incorrect inventory records and to isolate factors leading to positive inventory discrepancies. 

The insights obtained from this work could educate the selection of countermeasures in retail 

stores to reduce IRI and ensure higher on-shelf availability. 

Limitations 

This work has limitations. First, we did not use empirical data in the simulation study. 

Parameterizing the model using an empirical dataset could help us gain further insights for a 

specific retail application. We note, however, that our simulation model generally supports 

such a parameterization. Secondly, the results of the regression model depend on the 

parameters and their characteristics assumed in the simulation model and changing them could 

lead to different results. In addition, we only considered a selection of errors in the model that 

frequently occur in retail stores in practice and neglected other types of errors that could also 

lead to inventory discrepancies (e.g., errors during stock counts or errors induced by visual 

complexity or high inventory density). We also note that the interpretation of the results 

required some amount of judgement, as for example a positive effect could have also resulted 

from a reduction of negative discrepancies still leading to negative IRI. Finally, the developed 

simulation model relies on some simplifications to reduce complexity. For example, we did not 

model individual employees with unique properties and we only considered a simple supply 

chain model to keep the paper focused on processes occurring in retail stores, which could be 

seen as a limitation as well. 
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Future research 

Since this work only investigated the effects of different influence factors on positive IRI for a 

single retail store, future studies could investigate entire supply chains as the observed effects 

could differ along the supply chain stages. Future studies could also extend this work by 

investigating how technology (e.g., smart shelves and RFID) can support retailers in tracking 

stock movements that would otherwise remain unobserved. A simulation model could, for 

example, account for the fact that RFID-supported stock counts are not always accurate 

(Bertolini et al., 2015) and investigate how stock record errors introduced by RFID influence 

the system. Apart from this, future studies could also explore the impact of frequent gap scans 

on the development of IRI over time and try to derive an ‘optimal’ number of gap scans that 

balances the cost of verifying stock records and those of positive or negative inventory 

discrepancies. The simulation model developed for this study could also be expanded to 

represent retail stores with integrated online shops. The model could be extended, for example, 

to account for a situation where online orders are satisfied from the backroom, such that an 

additional (error-prone) demand process depletes inventory in this area of the retail store. 

Another useful extension of the model would be the addition of errors during stock counts in 

combination with the simulation of opening hours as this allows for detailed insights in some 

dynamic behaviors of retail stores with regard to sources of IRI (e.g., the timing of stock counts, 

gap scans, etc.). 
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