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ABSTRACT
Radiologists’ eye-movement during diagnostic image

reading reflects their personal training and experience, which
means that their diagnostic decisions are related to their per-
ceptual processes. For training, monitoring, and performance
evaluation of radiologists, it would be beneficial to be able
to automatically predict the spatial distribution of the ra-
diologist’s visual attention on the diagnostic images. The
measurement of visual saliency is a well-studied area that
allows for prediction of a person’s gaze attention. However,
compared with the extensively studied natural image visual
saliency (in free viewing tasks), the saliency for diagnostic
images is less studied; there could be fundamental differences
in eye-movement behaviours between these two domains.
Most current saliency prediction models have been optimally
developed for natural images, which could lead them to be
less adept at predicting the visual attention of radiologists
during the diagnosis. In this paper, we propose a method
specifically for automatically capturing the visual attention of
radiologists during mammogram reading. By adopting high-
resolution image representations from both deep and shallow
encoders, the proposed method avoids potential detail losses
and achieves superior results on multiple evaluation metrics
in a large mammogram eye-movement dataset.

Index Terms— Eye movement, saliency, radiologist,
mammogram, deep learning

1. INTRODUCTION

Humans have a tendency to focus their visual resources on
the relevant visual information in a scene. Previous stud-
ies have demonstrated that the eye-movements of radiologists
during diagnostic image reading can reflect their perception
processes [1]. Being able to automatically predict the visual
attention of radiologists would benefit their training, evalua-
tion, and computer-aided diagnosis [2].

In image perception, visual saliency reflects the extent to
which the content in a scene attracts visual attention. There
have been several efforts to take advantage of the visual
saliency of diagnostic images in various medical tasks and
have obtained promising results. Banerjee et al. [3] utilised
visual saliency to automatically segment brain tumors. Fan

et al. [4] optimised the segmentation of dermoscopy images
using visual saliency. Sran et al. [5] adopted visual saliency-
based methods to detect experts’ regions of interest when
interpreting brain magnetic resonance images. These stud-
ies suggest that accurate prediction of the visual saliency of
diagnostic images is of critical value to clinical practice.

Although various visual saliency prediction methods have
achieved success in estimating visual attention, most of them
have been designed for task-free viewing of natural images
without specialised knowledge. Under these circumstances,
humans tend not to only be attracted to low-level primitives
such as contrast and luminance, but also bias their gaze on
regions with familiar high-level semantics such as objects,
faces, and animals [6]. In contrast, because radiologists are
driven by their knowledge and visual search to make diag-
noses on medical images, their eye-movement behaviours
could be different from those for free viewing of natural im-
ages [7]. How to automatically predict the visual attention
of radiologists during reading diagnostic images should be
further explored.

Deep learning-based methods have gained success in the
field of medical imaging [8]. However, for medical images
consisting almost exclusively of low-level primitives, the in-
formative details are highly likely to be ignored during the
heavy downsampling that is commonly used in deep encoding
images. Besides, previous study [9] has shown that shallow
convolutional neural networks (CNNs) can encode radiologi-
cal images’ low-level primitives promisingly and mitigate the
negative effects of data insufficiency on deep learning-based
methods. Therefore, by minimising the potential detail losses,
a combination of deep and shallow CNN encoders that pro-
vide higher-resolution image representations would boost the
prediction of the radiologist’s visual attention.

In this paper, we propose a novel deep learning-based
method to automatically estimate the visual attention of
radiologists during breast screening, which adopts high-
resolution image representations from both deep and shallow
encoders to minimize the potential detail losses. Also, we
explore the impact of pre-training using a large-scale natu-
ral image saliency dataset on predicting the visual saliency
of mammograms. The experimental results show that the
proposed model outperforms the state-of-the-art on multiple
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Fig. 1. An overview of the proposed method. Assume the spatial size of the inputs is w × h. The input is first processed by the
deep encoder and shallow encoders in parallel. These encoders provide high-resolution features with the spatial size of w

4 × h
4

and w × h, respectively, which aims to minimize the potential detail losses. The structure of the shallow encoder is shown on
the right. The final saliency map is generated by the decoder based on the features from both the deep and shallow encoders.

metrics in a benchmark mammogram eye-tracking dataset.

2. PROPOSED METHOD

2.1. Architecture

The proposed method is a deep learning-based model with
an encoder-decoder architecture to predict radiologists’ visual
attention when interpreting diagnostic images. The architec-
ture of the proposed model is shown in Fig. 1.

In the encoder phase, two parallel CNN-based encoder
networks, including a deep encoder and a shallow encoder,
are applied to extract image features. The deep encoder is
based on HRNet [10] to provide high-resolution image fea-
tures. Assume that the spatial size of the inputs is w × h.
Different from the encoder typically used in salency predic-
tion that provides low-resolution image features (e.g., w

8 ×
h
8 [11, 12] or w

32 ×
h
32 [13, 14, 15] of the space size of the out-

put in the final stage), this encoder provides image represen-
tations in w

4 × h
4 spatial size at the end of its final stage for the

downstream decoder. The shallow encoder is used to extract
high-resolution image features at a shallow depth, which does
not employ any downsampling to obtain high-resolution rep-
resentations of the input image (i.e., keeps the spatial size of
w × h consistently). The architecture of the shallow encoder
is shown on the right-hand side of Fig. 1. Because there is
no downsampling in this encoder, a large size of convolution
kernels (i.e., 7×7) is adopted to obtain a wider receptive field.
The input images are first processed by a convolution with the
kernel size of 7 × 7 and then passed into two residual blocks
with the same architecture. Each residual block includes two
identical sub-blocks linked by residual connections. For each
sub-block, the feature maps are first processed by depthwise
convolution with the kernel size of 7 × 7. After that, their
dimensions are increased and then restored by two layers of
convolution with the kernel size of 1 × 1. Previous studies
have demonstrated that this kind of so-called “inverted resid-
ual” structure can enhance the representational capabilities of

neural networks [16].
In the decoder phase, the outputs of the deep encoder are

processed in series by two convolutions with linear upsam-
pling to restore them to the initial spatial size. After that,
the upsampled feature maps and the outputs from the shal-
low encoder are concatenated and sent to the subsequent net-
works to fuse together, which allows the model to utilize high-
resolution image representations from the shallow encoder to
support the saliency estimation.

2.2. Loss function

Using the saliency evaluation metrics to define the loss func-
tion has achieved notable success in saliency prediction [11,
15, 13, 12, 14]. Accordingly, we adopted a linear combina-
tion of four metrics as the loss function to train our model,
including the normalized scanpath saliency (NSS), Kullback-
Leibler divergence (KLD), linear correlation coefficient (CC),
and similarity (SIM). Let ys, yf , and ŷ be the ground truth
saliency map, fixation map, and predicted saliency map, and i
indicates the ith pixel of ys and ŷ, our loss function is defined
as:

L(ys, yf , ŷ) =λ1LNSS(yf , ŷ) + λ2LKLD(ys, ŷ)
+ λ3LCC(ys, ŷ) + λ4LSIM(ys, ŷ),

(1)

where λ1, λ2, λ3, and λ4 are the weights of individual met-
rics, and

LNSS(yf , ŷ) =
1∑
i yfi

∑
i

ŷi − µ(ŷ)
σ(ŷ)

yf
i , (2)

where σ(·) and µ(·) stand for standard deviation and mean
respectively;

LKLD(ys, ŷ) =
∑
i

ysi log(ϵ+
ysi

ϵ+ ŷi
), (3)

where ϵ is a regularization constant and set to 2.2204×10−16;

LCC(ys, ŷ) =
cov(ys, ŷ)
σ(ys)σ(ŷ)

, (4)



where cov(·) is the covariance and σ(·) is standard deviation;

LSIM(ys, ŷ) =
∑
i

min(ysi , ŷi). (5)

In LKLD, LCC and LSIM, ys, and ŷ are normalized so that∑
i ysi =

∑
i ŷi = 1. According to our empirical studies, the

weights λ1, λ2, λ3, and λ4 of the combined loss function are
set to −1, 10, −2, and −1 respectively for balancing the im-
pact of each sub-loss.

3. EXPERIMENTS

3.1. Datasets

• SALICON [17] is one of the largest human visual atten-
tion datasets and has been widely used to pre-train saliency
models, which contains 10,000 and 5,000 natural images
and visual attention data for training and validation, respec-
tively. Instead of using eye-trackers, the visual attention is
collected by mouse-clicking. In this study, this dataset is
used to explore the impact of pre-training models using a
large-scale eye-movement dataset of natural images on pre-
dicting saliency for diagnostic images.

• Mammogram eye-tracking dataset consists of 196 medi-
olateral oblique (MLO) view mammogram images from 98
anonymous cases and the eye-tracking data of 10 expert ra-
diologists. The details of this dataset can be found in [7].
This dataset is used to investigate the performance of the
models in predicting the visual attention of radiologists.

3.2. Evaluation Metrics

Various evaluation metrics have been used to evaluate the
agreement of predicted saliency maps with ground truth.
Based on their characteristics [18], five widely used evalua-
tion metrics, including CC, SIM, KLD, NSS, and area under
ROC curve (AUC), were used to evaluate the models in this
study for a comprehensive and fair comparison.

3.3. Experimental Settings

Two training stages were used to train our models, including
pre-training and fine-tuning, and the optimal models were de-
termined when the loss values on the validation set in five con-
secutive epochs were consistently higher than the recorded
minimum loss. In the pre-training stage, the deep encoder was
initialized by the pre-trained parameters for ImageNet [19],
and then the models were trained on the SALICON dataset.
In the fine-tuning stage, k-fold Cross-Validation (k = 7) was
applied to obtain comprehensive results. Specifically, the eye-
tracking mammogram dataset was divided into seven non-
overlapping subsets, and each subset contained 28 images
from 14 cases. To eliminate randomness, each test set cor-
responded to a fixed validation set and a training set. In each

fine-tuning and testing, one subset was kept as a test set, one
as a validation set, and the remaining five subsets were used
as a training set jointly. The optimal models were obtained us-
ing the same method as the pre-training stage and then tested
on the corresponding test set. The report results were the av-
erage performance on the seven tests. In both training stages,
Adam [20] was adopted as the learning strategy. The ini-
tial learning rates for pre-training and fine-tuning were set to
2 × 10−5 and 2 × 10−4, respectively, and they were reduced
by multiplying by a factor of 0.1 every 3 epochs. When the
model was trained directly on the mammogram eye-tracking
dataset without loading the pre-trained parameters of SALI-
CON, the initial learning rate was set to 2×10−4 and reduced
by multiplying by a factor of 0.1 every 12 epochs to ensure ad-
equate training. Besides, to save computational resources, all
input images were resized to the size of 384×288 pixels.

3.4. Results & Discussion

3.4.1. Impact of pre-training with a large-scale eye-movement
dataset of natural images

Previous studies have shown that pre-training deep learning
models on large-scale natural image datasets is beneficial for
deep learning-based algorithms on diagnostic image-related
tasks [8]. Accordingly, we use the parameters pre-trained on
ImageNet to initialize the deep encoder. Similarly, there are
also large-scale natural image saliency datasets, i.e., SAL-
ICON, in the eye-movement domain. However, there are
significant differences between SALICON and the medi-
cal image eye-tracking dataset in terms of targeting tasks
(free-viewing vs. medical diagnosis), types of visual selec-
tion (bottom-up vs. top-down), and data collection methods
(mouse-clicking vs. eye-tracking). Therefore, it is necessary
to investigate the effect of pre-training models on SALICON
in predicting the visual attention of radiologists. The impact
of pre-training is shown in Table 1. It shows pre-training on
SALICON can improve the model’s performance in multiple
metrics on the prediction of mammogram images’ saliency.
Since diagnostic images with expert annotations are difficult
to obtain in large quantities, it would be useful to pre-train
saliency models with large-scale eye-movement datasets of
natural images. In the subsequent experiments, all models are
initialized with the parameters pre-trained on SALICON.

3.4.2. Contributions of high-resolution image representa-
tions and shallow encoder

The contributions of deep high-resolution image representa-
tions and the shallow encoder can be seen from Table 2. Be-
cause the HRNet also provides features with the spatial size
of w

32 × h
32 at the end of its final stage, we use it to simulate

the output of an encoder with heavily downsampling, which is
denoted as Deep encoder 1

32
. In this variant, the spatial size of

the outputs from the encoder is 384× w
32 × h

32 . Three blocks



Fig. 2. Illustrations of estimating the visual attention of radiologists performing breast screening using computational models.
The first and second columns on the left present the mammograms and the ground truth visual attention of radiologists.

Table 1. The performance on prediction radiologists’ visual
attention of the proposed model pre-trained on or not on SAL-
ICON.

Pre-training conditions CC ↑ SIM ↑ KLD ↓ NSS ↑ AUC ↑
without SALICON 0.8824 0.7539 0.2760 2.8956 0.9423
with SALICON 0.9015 0.7771 0.2433 2.9912 0.9444

Table 2. The performance of model variants with different
encoders in the encoding stage.

Adopted encoder CC ↑ SIM ↑ KLD ↓ NSS ↑ AUC ↑
Deep encoder 1

32
(Baseline) 0.8951 0.7722 0.2740 2.9582 0.9437

Deep encoder 1
4

0.8974 0.7736 0.2457 2.9702 0.9439
Shallow + Deep encoder 1

4
0.9015 0.7771 0.2433 2.9912 0.9444

that have a similar structure as decoder block D 1 and D 2
(see in Fig. 1) are added at the connection between encoder
and decoder to reduce the channels (384→192→96→48) and
restore the spatial size of the feature maps ( 1

32 → 1
16 → 1

8
→ 1

4 ). Correspondingly, the model that only adopts a deep
encoder but without a shallow encoder is denoted as Deep
encoder 1

4
. We can see that the Deep encoder 1

4
outperforms

the Deep encoder 1
32

on all metrics. This illustrates that em-
ploying higher spatial size features is beneficial for estimating
the saliency of diagnostic images. Furthermore, by adding the
shallow encoder to provide higher spatial size features at a
shallow depth, the performance of Shallow + Deep encoder 1

4

is further boosted on these five metrics.

3.4.3. Comparison of other saliency models

In order to further validate the proposed method, nine visual
saliency prediction models were selected to compare their
performance with the proposed model. Among these models,
three are traditional saliency models, including FES [21],
GBVS [22], and LDS [23], and six are deep learning-based
models, including GazeGAN [13], UNISAL [14], SAM-
ResNet [11], SAM-VGG [11], MSI-Net [12], and EML-
NET [15]. These models represent state-of-the-art tradi-
tional or deep learning-based models on the MIT300 bench-
mark, and their source codes and pre-trained models are

Table 3. Comparison results of saliency models. The Bold
fonts indicate the best score. The models are sorted by their
CC scores, which is based on the suggestions of [18].

MODEL CC ↑ SIM ↑ KLD ↓ NSS ↑ AUC ↑
FES [21] 0.6437 0.5819 1.2958 2.0345 0.9084
GBVS [22] 0.6533 0.5245 0.7188 2.0798 0.9030
LDS [23] 0.7496 0.6270 0.6447 2.3751 0.9157
GazeGAN [13] 0.8543 0.7338 0.5250 2.7781 0.9383
UNISAL [14] 0.8680 0.7476 0.3011 2.8214 0.9399
SAM-ResNet [11] 0.8855 0.7618 0.3052 2.9095 0.9417
MSI-Net [12] 0.8871 0.7636 0.2609 2.8867 0.9418
SAM-VGG [11] 0.8908 0.7687 0.3297 2.9503 0.9426
EML-NET [15] 0.8909 0.7668 0.2680 2.9876 0.9435
Our Method 0.9015 0.7771 0.2433 2.9912 0.9444

publicly available. For a fair comparison, the deep learning-
based saliency model was first initialized by parameters pre-
trained on the SALICON and fine-tuned appropriately on the
mammogram dataset with the same k-fold Cross-Validation
(k = 7) strategy as the proposed model, and then reported
the average results on seven subsets. The comparison results
can be seen in Table 3. Our method achieved the best results
across these five metrics. In addition, examples of these mod-
els’ prediction results are shown in Fig. 2. These results imply
that our method provides superior visual saliency prediction
in clinical practice.

4. CONCLUSION

In this paper, we proposed a method that adopts high-
resolution image representations to predict radiologists’ vi-
sual attention during mammogram interpretation. The pro-
posed method achieved state-of-the-art performance on mul-
tiple metrics on a large-scale mammogram eye-movement
dataset. We also demonstrated the superiority of pre-training
on a benchmark eye-movement dataset of natural images
and using higher-resolution representations to estimate the
saliency of diagnostic images. Future work includes the ap-
plication of the model on other radiological examinations
such as chest radiographs.
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