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A B S T R A C T   

Machine learning (ML) holds promise for precision psychiatry, but its predictive performance is unclear. We 
assessed whether ML provided added value over logistic regression for prediction of schizophrenia, and 
compared models built using polygenic risk scores (PRS) or clinical/demographic factors. 

LASSO and ridge-penalised logistic regression, support vector machines (SVM), random forests, boosting, 
neural networks and stacked models were trained to predict schizophrenia, using PRS for schizophrenia (PRSSZ), 
sex, parental depression, educational attainment, winter birth, handedness and number of siblings as predictors. 
Models were evaluated for discrimination using area under the receiver operator characteristic curve (AUROC) 
and relative importance of predictors using permutation feature importance (PFI). In a secondary analysis, fitted 
models were tested for association with schizophrenia-related traits which had not been used in model 
development. 

Following learning curve analysis, 738 cases and 3690 randomly sampled controls were selected from the UK 
Biobank. ML models combining all predictors showed the highest discrimination (linear SVM, AUROC = 0.71), 
but did not significantly outperform logistic regression. AUROC was robust over 100 random resamples of 
controls. PFI identified PRSSZ as the most important predictor. Highest variance in fitted models was explained by 
schizophrenia-related traits including fluid intelligence (most associated: linear SVM), digit symbol substitution 
(RBF SVM), BMI (XGBoost), smoking status (XGBoost) and deprivation (linear SVM). 

In conclusion, ML approaches did not provide substantial added value for prediction of schizophrenia over 
logistic regression, as indexed by AUROC; however, risk scores derived with different ML approaches differ with 
respect to association with schizophrenia-related traits.   

1. Introduction 

Prediction modelling is more closely aligned with the aims of pre-
cision psychiatry than association testing (Bzdok et al., 2020) and raises 
the prospect of using supervised machine learning (ML), a collection of 
approaches which learn the relationship between predictors and 
response from data (Bzdok et al., 2018). ML can detect non-linear re-
lationships, prioritises generalisation over drawing inference about a 
population from a sample, where generalisation refers to prediction in 
new individuals who were not included in model training, and may 
expedite the realisation of precision psychiatry by improving prediction 

from both genetic and non-genetic factors (Manchia et al., 2020). 
There has been considerable interest in the use of polygenic risk 

scores (PRS) as a tool for prediction in psychiatry (Demontis et al., 2018; 
Levey et al., 2020; Mullins et al., 2021; Ripke et al., 2020; Vassos et al., 
2017; Wray et al., 2018; Zheutlin et al., 2019). In schizophrenia, PRS 
currently explain around 8 % of the variance in liability in samples of 
European ancestry, and achieve moderate discrimination between cases 
and controls (0.72 area under the receiver operator characteristic curve; 
AUROC) (Ripke et al., 2020). Variance explained by PRS in samples of 
non-European ancestry is generally lower as the genome-wide associa-
tion studies (GWAS) used to calculate PRSs are based predominantly on 
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European samples (Dennison et al., 2020). PRS alone in schizophrenia 
do not have clinical utility (Vassos et al., 2017); useful prognostic 
models typically have AUROCs over 0.8 (Lewis and Vassos, 2020). 
Combining PRS with other predictors is a natural progression and has 
proved fruitful in both schizophrenia (Perkins et al., 2019) and outside 
psychiatry (Fung et al., 2019; Inouye et al., 2018), with most research to 
date using linear models rather than more flexible ML approaches. 

Early ML applications in schizophrenia included prediction of clo-
zapine response or weight changes as a result of medication using neural 
networks (Lan et al., 2008; Lin et al., 2008), where ML models using 
single nucleotide polymorphisms (SNPs) combined with demographic 
and lifestyle data improved prediction over logistic regression (LR). 
More recent work combining neuroimaging data with SNPs using ML 
has either not compared combined predictions with those from genetic 
or non-genetic data alone (Li et al., 2020; Pettersson-Yeo et al., 2013), 
has not found improved prediction from combined data types over only 
genetic or non-genetic predictors (Cao et al., 2013; Yang et al., 2010), or 
has found no added value from combining data types (Doan et al., 2017). 

The potential benefit of machine learning over standard statistical 
approaches is unclear as performance estimates for ML may be overly 
optimistic (Boulesteix et al., 2013; Christodoulou et al., 2019; Hand, 
2006; Whalen et al., 2021). Furthermore, we previously identified 
widespread high risk of bias (ROB) in genetic-only ML models in psy-
chiatry, in addition to lack of comparison to LR or investigation of 
confounding by population structure (Bracher-Smith et al., 2020). Here, 
we aimed compare ML with LR, assess the relative importance of pre-
dictors and investigate model predictions for association with traits 
known to be associated with schizophrenia (referred to as 
schizophrenia-related traits hereafter). We mitigate previous issues in 
risk of bias by training ML approaches with low ROB strategies and 
assessing how well predictions are explained by population structure. 

2. Material and methods 

2.1. Participants 

The UK Biobank contains around 500,000 participants which un-
dertook cognitive assessments and physical measurements, provided 
blood samples, answered touch-screen questions and gave consent to 
participate (Sudlow et al., 2015). UK Biobank obtained informed con-
sent from all participants; this study was conducted under approval from 
the NHS National Research Ethics Service (approval letter dated 13 May 
2016, Ref 16/NW/0274) and under UK Biobank approvals for applica-
tion number 13310. Unrelated individuals (kinship <0.04) who self- 
reported as white British or Irish (UK Biobank field 21,000) were 
selected for analysis to reduce confounding by population stratification. 
Genotypes were imputed by the UK Biobank (Bycroft et al., 2018); SNPs 
from the Haplotype Reference Consortium (HRC) were retained after 
quality control (Hardy-Weinberg equilibrium <10− 6, minor allele fre-
quency > 0.01, INFO >0.4, posterior probability >10− 4). 

342,512 participants were retained after exclusions. These were 
subsampled by schizophrenia status, which was derived using interna-
tional classification of diseases (ICD)-10 codes for schizophrenia (codes 
F20.0-F20.9) or schizoaffective disorder (codes F25.0-F25.9) in hospital 
records (fields 41,202 and 41,204) or death records (fields 40,001 and 
40,002), or if schizophrenia was self-reported, where inputs were veri-
fied by a trained nurse and only high-confidence classifications retained 
by UK Biobank (code 1289). PRS calculation requires independence of 
discovery and test sets. Due to the potential for identification of par-
ticipants without permission, discovery and test datasets could not be 
formally de-duplicated. Individuals on clozapine (n = 52) were excluded 
from UK Biobank as they are potentially present in the discovery sample 
and can also be identified in UK Biobank without de-anonymising the 
data. We also note that as ours is a comparative study, the potential 
duplication of a small number of cases in the discovery GWAS and the 
test sample is not expected to result in better performance of ML over LR 

or vice versa. Individuals with other psychotic disorders (codes F21–23, 
F28, F29) or bipolar disorder (ICD-10 codes F30–31 and self-report code 
1291), were excluded from the sample controls, resulting in 738 cases 
and 341,774 other individuals we consider here to be unaffected 
controls. 

2.2. Predictors 

As the objective is to assess ML models and the importance of genetic 
and non-genetic predictors, the standard pruning and thresholding (P +
T) method was used for PRS calculation. The polygenic risk score for 
schizophrenia (PRSSZ) was created using a nominal (pT = 0.05) p-value 
threshold, as it is the most predictive for schizophrenia (Pardiñas et al., 
2018; Ripke et al., 2020, 2014). SNPs were clumped (r2 = 0.2, distance 1 
Mb), thresholded and combined into a PRSSZ using effect sizes from the 
largest published peer-reviewed schizophrenia GWAS of predominantly 
European ancestry available at the time of the study (Pardiñas et al., 
2018). 

ML approaches have gained popularity in scenarios where the 
number of predictors is much greater than the sample size; however, 
their indiscriminate use in high-dimensional observational studies risks 
spurious associations or bias contributing to predictions if covariates are 
not correctly adjusted for. As such, we adjust genetic data for population 
structure and compare predictive models including 6 hand-selected 
clinical or demographic variables: sex (UK Biobank field 31), educa-
tional attainment (field 6138), season of birth (derived from field 52), 
severe parental depression (fields 20,107 and 20,110), number of sib-
lings (fields 1883 and 1873) and handedness (field 1707). These were 
manually selected as they had evidence for association with schizo-
phrenia (Davies et al., 2003; Dragovic and Hammond, 2005; MacCabe 
et al., 2008; McGrath et al., 2008; Radua et al., 2018; Wahlbeck et al., 
2001), have mostly complete records, are easily collected and with the 
exception of severe depression in a parent that is relatively late in onset, 
are measurable before onset of schizophrenia in most individuals. 
Schizophrenia-related traits which are likely to occur or be measured 
after onset, such as performance on cognitive tests, were included in a 
secondary analysis assessing the relevance of resulting ML models 
(which are built to predict schizophrenia) to known schizophrenia- 
related traits (Fig. 1c). These traits were not used for building the ML 
models predicting schizophrenia (MLSZ). Several additional factors 
widely considered to increase risk for schizophrenia (e.g. obstetric 
complications and drug use) could not be included as they were un-
available in UK Biobank, or the data were substantially missing. Coding 
for sex, educational attainment (split at General Certificate of Secondary 
Education (GCSE), the standard qualification in a school subject typi-
cally taken at 15 or 16 years old), handedness (left and ambiguous 
grouped) and winter birth (winter as December to February, inclusive) 
were binary. Number of full brothers (field 1873) and number of full 
sisters (field 1883) were combined to create number of siblings, trun-
cated at 10 and log transformed. Severe parental depression was derived 
from illness in the mother (20110) or father (20107), as selected by 
participants from a list of illnesses under supervision by a trained nurse, 
and coded as 0, 1 or 2 for the number of parents affected. 

2.3. Model development and evaluation 

The main analyses assessed discrimination and calibration using a 
nested case-control design of 1:5 cases to randomly sampled controls, 
following recommendations (Biesheuvel et al., 2008) and a learning 
curve analysis (Fig. S8), as this greatly reduces computational burden. 
Participants with missingness were excluded before sampling as impu-
tation within all rounds of cross-validation for all classifiers was 
computationally infeasible. Training was undertaken by 10-fold nested 
cross-validation (Vabalas et al., 2019; Varma and Simon, 2006), a 
resampling approach where training data are divided into 10 train-test 
set pairs, with models refit in each training split, or fold, and 
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evaluated in its corresponding test split (Fig. 1). Hyper-parameters were 
tuned using 100 iterations of random search (Bergstra and Bengio, 
2012). To adjust for the linear effects of confounders during model 
development, principal components and genotyping array provided by 
UK Biobank were regressed against PRSsz within each fold of cross- 
validation, with the residuals forming the new predictors (see Appen-
dix A). This procedure is referred to as deconfounding. 

Discrimination between cases and controls was assessed using the 
median area under the receiver operator characteristic curve (AUROC) 
and area under the precision-recall curve (AUPRC) from cross- 
validation. Classifiers were compared using the Wilcoxon signed-rank 
test (Demšar, 2006; Dietterich, 1998), with multiple testing accounted 
for using Benjamini-Hochberg false discovery rate (FDR) at 0.05. MLSZ 
models were re-calibrated using Platt scaling (Platt and Platt, 1999) to 
allow for fair comparison of predicted probabilities, as tree-based 
models such as random forests and gradient boosting force probabili-
ties to be less extreme (Niculescu-Mizil and Caruana, 2005), and support 
vector machines (SVMs) output distance from the hyperplane which can 
lie outside the unit interval. Calibration, which indicates how well 
predicted probabilities align with the observed frequency of schizo-
phrenia, was assessed graphically (Austin and Steyerberg, 2014). 

2.4. Predictor importance 

Permutation feature importance (PFI) scores were used to assign a 
model-agnostic measure of relative importance to predictors that 
enabled consistent interpretation across models (Breiman, 2001; Mol-
nar, 2019). While AUROC describes the ability of the model to 
discriminate between cases and controls, PFI indicates which predictors 

are most important to achieving that discrimination. Each predictor was 
permuted and used to re-generate predictions in each fold of cross- 
validation. The average drop in discrimination compared to the non- 
permuted model defines the importance score. Permutations were also 
implemented in a group-wise manor, as applied in deep learning 
(Kokhlikyan et al., 2020), where types of predictors were shuffled 
together, giving an estimate of the relative importance of genetic and 
clinical/demographic factors taken as a whole. 

2.5. Association with schizophrenia-related traits and deconfounding 

In a secondary analysis, predictions from the best performing ML 
models (also known as “fitted values” in regression analyses) were 
further validated by investigating which additional variables, which 
were not used for the model construction, they were associated with. 
Since all schizophrenia cases available in the UK Biobank were used to 
build the MLSZ models (to achieve maximal power), the remaining 
controls and schizophrenia-related traits were used. In this sample of 
additional controls, we first calculated individuals' fitted values ob-
tained by the derived MLSZ models, which were built to predict 
schizophrenia using a combination of PRSSZ, sex, parental depression, 
educational attainment, winter birth, handedness and number of sib-
lings. We then investigated which variables are associated with these 
fitted values in the remaining 338,084 controls. These analyses were run 
using a 5-fold cross-validated beta regression for the assessment, as 
described elsewhere (Kohoutová et al., 2020) (see Appendix A). 

Principal components and genotyping array platform were used as 
the additional variables to evaluate the deconfounding procedures used 
in model development, while cognitive tests, neurological diseases, 

Fig. 1. Overview of methodology. Analysis is comprised of model development (a), evaluation (b) and assessment of model predictions (c). A nested case-control 
design using a 1:5 ratio of cases-controls is used (a). Nested cross-validation is used as this separates model selection (on the inner loop) and evaluation (run for the 
outer loop), which gives a more accurate estimate of predictive performance than other approaches. Predictions from the outer round of cross-validation are used in 
assessing discrimination, calibration and permutation feature importance (PFI) (b). Models were then refit on the whole of the nested sample before predicting on 
remaining controls (c). A cross-validated beta regression was run with these predictions as the dependent variable and additional predictors, not used in any model 
development, as the independent variables, to assess how well the additional variables could explain the predictions. CV: cross-validation, UKBB: UK Biobank, PRSSZ: 
schizophrenia polygenic risk score, AUC: area under the receiver operator characteristic curve. 
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psychiatric disorders, and additional demographic variables which 
occur after onset (Table S1) were also used to assess how well pre-
dictions captured schizophrenia-related traits. 

2.6. Algorithms 

Ridge (Hoerl and Kennard, 1970) and least absolute shrinkage and 
selection operator (LASSO) (Tibshirani, 1996) regression were assessed 
by applying the LASSO (L1) and ridge (L2) penalties to logistic regression 
to shrink coefficient estimates. Support vector machines (SVMs) apply a 
kernel-based approach to learn a maximally-separating hyperplane 
(Cortes and Vapnik, 1995). Linear and radial basis function (RBF) ker-
nels were applied, where the latter allows for non-linear decision 
boundaries to be learned in higher-dimensional space (Noble, 2006). 

Random forests and gradient boosting combine greedy decision trees 
that perform recursive binary splits to partition the data (Breiman, 
1984). While random forests average over deeper trees to reduce vari-
ance, boosting sequentially adds weak learners to reduce bias (Fried-
man, 2001). Gradient boosting was implemented using the highly- 
optimised eXtreme Gradient Boosting (XGBoost) package (Chen and 
Guestrin, 2016). 

Neural networks were utilised through a fully-connected feed-for-
ward multilayer perceptron, trained to apply a network of weights 
which are learned iteratively through backpropagation (LeCun et al., 
2015). Models were assessed individually and as an ensemble using 
stacking, which “stacked” predictions from base estimators to use as 
predictors in a logistic regression meta-estimator (Wolpert, 1992). All 
models were further compared to unpenalised logistic regression on the 
original predictors. Hyperparameter tuning is described further in Ap-
pendix A (Fig. S1). 

2.7. Implementation 

Cross-validation used the same random seed for all train-test splits, 
including neural networks implemented in PyTorch, with all trans-
formations conducted in scikit-learn pipelines to avoid information 
‘leakage’ and ensure reproducibility. Classes used in nested cross- 
validation were adapted to allow for regressing-off principal compo-
nents within cross-validation using a deconfounding scikit-learn trans-
former. Analyses were run using the Python scientific computing stack 
(Harris et al., 2020; Hunter, 2007; Mckinney, 2010; Pedregosa et al., 
2011; Virtanen et al., 2020) and the Cardiff Hawk supercomputer; 
neural networks were run on Nvidia V100 and P100 graphical pro-
cessing units (GPUs). 

3. Results 

3.1. Sample 

342,512 participants were included following exclusions and 
filtering for missingness. Controls were randomly subsampled to give a 
1:5 nested case-control study design of 738 cases and 3690 controls. 
Examination of observations before and after missingness filters and 
subsampling indicate the analysed subsample is representative of the 
larger UK Biobank cohort (Figs. S2–S4; Table S2). 

3.2. Model performance 

Across all modelling approaches, all variables had a median AUROC 
above 0.5 apart from winter birth (Fig. 2a). Weak discrimination was 
observed for individual clinical/demographic predictors (0.5–0.59 

Fig. 2. Discrimination and importance scores across. Boxen plots of pooled test fold AUROCs from cross-validation for all classifiers show best prediction from 
combined predictors compared to each predictor individually (a). Median per-predictor permutation feature importance (PFI) scores (b, left) across folds for all 
classifiers gives sex and schizophrenia polygenic risk score (PRSSZ) as the strongest predictors, while per-group importance (b, right) shows PRSSZ is similar in 
importance to all clinical and demographic predictors taken together. Importance scores do not indicate direction of effect, for which estimates are given in Appendix 
B (Table S3). Average receiver operator characteristic (ROC) curves show similar average discrimination across classifiers in models using only PRSSZ (c) or all 
clinical/demographic predictors (d) individually or in combination (e). LR: logistic regression, LASSO: least absolute shrinkage and selection operator, RF: random 
forest, SVM: support vector machine, RBF: radial basis function, XGB: XGBoost, NN: neural network. 
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median AUROC across all modelling approaches). Moderate discrimi-
nation was achieved by models using all clinical/demographic pre-
dictors together and those using PRSSZ alone (0.65–0.67 AUROC). 
Approaches which combined PRSSZ and all clinical/demographic pre-
dictors attained good discrimination (0.71 AUROC) (D’Agostino et al., 
2013). Tests comparing AUROC provide strong evidence that models 
developed using a combination of PRSSZ and all clinical/demographic 
predictors show better discrimination than either alone (Table 1). Me-
dian importance scores were similar across models (Fig. S5); models 
which combined genetic and demographic predictors assigned no 
importance to handedness and low importance to educational attain-
ment (Fig. 2b). Sex and PRSSZ were ranked highest, with PRSSZ and all 
demographic predictors roughly equal in their contribution to group- 
wise importance scores. The validity of this approach was demon-
strated through inclusion of noise predictors, which were attributed 
importance scores of zero (Fig. S6). As importance scores do not show 
direction of effect, a multivariable logistic regression was fit in the 
nested sample, adjusted for (genetic) principal components and geno-
typing array (Table S3). This regression analysis showed no association 
of schizophrenia with winter birth, whereas non-right handedness, 
lower educational attainment, higher number of siblings, being male, 
presence of parental depression and higher PRSSZ were shown to be 
associated with higher risk of schizophrenia, consistent with previous 
studies (Table S3). 

The highest AUROCs were achieved by machine learning models 
when developed using only PRSSZ (best ML model: random forest, 0.65 
AUROC), clinical/demographic factors (neural network, 0.67 AUROC) 

or all predictors combined (linear SVM, 0.71 AUROC). Best-performing 
ML approaches had higher AUROC than logistic regression, but hy-
pothesis testing found the differences were not statistically significant (p 
= 0.17, 0.58 and 0.65, for PRSSZ, clinical/demographic and all pre-
dictors, respectively). Discrimination was similar between machine 
learning approaches, as shown by overlying average receiver operator 
characteristic curves (Fig. 2c, d and e). Similarity of AUROC between 
classifiers was robust over 100 iterations of repeated resampling of the 
controls, showing highly overlapping confidence intervals (Fig. S7). 
AUROC was also stable when varying the sampling fraction of controls 
in a learning curve analysis (Fig. S8). Discrimination assessed by area 
under the precision-recall curve (AUPRC), which may be more useful 
than AUROC under severe class imbalance (Saito and Rehmsmeier, 
2015), was also highly similar between classifiers (Table S4). Calibra-
tion, the alignment of predicted probabilities and observed frequencies 
of schizophrenia, was good for all models after Platt scaling and 
adjusting for the sampling fraction (Figs. S9–S14). 

3.3. Association with schizophrenia-related traits and deconfounding 

In a secondary analysis (Fig. 3), fitted machine learning models 
predicting schizophrenia (MLSZ) were assessed for association with 
schizophrenia-related traits using a cross-validated beta regression 
(described in Section 2.5 and Appendix A). In this analysis, predicted 
risk assigned by MLSZ differed in their association with known SZ-related 
traits. Fig. 3 illustrates that fluid intelligence had the greatest variability 
in how well it explained predictions from fitted models. Predictions from 
SVMs, for example, were better explained by fluid intelligence than 
predictions from random forests and neural networks, despite all having 
similar discrimination between cases and controls (AUROC). Relatively 
high variance in predicted risk from fitted models was also explained by 
a higher chance of smoking, greater deprivation, higher body mass index 
(BMI) and worse cognitive performance (Table S5). Analysis of other 
psychiatric disorders and neurological diseases found little or no asso-
ciation with risk scores from the fitted ML and logistic regression (LR) 
models (Fig. 3). 

The same methodology was used in the remaining controls to assess 
how well deconfounding procedures used in model development had 
removed the linear effect of confounders from the predictors (Fig. S15). 
Elevated mean R2 was present for clinical/demographic-only (maximum 
R2 = 0.012, XGBoost) and combined models (R2 = 0.0078, neural net-
works) which include non-genetic predictors that were not adjusted for 
principal components or genotyping array. 

4. Discussion 

Discrimination between schizophrenia cases and controls using each 
predictor individually demonstrated almost all variables had better than 
chance prediction, yet permutation-based importance measures showed 
low importance in joint models for handedness (0.52 median AUROC, 
0 median importance) and educational attainment (0.54 AUROC, 0.01 
importance). Results also suggest that some demographic predictors 
may be redundant. For instance, prediction from number of siblings 
alone achieves a median of 0.58 AUROC, yet the median decrease in 
AUROC from permuting it in a multivariable model is low at 0.02–0.03. 
By contrast, parental depression has a similar decrease in AUROC from 
its permutation (0.03–0.04 AUROC) to what is predicted using it alone 
(0.55 AUROC; i.e. 0.05 above chance), indicating it is more independent 
from the other factors in the model than is number of siblings. 

Similar AUROC was reported for models using either PRSSZ or all 
clinical/demographic variables, yet combined models have around 5 % 
higher AUROC, suggesting the information from these two sources is 
partially independent. This is consistent with previous findings that 
PRSSZ and environmental exposures interact additively (Guloksuz et al., 
2019); however, recent work in schizophrenia has indicated that PRS 
does not provide additional information over clinical predictors 

Table 1 
Statistical comparison of models. Consistently low test-statistics and p-values 
indicate strong evidence that models developed using a combination of schizo-
phrenia polygenic risk score (PRSSZ) and all clinical/demographic variables are 
better able to discriminate between case and controls than models built using 
only PRSSZ or clinical/demographic variables alone. Difference in area under the 
receiver operator characteristic curve (AUROC) indicates how much higher the 
AUROC is for each modelling approach when using all predictors combined 
compared to either genetic or non-genetic alone. The test statistic for the Wil-
coxon signed rank test, W, is given for all comparisons of the AUROC from each 
outer test fold of nested cross-validation, split by classifier and dataset. Com-
parisons have a W of 0 as all corresponding test folds for the combined models 
have a higher AUROC. P-values are FDR-corrected at 0.05; starred adjusted p- 
values are significant at the 5 % level.  

Modelling 
approach 

Comparison W p Difference in % 
AUROC 

Logistic 
regression Combined vs. PRSSZ  0  0.005*  5.67 

Logistic 
regression 

Combined vs. clinical/ 
demographic  0  0.005*  4.68 

Ridge Combined vs. PRSSZ  0  0.005*  5.67 

Ridge 
Combined vs. clinical/ 
demographic  0  0.005*  4.68 

LASSO Combined vs. PRSSZ  0  0.005*  5.81 

LASSO 
Combined vs. clinical/ 
demographic  0  0.005*  4.86 

Linear SVM Combined vs. PRSSZ  0  0.005*  5.97 

Linear SVM 
Combined vs. clinical/ 
demographic  0  0.005*  5.35 

RBF SVM Combined vs. PRSSZ  0  0.005*  5.56 

RBF SVM 
Combined vs. clinical/ 
demographic  0  0.005*  4.49 

Random forest Combined vs. PRSSZ  0  0.005*  4.03 

Random forest 
Combined vs. clinical/ 
demographic  0  0.005*  3.48 

XGBoost Combined vs. PRSSZ  0  0.005*  5.79 

XGBoost 
Combined vs. clinical/ 
demographic  0  0.005*  4.50 

Neural network Combined vs. PRSSZ  0  0.005*  5.44 

Neural network 
Combined vs. clinical/ 
demographic  0  0.005*  3.24  
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obtained in a psychiatric interview, including symptoms, family history 
of schizophrenia, sex, and other factors, for prediction of poor outcomes 
(Landi et al., 2021). Our results suggest that PRSSZ may be a useful 
addition to prediction of schizophrenia in large cohorts where basic 
clinical and demographic factors are widely available, which are more 
easily collected and occur mainly before disorder onset. The predictors 

included in our MLSZ models are not exhaustive and their relative 
contribution to models may change with inclusion of more factors such 
as those related to prenatal and perinatal events, early adversity and 
drug use. Comparison of PRS methods has also indicated that use of 
LDPRED2, SBayesR and MegaPRS, which perform similarly to each 
other, may improve prediction of schizophrenia by around 2–3 % 

Fig. 3. Generalisable associations of model predictions. 5-fold cross-validation of a beta regression in all remaining controls. Features on the x-axis were independent 
variables, and calibrated model predictions of schizophrenia from each method on the y-axis were the dependent variable. Each tile in the heatmap therefore in-
dicates how well the variable on the x-axis explains the predictions of schizophrenia which were generated using the corresponding predictors and modelling 
approach annotated on the y-axis. Cross-validation is used to assess modelling under a prediction modelling paradigm which emphasises generalisation; the darker 
blue tiles show mean test-fold R2, and so indicate which variables on the x-axis explain predictions in new observations, not simply the training data. Variation in tiles 
in a vertical line, such as for fluid intelligence, highlight how the fitted ML models vary in how well they are explained by additional variables, despite being trained 
on the same predictors. Seen GP or psychiatrist refer to ever having seen either for “nerves, anxiety, tension or depression”. Other variables are described in the 
Appendix A. AD: Alzheimer's disease, ADHD: attention deficit hyperactivity disorder, BMI: body mass index, MND: motor neurone disease, MS: multiple sclerosis, 
OCD: obsessive compulsive disorder, PD: Parkinson’s disease. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

M. Bracher-Smith et al.                                                                                                                                                                                                                        



Schizophrenia Research 246 (2022) 156–164

162

AUROC, compared to the most frequently used pruning and thresh-
olding (P + T) approach used here (Ni et al., 2021; Zhou and Zhao, 
2021). AUROC in the current analysis may therefore increase slightly if 
using PRS approaches which aim to formally model genetic architecture; 
however, as the focus here was comparison between approaches, the 
relative discriminative ability of ML approaches would likely remain 
unchanged. Similarly, a wide array of ML approaches exist, and others 
such as CatBoost and LightGBM may also slightly augment performance. 

Examination of model predictions assesses how well additional 
variables of interest (e.g. confounders or consequent variables) can 
explain model predictions, and has been recommended as standard 
practice in machine learning (Kohoutová et al., 2020). This was imple-
mented here through cross-validation in population-based controls 
which were not used for training and assessing discrimination (Fig. 3), 
and highlighted known associations with schizophrenia including fluid 
intelligence and processing speed (as measured by digit symbol substi-
tution), in addition to BMI, social deprivation and smoking status. Dif-
ferences between modelling approaches shown in Fig. 3 may be 
important for clinical applications, as heterogeneity in how models 
weight input data means predictions by different modelling approaches 
show variation in their association with outcome-related factors. This 
highlights the importance of moving beyond simple scalar summaries of 
model performance and assessing prediction of outcome-related vari-
ables. Caution should be taken in interpretation of these, however, as a 
focus on prediction precludes use of covariates, meaning that a higher R2 

may be partially explained by other variables not included in the beta 
regression model. The technique highlights which variables are associ-
ated with model predictions of schizophrenia, not schizophrenia itself; 
the low R2 for psychiatric phenotypes simply indicate they explain little 
variance in model predictions, and therefore does not contradict known 
genetic and phenotypic correlations between phenotypes themselves. 
Our results also suggest that current deconfounding procedures which 
regress-off principal components from predictors do not remove all ef-
fects of population structure from the final predictions, particularly 
when including unadjusted non-genetic factors in models; alternative 
deconfounding procedures may be required for machine learning 
(Chyzhyk et al., 2018; Dinga et al., 2020; Zhao et al., 2020). This 
analysis also serves as a minimal test of generalisation by using an in-
dependent subsample within the UK Biobank. Though ideally results 
would be replicated in a fully external dataset, confidence in the gen-
eralisability of models is added by stability of results across classifiers, 
metrics and resampling of controls, consistency of results with expected 
direction of effects for associations with schizophrenia and 
schizophrenia-related traits, and the use of low risk of bias strategies 
such as nested cross-validation. 

The size of the full UK Biobank dataset raises issues for complex 
machine learning models which can be computationally intensive. We 
show that the nested case-control study is an efficient design for 
applying ML methods to large cohorts under reduced computational 
burden, with discrimination stable across sampling fractions, and a large 
sample of remaining controls left available for evaluating predictions, 
for which computation is cheap. Further, we show that concerns of 
inflated performance estimates (Bracher-Smith et al., 2020; Christo-
doulou et al., 2019) can be mitigated through low ROB model devel-
opment strategies. 

Volunteer bias in the UK Biobank means the dataset in general is less 
socioeconomically deprived, healthier and more likely to be female and 
white British than the UK population as a whole (Fry et al., 2017), and 
individuals with the most severe forms of schizophrenia may be un-
derrepresented or even absent. Ascertainment biases may cause effect 
sizes to differ if estimated in a more representative sample, with po-
tential consequences for discrimination and calibration that would mean 
models require further shrinkage of coefficients, recalibration or 
retraining before use in the general population or a clinical target 
sample. 

5. Conclusions 

In conclusion, our results suggest that while the diversity of model-
ling procedures in ML may yet prove to be useful in precision psychiatry, 
they do not currently provide added benefit through improved 
discrimination between schizophrenia cases and controls. We show 
however that schizophrenia risk scores derived with different MLSZ ap-
proaches show a non-homogeneous pattern of association with traits 
that are known to be related to schizophrenia. 
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Kohoutová, L., Heo, J., Cha, S., Lee, S., Moon, T., Wager, T.D., Woo, C.W., 2020. Toward 
a unified framework for interpreting machine-learning models in neuroimaging. Nat. 
Protoc. 15, 1399–1435. https://doi.org/10.1038/s41596-019-0289-5. 

Kokhlikyan, N., Miglani, V., Martin, M., Wang, E., Alsallakh, B., Reynolds, J., 
Melnikov, A., Kliushkina, N., Araya, C., Yan, S., Reblitz-Richardson, O., 2020. 
Captum: A Unified and Generic Model Interpretability Library for PyTorch. 

Lan, T.H., Loh, E.W., Wu, M.S., Hu, T.M., Chou, P., Lan, T.Y., Chiu, H.-J., 2008. 
Performance of a neuro-fuzzy model in predicting weight changes of chronic 
schizophrenic patients exposed to antipsychotics. Mol. Psychiatry 13, 1129–1137. 
https://doi.org/10.1038/sj.mp.4002128. 

Landi, I., Kaji, D.A., Cotter, L., Van Vleck, T., Belbin, G., Preuss, M., Loos, R.J.F., 
Kenny, E., Glicksberg, B.S., Beckmann, N.D., et al., 2021. Prognostic value of 
polygenic risk scores for adults with psychosis. Nat. Med. 2021, 1–6. https://doi.org/ 
10.1038/s41591-021-01475-7. 

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436–444. https:// 
doi.org/10.1038/nature14539. 

Levey, D.F., Gelernter, J., Polimanti, R., Zhou, H., Cheng, Z., Aslan, M., Quaden, R., 
Concato, J., Radhakrishnan, K., Bryois, J., Sullivan, P.F., Stein, M.B., 2020. 
Reproducible genetic risk loci for anxiety: results from ~200,000 participants in the 
million veteran program. Am. J. Psychiatry 177, 223–232. https://doi.org/10.1176/ 

APPI.AJP.2019.19030256/ASSET/IMAGES/LARGE/APPI.AJP.2019.19030256F2. 
JPEG. 

Lewis, C.M., Vassos, E., 2020. Polygenic risk scores: from research tools to clinical 
instruments. Genome Med. 12 https://doi.org/10.1186/s13073-020-00742-5. 

Li, G., Han, D., Wang, C., Hu, W., Calhoun, V.D., Wang, Y.-P., 2020. Application of deep 
canonically correlated sparse autoencoder for the classification of schizophrenia. 
Comput. Methods Prog. Biomed. 183, 105073 https://doi.org/10.1016/J. 
CMPB.2019.105073. 

Lin, C.-C., Wang, Y.-C., Chen, J.-Y., Liou, Y.-J., Bai, Y.-M., Lai, I.-C., Chen, T.-T., Chiu, H.- 
W., Li, Y.-C., 2008. Artificial neural network prediction of clozapine response with 
combined pharmacogenetic and clinical data. Comput. Methods Prog. Biomed. 91, 
91–99. https://doi.org/10.1016/j.cmpb.2008.02.004. 

MacCabe, J.H., Lambe, M.P., Cnattingius, S., Torrång, A., Björk, C., Sham, P.C., David, A. 
S., Murray, R.M., Hultman, C.M., 2008. Scholastic achievement at age 16 and risk of 
schizophrenia and other psychoses: a national cohort study. Psychol. Med. 38, 
1133–1140. https://doi.org/10.1017/S0033291707002048. 

Manchia, M., Pisanu, C., Squassina, A., Carpiniello, B., 2020. Challenges and future 
prospects of precision medicine in psychiatry. Pharmgenomics. Pers. Med. https:// 
doi.org/10.2147/PGPM.S198225. 

McGrath, J., Saha, S., Chant, D., Welham, J., 2008. Schizophrenia: a concise overview of 
incidence, prevalence, and mortality. Epidemiol. Rev. 30, 67–76. https://doi.org/ 
10.1093/EPIREV/MXN001. 

Mckinney, W., 2010. Data Structures for Statistical Computing in Python. 
Molnar, C., 2019. Interpretable Machine Learning. A Guide for Making Black Box Models 

Explainable. 
Mullins, N., Forstner, A.J., O’Connell, K.S., Coombes, B., Coleman, J.R.I., Qiao, Z., Als, T. 

D., Bigdeli, T.B., Børte, S., et al., 2021. Genome-wide association study of more than 
40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. 
Genet. 536 (53), 817–829. https://doi.org/10.1038/s41588-021-00857-4. 

Ni, G., Zeng, J., Revez, J.A., Wang, Ying, Zheng, Z., Ge, T., Restuadi, R., Kiewa, J., 
Nyholt, D.R., Coleman, J.R.I., Smoller, J.W., et al., 2021. A comparison of ten 
polygenic score methods for psychiatric disorders applied across multiple cohorts. 
Biol. Psychiatry 90, 611–620. https://doi.org/10.1016/j.biopsych.2021.04.018. 

Niculescu-Mizil, A., Caruana, R., 2005. Predicting good probabilities with supervised 
learning. In: ICML 2005 - Proceedings of the 22nd International Conference on 
Machine Learning. ACM Press, New York, New York, USA, pp. 625–632. https://doi. 
org/10.1145/1102351.1102430. 

Noble, W.S., 2006. What is a support vector machine? Nat. Biotechnol. 24, 1565–1567. 
https://doi.org/10.1038/nbt1206-1565. 
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