
https://onlinelibrary.wiley.com/action/showCampaignLink?uri=uri%3Aef855156-5d95-45b1-b33f-15ba288bce69&url=https%3A%2F%2Fadvancedopticalmetrology.com%2Fcorrosion%2Fparticles-unique-properties-uncountable-applications.html&pubDoi=10.1111/jmi.13110&viewOrigin=offlinePdf

Received: 5 November 2021 Revised: 1 April 2022 Accepted: 26 April 2022

DOI: 10.1111/jmi.13110

TH EMED IS SUE ART ICLE

Trainable segmentation for transmission electron
microscope images of inorganic nanoparticles

Cameron G Bell1 Kevin P Treder2 Judy S Kim2,3 Manfred E Schuster4

Angus I Kirkland1,2,3 Thomas J A Slater1,5

1Electron Physical Sciences Imaging
Centre, Diamond Light Source,
Oxfordshire, UK
2Department of Materials, University of
Oxford, Oxford, UK
3Rosalind Franklin Institute, Harwell
Science and Innovation Campus, Didcot,
UK
4Johnson Matthey Technology Centre,
Reading, UK
5School of Chemistry, Cardiff University,
Cardiff, UK

Correspondence
Thomas J A Slater, School of Chemistry,
Cardiff University, Main Building, Park
Place, Cardiff CF10 3AT, UK.
Email: slatert2@cardiff.ac.uk

Abstract
We present a trainable segmentation method implemented within the python
package ParticleSpy. The method takes user labelled pixels, which are used to
train a classifier and segment images of inorganic nanoparticles from transmis-
sion electron microscope images. This implementation is based on the trainable
Waikato Environment for Knowledge Analysis (WEKA) segmentation, but is
written in python, allowing a large degree of flexibility and meaning it can be
easily expanded using other python packages. We find that trainable segmenta-
tion offers better accuracy than global or local thresholdingmethods and requires
as few as 100 user-labelled pixels to produce an accurate segmentation. Train-
able segmentation presents a balance of accuracy and training time between
global/local thresholding and neural networks, when used on transmission elec-
tron microscope images of nanoparticles. We also quantitatively investigate the
effectiveness of the components of trainable segmentation, its filter kernels and
classifiers, in order to demonstrate the use cases for the different filter kernels
in ParticleSpy and the most accurate classifiers for different data types. A set of
filter kernels is identified that are effective in distinguishing particles from back-
ground but that retain dissimilar features. In terms of classifiers, we find that
different classifiers perform optimally for different image contrast; specifically,
a random forest classifier performs best for high-contrast ADF images, but that
QDA and Gaussian Naïve Bayes classifiers perform better for low-contrast TEM
images.

KEYWORDS
machine learning, scanning transmission electron microscopy, image segmentation, metal
nanoparticles, transmission electron microscopy

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

J. Microsc. 2022;1–16. wileyonlinelibrary.com/journal/jmi 1

https://orcid.org/0000-0003-1513-9964
https://orcid.org/0000-0003-0372-1551
mailto:slatert2@cardiff.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/jmi

2 BELL et al.

1 INTRODUCTION

Electron microscopy is frequently used to characterise
inorganic nanoparticles and can be used to determine
important characteristics such as size, shape1 and lattice
strain.2 These properties can be related to other parame-
ters such as catalytic activity,3 and additional processing
can reveal 3D structure,4,5 or can group similar nanoparti-
cles according to their characteristics to facilitate 3D recon-
structions (for each group).6 However, to correctly analyse
nanoparticle images, the nanoparticlesmust be isolated, or
segmented, from the background of the image. This alone
is a challenge, as manually segmenting nanoparticles by
hand is very time consuming, and often many nanoparti-
cles must be segmented to produce statistically significant
results.
Common methods of image segmentation include

global and local thresholding, which rely exclusively on
the intensity of an image’s pixels. Global thresholding algo-
rithms set a minimum or maximum intensity value across
a whole image and pixel intensities above or below this are
binarised to create a binary segmentation mask. Examples
of these global algorithms include the Otsu,7 Yen8 and Li9
algorithms. Local thresholding, using algorithms such as
Niblack10 and Sauvola,11 works similarly, but sets a thresh-
old on a per pixel basis from the range of intensities in its
local neighbourhood. The use of global and local thresh-
olding methods is pervasive in the analysis of nanoparti-
cle images,12–14 but any thresholding method is limited in
the types of data that can be successfully segmented.When
segmenting high-contrast images, such as those obtained
from high-angle annular dark field (HAADF) images in
the scanning transmission electron microscope (STEM),
thresholding methods are often sufficient for accurate seg-
mentation. However, segmentation of low-contrast trans-
mission electronmicroscope (TEM) images can be particu-
larly challenging using intensity thresholding, as has been
repeatedly shown in cryo-electron microscopy.15 Local
thresholding can be of particular use when intensity of
illumination or thickness of any support material changes
over an image, but may lose accuracy in extreme cases.
In many cases, the use of information beyond sim-

ple pixel intensities assists in segmentation, whether that
is the detection of object edges,16 texture17 or specific
shapes18 in images. This additional information can be
extracted from images by convolving the image with a
defined kernel (i.e. amatrix of values for pixelated images).
Convolutional kernels assign a value to a pixel, given
by the convolution of the local region around that pixel
to a specific kernel structure (examples of which are
described in Section 2), rather than using the pixel inten-
sity alone. Segmentation can be performed from individ-
ual images that are the result of a convolution with a sin-
gle kernel, or the pixel values of the output from multiple

convolution kernels can be used. Identifying which ker-
nels to use and which values correspond to which label
(e.g. background vs. particle) can be done using amachine-
learning approach, whether that is using a neural network
or the type of trainable segmentation presented here.
There has been significant interest in the use of convo-

lutional neural networks to exploit additional image infor-
mation for image segmentation.19–21 Neural networks are
a set of machine-learning algorithms based on a layered
structure of artificial neurons, where each neuron oper-
ates on data received from a previous layer, before passing
it to the next layer.19 The training process alters theweights
that relate the neurons to one another, which improves
the accuracy of the network. A convolutional neural net-
work contains convolutional layers that consist of a set of
learnable kernels.22 Training a convolutional neural net-
work alters the convolutional kernels in each convolu-
tional layer, in addition to theweights of each neuron, opti-
mising the found features to segment the training data.
Once trained, neural networks are very accurate on the
trained data set, as their structure is specifically tailored to
it. However, adapting a neural network to a different data
set typically requires fine-tuning the neural network and
retraining. Neural networks also require large numbers of
pre-segmented images, to act as a ground truth, to train the
neural network to become sufficiently accurate. The train-
ing process also takes a significant amount of time, mak-
ing neural networks unsuitable for real-time segmentation
during image acquisition, unless the network has been pre-
trained on a similar data set.
A related approach to convolutional neural networks is

known as trainable segmentation, which has been popu-
larised by the WEKA segmentation available in ImageJ.23
Trainable segmentation uses pre-defined convolutional
kernels, rather than learning effective kernels when train-
ing a convolutional neural network. Initially, a number
of pixels are manually labelled (e.g. background and par-
ticle). The labelled pixels and corresponding feature val-
ues are used to train a classifier, which defines bound-
aries between labelled sets of particle and background
pixels, based on the intensities of the generated feature
set. This produces a fully segmented image and a trained
classifier,24 which can subsequently be used to classify
further images. Trainable segmentation is typically more
accurate than thresholding methods, as we will demon-
strate in our later results, but less accurate than neural
networks.25 However, compared to neural networks, the
samples of training data needed for accurate classifica-
tion is considerably smaller in trainable segmentation. The
time to train the classifier is also shorter than the time
needed to train a neural network, by several orders of mag-
nitude.
There are existing implementations of trainable segmen-

tation such as those in the ImageJ23 and Ilastik26 software

BELL et al. 3

packages, but these are typically standalone programs. We
have implemented a trainable segmentation methodology
in ParticleSpy, a python package for segmentation and
analysis of HyperSpy27 signal objects. As ParticleSpy is
written in python, it can be easily expanded upon and inte-
grated into workflows, particularly those using the Hyper-
Spy ecosystem.27
Previous studies have successfully used trainable seg-

mentation to segment inorganic nanoparticles from elec-
tronmicroscopy data,28,29 but these studies have not inves-
tigated the parameters used in trainable segmentation. To
produce accurate and effective segmentation results, the
mechanisms behind trainable segmentation, and the filter
kernels and classifiers used, need to be understood. Here
we investigate the effectiveness and similarity of the imple-
mented filter kernels and the use cases and requirements
for different classifiers. The accuracy of trainable segmen-
tation is evaluated for different TEM image sets and com-
pared to standard thresholding techniques.

2 METHODS

ParticleSpy is written in python, supported by commonly
used packages including NumPy, Sci-Kit Image30 and Sci-
Kit Learn.31 All classifiers in Sci-Kit Learn can be used
in ParticleSpy’s trainable segmentation. Its user interface,
however, only presents a selection of the most common
classifiers.
The User interface in ParticleSpy (Figure 1) can be used

to perform basic thresholding, manual segmentation, or
trainable segmentation and the algorithms and parameters
for thresholding can be adjusted individually to adjust the
segmentation.
The trainable segmentation interface enables labelling

using freehand, line and polygon tools, and flood fills, for
up to five different labels. The user interface allows images
to be trained using the drawn labels, including retrain-
ing with updated labels if required. The filter kernels used
can also be selected individually and have their param-
eters adjusted. Manually segmented images from exter-
nal programs can also be used to produce labelled images
for training. This was done for all four data sets exam-
ined using either GIMP32 or ImageJ.23 The primary user
customisation of ParticleSpy is through its filter kernels
and classifiers, which are detailed in the next two sections.

2.1 Filter kernels

Descriptions of each of the filter kernels found in Particle-
Spy are given below. An example of the application of each
filter kernel is shown in Figure 2.

The Gaussian filter kernel convolves the image with
a matrix weighted to an approximate Gaussian. The dif-
ference of Gaussians filter kernel does this twice for two
different sizes of Gaussians and calculates the difference
between these.
Themedian,minimumandmaximum filter kernels take

the median, minimum and maximum values respectively
within a given radius as the value of each pixel. The radius
of each filter kernel can be provided as a user input or will
default to 20 pixels in size.
The Sobel filter applies two first-order edge detection fil-

ter kernels that highlight edges, or regions with a large
gradient.16 The image is convolved with two matrices,
highlighting horizontal and vertical gradients, which are
combined to form a single image of edges.
The Laplacian filter kernel is a second-order filter ker-

nel that also detects edges in images, but is potentially less
sensitive to noise than the Sobel filter. The Laplacian filter
is a discrete approximation to the following equation:

∇2𝑓 (𝑥, 𝑦) =
𝛿2𝑓

𝛿𝑥2
+
𝛿2𝑓

𝛿𝑦2
, (1)

where f is the function describing the image.
The Hessian filter kernel is another second-order fil-

ter kernel that is used to find ridges, to form an approxi-
mated Hessian matrix. Elements of the Hessian matrix H
are defined as

(
𝐇𝑓

)
𝒊,𝒋
=

𝛿2𝑓

𝛿𝑥𝑖𝛿𝑦𝑗
, (2)

where i and j are the indices of the matrix.
Membrane projections are a group of filter kernels

based on those in ImageJ. These kernels filter the image
directionally to highlight membrane–like structures. A
19 × 19 identity matrix is convolved with the image
at 30 different angles between 0◦ and 180◦, then the
30 images produced are combined using six different
methods, taking the sum, mean, standard deviation,
median, maximum and minimum of the 30 values of
each pixel. These produce six features, which are used for
classification.

2.2 Classifiers

Classifiers are used in trainable segmentation to define
boundaries between labelled sets of particle and back-
ground pixels to classify unlabelled pixels. The choice of
a particular classifier can have a significant impact on the
accuracy and segmentation time for a given data set. The
four classifiers we have chosen to use in this study, based

4 BELL et al.

F IGURE 1 The ParticleSpy trainable segmentation user interface showing the use of line, polygon and freehand labelling tools. The
classifier and filter kernels used for training can be specified using the menu on the left.

on their ease of use and higher accuracies, are outlined
below.

2.2.1 Random forest

Random forest classifiers33 function by fitting a number of
decision trees, models which predict values from decision
rules based on the training data, to subsamples of the train-
ing data. These subsamples are then averaged to improve

accuracy and reduce overfitting, which improves the over-
all accuracy of the classifier.

2.2.2 Nearest neighbours

Thenearest neighbours classifier34 operates simply by stor-
ing instances of the training data, which the classification
process uses to vote on each point requiring classification,
where a simple majority vote decides the label of each

BELL et al. 5

F IGURE 2 Output of labelled filter kernels used in ParticleSpy when applied to one of the PdPtNiAu ADF images.

pixel. This is calculated using the K nearest neighbours for
each point, where K is a user-defined integer.

2.2.3 Gaussian Naïve Bayes

The Gaussian Naïve Bayes classifier35 operates using
Bayes’ theorem, which relates the probability of a pixel
label to its feature set. The probability is calculated for
the training data by generating a model that tries to fit
the training data of each label. The shape of this model is

naively assumed to take the form of a Gaussian. It has very
few adjustable parameters beyond changing the assumed
distribution.

2.2.4 Quadratic discriminant analysis

The quadratic discriminant analysis (QDA) classifier36
operates using a quadratic boundary to separate particle
and background pixels, the distributions of which are pre-
dicted using Bayes’ rule. Due to the use of Bayes’ rule

6 BELL et al.

for initial prediction, if the distribution of two labels are
distinct (i.e. no labels are present on the wrong side of
the quadratic boundary), then the classifier produced is
identical to that of the Gaussian Naïve Bayes. Similarly to
that classifier, QDA does not require any parameter adjust-
ment.

2.3 Filter kernel accuracy

Often, a simple pixelwise accuracy reflecting the fraction
of correct labels to total labels is used to assess the qual-
ity of segmentations. However, this can be misleading,
since nanoparticles in electron microscope images gener-
ally comprise a small portion of an image, skewing a pixel-
wise accuracy in favour of themore numerous background
pixels. This issue can be resolved using a confusionmatrix,
which displays true and false positive and negative rates, or
a combination of these such as precision, recall or balanced
accuracy. Precision is the fraction of classifier-labelled par-
ticle pixels that are truly particle pixels, also known as pos-
itive predictive value (PPV). Recall is the fraction of total
particle pixels that are correctly labelled as particle pixels
by the classifier, also known as sensitivity. Precision and
recall are therefore defined as

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑡𝑝

𝑡𝑝 + 𝑓𝑛
, (3)

where tp is the number of true positives, fp is the number
of false positives and fn is the number of false negatives.
Precision and recall are often used in tandem as one of
these measurements alone does not account for both false
positives and false negatives when determining accuracy.
Balanced accuracy is the weighted accuracy of the true-
positive rate (TPR) and true-negative rate (TNR), that is,
the average of the correctly labelled particle pixels and cor-
rectly labelled background pixels, expressed as

Balanced accuracy =
(TPR + TNR)

2
. (4)

To accurately assess filter kernel effectiveness and their
similarity, the two-sample Kolmogorov–Smirnov (2SKS)
test37 and the Pearson’s correlation coefficient38 (PCC) are
used. The 2SKS test records the largest gap between the two
cumulative distributions of filter kernel intensities of par-
ticle and background pixels. Hence, the higher the 2SKS
statistic, themore effectively the filter kernel separates par-
ticle from background pixels. The 2SKS is defined as

2𝑆𝐾𝑆𝑛,𝑚 =
𝑠𝑢𝑝

𝑖
||𝐹1,𝑛 (𝑖) − 𝐹2,𝑚 (𝑖)|| , (5)

where 𝑠𝑢𝑝
𝑖

is the supremum of i, and 𝐹1,𝑛(𝑖) and 𝐹2,𝑚(𝑖) are
the distribution functions of particle and background pix-
els. The subscripts 1 and 2 refer to the two samples to be
tested and n andm refer to the sizes of the first and second
samples respectively.
The PCC measures the correlation of two filter kernels

on a sample of pixels from the nanoparticle images. A PCC
value of 1 indicates a perfect positive correlation while −1
indicates a perfect negative correlation, with 0 showing
no correlation. The absolute PCC is used here, as a per-
fect negative correlation simply implies inverted labelling
of the pixels, which does not contribute additional infor-
mation to the classifier.

𝑃𝐶𝐶𝑋,𝑌 =
𝑛 (Σxy) − (Σ𝑥) (Σ𝑦)√(

𝑛Σ𝑥2 − (Σ𝑥)
2
)(
𝑛Σ𝑦2 − (Σy)

2
) , (6)

where x and y are pixel samples from two filter kernels and
n is the number of samples in both x and y.
The effectiveness and similarity tests, 2SKS and PCC,

respectively, were both run on all data sets using their
ground truths as the segmentation masks. The confusion
matrices and accuracies were found with classifiers using
the default parameters seen in Table 1. The specific param-
eters noted are: σ (the standard deviation used in the Gaus-
sian and difference of Gaussian kernels), high_σ (the stan-
dard deviation of the second Gaussian used in the differ-
ence of Gaussian method) and disk_size (the size of the
kernel used for median, minimum and maximum filter
kernels).
Global and local thresholding methods were also used

to segment images in ParticleSpy, to compare against train-
able segmentation. The parameters used for thresholding
are shown in Table 2.
The classifier analysis was carried out by training the

classifier on the desired number of random pixels 10 times
in order to average out variations arising from the choice
of a small sample of pixels. Each of these trained classifiers
was tested on 10 images, and the classifiers’ accuracy was
measured against the ground truth, before the final accura-
cieswere calculated from the 10 images, each segmented 10
times. This process was repeated for each classifier of inter-
est, with the filter kernel parameters specified in Table 1.
The standard array of filter kernels (Gaussian, difference of
Gaussians, median, maximum, minimum, Sobel and sum
membrane projection) were used for all tests of trainable
segmentation accuracy.
Training and classification times reported here were

measured on a Ryzen 5600X CPU with 16 GB of RAM at
3000 MHz. We note that training and classification times
vary between different hardware configurations but are

BELL et al. 7

TABLE 1 Parameters used for trainable segmentation on each data type

Image type Image size (px) Typical feature size (px) Σ (px) high_σ (px) disk_size (px)
Pt ADF 1024 30 1 16 20
PdPtNiAu ADF 1024 50 1 16 20
PdC TEM 2048 50 4 64 20
AuGe TEM 2048 100 4 64 20

TABLE 2 Global and local thresholding algorithms and parameters used on each image type

Image
type

Thresholding
algorithm

Rolling
ball filter

Gaussian
kernel size

Local filter
kernel size Watershed

Watershed
seed
separation

Watershed
erosion Inverted

Pt ADF Combined
local/global
Otsu

158 8 45 FALSE – – FALSE

PdPtNiAu
ADF

Li 301 1 – TRUE 40 10 FALSE

PdC TEM Combined
local/global
Otsu

600 7 50 FALSE – – TRUE

AuGe TEM Combined
local/global
Otsu

600 7 50 FALSE – – TRUE

presented as a comparison between the classifiers used
here.

2.4 Image sets

In order to test the accuracy and applicability of trainable
segmentation, we used four sets of images (each set con-
taining 10–30 images) that display different contrast, fea-
tures and noise levels. Two sets of HAADF STEM images
and two sets of TEM images were used to test the effect
of differing contrast. The HAADF STEM sets included one
of Pt nanoparticles at atomic resolution (referred to as Pt
ADF) and another including a mixture of Pd, PtNi and Au
nanoparticles (referred to as PdPtNiAu ADF, as used in
Ref. 6). The TEM images are of Pd nanoparticles on a car-
bon support material and Au nanoparticles on a Ge sup-
port material; these are referred to as PdC TEM and AuGe
TEM, respectively. Example images from these data sets
are shown in Figure 3.

3 Results and discussion

3.1 Pixel distribution analysis and filter
kernel selection

To compare the effectiveness of each filter kernel, 2SKS
tests were used to evaluate the effectiveness of each filter

kernel, while PCC tests were used to analyse the similarity
of the filter kernels on each type of image.

3.1.1 Filter kernel effectiveness

Figure 4 shows the 2SKS statistic for each of the image
types. As expected, the 2SKS statistic of the PdPtNiAuADF
data set shows many filter kernels are effective at distin-
guishing the pixel sets due to the high contrast and clear
boundaries between the two sets of pixels (Figure 4B).
Many filter kernels retain a 2SKS statistic above 0.8 for the
Pt ADF data (Figure 4A), suggesting that pixel sets can
be clearly distinguished using a majority of filter kernels.
However, for the two TEM data sets, only the difference
of Gaussians has a 2SKS statistic above 0.6 (Figure 4C and
D). The lower contrast between particles and background
in the TEM images decreases the effectiveness of all filter
kernels. However, certain filter kernels do possess a higher
2SKS value for both TEM image sets and therefore careful
choice of which filter kernels to use is important.
The best performing filter kernels for all images

included many of the intensity-based filter kernels, partic-
ularly the Gaussian, difference of Gaussians and median
kernels. It is also interesting to note that the maximum
filter kernel performs better on the ADF images than the
minimum,which performs better on the TEM images. This
is due to the particles’ intensities, which compose a small
percentage of the image, being brighter or darker than the

8 BELL et al.

F IGURE 3 Example images from the 4 data sets used to test the trainable segmentation routines. (A) Pt ADF, (B) PdPtNiAu ADF, (C)
PdC TEM and (D) AuGe TEM.

F IGURE 4 2–Sample Kolmogorov–Smirnov statistics between particle and background pixel distributions for each data set. (A) Pt ADF,
(B) PdPtNiAu ADF, (C) PdC TEM and (D) AuGe TEM images. High 2SKS Statistic values indicate larger separations between the distributions.

background of the image respectively, which allows the
minimum or maximum filter kernels to isolate particle
pixels more effectively.
In all cases the Laplacian and Hessian filter kernels per-

form poorly, not discriminating between particle and back-
ground pixels, most likely due to the uniform texture in
most data sets. The exception to this is the AuGe TEM
images, where the Hessian filter kernel performs com-
paratively well against the other filter kernels (it has the
6th highest 2SKS score, vs. the 11th, 13th and 14th high-
est scores on the other data sets). The AuGe TEM images
qualitatively contain a greater degree of lattice fringes in
each particle that may contribute to the effectiveness of

the Hessian in this case. It is also possible that the very
flat background in theAuGeTEM imagesmeans that there
are smaller variations due to background contrast, which
aids in discrimination of the particles. While the use of a
Hessian filter may be useful where texture is a clear dis-
criminating feature of particles, that is not the case here
and therefore we do not include Hessian or Laplacian fil-
ters beyond this section.
All membrane projection filters perform similarly, bar-

ring the standard deviation filter which typically performs
poorly compared to the other membrane projections (low-
est in each data set other than the AuGe). The Sobel filter
also performed poorly on the Pt ADF image (less than 0.2

BELL et al. 9

F IGURE 5 Pearson’s correlation coefficient matrices between filter kernel pairs for (A) Pt ADF, (B) PdPtNiAu ADF, (C) PdC TEM and
(D) AuGe TEM images. High PCC values indicate filter kernels sharing similar distributions.

2SKS score), due to the ill-defined boundaries between the
particle and background.
The 2SKS statistic could be used to automatically pick

the most effective filter kernels and filter kernel parame-
ters on a specific set of images, with 2SKS values above a
given value (0.5 is suggested) selectively used to classify
the image with the user-labelled pixels. Automatic filter
kernel selection using 2SKS would greatly streamline the
classification process and will be developed in ParticleSpy
in the future.

3.1.2 Filter kernel similarity

The similarity of kernels measured using PCC is shown in
Figure 5 and Figure S1, for the standard array of kernels
and for the membrane projections respectively. Each value
in both plots is the PCC of the two corresponding filter ker-
nels on each axis.
All intensity-based kernels (Gaussian to minimum) are

relatively similar across all data sets (as shown in Figure 5),
with all values above 0.5, except in the PdC TEM data set.
The Sobel filter kernel is the only edge-detecting kernel
in the standard array, giving it a very low PCC with all
other filter kernels (0.4 or lower) and making it an impor-

tant kernel if it possesses a high 2SKS statistic. Overall,
the TEM images display lower PCC values than the ADF
images. This is due to the same factors that cause the lower
effectiveness of filter kernels on the TEM images, namely
that contrast is lower in the TEM images and therefore it
is more difficult to distinguish between particle and back-
ground. This is not to suggest that two highly effective fil-
ter kernels must also be highly correlated. For example,
the difference of Gaussians andminimum filter kernels are
both highly effective on the TEM images sets while sharing
a low PCC.
For all data sets (apart from AuGe TEM), the mem-

brane projections show very high PCCs (values above 0.9),
excluding the standard deviation (Supporting Figure S1).
On theADFdata sets, the inclusion ofmore than onemem-
brane projection feature is unnecessary due to their simi-
larity. The feature set may prove more useful than just the
mean feature on some TEM data sets, where PCC values
are lower than 0.8.

3.1.3 Default filter kernel selection

The filter kernel array of Gaussian, difference of Gaus-
sians, median, maximum, minimum, Sobel and sum

10 BELL et al.

membrane projection was chosen as a standard array of
kernels, which provided high 2SKS values and low PCC
values for all tested data sets, and only includes one of the
six typically degenerate membrane projections. The use of
more filter kernels does not affect the time taken by the
classifier, as classifiers need only set boundaries in the arbi-
trary dimensions of the feature set. However, fewer filter
kernels take less time to generate features for each image,
which saves time in the overall classification process. The
parameters used by these filter kernels on each data set are
given in Table 1 and were chosen to optimise the 2SKS val-
ues (as shown in Figure 4). Additional filter kernels could
have been tested; however, the tested kernels were equiva-
lent to or greater than the default selection in other train-
able segmentation software packages.23,26

3.2 Classifier analysis

The choice of an appropriate classifier can significantly
improve the segmentation of a data set. Beyond pixelwise
accuracy, it is important to consider whether high posi-
tive predictive values are preferred, or high recall values
are more desirable in segmentation. This is essen-
tially a choice between under-segmentation and over-
segmentation. It is also important to assess the number of
pixels required by a classifier for accurate segmentation,
to ensure that a sufficient number of pixels are labelled
by the user to produce accurate results. The following sec-
tions will examine the choice of classifier and its effect
on segmentation accuracy, the minimum number of pixels
required for classifiers to segment effectively and the time
required to train each classifier.

3.2.1 Classifier precision and recall

We have tested the four classifiers described in Section 2
on each of the four sets of images (results presented in
Figure 6) in terms of their precision and recall. The plots of
Figure 6 display precision and recall values as a function of
the number of pixels used in training.
We first note that in all data sets, the QDA classifier

provided a high precision metric (above 0.9). However,
the recall metric for QDA is not always high (0.8 for Pt
ADF and 0.5 for PdC TEM). This suggests that QDA has
a tendency to under-segment the images; that is it assigns
particle pixels as background pixels. In the two cases
of PdPtNiAu ADF and AuGe TEM, the QDA retains a
high precision and recall (above 0.9). In these two image
sets, there is little variation in the background, whereas
the other two image sets have strong background varia-
tions that appear to contribute to under-segmentation. We

therefore suggest that the QDA classifier is a good choice
for any data set in which a smooth background is present.
The Guassian Naïve Bayes classifier typically provides

the highest recall values, but it returns the lowest preci-
sion values for both sets of TEM images. This suggests that
in the case of low contrast (as in TEM images), the Gaus-
sian Naïve Bayes classifier tends to under-segment parti-
cles. Nevertheless, the Gaussian Naïve Bayes classifier has
relatively good performance for all data sets and therefore
could be used as a catch-all classifierwhenunsure ofwhich
to use.
As with the QDA classifier, high precision values are

obtained when using the Random Forest classifier (above
0.9) for all data sets. However, when applied to the TEM
images, low recall values are found (0.6 and 0.2). This sug-
gests that the Random Forest classifier performs well with
high contrast images, but under-segments particles when
contrast is low. Therefore, the Random Forest classifier
is recommended for use with ADF images but not TEM
images.
The nearest neighbours classifier typically has the low-

est recall value for all data sets. However, as will be
described in the next section, values for the TEM images
are still increasing with number of pixels at the maxi-
mum number of pixels used in this study (approximately
1,000,000 pixels). Using this classifier therefore tends
to result in under-segmentation, particularly for TEM
images, but may improve if trained on many images.

3.2.2 Minimum pixel requirements

It is also important to consider the minimum number of
pixels required for a given data set to produce an accurate
segmentation, as the time spent manually labelling pixels
for training can be reduced accordingly. Thenumber of pix-
els required will vary considerably for different classifiers,
and so it is important to understand the number of pixels
that each classifier requires for segmentation. In this sec-
tion, analysis of the minimum pixels needed for each data
set is presented, where the number of pixels is the total of
particle and background pixels from a random selection of
the labelled image pixels.
Given how the nearest neighbours and QDA classifiers

operate, very low numbers of labelled pixels cannot be
used for these classifiers. The nearest neighbours classifier
requires more pixels than its parameter n_samples, while
QDA requires a minimum number of both particle and
background pixels to train, meaning it could not consis-
tently train on small numbers of pixels without errors (we
have used 75 pixels of each as a starting point).
All classifiers on the Pt ADF data (Figure 6A) reach

their maximum accuracy by 2000 pixels (where ln(2000)

BELL et al. 11

F IGURE 6 (i) Precision and (ii) recall for the (A) Pt ADF, (B) PdPtNiAu ADF, (C) PdC TEM and (D) AuGe TEM data sets plotted against
the natural logarithm of the number of pixels used to train the classifier. This was done for four selected classifiers. Error bars are the standard
error and are shown where significant. Fitted sigmoid curves are for visual aid only.

12 BELL et al.

= 7.60), with the random forest classifier reaching its max-
imum accuracy at around 1000 pixels (where ln(1000) =
6.90). For all the data sets, the precision reached its max-
imum in fewer pixels than the recall. This effect is due to
the classifier initially under-segmenting the image, which
gives a high precision, but low recall values. As the classi-
fier trains using more pixels, the boundaries between the
particle and background pixels are refined, and the num-
ber of false-negative drops, giving a higher overall accu-
racy.
The PdPtNiAu ADF data set was the fastest to achieve

accurate classification (Figure 6B), requiring around 60
pixels (ln(60)= 4.1) to reach near maximum precision and
recall for the Naïve Bayes classifier, with the remaining
classifiers reaching their maximum balanced accuracy by
4000 pixels. All classifiers had a high precision (greater
than 0.95) at larger numbers of pixels.
The PdC TEM data set is one of the hardest to train, and

as a result produces the greatest variability in the perfor-
mance of the classifiers (Figure 6C). The Random Forest
classifier reaches its maximum accuracy at 16,000 pixels
(ln(16,000) = 9.7), while the nearest neighbour classifier
does not reach its maximum accuracy by 1 megapixel. The
other two classifiers perform better; the Naïve Bayes and
the QDA classifier both reach their maximum accuracies
by 4000 pixels and achieve higher recall values overall. The
choice between these two classifiers for this data set would
be determined by the requirements of the segmentation
masks, rather than simply the balanced accuracy.
The AuGe TEM data set (Figure 6D) shows high preci-

sion for all classifiers. The random forest and Naïve Bayes
classifiers reach their maximum accuracies by 8000 and
1000 pixels, respectively. The nearest neighbour classifier
does not reach its maximum before 1 megapixel. In this
data set, the most accurate classifier is the QDA classifier,
achieving its maximum accuracy at around 1000 pixels.
While it cannot classify images for the small number of
pixels at which the Naïve Bayes classifier is accurate, QDA
is more precise than Naïve Bayes, with fewer false nega-
tives. The nearest neighbours classifier appears to trend
upward at the limit of themaximumnumber of pixels used
for training. However, it does not surpass, or equal the
accuracy of the QDA classifier even at a larger number of
pixels.

3.2.3 Classifier accuracy

The most effective classifiers (in terms of their balanced
accuracy) for each data set are presented in Figure 7 as a
classified mask overlaid on a ground truth image, together
with the confusion matrices for each data set (and two
additional matrices for the PdC TEM data set). In this sec-

tion, we describe the use of the most accurate classifier on
each data set.
The Pt ADF data set was typically accurately segmented

by most classifiers. The best of these was the random for-
est classifier, which recorded a balanced accuracy of 89.2%,
trained the classifier in 19 s per megapixel, and classi-
fied subsequent images at a rate of 13 s per megapixel.
Figure 7A(i) shows that some parts of the image have been
over segmented, showing false positives in high intensity
areas, such as on the left-hand side. Conversely, many of
the particles, particularly at the centre of the image, have
been under-segmented (as revealed by false-negative pix-
els). In this particular case, where image intensity varies
within each particle, it is therefore critical to take care in
training classifiers to include pixels describing all image
intensities of both particle and background.
The PdPtNiAu ADF data set is best segmented using

the Gaussian Naïve Bayes classifier, which gave a balanced
accuracy of 98.7%. The classifier took 14 s per megapixel
to train, and 13 s per megapixel to classify the remaining
images. This high accuracy is reflected in Figure 7A(ii),
which shows almost no under-segmentation of the par-
ticles, with a small amount of over-segmentation around
most particles. The excellent performance is due to the
high contrast of the images, whichmakes all segmentation
methods easier to implement accurately.
The least accurate and most inconsistent set of train-

able segmentation results was found from the PdC TEM
data set. This is due to the very low contrast between back-
ground and particle pixels, making even manual segmen-
tation difficult. The Naïve Bayes classifier gives the high-
est balanced accuracy (Figures 7A(iii) and 8B(iv)), with
a balanced accuracy of 77%, training the classifier in 14
s per megapixel and classifying each subsequent image
at 12 s per megapixel. However, there are many false
positives produced by this classifier, compared to QDA
(Figure 7B(v)), although the positive predictive value from
Naïve Bayeswas almost twice as high as that of QDA (0.846
vs. 0.483).Many particles are almost fully segmented by the
Naïve Bayes classifier, but have regions of false negatives at
the centre of the nanoparticles due to higher pixel intensi-
ties falling outside of the particle classification boundary.
The PdC TEM data set benefits from multi-image

training, where training on five ground truth images
(Figure 7B(vi)) reduces the number of false positives but
increases the number of false negatives, producing an over-
all balanced accuracy of 79%. The benefits of this multi-
image training do not arise from the increased number of
samples, but from the wider variety of pixel samples that
many images provide. This may be due to an underrepre-
sentation of different types of particles in the initial sin-
gle image used for training, which is solved by including a
larger number of images.

BELL et al. 13

F IGURE 7 (A) Overlaid trained segmentation masks on ground truth segmentations for (i) Pt ADF using the Random Forest Classifier,
(ii) PdPtNiAu ADF using the Naïve Bayes Classifier, (iii) PdC TEM using the Naïve Bayes Classifier and (iv) AuGe TEM using the QDA
Classifier. Black and white regions indicate true negative and true positive regions, respectively. Red and blue regions indicate false positives
and false negatives, respectively. (B) Confusion matrices for the data sets: (i) Pt ADF using the random forest classifier, (ii) PdPtNiAu ADF
using the Naïve Bayes classifier, (iii) AuGe TEM using QDA, (iv) PdC TEM using the Naïve Bayes Classifier, (v) PdC TEM using the QDA
classifier and (vi) PdC TEM trained on five images using the Naïve Bayes classifier. The red, black, white and blue squares represent
false-positive, true-negative, true-positive and false-negative values, respectively.

F IGURE 8 Time to train classifiers plotted against number of
pixels, in megapixels, used to train the classifier. Fitted curves are
linear for Naive Bayes and QDA, second-order polynomial for
nearest neighbours, and third-order polynomial for the Random
Forest classifier.

The best performing classifier on the AuGe TEM data
set was the QDA classifier, with a balanced accuracy of
94%. This classifier took 14 s per megapixel to train and the
same time to classify each image. Figure 7D shows the seg-
mentation of one image overlaid on the ground truth. It is
clear that some regions around particles have been over-
segmented and, notably, many particles are also under-
segmented at their centre. This is reflected in the con-
fusion matrices, which show that around 10% of particle
pixels are mislabelled. These results were produced from
training on only one image; however, additional training
did not improve the segmentation accuracy, in contrast
to the PdC TEM data set. We suggest this is because the

AuGe TEM images are less complicated than the PdC TEM
images, with fewer variations in the support across differ-
ent images. This is an important point to note; if there are
significant variations between images in a set, training on
multiple imageswill be necessary to capture these different
features.
The Gaussian Naïve Bayes and the QDA classifier per-

form identically on the PdPtNiAu ADF data set. As dis-
cussed in Section 2, this should be true if the two distri-
butions defined are well separated. Therefore, this result
is unsurprising for this case in which particle and back-
ground pixels can be easily distinguished simply by their
intensity.

3.2.4 Classification time

There is little existing analysis of classifiers used in train-
able segmentation, and as these comprise a large part of
the trainable segmentation process, they are important to
consider. Previous users of ImageJ’s trainable segmenta-
tion have not detailed their choice of classifier, arguably
the most important factor in segmentation, but have noted
slow classification times that may result due to classifier
choice.29 A more detailed analysis of different classifiers
and their performance is therefore generally useful and
will be presented here.
The time to classify was equal over all data sets, so only

one data set is presented (Figure 8). Both the Naïve Bayes

14 BELL et al.

F IGURE 9 Balanced accuracy of basic thresholding and trainable segmentation on all four image types using 10 sample images.

and QDA classifier have very low training times, and a lin-
ear relationship between the training time and the number
of pixels used for training. This indicates a big-O notation
of (𝑁) where N is the number of pixels used for train-
ing, as the Naïve Bayes classifier and QDA classifier only
need to calculate the probability for each pixel’s set of fea-
tures. The nearest neighbours classifier takes the longest to
train for large numbers of pixels, with a big-O notation of
(𝑁2), as each data pixel must have its nearest neighbours
calculated and stored after checking through every other
pixel. The random forest classifier lies between the train-
ing time of nearest neighbours, and QDA and Naïve Bayes
at this range of pixels. It has a big-O notation of (𝑁3),
meaningwith a sufficiently large number of pixels its train-
ing time would surpass nearest neighbours; however, this
would only occur at a considerably larger number of pixels
than that needed for accurate training. Note that these Big-
O notations are empirical, rather than extrapolated from
the classifier’s code. These results support our suggestion
to use a Gaussian Naïve Bayes classifier if unsure of which
to use, as its training time will be comparatively short in
most cases.

3.3 Comparison to global and local
thresholding

Many contemporary studies still use global or local thresh-
olding methods to segment images,6 or as part of a hybrid
thresholding algorithm.13 A more versatile and accurate
method such as trainable segmentation would be useful in
these cases.
A comparison of the balanced accuracy of global or

local thresholding and trainable segmentation is shown
in Figure 9. Global or local thresholding algorithms were
selected to maximise the balanced accuracy for each data
set by testing each method available in ParticleSpy; that
is the optimally performing thresholding algorithms and

parameters were chosen for each image set (as displayed in
Table 2). These thresholding algorithms were compared to
the optimally performing trainable segmentation for each
data set. In all cases, the trainable segmentation accuracy
is higher than the best-performing global or local thresh-
olding available via ParticleSpy. It is also important to note
that basic thresholding still requires user input to refine
the parameters of the threshold and to select an appropri-
ate thresholding algorithm.

4 CONCLUSIONS

Trainable segmentation offers accurate segmentation
across a variety of image types including high-resolution
TEM images, and its implementation in ParticleSpy
includes a wide variety of filter kernels and classifiers. We
have analysed each of these filter kernels and classifiers to
demonstrate their use cases, as well as their advantages
and drawbacks. Our analyses included the effectiveness
and similarity of all ParticleSpy filter kernels, and the num-
ber of pixels required for accurate training of each classi-
fier. These parameters were used to determine the default
selection of filter kernels in ParticleSpy as a baseline for
users of trainable segmentation. Specifically, we use Gaus-
sian, difference of Gaussians, median, maximum, mini-
mum, Sobel and sum membrane projection filters kernels
as the default selection in ParticleSpy. Additional filter ker-
nels can be added in specific cases, such as when image
texture is a key determining feature.
We have demonstrated the most effective classifier

for each data set, along with their training speeds per
megapixel. Specifically, we have found that a Random For-
est classifier performs best for high-contrast ADF images,
but that QDA and Gaussian Naïve Bayes classifiers per-
form better for low-contrast TEM images. A Gaussian
Naïve Bayes classifier was found to be the best choice
in terms of all-round performance (comparatively high

BELL et al. 15

balanced accuracy and a short training time) and is the
best equipped to deal with large variations in background
intensity.
The techniques described allow large data sets of

nanoparticle images to be processed and analysed with
minimal user input, automatically selecting appropriate
default filter kernels. For this reason, trainable segmen-
tation, as implemented in ParticleSpy, has the poten-
tial to significantly enhance segmentation of electron
microscope images of inorganic nanoparticles, providing
a more accurate measurement of size and shape parame-
ters that play an important role in the physical and chem-
ical particle properties of these particles. ParticleSpy is
a freely available open-source python package for parti-
cle segmentation,39 the source code, documentation and
example notebooks can be found at https://github.com/
ePSIC-DLS/particlespy.

ACKNOWLEDGEMENTS
This work was supported by the Engineering and Physical
Sciences Research Council (grant number EP/V029797/1).
The authors thank Diamond Light Source for access and
support in use of the electron Physical Science Imaging
Centre (Instrument E01 and proposal number NT26559)
that contributed to the results presented here.We acknowl-
edge funding from EPSRC and Johnson Matthey plc for
an iCASE award 2113841 (KPT). Information on the data
underpinning the results presented here, including how to
access them, can be found in the Cardiff University data
catalogue at https://doi.org/10.17035/d.2022.0177774385.

ORCID
JudySKim https://orcid.org/0000-0003-1513-9964
Thomas JASlater https://orcid.org/0000-0003-0372-
1551

REFERENCES
1. Slater, T. J. A., Lewis, E. A., & Haigh, S. J. (2016). Nanoscience:

Volume 3 (vol. 3, pp. 168–192). RSC.
2. Goris, B., De Beenhouwer, J., De Backer, A., Zanaga, D.,

Batenburg, K. J., Sánchez-Iglesias, A., &VanTendeloo, G. (2015).
Measuring lattice strain in three dimensions through electron
microscopy. Nano Letters, 15, 6996–7001.

3. Slater, T. J. A., Macedo, A., Schroeder, S. L. M., Burke, M. G.,
O’Brien, P., Camargo, P. H. C., & Haigh, S. J. (2014). Correlating
catalytic activity of Ag-Au nanoparticles with 3D compositional
variations. Nano Letters, 14, 1921–1926.

4. Li, Z. Y., Young, N. P., Di Vece, M., Palomba, S., Palmer, R. E.,
Bleloch, A. L., & Yuan, J. (2008). Three-dimensional atomic-
scale structure of size-selected gold nanoclusters. Nature, 451,
46–48.

5. Van Aert, S., Batenburg, K. J., Rossell, M. D., Erni, R., & Van
Tendeloo, G. (2011). Three-dimensional atomic imaging of crys-
talline nanoparticles. Nature, 470, 374–377.

6. Slater, T. J. A., Wang, Y.-C., Leteba, G. M., Quiroz, J., Camargo,
P. H. C., Haigh, S. J., & Allen, C. S. (2020). Automated single-
particle reconstruction of heterogeneous inorganic nanoparti-
cles.Microscopy and Microanalysis, 26, 1168–1175.

7. Otsu, N. (1979). A threshold selection method from gray-level
histograms. IEEE Transactions on Systems, Man, and Cybernet-
ics: Systems, 9, 62–66.

8. Jui-Cheng, Y., Fu-Juay, C., & Shyang, C. (1995). A new crite-
rion for automatic multilevel thresholding. IEEE Transactions
on Image Processing, 4, 370–378.

9. Li, C. H., & Lee, C. K. (1993). Minimum cross entropy threshold-
ing. Pattern Recognition, 26, 617–625.

10. Niblack, W. (1985). An introduction to digital image processing.
Englewood Cliffs: Strandberg.

11. Sauvola, J., & Pietikäinen, M. (2000). Adaptive docu-
ment image binarization. Pattern Recognition, 33, 225–
236.

12. Park, C., Huang, J. Z., Ji, J. X., & Ding, Y. (2013). Segmentation,
inference and classification of partially overlapping nanoparti-
cles. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 35, 1–1.

13. Groom, D. J., Yu, K., Rasouli, S., Polarinakis, J., Bovik, A. C.,
& Ferreira, P. J. (2018). Automatic segmentation of inorganic
nanoparticles inBFTEMmicrographs.Ultramicroscopy, 194, 25–
34.

14. Vladár, A. E., & Hodoroaba, V.-D. (2020). Characterization of
Physical Properties.Characterization of nanoparticles. In V.-D.
Hodoroaba, W. E. S. Unger & A. G. Shard (pp. 7–27). Elsevier.

15. Nicholson, W. V., & Glaeser, R. M. (2001). Review: Automatic
particle detection in electron microscopy. Journal of Structural
Biology, 133, 90–101.

16. Danielsson, P. E., & Seger, O. (1990). Generalized and separable
Sobel operators. In Herbert Freeman (Ed.), Machine vision for
three-dimensional scenes. Academic Press.

17. Longo,A.,Morscher, S., Najafababdi, J.M., Jüstel, D., Zakian, C.,
& Ntziachristos, V. (2020). Assessment of hessian-based Frangi
vesselness filter in optoacoustic imaging. Photoacoustics, 20,
100200.

18. Laramy, C. R., Brown, K. A., O’Brien, M. N., & Mirkin, C. A.
(2015).High-throughput, algorithmic determination of nanopar-
ticle structure from electron microscopy images. ACS Nano, 9,
12488–12495.

19. Groschner, C., Choi, C., & Scott, M. (2020). Machine learning
pipeline for segmentation and defect identification from high-
resolution transmission electron microscopy data. Microscopy
and Microanalysis, 27(3), 549–556.

20. Ziatdinov, M., Dyck, O., Maksov, A., Li, X., Sang, X., Xiao, K., &
Kalinin, S. V. (2017). Deep learning of atomically resolved scan-
ning transmission electron microscopy images: Chemical iden-
tification and tracking local transformations. ACS Nano, 11(12),
12742–12752.

21. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A.,
Bengio, Y., & Larochelle, H. (2017). Brain tumor segmentation
with Deep Neural Networks.Medical Image Analysis, 35, 18–31.

22. Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understand-
ing of a convolutional neural network. 2017 International Con-
ference on Engineering and Technology, 1–6.

23. Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E.,
Walter, A. E., Arena, E. T., & Eliceiri, K. W. (2017). ImageJ2:

https://github.com/ePSIC-DLS/particlespy
https://github.com/ePSIC-DLS/particlespy
https://orcid.org/0000-0003-1513-9964
https://orcid.org/0000-0003-1513-9964
https://orcid.org/0000-0003-0372-1551
https://orcid.org/0000-0003-0372-1551
https://orcid.org/0000-0003-0372-1551

16 BELL et al.

ImageJ for the next generation of scientific image data. Bmc
Bioinformatics [Electronic Resource], 18, 529.

24. Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K. W.,
Schindelin, J., Cardona, A., & Sebastian Seung, H. (2017).
Trainable Weka Segmentation: A machine learning tool for
microscopy pixel classification. Bioinformatics, 33, 2424–2426.

25. Sipkens, T. A., Frei, M., Baldelli, A., Kirchen, P., Kruis, F. E., &
Rogak, S. N. (2021). Characterizing soot in TEM images using a
convolutional neural network. Powder Technology, 387, 313–324.

26. Sommer, C., Straehle, C., Köthe, U., & Hamprecht, F. A. (2011).
ilastik: Interactive Learning and Segmentation Toolkit. Som-
mer, C., Straehle, C., Köthe, U., & Hamprecht, F. A. Eighth
IEEE International Symposium on Biomedical Imaging: Pro-
ceedings, IEEE, Chicago, 230–233.Eighth IEEE International
Symposium on Biomedical Imaging: Proceedings, IEEE, Chicago,
230–233.

27. de la Peña, F., Prestat, E., Fauske, V. T., Burdet, P., Furnival, T.,
Jokubauskas, P., & Donva, G. (2021). HyperSpy (1.6.2) https://
doi.org/10.5281/zenodo.4683076

28. Ilett, M.,Wills, J., Rees, P., Sharma, S., Micklethwaite, S., Brown,
A., & Hondow, N. (2020). Application of automated electron
microscopy imaging and machine learning to characterise and
quantify nanoparticle dispersion in aqueous media. Journal of
Microscopy, 279, 177–184.

29. Altenhoff, M., Aßmann, S., Teige, C., Huber, F. J. T., & Will, S.
(2020). An optimized evaluation strategy for a comprehensive
morphological soot nanoparticle aggregate characterization by
electron microscopy. Journal of Aerosol Science, 139, 105470.

30. Van Der Walt, S., Schönberger, J. L., Nunez-Iglesias, J.,
Boulogne, F., Warner, J. D., Yager, N., & Yu, T. (2014). Scikit-
image: Image processing in Python. PeerJ, 2, e453.

31. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., & Duchesnay, É. (2011). Scikit-learn: Machine
learning in python. Journal of Machine Learning Research, 12,
2825–2830.

32. The GIMPDevelopment Team (2021). General imagemanipula-
tion tool (2.10). Available at https://gimp.org

33. Ho, T. K. (1995). Proceedings of 3rd International Conference on
Document Analysis and Recognition. IEEE Computer Society
Press, 1, 278–282.

34. Altman, N. S. (1992). An introduction to kernel and nearest-
neighbor nonparametric regression. The American Statistician,
46, 175–185.

35. Domingos, P., & Pazzani,M. (1997). On the optimality of the sim-
ple Bayesian classifier under zero-one loss. Machine Learning,
29, 103–130.

36. Srivastava, S., Gupta, M. R., & Frigyik, B. A. (2007). Bayesian
quadratic discriminant analysis. Journal of Machine Learning
Research, 8, 1277–1305.

37. Smirnov, N. (1948). Table for estimating the goodness of fit of
empirical distributions. Annals of Mathematical Statistics, 19,
279–281.

38. Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coeffi-
cients: Appropriate use and interpretation.Anesthesia andAnal-
gesia, 126(5), 1763–1768.

39. Slater, T., Bell, C. G., & Danaie, M. (2021). ParticleSpy (v0.5.2),
https://doi.org/10.5281/zenodo.4668722

SUPPORT ING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Bell, C. G, Treder, K. P,
Kim, J. S, Schuster, M. E, Kirkland, A. I, & Slater, T.
J A (2022). Trainable segmentation for transmission
electron microscope images of inorganic
nanoparticles. Journal of Microscopy, 1–16.
https://doi.org/10.1111/jmi.13110

https://doi.org/10.5281/zenodo.4683076
https://doi.org/10.5281/zenodo.4683076
https://gimp.org
https://doi.org/10.5281/zenodo.4668722
https://doi.org/10.1111/jmi.13110

	Trainable segmentation for transmission electron microscope images of inorganic nanoparticles
	Abstract
	1 | INTRODUCTION
	2 | METHODS
	2.1 | Filter kernels
	2.2 | Classifiers
	2.2.1 | Random forest
	2.2.2 | Nearest neighbours
	2.2.3 | Gaussian Naïve Bayes
	2.2.4 | Quadratic discriminant analysis

	2.3 | Filter kernel accuracy
	2.4 | Image sets

	3 | Results and discussion
	3.1 | Pixel distribution analysis and filter kernel selection
	3.1.1 | Filter kernel effectiveness
	3.1.2 | Filter kernel similarity
	3.1.3 | Default filter kernel selection

	3.2 | Classifier analysis
	3.2.1 | Classifier precision and recall
	3.2.2 | Minimum pixel requirements
	3.2.3 | Classifier accuracy
	3.2.4 | Classification time

	3.3 | Comparison to global and local thresholding

	4 | CONCLUSIONS
	ACKNOWLEDGEMENTS
	ORCID
	REFERENCES
	SUPPORTING INFORMATION

