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ABSTRACT

Human viewers’ eye movements reflect their perceptual
responses to visual signals. Previous research has shown that
distortions in videos cause spatio-temporal gaze shifts, which
means gaze behaviour is related to video quality perception.
It would be highly beneficial to understand gaze behaviour of
viewing videos of varying perceived quality. However, little is
known about the interactions between gaze, video content and
distortions. In this paper, based on our eye-tracking database
for video quality (SVQ160), we perform systematic analyses
to reveal the impact of video content (VC) and time order
(TO) on gaze shifts. Findings and quantitative methods for
gaze behaviour can be used to develop advanced video quality
metrics and video processing algorithms.

Index Terms— Video quality, gaze, saliency, spatio-
temporal, eye-tracking

1. INTRODUCTION

Videos have become one of the primary medium forms of in-
formation communication in our daily lives. However, video
quality could be inconsistent due to varied compression and
transmission conditions; and visible distortions could signifi-
cantly affect viewers’ experience. It is critical to develop re-
liable video quality assessment (VQA) methods, which form
the backbone of advanced video technologies.

The assessment of image quality is a well-studied area
that allows for accurate objective measure of the overall qual-
ity of a still image [1, 2]. To objectively assess video quality,
existing image quality metrics can be directly applied on indi-
vidual frames in a video sequence, and a sequence level qual-
ity index can be obtained based on simple temporal pooling
algorithms [3, 4]. To improve the performance of VQA met-
rics, more advanced methods have also been developed [5–8],
which exploit temporal information within videos to enhance
the perceptual relevance of VQA metrics. These approaches
tend to offer more robust performance when predicting video
quality. A significant current trend in VQA research is to in-
corporate visual attention, which is an essential aspect of the
human visual system (HVS) [9–11].

Human viewers’ gaze behaviour when watching videos
reflects their perception processes and interpretation of the vi-

sual content [12–14]. Attempts have been made in the VQA
literature to weight local distortions by existing saliency mod-
els [9, 10]. The limitation of these studies is that the under-
standing of how visual attention plays a role in video quality
assessment, especially the interactions between saliency, orig-
inal content and distortions, is far from complete. To develop
perceptually meaningful saliency methods for VQA, it is criti-
cal to better understand and characterise gaze behaviour when
observers view videos of varying quality and diverse content.

In a previous eye-tracking study [11], a large-scale and
reliable eye-tracking database for video quality, namely
SVQ160 was created. The study revealed that there is a
significant difference in saliency between natural scene (i.e.,
original and pristine video content) and distorted scene (i.e.,
video content with visible distortions); and that the distor-
tion/quality induced saliency shifts (QSS) significantly con-
tribute towards the video quality assessment behaviour. In
this paper, we conduct systematic analyses on the QSS in
terms of the impact of video content (VC) and time order
(TO). Building on the characteristics of gaze behaviour and
quantitative methods, we make recommendations for future
development of saliency methods in VQA metrics and video
compression algorithms.

2. METHODOLOGY AND DEFINITION

2.1. SVQ160 Database

The SVQ160 database [11] represents a large-scale and re-
liable eye-tracking study that involved 160 human observers
and 160 video stimuli degraded with different distortion types
at various quality levels. The video stimuli were taken from
the LIVE video quality database [15], consisting of 10 un-
compressed high quality reference videos and 150 distorted
videos (i.e., 15 distorted videos per reference, and distortion
types include Wireless, IP, H.264 and MPEG-2). The stimuli
cover a diverse range of video content, namely ‘bs-Blue Sky’,
‘mc-Mobile Calendar’, ‘pa-Pedestrian Area’, ‘pr-Park Run’,
‘rb-Riverbed’, ‘rh-Rush Hour’, ‘sf-Sunflower’, ‘sh-Shields’,
‘st-Station’ and ‘tr-Tractor’, as shown in Fig.1. The videos
are about 10 seconds long and have a resolutions of 768×432
pixels. The eye-tracking study included rigorously designed
control mechanisms to eliminate experimental biases and en-
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Fig. 1. SVQ160 database: first row illustrates content (representative frames) of the original videos, second row shows saliency
maps; and third row shows the corresponding heatmaps (saliency maps superimposed on representative frames).

sure reliability of eye-tracking data. Each of the 160 videos
received eye-tracking data of 20 viewers.

2.2. Definition of quality induced saliency shifts (QSS)

Now, we define a key variable in our study - quality induced
saliency shifts (QSS) - as a measure to quantify the difference
in saliency between the original and distorted videos. First,
a frame-level saliency map is created from fixations obtained
from all subjects in the eye-tracking study. The saliency map
stimulated the foveal vision of the HVS [11, 16] with the ap-
proximate size of the fovea being 2◦ visual angle. The frame-
level saliency map (FSM) is then calculated as:

FSM(x,y) =

N∑
i=1

exp

[
− (xi − x)

2
+ (yi − y)

2

σ2

]
(1)

where (xi,yi) stands for the position of the i-th fixation point,
N is the total number of fixations. Examples of the frame-
level saliency maps are shown in Fig.1. Then, the saliency
similarity between the original frame and distorted frame
is calculated using the Pearson linear correlation coefficient
(CC). Note, CC has been proven to be the most appropri-
ate perception-based saliency evaluation metric [17], and is
defined as:

CC(FSM ref,FSM dis) =
cov(FSM ref,FSM dis)

σFSM ref × σFSM dis
(2)

where σSM ref and σSM dis denote the standard deviation of
SM ref and SM dis respectively, cov(FSM ref,FSM dis)
represents the covariance. The value of CC ranges between
-1 and 1. The closer of CC to -1 or 1, the higher the similarity
between saliency maps; and the closer of CC to 0, the less
similarity exists between the two saliency maps. Finally, the
quality induced saliency shifts (QSS) can be defined based on
equation (2) for each video, i.e., the statistics of frame-based
CC over time characterises the spatio-temporal QSS.

2.3. Saliency dispersion measure

The saliency dispersion measure [18] provides an algorithm
to quantify the degree of saliency dispersion in the spatial do-
main. The multilevel entropy (ME) of a saliency map (S) is

calculated based on Shannon entropy applied to p × p non-
overlapping blocks of the saliency map:

ME = HΣ(S) =
1

Pmax

Pmax∑
P=1

Nmax∑
B=1

H(B) (3)

where H represents the entropy of a 2-D image block, Pmax

refers to the segmentation level (i.e., Pmax = 4 is empirically
determined in [18] and also used here), Nmax = P 2

max, and
B runs over each block. The lower the multilevel entropy,
the more the saliency is concentrated in fewer areas in the
spatial domain; otherwise, the higher the entropy, the more
the saliency is dispersed throughout the spatial domain.

3. STATISTICAL ANALYSIS AND RESULTS

3.1. Impact of visual content on QSS

Hypothesis: We hypothesize that the impact of video content
(VC) on the quality induced saliency shifts (QSS) is statisti-
cally significant.

We first define the video content (VC) variable as a classi-
fication of the saliency dispersion degree of the original con-
tent. For each original video, we calculate the sequence-
level ME by taking the average of frame-level ME values.
Fig.2(a) shows the saliency dispersion degrees for all original
videos. Based on observations, we could classify the videos
into two groups, i.e., VC dispersed (including ’rh’ to ’pa’)
represents the dispersed saliency and VC compact (including
’pr’ to ’sf’) represents the concentrated saliency. To verify
the VC grouping is statistical meaningful, we perform hy-
pothesis testing selecting ME as the dependent variable and
the categorical VC group as the independent variable. The
Mann-Whitney U test [19] is performed (due to evidence of
non-normality as per the Shapiro-Wilk test [19]), and the re-
sults (P < 0.05) show that the ME of VC dispersed is statis-
tically significantly higher than that of VC compact, as shown
in Fig.2(b).

Now, for the two distinctive VC classes (i.e., VC dispersed
and VC compact), we analyse the impact of VC on quality
induced saliency shifts (QSS) in terms of the spatio-temporal
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Fig. 2. (a) Saliency dispersion degrees (measured by multi-
level entropy) for all original videos contained in the SVQ160
datatabase. (b) Difference (in saliency dispersion) between
two instinctive visual content (VC) classes VC dispersed and
VC compact. Error bars indicate the 95% confidence interval.

statistics. Note, each original video is associated with 15
distorted videos in the SVQ160 database. We formulate two
target variables here: for each distorted video, based on the
frame-level CC calculated by equation2, we calculate the
mean and standard deviation of CC values over time, which
are referred to as QSS spatial and QSS temporal, respec-
tively.

The first hypothesis testing is conducted selecting QSS sp-
atial as the dependent variable, and the categorical VC group
as the independent variable. The Mann-Whitney U test is
performed (due to evidence of non-normality as per the
Shapiro-Wilk test), and the results (P < 0.05) show that
the QSS spatial of VC dispersed (dispersed saliency) is sta-
tistically significantly lower than that of VC compact (con-
centrated saliency), as shown in Fig.3(a). This suggests that
when watching the distorted videos of VC dispersed there are
significant gaze shifts relative to the original video content
(i.e., CC = 0.294 as shown in Fig.3(a)). The evidence here
has implications for the VQA metrics that contain saliency
prediction component, note the saliency predicted from the
original videos cannot reflect the saliency of the distorted
videos. However, for the videos of VC compact, viewers’
gaze is less effected by the distortions (i.e., CC = 0.635 as
shown in Fig.3(a)). For the VQA metrics or video compres-
sion algorithms, the distortions occurring in the non-salient
areas could be less penalized for overall quality.

The second hypothesis testing is conducted selecting
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Fig. 3. Difference (in spatial saliency shifts (a) and tempo-
ral saliency shifts (b)) between two instinctive visual content
(VC) classes VC dispersed and VC compact. Error bars in-
dicate the 95% confidence interval.

QSS temporal as the dependent variable, and the categorical
VC group as the independent variable. The Mann-Whitney U
test is performed (due to evidence of non-normality as per the
Shapiro-Wilk test), and the results (P < 0.05) show that the
QSS temporal of VC dispersed (dispersed saliency) is statis-
tically significantly higher than that of VC compact (concen-
trated saliency), as shown in Fig.3(b). This indicates that the
quality induced saliency shifts are more consistent over time
for the videos of VC compact than VC dispersed, meaning
how viewers’ gaze is affected by distortions is strongly time
(temporal domain) dependent. Also, such temporal variations
pose challenges for accurately predicting saliency of distorted
videos of VC dispersed.

3.2. Impact of time order on QSS

Hypothesis: We hypothesize that the impact of time order
(TO) on the quality induced saliency shifts (QSS) is statisti-
cally significant.

In order to illustrate the variations of gaze behaviour in
time order (TO), we divide a video into 10 successive blocks
of time (i.e., each time bock represents one second of video
playback). For each time block, the mean of frame-level
CC values (see equation (2)) over all distorted videos (i.e.,
150) contained in the SVQ160 database is calculated to char-
acterise the quality induced saliency shifts (QSS). Fig.4(a)
shows the QSS in time order. We could use a polynomial fit
to approximate the gaze behaviour as shown in Fig.4(a).

Based on observations of Fig.4(a), we formulate the time
order into three semantic categories, including TO beginning
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Fig. 4. (a) QSS (measured by frame-level CC over all dis-
torted videos contained in the SVQ160 database) in time
order. (b) Difference (in QSS measured by CC) between
three semantic time order (TO) categories: TO beginning,
To middle and To end. Error bars indicate the 95% confi-
dence interval.

(time blocks 1-2), TO middle (time blocks 3-8), and TO end
(time blocks 9-10). Hypothesis testing is performed se-
lecting CC as the dependent variable, and the categorical
TO group as the independent variable. The Mann-Whitney
U test is performed (due to evidence of non-normality as
per the Shapiro-Wilk test) for each comparison, including
TO beginning versus TO middle, TO middle versus TO end,
and TO beginning versus TO end. The results (P < 0.05)
show that the difference of each comparison is statistically
significant, as shown in Fig.4(b). Overall, this indicates that
in the beginning of video playback, viewers’ gaze is less
affected by distortions than the rest of viewing time. A plau-
sible reason is center-bias, which is the tendency of observers
to preferentially look towards the centre of images (image
center-bias [20]), or their first fixations tend to be near the
centre of an object (object center-bias [21]). A viewing strat-
egy was observed in previous studies that viewers tend to
look at locations closer to the centre immediately after the
beginning of the scene [22, 23]. In the middle of viewing,
there are significant saliency shifts due to the occurrence of
distortions, meaning viewers might be most sensitive to dis-
tortions during these times. The impact of distortions on gaze
behaviour significantly decreases towards the end of viewing
(i.e., a significant increase of CC as shown in Fig.4(b) from
TO middle to TO end). This could be attributed to the fact
that viewers would have learned to tolerate the distortions to
some extent, which leads to the changes in gaze behaviour
from middle to the end of viewing.
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Fig. 5. (a) Saliency dispersion (measured by entropy over
all videos contained in the SVQ160 database) in time order.
(b) Difference (in saliency dispersion) between three seman-
tic time order (TO) categories: TO beginning, To middle and
To end. Error bars indicate the 95% confidence interval.

Fig.5(a) illustrates the average entropy (see equation (3))
in time order (i.e., 10 time blocks) over all original and dis-
torted videos (i.e., 160) contained in the SVQ160 database.
The Mann-Whitney U test is performed (due to evidence of
non-normality as per the Shapiro-Wilk test) to analyse the im-
pact of different TO groups (i.e., TO beginning, TO middle,
and TO end) on the saliency dispersion measure (i.e., en-
tropy). The results (P < 0.05) show that the difference of
each comparison between TO groups is statistically signifi-
cant, as shown in Fig.5(b). This means viewers’ gaze tends
to be more dispersed in the middle of viewing than the begin-
ning/end of viewing. This reflects the fluctuation of distortion
induced gaze shifts in time oder, which is consistent with
the findings in Fig.4. The time order effects on distortion
perception could be potentially used (e.g., as a time order-
aware weighting function) to improve VQA metrics or video
compression algorithms.

4. CONCLUSION

In this paper, we have investigated quality induced saliency
shifts (QSS) - a highly relevant attribute of video quality. Our
statistical analyses on the large-scale eye-tracking database
(SVQ160) reveal that video content classification and time
order have significant impacts on the spatio-temporal charac-
teristics of QSS. Findings can be used to facilitate the devel-
opment of advanced algorithms for video quality assessment
and video coding.
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