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a b s t r a c t 

Cost effective job scheduling for garage management relies upon assigning repair times into appropriate 

categories rather than using exact repair time lengths. In this paper, we employ an ordinal logit model 

with least absolute shrinkage and selection operator (LASSO) to forecast such repair time categories for 

automotive engines. Our study is based on a unique dataset of maintenance records from the network 

of 64 UK garages of BT Fleet Solutions , and we consider a large number of predictor variables, with con- 

dition, manufacturing, geographical, and calendar-related information. The application of LASSO enables 

the identification of relevant predictor variables for forecasting purposes. Based on the Brier score and 

the ranked probability score (and their skill scores), we document substantial predictive ability of our 

method which outperforms five benchmarks, including the method used by the company. More impor- 

tantly, we demonstrate explicitly how to associate the predicted probabilities with a loss function in order 

to make operational decisions in garages. We find that the best choice of job scheduling does not always 

correspond to the predicted categories, especially when the loss function is asymmetric. We show that 

scheduling jobs on the basis of our method can help the company reduce loss value. Finally, we identify 

opportunities for further improvements in the operations of the company and for garage maintenance 

operations in general. 

© 2022 The Author(s). Published by Elsevier B.V. 
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. Introduction 

Operational research (OR) work in the automotive industry 

ostly focuses on demand and sales forecasting ( Murry & Zhou, 

020 ), production systems ( Volling, Matzke, Grunewald & Spengler, 

013 ), remanufacturing ( Schultmann, Zumkeller & Rentz, 2006 ), 

rder-to-delivery processes ( Brabazon & MacCarthy, 2017 ), and 

upply chain management ( Zhang, Shang & Li, 2011 ). Less atten- 

ion has been paid to automotive garage (repair shop) management 

hich is still mainly performed by humans relying on judgmental 

ecision making. Academic work in this area does not reflect the 

ize and importance of the automotive maintenance industry. For 

nstance, the annual repair bill related to the US federal fleet of 

0 0,0 0 0 vehicles is estimated to be $1B ( US General Services Ad-

inistration, 2015 ). There appears to be some gap in the literature 
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hen it comes to innovative applications of OR to garage manage- 

ent. 

In automotive garage management, one of the most important 

perations is to make predictions of repair times 1 (also known as 

ime to Repair, TTR), which is crucially related to scheduling and 

lanning ( Pilar, e Silva & Borges, 2021 ). Meanwhile, garage cus- 

omers also need the information of repair times for their own 

lanning purposes ( Ryan, 2015 ). Repair times that are longer than 

ccounted for can cause disruption to the garage’s job schedul- 

ng and the availability offered to customers. On the contrary, 

horter repair times induce costs related to idle time and rear- 

angement of jobs. In practice, all too often garage managers make 

udgmental forecasts of the repair times based on a quick in- 

pection. Such judgmental forecasts may not be consistent over 

ime, and their accuracy highly depends on experience and skills 
1 The repair time excludes the inspection time, waiting time, and logistics time; 

nly the time of repair actions is considered. 

under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.ejor.2022.06.062
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.06.062&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:SyntetosA@cardiff.ac.uk
https://doi.org/10.1016/j.ejor.2022.06.062
http://creativecommons.org/licenses/by/4.0/


S. Wang, A .A . Syntetos, Y. Liu et al. European Journal of Operational Research 306 (2023) 893–908 

(

O

p

c

i

a

o

t

w

t

f

p

j

(

t

t

t

t

0

(

c

s

g

t

t

t

e

a

d

t

t

m

e

t

B

o

p

b

s

o

s

s

M

p

c

t

v

t

p

o

t

w

m

c

e

p

t

r

t

m

w

o

S

f

u

a

s

a

a

a

2

t

p

m

r

i

r

B

t

s

f

c

s

r

t

o

f

d

t

s

r

v

(

o

c

i

n

t

B

i

p

u

v

i

t

t

c

t

s

w

c

i

a

(

w

e

 Goodwin, Gonul & Onkal, 2019 ; Lawrence, Goodwin, O’Connor & 

nkal, 2006 ). If repair times of automotive parts can be accurately 

redicted based on some formal approach, garage managers may 

onsiderably improve the efficiency of job scheduling and better 

nform customers about their waiting times. 

To this end, we propose an ordinal logit model with the least 

bsolute shrinkage and selection operator (LASSO) to forecast the 

rdinal categories of repair times for automotive parts in order 

o improve automotive garage operations. The uniqueness of our 

ork lies on the categorical prediction of repair times, rather 

han precise time lengths because of two reasons. First, small dif- 

erences on the exact predicted time length have negligible im- 

act on operational decisions. In terms of job scheduling, repair 

obs are typically ‘bucketed’ into categories for practical purposes 

 Lewandowski & Olszewska, 2020 ). Second, the records of repair 

imes are subject to measurement errors which further substan- 

iates the rationale for relying upon categories rather than exact 

ime lengths. Based on consultation with experts, we classify au- 

omotive engine repair times in this study as: minor (less than 

.5 hour), medium (between 0.5 hour and 2 hours), and major 

more than 2 hours). Such classification is also consistent with the 

lassical planning and control principle of “runners, repeaters, and 

trangers” ( Aitken, Childerhouse & Towill, 2003 ). The minor cate- 

ory corresponds to the “runners” which are the frequent routine 

asks with standardized procedures; the medium category matches 

he “repeaters” which contain less frequent tasks but with rela- 

ively well understood resource requirements; and the major cat- 

gory resembles the “strangers” which are uncertain tasks associ- 

ted with limited insight. 

We consider a large number of predictor variables, with con- 

ition, manufacturing, geographical, and calendar-related informa- 

ion. To tackle the high dimensionality problem, we employ LASSO 

o regularize the estimation results and automatically select the 

ost informative predictor variables. Forecasting performance is 

xamined by means of utilizing an empirical dataset of repair 

imes for automotive engines, provided by our industrial partner, 

T Fleet Solutions (which has since been restructured and is now 

perated by a different company), which is a sizeable fleet com- 

any in the United Kingdom. We compare our method with five 

enchmarks: k-nearest neighbors, deep learning, random guess, 

ample majority, and historical averages. 2 Our method consistently 

utperforms the benchmarks in the test sample based on the Brier 

core and the ranked probability score (and their skill scores). The 

uperior predictive power is also confirmed by robustness checks. 

ore importantly, we explicitly demonstrate how to use our pro- 

osed method to: i ) support garage managers towards more effi- 

ient job scheduling; and ii ) facilitate some better management of 

he garages. 

The contribution of this study is two-fold. First, our study pro- 

ides an innovative OR application to forecast categories of repair 

imes for automotive engines by LASSO using a large number of 

redictor variables. Based on a sizeable dataset over eight years, 

ur ordinal logit model with LASSO method shows superior predic- 

ive power and consistently outperforms five benchmarks. Second, 

e further contribute to the OR field by means of utility assess- 

ent, i.e. by linking the predicted probabilities to operational de- 

ision making in garages in order to reduce loss value and enhance 

fficiency. We find that best decisions do not always correspond to 

oint forecasts, especially if we deal with asymmetric loss func- 

ions. Our framework applied to automotive engines, can be natu- 

ally generalized to other contexts (such as vessels and aircrafts). 
2 While confidentiality agreements preclude disclosing the exact method used by 

he case company, we can reveal that their method is one of the five benchmark 

ethods considered in this study. 
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The remainder of the paper is organized as follows. In Section 2 , 

e briefly discuss the related literature. In Section 3 , we describe 

ur empirical data and explain the choice of predictor variables. 

ection 4 presents a description of our methodology, including the 

orecasting method, benchmarks, and measures of forecasting eval- 

ation. The empirical forecasting performance, and some associ- 

ted robustness checks are provided in Section 5 . Section 6 demon- 

trates how to use probabilistic forecasting to improve garage man- 

gement in practice. Section 7 provides a summary of this study 

nd discusses potential extensions for future research. There is also 

 Supplement that provides additional results of robustness checks. 

. Research background 

This study sits in the intersection of three strands of litera- 

ure: i ) maintainability analysis; ii ) application of LASSO in OR; iii ) 

robabilistic forecasting for decision making. We discuss below the 

ost relevant studies in each of these strands. 

Maintainability analysis is concerned with the amount of time 

equired to repair a system when it fails. Empirical studies ded- 

cated to forecasting repair times are limited, and most of the 

elevant work is designed around very specific systems. Keizers, 

ertrand and Wessels (2003) used a logistic regression to inves- 

igate the repair performance for the Royal Netherlands Navy. They 

elected eight predictor variables related to planning behavior, and 

ound five of them to be significant at 10% level. Based on the con- 

ept of the proportional hazard model, Gao, Barabady and Marke- 

et (2010) developed a proportional repair model (PRM) to analyze 

epair rate (i.e. the reciprocal of repair time) by using explana- 

ory variables. In the PRM, the repair rate function is a product 

f the baseline repair function and a term incorporating the ef- 

ect of predictor variables. Empirically, they used the PRM to pre- 

ict repair rates of oil and gas production facilities in Arctic condi- 

ions. They considered three predictor variables: maintenance de- 

ign, maintenance crew skill, and climatic conditions. Based on 15 

ecords of TTR data of turbo-compressors, their PRM showed two 

ariables, maintenance design and climatic condition, significantly 

at 10%) affecting the repair rate. However, their model is based 

n the proportionality assumption, which needs to be carefully 

hecked in order to ensure the applicability of such model. A lim- 

tation of their study is that the proportionality assumption was 

ot checked. Additionally, the effect of predictor variables must be 

ime independent. To enhance the applicability of PRM, Barabadi, 

arabady and Markeset (2011) further extended it by incorporat- 

ng time-independent and time-dependent variables with an ap- 

lication in predicting the repair rate of screen mesh (equipment 

sed by mineral crushing plants). They considered six operational 

ariables, namely temperature, shift (day or night), location, wind, 

cing, and rain. Based on 16 records of TTR data of screen mesh, 

heir baseline model, with the proportionality assumption, showed 

hat three variables (temperature, shifts, and rain) have a signifi- 

ant effect (at the 5% level). To check the proportionality assump- 

ion, they used a graphical method of plotting repair function ver- 

us time for the different strata. The proportionality assumption 

as violated for temperature, and they proceeded to use a stratifi- 

ation approach to resolve the problem. The limitation of the strat- 

fication approach is that the break point to divide the strata is 

rbitrary and typically based on experience. Ozturk and Fthenakis 

2020) employed a Bayesian updating technique to predict TTR of 

ind turbines. They selected six predictor variables related to op- 

rational and environmental conditions. Based on 753 records, they 

ound that TTR is higher in high inland locations, higher number of 

revious failures, and geared-drive turbine types with medium ca- 

acity. Overall, the existing literature on repair times typically uses 

 small number of predictor variables, while our study utilizes a 

uch larger number of (potential) predictors. 
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Fig. 1. Histogram of Repair Times and their Categories. 
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3 The data from the period we analyzed belongs to BT Fleet Solutions. In Septem- 

ber 2019, the fleet company was sold to, and is currently owned by a different 
For problems involving a large number of variables, it is neces- 

ary to use a variable selection technique to reduce dimensional- 

ty. Treating all variables as potential predictors is inefficient and 

eads to the well-known ‘curse of dimensionality’ and poor pre- 

iction performance by using irrelevant variables ( Jursa & Rohrig, 

008 ). LASSO was firstly proposed by Tibshirani (1996) as the l 1 - 

enalized method and has been successfully developed over the 

ast decades to deal with high dimensionality. Due to the l 1 - 

enalty, LASSO shrinks the coefficients of irrelevant variables to 

ero and, thus, automatically serves the purpose of variable se- 

ection, where only informative variables with nonzero coefficients 

re selected. Applications of LASSO in forecasting shows its robust 

redictive power and it has been a prevailing tool in variable selec- 

ion for forecasting in many areas, such as retail demand forecast- 

ng ( Ma, Fildes & Huang, 2016 ), macroeconomics ( Smeekes & Wi- 

ler, 2018 ), credit rating ( Sermpinis, Tsoukas & Zhang, 2018 ), mar- 

eting analytics ( Sun, Zheng, Jin, Jiang & Wang, 2019 ), and electric 

oad ( Ziel & Liu, 2016 ). One drawback of LASSO relates to variable

election instability, because of the parameter uncertainty in esti- 

ating a large covariance matrix. As an extension of LASSO, Zou 

nd Hastie (2005) proposed a revision of the penalization term 

s the combination of the l 1 - penalization and l 2 - penalization, 

hich is referred to as the elastic net in the literature. The elas- 

ic net has the advantage that the estimated coefficients and vari- 

ble selection are more stable, and it can further improve the fore- 

asting performance in the presence of highly correlated variables. 

here are also a number of applications in forecasting by using 

he elastic net (e.g., Eickmeier & Ng, 2011 ; Huck, 2019 ; Ozturk &

thenakis, 2020 ). Despite the popularity of LASSO and the elastic 

et in various fields, they are rarely used in the field of main- 

ainability analysis. This is mainly because the number of available 

redictor variables in the previous studies is limited, and thus vari- 

ble selection techniques are not needed. Our study is based on a 

izeable dataset with a large number of predictors, and we show 

hat LASSO is associated with a superior predictive power in fore- 

asting repair times of automotive engines. 

In the third strand of related literature, probabilistic forecast- 

ng is a well-developed field and has many applications in OR. Un- 

ike point forecasting, probabilistic forecasting provides more in- 

ormation as it takes “the form of a predictive probability distribu- 

ion over future quantities or events” ( Gneiting & Katzfuss, 2014 , p. 

26). Using probabilistic forecasting may bring additional benefits 

over and above point forecasts) in decision making in operations 

anagement. In the context of winter road maintenance, it is im- 

ortant to make a decision on whether to use the pre-emptive ap- 

b

895 
lication of chemicals for anti-icing, and such decision is usually 

aken on the basis of point forecasts. Berrocal, Raftery, Gneiting 

nd Steed (2010) developed two methods for forecasting the prob- 

bility of ice formation. One important issue highlighted by the 

uthors is that the costs of two types of errors are highly asym- 

etric: the cost of a road closure is much higher than taking anti- 

cing measures. Based on the data of Interstate Highway in Wash- 

ngton State, they found that the use of probabilistic forecasts can 

elp reduce 50% of the total cost, compared to point forecasts. In 

he context of the offshore wind turbine maintenance, it is compli- 

ated to make decisions on whether to send over a service vessel 

ecause access to the equipment is restricted by the wave height, 

hich depends on weather. Taylor and Jeon (2018) used time series 

ethods to produce forecasts of probabilities of wave height den- 

ity, and then they incorporated probabilistic forecasting to enable 

ational decision making on the part of the maintenance engineers. 

heir recommendation on whether to send out the service vessel 

elies on the probability of wave height falling below the safe limit. 

n a follow-up study, Gilbert, Browell and McMillan (2020) em- 

loyed a boosted semi-parametric model to generate probabilistic 

orecasts of significant wave height and peak wave period, which 

urther predicted the vessel motion during crew transfer up to 5- 

ays ahead in order to support operations of wind offshore farms. 

ur study expands the application of probabilistic forecasting to 

he automotive industry. We follow the work of Berrocal et al. 

2010) ), to consider asymmetric loss functions, and Taylor and Jeon 

2018) , to minimize the expected loss related to decision making. 

. Data 

The research described in this paper has been motivated by, and 

uccessfully applied to, our industrial collaborator, BT Fleet Solu- 

ions (now restructured and belonging to a different organization 

3 ), 

hich is a UK-based fleet company providing service, maintenance, 

nd repair for the fleet of BT Group plc. , and commercial vehicles of 

xternal companies in various industries. The maintenance records 

tudied in this article were collected in their network of 64 garages 

cross the UK. Although each garage and workshop were managed 

ndependently by their managers, they all shared the same web- 

ased information system to collect and consolidate the mainte- 

ance data, ensuring consistency in data collection across all of 
usiness entity. 
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hem. This study considers repair records for four fleets of ve- 

icles, including light commercial vehicles, heavy goods vehicles, 

our-wheel drive vehicles, and personal cars. Following discussions 

ith the company, we focus on the repair time of automotive en- 

ines, because engines are deemed to be the most critical vehicle 

omponent. The repair times of other vehicle components can be 

orecasted in the same manner. 

.1. Categories of repair times 

There are two strong motivations for us to forecast the cate- 

ories of repair times, rather than the exact length. First, the pur- 

ose of forecasting repair times of automotive parts is to support 

ob scheduling in the garage. Because the repair jobs are scheduled 

ased on the categories of repair time, there is no fundamental dif- 

erence in terms of job scheduling if the predicted repair time falls 

nywhere within a category. For example, the scheduling is exactly 

he same for a predicted repair time of 0.35 hour and 0.45 hour, if 

hey both fall within the same category. Therefore, pursuing a (pre- 

ise) point forecast is neither the ultimate goal of the company nor, 

n turn, of this study. The second motivation is due to measure- 

ent error. As a demonstration, Fig. 1 presents the histogram of 

epair times for automotive engines from the case company. It can 

e clearly observed that spikes occur at the multiples of 0.5 hour. 

his is because technicians in garages sometimes input the records 

f repair times rounding up to the nearest 0.5 hour. Thus, the 

recise length of repair times is not even available, and discus- 

ions with our industrial collaborator reveal that this was gener- 

lly the case. On the basis of the two aforementioned issues, we 

onvert the repair hours into ordinal categories (shown in Fig. 1 ) 

nd further focus on forecasting such categories (minor: less than 

.5 hour; medium: between 0.5 hour and 2 hours; major: more 

han 2 hours). Such classification has been undertaken in consul- 

ation with experts in the fleet company. The empirical results pre- 

ented in this study utilize categories of repair times decided upon 

onsultation with experts, which is exogenously determined. But it 

s worth noting that our work is applicable to any other arbitrary 

lassification of categories, based on the context of other indus- 

ries. 

.2. Life cycle of automotive engines 

Fig. 2 schematically presents the life cycle of an automotive en- 

ine, along with the notation of the variables which will be dis- 

ussed in detail in Section 3.3 . A specific engine (characterized by 

anufacturing information), in brand new condition, starts to be 

sed in a vehicle at time t 0 , with mileage reading M 0 = 0 . During

ts lifetime, an engine may encounter multiple failures and needs 

o undergo maintenance in a garage. 4 At the beginning of the i th 

aintenance, the garage records the time (as t i ), mileage (as M i ), 

nd condition-related information, and the same procedure is con- 

ucted for the ( i + 1 ) th maintenance. Between t i and t i +1 , the en- 

ine is used in a vehicle that operates within a specific region, 

hich provides the geographical information. We can also compute 

he time between failure (TBF) between the i th and the ( i + 1 ) th 

aintenance as T B F i +1 = t i +1 − t i , and the mileage between failure 

MBF) as MB F i +1 = M i +1 − M i . The calendar information at ( i + 1 ) th 

aintenance can be directly retrieved from the date of t i +1 . At the 

nd of life cycle, the company will sell or scrap an engine. 
4 Generally, the engine needs a maintenance either when it is not functioning 

corrective maintenance) or when the technician believes that there is a substantial 

ailure risk associated with the engine (preventive maintenance). 

m

c

r
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.3. Choice of predictor variables 

We are interested in forecasting the repair time R T i +1 of an au- 

omotive engine in the ( i + 1 ) th maintenance . The ultimate pur- 

ose of our forecasting method is to support decision making of 

he garage manager when the vehicle arrives in the garage for the 

aintenance of its engine. Thus, the information set �i +1 contains 

ll the information when the vehicle arrives in the garage for its 

 i + 1 ) th engine maintenance, which is available for us to use in 

rder to forecast R T i +1 . We systematically select and categorize the 

redictor variables into four sets: vehicle condition variables, man- 

facturing variables, geographical variables, and calendar variables, 

hich are all explained in detail below. 

.3.1. Condition variables 

The first set of predictor variables measures the engine con- 

ition and are collected at both time t i +1 and t i . It is standard 

n the automotive industry to use a two-dimensional warranty 

hich depends on the time and the mileage (e.g. Huang, Gau & 

o, 2015 ; Majeske, 2007 ; Murthy & Blischke, 2006 ). Thus at time 

 i +1 , it is undoubtable that the most important condition variables 

re the age ( Ag e i +1 ) and the mileage ( M i +1 ). The average mileage

 A v g M i +1 ), defined as M i +1 /Ag e i +1 , is also useful to measure the en-

ine condition because it gives an indication of whether the engine 

s over or under-used. Next, it is crucial to distinguish between 

reventive maintenance and corrective maintenance ( Por C i +1 ). In 

he UK, the routine service on vehicles is closely related to safety 

nspections regulated by the Ministry of Transport (MOT). This 

s typically done on an annual basis. 5 As a result of MOT, pre- 

entive maintenance is performed to satisfy the safety require- 

ents and to avoid any potential future malfunctions, while no 

ction is needed if there is no problem found. As for corrective 

aintenance, it is performed in response to an actual malfunction 

ccurred, rather than a potential one. Further, we also consider 

hether the ( i + 1 ) th maintenance is due to an accident ( isAc c i +1 ) 

r not. At time t i , we collect a range of variables to measure the 

istorical usage of the engine, including the total number of pre- 

entive maintenances up to T i ( N 

P 
i 

), the total number of correc- 

ive maintenances up to T i ( N 

C 
i 

), the cumulative repair time due 

o preventive maintenance up to T i ( CRT P 
i 

), the cumulative repair 

ime due to corrective maintenance up to T i ( CRT C 
i 

), whether the 

 

th maintenance is preventive or corrective ( Por C i ), the repair time 

t the i th maintenance ( R T i ), and whether any parts within the en- 

ine are replaced at the i th maintenance ( isPar t i ). Finally, we also 

nclude information in relation to the time between t i and t i +1 , 

hich is T B F i +1 and MB F i +1 , defined in Section 3.2 . 

.3.2. Manufacturing variables 

The literature found quality difference in automotive parts by 

ifferent vehicle makers (see, e.g. Sawyer-Beaulieu & Tam, 2015 ). 

hus, the repair time is likely to be determined by the manufac- 

uring information of the engine. Thus, the second set of predic- 

or variables is related to the manufacturing information, which 

s fixed and not time varying. Specifically, we employ four man- 

facturing variables: vehicle make ( Make ), vehicle model ( Model), 

odel year ( MY ), and vehicle type ( T ype ). The vehicle make refers

o the company that manufactured the vehicle, while the vehi- 

le model is the name of the range of cars. For example, in the 

ase of a Honda Civic, the make is Honda, and the model is Civic. 

he additional attribute to further differentiate the same make and 

odel is the model year, which describes the year when a spe- 

ific version of a model was launched in the market for the first 
5 In addition to MOT, more frequent (optional) service may be done for prudential 

easons. 
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Fig. 2. Life Cycle of an Automotive Engine and Notation of Variables. 

t

o

v  

F

m

3

d

i

s

t

s

n

p

t  

s  

c

a

i

m

p

i

f

3

w

d

d

e

2

d

a

e

w

a  

s

a

c

r

v

a

m

d

i

c  

a

a

e

3

e

t

t

S

i

i

s

m

o

ime. Lastly, the four fleets of the vehicles are further classified by 

ur collaborator in 10 types, encoded as A (small vans) , B (light 

ans) , C (medium vans) , D (large vans) , E (medium goods vehicles) ,

 (large goods vehicles) , G (four wheel drive vehicles) , H (vehicular 

echanical aids) , J (personal cars) , and N (special medium vans). 

.3.3. Geographical variables 

Each vehicle in the dataset is affiliated with one of the garages 

uring a certain period 

6 and operates within a certain mileage of 

ts affiliated garage. Thus, the specific garage the vehicle is as- 

igned to between t i and t i +1 ( Garag e i +1 ) is potentially informa- 

ive in forecasting the repair time due to the characteristics as- 

ociated with the garage. After consulting with the garage tech- 

icians, the nature of the road around the garage also plays an im- 

ortant role. Thus, we classify the 64 garages according to whether 

hey are situated in an urban area ( Urba n i +1 ) and/or by the sea-

ide ( Seasid e i +1 ). Roads in urban areas tend to be flat with higher

apacity and good condition, whereas rural roads are typically in 

 worse condition and located in craggier terrains. Comparing to 

nland, the air in coastal areas has a higher level of saltness hu- 

idity, which could cause corrosion of some certain engine com- 

onents. Additionally, we use the regional variable ( Regio n i +1 ) to 

ndicate the region the affiliated garage is in. This is because dif- 

erent regions can have different traffic rules on transportation. 

.3.4. Calendar variables 

The fourth set of variables considers trend, seasonality, and 

eekend effects. In more detail, we employ the variable ( Yea r i +1 ), 

efined as the number of years after 2010 (which is the start of our 

ataset – please refer to Section 3.4 ), to capture any potential (lin- 

ar) trends in the dataset. Additionally, previous studies (e.g., Rai, 

009 ) have documented the monthly seasonality in repair times as 
6 It is possible that a vehicle may, occasionally, be assigned to a different garage 

ue to changes in demand. However, such changes are rare. 

i

T

y

h
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 possible predictor variable, which motivates us to include a rel- 

vant variable in our study ( Mont h i +1 ). Moreover, there could be a 

eekend effect due to differences in traffic patterns on weekdays 

nd weekends ( Gao & Niemeier, 2007 ; Liu, Ge & Gao, 2014 ). As

uch, it is also worthwhile including the potentially relevant vari- 

ble ( W eeken d i +1 ). 

Overall, we consider four sets of predictor variables, which 

ould potentially contribute to forecasting the ordinal category of 

epair times. From an implementation perspective, the predictor 

ariables may also be further classified as: i) numerical variables, 

nd ii) nominal variables. While it is straightforward to use the nu- 

erical variables, the nominal ones need to be encoded as a set of 

ummy variables before inputting them into the models described 

n Section 4 . For example, Garag e t+1 is used to indicate which spe- 

ific garage, out of the 64, is used (at time t + 1 ), and it is encoded

s 63 dummy variables. After encoding the nominal variables, there 

re 439 variables in total. This motivates the use of LASSO and the 

lastic net to conduct a variable selection. 

.4. Summary statistics 

Our dataset contains 9511 maintenance records of automotive 

ngines in new vehicles registered with the fleet company af- 

er November 2009. The maintenance records were collected from 

he company’s network of 64 garages between February 2010 and 

eptember 2017. There are 5291 unique engines in our dataset, and 

t should be noted that an engine can have multiple maintenances 

n its lifetime. A histogram of the number of maintenances is pre- 

ented in Fig. 3 . As can be seen, most vehicles (97.8%) have no 

ore than six records of engine maintenances. 

Table 1 reports the categories of repair time ( R T i +1 ) in terms 

f calendar year, month, and weekdays. There are only 6 records 

n 2010, and most cases of engine repairs are reported after that. 

his is because automotive engines are reliable in the first few 

ears of their lifetime and rarely have failures. We also observe a 

igher percentage of major cases in later years. This is also related 
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Fig. 3. Histogram of Number of Maintenances (Feb. 2010 – Sep. 2017). 

Table 1 

Categories of Repair Time by Year, Month, and Weekday. 

Year Minor Medium Major Total 

2010 6 0 0 6 

2011 42 11 6 59 

2012 105 45 12 162 

2013 222 187 46 455 

2014 434 387 99 920 

2015 668 550 172 1390 

2016 1147 1335 621 3103 

2017 1348 1314 754 3416 

Month Minor Medium Major Total 

1 353 304 172 829 

2 338 332 144 814 

3 388 337 146 871 

4 289 328 149 766 

5 326 312 143 781 

6 355 342 142 839 

7 357 344 133 834 

8 322 377 151 850 

9 382 396 156 934 

10 282 257 123 662 

11 311 260 139 710 

12 269 240 112 621 

Weekday Minor Medium Major Total 

Monday 797 754 368 1919 

Tuesday 833 828 375 2036 

Wednesday 809 822 357 1988 

Thursday 789 750 347 1886 

Friday 727 652 257 1636 

Saturday 17 22 6 45 

Sunday 0 1 0 1 

Note: there are 9511 maintenance records for the auto- 

motive engines in the dataset. We report the categories 

of repair times in terms of calendar year, month, and 

weekdays. There is one special case reported on a Sun- 

day, when the garages are typically closed. 
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o the reliability of the engines which deteriorates with age and 

ileage. Regarding the total number of cases in different months, 

here are fewer cases in April, November, and December. This can 

e (partly) explained by the holiday effect of Easter and Christmas 

reaks when the commercial vehicles are less frequently used. We 

bserve substantially fewer cases in weekends as the garages are 

unning in low capacity on Saturday and are closed on Sunday. 

here is one special case reported on a Sunday. We can observe 
898 
 relatively even distribution of minor, medium, and major cases 

cross different months and different workdays. 

Table 2 shows the summary statistics of the conditional vari- 

bles. At the time t i +1 (in Fig. 2 ) when the engine has its ( i + 1 ) th 

aintenance, the average age is 4.26 years and the average mileage 

s 100.72 thousand miles; maintenances due to accidents are rare; 

nd 93% of maintenances are corrective with 7% being preventive. 

ocusing on the time t i (in Fig. 2 ) when the engine has the i th 

aintenance, the number and cumulative time of corrective main- 

enances is higher than that of preventive maintenances; the aver- 

ge repair time at the i th maintenance is 1.26 hours; there are 92% 

orrective maintenances; and the variable isPar t i shows that about 

alf of the cases are associated with engine parts being replaced. 

etween t i and t i +1 , the mean TBF is 316.88 days and the mean 

BF is 17.59 thousand miles. As for the rest of the predictor vari- 

bles, there are 26 different vehicle makes and 287 vehicle mod- 

ls. Among 64 garages, there are 23 in the urban areas, 16 by the 

easide, and the rest are in the inland and rural areas. Finally, the 

ompany employs its own classification of four UK regions: Scot- 

and, Northern Ireland, Northern England, the rest of the UK. 

. Method 

In this section, we explain the method employed in our study. 

ur purpose is to forecast the ordinal categories of repair times 

y a large number of predictor variables. To this end, we em- 

loy the ordinal logit model with LASSO, which aims at select- 

ng the most important predictors for forecasting such categories. 

e also consider the elastic net as another way of regularization. 

s benchmarks, we choose two machine learning approaches and 

hree naïve methods (including the method currently used by the 

ompany). To evaluate the forecasting performance of the consid- 

red approaches, we employ four metrics: the Brier Score (BS), the 

anked probability score (RPS), and their skill scores, i.e. the Brier 

kill score (BSS) and the ranked probability skill score (RPSS). 

.1. Ordinal logit model with LASSO 

We organize the presentation of the method into two parts. The 

rst part explains the ordinal logit model, and the second part is 

edicated to illustrating the variable selection technique via LASSO. 

The ordinal logit model is one of many models under the 

ramework of generalized linear models for ordinal data. The 
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Table 2 

Descriptive Statistics of the Conditional Variables. 

Mean Std. Min. 25% Q. Median 75% Q. Max. 

Ag e i +1 4.26 1.51 0.00 3.23 4.33 5.48 7.81 

M i +1 100.72 110.16 0.00 45.97 73.42 110.34 1106.08 

A v g M i +1 24.13 24.63 0.00 11.84 16.97 25.92 231.76 

N P 
i 

0.13 0.35 0.00 0.00 0.00 0.00 2.00 

N C 
i 

1.96 2.00 0.00 1.00 1.00 2.00 26.00 

CRT P 
i 

0.23 0.87 0.00 0.00 0.00 0.00 11.90 

CRT C 
i 

2.23 3.79 0.00 0.50 1.00 2.40 54.60 

R T i 1.26 2.15 0.00 0.40 0.60 1.20 51.50 

T B F i +1 316.88 322.13 1.00 83.00 211.00 436.50 2694.00 

MB F i +1 17.59 23.08 0.00 3.61 9.87 22.14 187.78 

Por C i +1 0.07 0.25 

isAc c i +1 0.00 0.03 

Por C i 0.08 0.27 

isPar t i 0.55 0.50 

Note: 25% Q. and 75% Q. denote the respective quantile values. The unit of Ag e i +1 is 

years, the unit of TB F i +1 is days, the unit of M i +1 and MB F i +1 is 10 0 0 miles, the unit of 

Avg M i +1 is 10 0 0 miles per year, the unit of CRT P i , CRT C i , R T i is hours. The distributional 

statistics are reported for the numerical variables, but not for the binary variables. The 

minimum of Avg M i +1 , TB F i +1 , and isAc c i +1 is very small and shown as zero due to 

rounding of two decimal places. 

m

a

d

t

b

t

m

i

t

t

f

n

i

h

4

s  

k

t

c

l

w

b

c

l

g

s

l

p

z

r

t

p

h

p

o

∑

β

w

a

t

s

t

i

o

l

l

c

c

v

o

2

a

i

s

g

o

b

4

f

n

Z

w

d

i

t

l∑
a

β

odel has the assumption that there is a latent continuous vari- 

ble, and the observed ordinal category of the outcome is from the 

iscretization of the underlying latent variable. Then a link func- 

ion is used to convert the latent continuous variable explained 

y the causal variables (on the right-hand-side of model) into 

he probability of the ordinal categories (on the left-hand-side of 

odel). We choose the logit link function in our specification. This 

s because the cumulative probability of ordinal categories of repair 

imes has gradual changes. There are other choices of link func- 

ion, such as the probit or log-log functions, which are less suitable 

or our task. For instance, the probit link function is for explicit 

ormally distributed latent variables, and the log-log link function 

s for unevenly distributed categories, such as the situation where 

igher categories have higher probabilities ( Harrell, 2015 , Chapter 

). 

In terms of the mathematical notation, suppose that each ob- 

ervation y i , i = 1 , . . . , n , belongs to one of the ordinal categories

 = 1 , . . . , K, and x i = ( x 1 , . . . , x p ) 
T represents a p-dimensional vec- 

or containing the predictor variables; we model the logit of the 

onditional cumulative probability 

ogit(P ( y i ≤ k ) | X i = x i ) = log 

(
P ( y i ≤ k ) 

1 − P ( y i ≤ k ) 
| X i = x i 

)
= β0 ,k + β1 x 1 + . . . + βp x p + ε i , (1) 

here β = ( β0 ,k , β1 , . . . , βp ) is the set of unknown parameters to 

e estimated and ε i is the error term. In our case, there are three 

ategories (minor, medium, major), and we only need two cumu- 

ative probabilities to obtain the full probability of the three cate- 

ories. 

The key idea of LASSO is to maximize the likelihood function 

ubject to the sum of the absolute value of the coefficients being 

ess than a constant. By imposing such constraint, the estimated 

arameters are shrinking and some of them tend to be exactly 

ero, which then serves the purpose of variable selection. The di- 

ect advantage of LASSO is the reduction of the variance of the es- 

imated value and the increase of the accuracy of the regression 

rediction. Meanwhile, the resulting model is parsimonious and 

ence tends to be more interpretable. 

Technically, the LASSO estimator resolves the l 1 -penalized 

roblem of estimating parameters β by maximizing the likelihood 

f the ordinal logit model, l ( β| y , x ) , subject to the constraint 
i i 

899 
 p 
j=1 

| β j | ≤ s , as shown in Eq. (2) . 

ˆ = argma x β

( 

l 
(
β| y i , x i 

)
− λ

p ∑ 

j=1 

∣∣β j 

∣∣) 

, (2) 

here λ is a tuning parameter to control the strength of shrink- 

ge. Intuitively, a larger value of λ leads to a stronger penaliza- 

ion on the sum of absolute values of estimated parameters, which 

hrinks the values closer to zero. If λ is beyond a threshold value, 

hen some of the estimated parameters are forced to zero, which 

s equivalent to leaving the corresponding predictor variables out 

f the model. Keep increasing the value of λ beyond the threshold 

eaves out more predictor variables, but it may also suffer from 

oss of predictive power. Thus, the value of λ should be carefully 

hosen. In this study, we use a 5-fold cross-validation technique to 

hoose an optimal value of λ. This is based on the fact that cross- 

alidation is intuitively appealing and can provide a good estimate 

f the expected forecasting error ( Hastie, Tibshirani & Friedman, 

009 , Chapter 7). It should be highlighted that the predictor vari- 

bles are at different scales. To fairly select variables by LASSO, it 

s necessary to rescale all predictor variables at the same level. In 

uch way, we give the same importance to all variables, rather than 

iving high weights to ones at small scales (i.e. larger magnitude 

f parameter values). Thus, all predictor variables are standardized 

efore applying LASSO. 

.2. Ordinal logit model with the elastic net 

In terms of the ordinal logit model with the elastic net, the dif- 

erence with what was described above is in the form of the pe- 

alization when estimating the parameters. It has been shown by 

ou and Hastie (2005) that the elastic net can outperform LASSO 

hen the data is highly correlated. In our dataset, some of the pre- 

ictor variables are correlated, for instance, Ag e i +1 and M i +1 . Thus, 

t is worthwhile considering the elastic net in addition to LASSO. 

Regarding the optimization setting, the elastic net aims to es- 

imate parameters β by maximizing the likelihood of the ordinal 

ogit model, l ( β| y i , x i ) , subject to the l 1 -penalization constraint 
 p 
j=1 

| β j | ≤ s 1 and the l 2 -penalization constraint 
∑ p 

j=1 
( β j ) 

2 ≤ s s , 

s presented in Eq. (3) 

ˆ = argma x β

( 

l 
(
β| y i , x i 

)
− λ

p ∑ 

j=1 

{ 

α
∣∣β j 

∣∣ + 

1 

2 

( 1 − α) β2 
j 

} 

) 

, (3) 
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here 0 ≤ α ≤ 1 is the second tuning parameter to balance the l 1 
nd l 2 -penalization. Considering the extreme two values of α, the 

lastic net becomes LASSO if α = 1 , and reduces to ridge regression 

f α = 0 . Ideally, the values of α and λ can be simultaneously cho- 

en by 5-fold cross-validation. However, a two-dimensional cross- 

alidation is computationally expensive. As such, we set α = 0 . 5 in 

his study. 7 As before, all predictor variables are standardized be- 

ore applying the elastic net. 

.3. Benchmark models 

The benchmarks we consider are discussed below. 

• K-Nearest Neighbors (KNN) : KNN is a popular supervised ma- 

chine learning approach which is typically used as the baseline 

against more complex methods (see, e.g. Bertsimas & Kallus, 

2020 ; Bertsimas, Kallus & Hussain, 2016 ). The basic idea of KNN 

is to “do as your neighbor does”, which is simple and intuitive 

and can perform well for the classification problem ( Barber, 

2012 ). Given the predictor variables of a new observation, the 

algorithm searches the training sample and finds K number of 

observations which have similar values of predictor variables. 

Then the new observation is predicted to have an ordinal cat- 

egory of the most frequent class within the K neighbours. We 

also use the 5-fold cross validation to choose the value of K. 
• Deep Learning (DL) : Recent developments in the field of deep 

learning have shown its great predictive power in operations 

management and maintenance ( Chen et al., 2020 ; Choi, Wal- 

lace & Wang, 2018 ; Kumar, Mookerjee & Shubham, 2018 ). As a 

benchmark for this study, we choose to use an artificial neu- 

ral network with 9 dense layers of 128 hidden units. 8 Although 

very deep and wide networks have proven effective in general, 

they come at a high computation cost and may have many 

redundant parameters ( Alvarez & Salzmann, 2016 ). It is com- 

mon to encounter overfitting issues for large models with many 

parameters, and deep learning is not an exception. Developed 

by Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov 

(2014) , dropout is one of the most effective and widely used 

regularization techniques for neural networks. Thus, we also in- 

troduce two dropout layers to our deep network in order to 

mitigate the overfitting issue. 
• Random Guess (RG) : The first naïve method, RG, predicts the 

categories by randomly picking one from minor, medium, and 

major categories. The frequency of guessing is set to be the 

same as that observed in the training sample, i.e. P ( minor ) = 

42% , P ( medium ) = 40% , and P ( ma jor ) = 18% . 
• Sample Majority (SM) : The second naïve method, SM, always 

predicts the categories as the one with the highest frequency 

in the training sample. In our dataset, the minor category is 

the most frequently encountered one in the training sample. 

Thus, the frequency of SM prediction for the test sample is 

P ( minor ) = 100% , P ( medium ) = 0% , and P ( ma jor ) = 0% . 
• Historical Average (HA) : The third naïve method, HA, computes 

the historical average of repair times in the training sample, de- 

pending only on the vehicle types, and uses that historical av- 

erage as a prediction. Past studies show that the HA method is 

an effective prediction tool which has been widely used in op- 

erations management practices, such as forecasting manufactur- 

ing lead time ( Marlin, 1986 ), assisting staff scheduling ( Taylor, 

2008 ), and anchoring project duration ( Lorko, Servatka & Zhang, 
2019 ). 

7 Other values of α, including 0.1, 0.3, 0.7, 0.9, have also been considered. The 

orecasting performance is similar to the case of α = 0 . 5 and thus the correspond- 

ng results are not presented here. 
8 The number of layers and hidden units in each layer of a deep network are 

ypically manually set. 

t

t

900 
For the two machine learning methods, we also standardize all 

redictor variables before applying them. We note that there are 

ther potential candidate benchmark models in the field of ma- 

hine learning, such as random forest, boosting, adaptive boost- 

ng, support vector machine, and a large variation of deep learn- 

ng models, which could also possibly provide satisfactory predic- 

ive power. The selected two machine learning methods are among 

he most popular ones and could sufficiently serve the purpose of 

omparison. 

.4. Performance evaluation 

In terms of the probabilistic forecasting, there are many choices 

f measures to evaluate forecast performance. One of the most 

traightforward measures to apply is the accuracy ratio, which is 

he percentage of the correct forecasts over the total number of 

orecasts. To reveal more information about which category is as- 

ociated with higher accuracy, it is common to use the confusion 

atrix, 9 which is a two-way table of forecasted categories over 

rue categories. However, the accuracy ratio has been criticized in 

he literature as not being a suitable measure for probabilistic fore- 

asting ( Harrell, 2015 ), especially for unbalanced data in which the 

ample majority method can achieve high accuracy, without being 

seful. 

Instead, scoring rules are more suitable measures to evaluate 

robabilistic forecasting. For example, the field of weather forecast- 

ng has been at the forefront of that, through using (proper) scor- 

ng rules to assess forecasting accuracy since 1950s ( Brier, 1950 ). 

coring rules are loss functions that map the predicted probabil- 

ties and corresponding observed outcomes to loss values. There 

re three types: improper, proper, and strictly proper scoring rules. 

 scoring rule is proper when its expectation is minimized if the 

redicted density is the true density. 10 It is strictly proper if the 

inimization is unique. 

Among many strictly proper score rules, the Brier score (BS) 

s one of the standard metrics to assess and compare probability 

orecasts for unordered categories. It is a quadratic rule defined as: 

S = 

1 

K 

K ∑ 

k =1 

(
ˆ f k − o k 

)2 

, (4) 

here K is the number of possible categories, ˆ f k is the forecasted 

robability for category k , and o k takes the value 1 or 0, according 

o whether the true category is category k or not. The range of BS 

s between 0 and 1. A lower BS indicates a better forecast, and a 

erfect forecast has BS of 0. As the BS measures only one observa- 

ion, it is common to report the average BS over a given number 

f forecasted observations, denoted as BS . 

Despite the popularity of Brier score, it does not take account 

he ordering of the categories, which is what we face when deal- 

ng with ordinal categories of repair times. Developed by Epstein 

1969) originally in the field of meteorology, the ranked probabil- 

ty score (RPS) is a strictly proper scoring rule that considers the 

rdering of events by assigning higher scores for assessments if 

igher predicted probabilities are given for events close to the ac- 

ual event. The RPS is also a quadratic rule computed by: 

P S = 

1 

K − 1 

K ∑ 

k =1 

( 

k ∑ 

s =1 

ˆ f k −
k ∑ 

s =1 

o k 

) 2 

. (5) 
9 The confusion matrix is also known as the contingency table. 
10 In some literature, a scoring rule is defined as a rewarding function, which flips 

he sign of the loss function. In such case, the scoring rule is proper if its expecta- 

ion is maximized, rather than minimized. 
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Similar to BS, RPS is also in the range of 0 and 1, and a bet-

er forecast is associated with a lower RPS. In the special case of 

nly two categories, the RPS is equivalent to the BS. Again, we 

eport the average RPS over a given number of forecast observa- 

ions, denoted as RP S . Further, and when the task is to evaluate 

robabilistic forecasts in comparison with those produced by an- 

ther method, skill scores may be particularly useful. A skills score 

s associated with a particular scoring rule, and amongst many of 

hem, the Brier skill score (BSS) and the ranked probability skill 

core (RPSS) are widely used to quantify improvement over a ref- 

rence method ( Weigel, Liniger & Appenzeller, 2007 ). The BSS and 

he RPSS are defined as: 

SS = 1 − BS 

BS re f 

, (6) 

P SS = 1 − RP S 

RP S re f 

, (7) 

here BS re f and RP S re f correspond to the average BS and the aver- 

ge RPS of a chosen reference method. The range of BSS and RP SS is 

rom minus infinity to 1. 0 indicates no skill comparing to the ref- 

rence method, while 1 indicates a method with perfect skill. Pos- 

tive values of BSS and RP SS indicate a more skilled method with 

espect to the reference method while negative values suggesting 

 less skilled method. 

In our empirical analysis, we will report the average of BSS and 

P SS over the training sample and the test sample (see next sub- 

ection), with the reference method being the Historical Average. 

he choice of the reference method is based on recommendations 

rom the Project Management Institute (2013) and International 

roject Management Association (2015) , which suggest the pre- 

iction of project duration by using actual durations of similar 

rojects in the past. The rationale behind such suggestion is that 

he Historical Average method naturally considers the impact of 

arious relevant issues, such as omissions in the project specifi- 

ation, procurement lead time, and misunderstanding of require- 

ents. Lastly, the Historical Average is commonly used as a refer- 

nce method in the forecasting literature (see Kahneman & Lovallo, 

993 ; Lorko et al., 2019 ). 

.5. Forecasting scheme and practical considerations 

We demonstrate our forecasting scheme in Fig. 4 . We choose 

he first θ% of the dataset as the training sample and the rest as 

he test sample. The training sample is divided into five equal sub- 

amples to perform the 5-fold cross validation in order to choose 

n optimal value for the tuning parameters, including the λ for 

ASSO and the elastic net. Then, we further K for KNN. Then we 

se the training sample to estimate the ordinal logit model with 

ASSO and the elastic net, and also train the KNN and the deep 

etwork. Next, the estimated ordinal logit models and the trained 

achine learning models are employed to produce forecasts in the 

est sample. There are a number of practical considerations listed 

elow. 

• We choose three values of θ (60%, 70%, and 80%) to organize 

the training and test samples. 
• We decide to use two settings for the ordering of the main- 

tenance records. In our main setting ( Section 5.1 ), the mainte- 

nance record is the chronological order of arrival, i.e., t i +1 (as 

defined in Fig. 2 ). In our first robustness check ( Section 5.2.1 ),

the maintenance record is ordered by the vehicle identifier. 

• Since there is no probability directly generated from the two 

machine learning methods and the two naïve methods of SM 

and HA, we set their predicted category to 100% probability and 

other categories to 0% probability. 
901 
• Our implementation is based on the R package “ordinalNet”

( Wurm, Rathouz & Hanlon, 2017 ) and the application program- 

ming interface (API) “Keras”. 

. Results 

In this section, we present and discuss the forecast performance 

f the ordinal logit models with LASSO and the elastic net and 

ompare them to the five benchmarks by using the four previously 

iscussed measures for the training and test sample. The perfor- 

ance in the training sample shows how good a model can fit the 

iven data, and the performance in the test sample indicates the 

rue forecast performance of different methods. We present the 

ain results associated with the forecast performance in Section 

.1 , followed by three robustness checks in Section 5.2 . 

.1. Forecast performance 

Table 3 presents the forecast performance of θ = 60% , 70% , and 

0% for the data based on the chronological order of arrival. In 

he training sample, DL is associated with the lowest BS and RPS. 

owever, this is not necessarily reflected in the test sample, as dis- 

ussed later. The LASSO and the elastic net have very similar per- 

ormance, which is slightly inferior to that of DL but better than 

he other three methods. Next comes KNN, which is better only 

han the three naïve methods. SM, RG, and HA all perform poorly 

n the training sample. Using the BSS and the RPSS, it can be seen 

hat ordinal models and machine learning methods do much better 

han the benchmark, HA. 

Now, we turn to the assessment of forecast performance in the 

est sample, which is the ultimate evaluation of predictability. The 

rst observation is that DL is no longer best in terms of BS and 

PS; although it achieves high accuracy in the training sample it 

ay not extrapolate well in the test sample. This is an indication 

f overfitting, though we have attempted to mitigate such effect 

y adding two dropout layers. There are some other techniques to 

urther prevent overfitting for deep networks, such as weight reg- 

larization. However, we feel that what we have done is adequate 

iven the consideration of deep learning methods only as a bench- 

ark. The second observation is that KNN has high levels of BS 

nd RPS in the test sample, which indicates that some certain pat- 

erns are not captured through fitting the training sample by this 

ethod. This observation suggests that KNN is underfitting. The 

hird observation is that the two ordinal logit models outperform 

he other five benchmark models in terms of much lower BS and 

PS. Most importantly, the BS and the RPS of the two ordinal logit 

odels in the test sample are similar to those in the training sam- 

le. This means that the techniques of LASSO and the elastic net 

chieve a high balance between underfitting and overfitting, and 

hey can capture the patterns in the training sample and generalize 

ell to the new observations in the test sample. The fourth obser- 

ation is that the three naïve methods are associated with high BS 

nd RPS (low predictive power). Additionally, the BSS and the RPSS 

how the superior predictive skills of the two ordinal logit models 

ver the HA method. 

We further examine the performance of the ordinal logit model 

ith LASSO for different groups of data in the test sample. As a 

emonstration, we calculate the average RPS (when θ = 70% ) over 

ifferent vehicle types, shown in Fig. 5 . The ordinal logit model 

chieves a similar level of forecast performance across different 

roups of vehicle types, indicating the lack of any systematic bias 

hen it comes to this method. Additionally, it is worthwhile in- 

estigating the forecast performance against reliable and unreli- 

ble groups of vehicles. To that end, we use information on when 

he vehicle was registered, and such information is a good proxy 

or whether a vehicle is (un)reliable. Fig. 6 plots the average RPS 
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Fig. 4. Forecasting Scheme. 

Note: The green part denotes the data used in one of the iterations of 5-fold cross-validation procedure, while the grey part represents the leave-out part in the respective 

iteration. The cross-validation, estimation, and training of the models are only based on the training sample. The estimated models with the chosen value of tuning parameter 

are then used to produce forecasts for the test sample. 

Table 3 

Forecast Performance for chronological order of arrival. 

θ = 60% Average BS Average RPS BSS RPSS 

Training Sample Test Sample Training Sample Test Sample Training Sample Test Sample Training Sample Test Sample 

LASSO 0.288 0.300 0.170 0.182 0.508 0.514 0.419 0.411 

Elastic Net 0.288 0.300 0.170 0.182 0.508 0.513 0.419 0.410 

KNN 0.512 0.543 0.295 0.315 0.123 0.120 −0.010 −0.023 

DL 0.265 0.656 0.154 0.399 0.546 −0.063 0.473 −0.295 

RG 0.608 0.637 0.369 0.397 −0.041 −0.032 −0.262 −0.288 

SM 0.567 0.605 0.359 0.414 0.029 0.019 −0.230 −0.341 

HA 0.584 0.617 0.292 0.308 0.000 0.000 0.000 0.000 

θ = 70% Average BS Average RPS BSS RPSS 

Training Sample Test Sample Training Sample Test Sample Training Sample Test Sample Training Sample Test Sample 

LASSO 0.287 0.295 0.170 0.179 0.515 0.516 0.426 0.414 

Elastic Net 0.287 0.296 0.170 0.179 0.515 0.516 0.426 0.414 

KNN 0.512 0.538 0.297 0.315 0.134 0.119 −0.004 −0.032 

DL 0.204 0.560 0.120 0.341 0.655 0.082 0.594 −0.117 

RG 0.617 0.639 0.379 0.395 −0.043 −0.047 −0.282 −0.294 

SM 0.574 0.601 0.370 0.406 0.029 0.016 −0.252 −0.330 

HA 0.592 0.610 0.296 0.305 0.000 0.000 0.000 0.000 

θ = 80% Average BS Average RPS BSS RPSS 

Training Sample Test Sample Training Sample Test Sample Training Sample Test Sample Training Sample Test Sample 

LASSO 0.286 0.296 0.170 0.179 0.520 0.507 0.430 0.404 

Elastic Net 0.287 0.296 0.171 0.179 0.518 0.508 0.428 0.405 

KNN 0.509 0.519 0.293 0.301 0.146 0.136 0.018 0.000 

DL 0.224 0.593 0.136 0.376 0.625 0.015 0.544 −0.252 

RG 0.630 0.635 0.389 0.395 −0.057 −0.055 −0.303 −0.314 

SM 0.577 0.604 0.375 0.405 0.033 −0.004 −0.258 −0.346 

HA 0.596 0.601 0.298 0.301 0.000 0.000 0.000 0.000 

Note: DL denotes deep learning, RG represents random guess, SM means sample majority, and HA indicates historical average. The BSS and RPSS are calcu- 

lated with respect to HA as the reference method. The bold numbers denote the best model. Results are presented to the third decimal place. The data is in 

chronological order of arrival. 

(

b

c

p

p

b

t

when θ = 70% ) of vehicles registered 

11 in different years. As can 

e observed, the forecast performance is at a similar level for vehi- 

les registered between 2009 and 2016, while there is a slight im- 
11 The company registers a brand-new vehicle when it starts to serve the com- 

any. 

b  

v

902 
rovement (lower RPS) for those registered in 2017. This is mainly 

ecause vehicles registered in 2017 are in an almost perfect condi- 

ion and only need minor maintenance in most cases. 

Lastly, it is worthwhile to inspect which variables are selected 

y LASSO. Under the setting of θ = 70% , there are a total of 111

ariables selected from all 439 variables. As for the breakdown, 
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Fig. 5. Average Ranked Probability Score in Different Vehicle Types. 

Fig. 6. Average Ranked Probability Score in Vehicles Registered in Different Years. 
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here are 10 conditional variables, 53 manufacturing variables, 10 

alendar variables, and 38 geographical variables. 

.2. Robustness checks 

To check whether the forecast performance is robust to dif- 

erent settings, we carried out three robustness checks, including 

) ordering of the data by the vehicle identifier; 2) inclusion of 

quared and interactive terms as predictors; and 3) inclusion of the 

ehicle identifier as a predictor. 

.2.1. Data ordered by the vehicle identifier 

The main results discussed in Section 5.1 are based on the 

hronological order of arrival, i.e. t i +1 (as defined in Fig. 2 ). How- 

ver, there might be a flaw in such a setting due to the unbal-

nced data in different years. As shown in Table 1 , a large propor-

ion (35.91%) of all maintenance records is in 2017, containing 3146 

ut of a total of 9511 cases. This may lead to a situation where the

esting sample contains data only in 2017. Thus, we also order the 

aintenance records with respect to the vehicle identifier. 12 Table 
12 Because the company randomly anonymizes vehicle identifiers, the ordering of 

ata in this setting can be considered as random. 

m

s

p

i

903 
1 in the Supplement shows the forecast performance for this set- 

ing. As can be seen, the methods based on LASSO and the elastic 

et still have superior forecast performance among all methods. It 

s worthwhile noting that the setting under concern is considered 

olely for the purpose of robustness checks, and the chronological 

rder is certainly more realistic because the data is recorded in the 

ight chronological order. 

.2.2. Inclusion of squared and interaction terms 

It is possible that some of the predictor variables could have 

 nonlinear effect on the categories of repair times. In addition, 

here could also be interaction effects between the predictor vari- 

bles. To explore these two possibilities, we include the squared 

erms and two-way interactions for all continuous predictor vari- 

bles into all forecasting methods and reevaluate their perfor- 

ance (based on the chronological order of arrival). The results re- 

ated to this setting are presented in Table S2 in the Supplement. 

irst, the BS and the RPS of LASSO are very close to the results 

btained without squared and interaction terms in Table 3 . This is 

ainly because the squared and interaction terms are rarely cho- 

en by LASSO. Thus, there is no obvious improvement in forecast 

erformance by including those terms. Second, there is a marginal 

mprovement for the two machine learning methods in the train- 
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Table 4 

Numerical Examples. 

Based on an asymmetric Loss Function 

Decision \ Actual k = Minor k = Medium k = Major Expected Loss E( l d ) 

d = Minor 0 2 5 3 

d = Medium 1 0 4 1.7 

d = Major 2 1 0 0.7 

Based on a symmetric Loss Function 

Decision \ Actual k = Minor k = Medium k = Major Expected Loss E( l d ) 

d = Minor 0 1 2 1.3 

d = Medium 1 0 1 0.5 

d = Major 2 1 0 0.7 

Predicted Probability ˆ f k 10% 50% 40% 

Note: The numerical values of losses are used for illustration purposes. Upper panel refers to the 

asymmetric loss function, while the lower panel to the symmetric one. Taking the same predicted 

probabilities, the optimal decision based on the asymmetric loss function is d l , ∗= Major, while it is 

d l , ∗= Medium based on the symmetric loss function. 
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ng sample, but this is not reflected in the forecast performance in 

he test sample. Overall, our main conclusion remains the same. 

he methods based on LASSO and the elastic net still provide the 

est forecast performance, compared to the five benchmarks. 

.2.3. Inclusion of the vehicle identifier 

One might argue that there is heterogeneity associated with 

ngines in different vehicles, which should be controlled for. To 

nvestigate this possibility, we incorporate the vehicle identifier 

encoded as dummy variables) into all forecasting methods and 

eevaluate their performance (based on the chronological order of 

rrival). The results related to this setting are reported in Table S3 

n the Supplement. While there is an improvement for LASSO and 

he elastic net in the training sample, we get nearly the same re- 

ults of their forecasting performance in the test sample, with or 

ithout the inclusion of the vehicle identifier. But occasionally, it is 

nteresting to observe that the forecast performance of LASSO with 

he inclusion of the vehicle identifier is slightly poorer than the re- 

ults obtained without it, e.g. the average BS of LASSO in test sam- 

le when θ = 70% . This could be due to the sensitivity of LASSO

o the number of predictor variables, which has been theoretically 

tudied by Flynn, Hurvich and Simonoff (2017) . They find that the 

redictive performance of LASSO could deteriorate with more pre- 

ictors, given a sufficiently high signal to noise ratio and a suffi- 

iently large number of predictors. Another intuitive explanation is 

hat most of the engines have less than 3 maintenance records in 

ur dataset (see Fig. 3 ). Thus, even though there are significant het- 

rogeneous effects in some certain engines, it is unlikely that they 

re being picked up by LASSO, based on small number of occur- 

ences for one specific vehicle. Lastly, compared with the bench- 

arks, the methods based on LASSO and the elastic net are still 

ssociated with the best forecast performance. 

. Utility 

In this section, we illustrate how garage managers may utilize 

robabilistic forecasting information to support decision making 

owards better scheduling of repair jobs. The garage managers’ 

ecisions are rather insufficiently informed by a model that only 

orecasts categories of repair times without providing associated 

robabilities, such as KNN and deep learning. We show that 

uch decisions can be improved by using information related to 

orecasted probabilities, along with the loss functions. 

We start by introducing a typical scenario in the garages of the 

eet company, which is based on the logs completed by the au- 

hors following their visits to them. Each day, first, vehicles ar- 

ive in the garage (due to malfunction or preventative caution) and 
904 
he drivers discuss with the garage manager about the specific re- 

air or maintenance request. Next, the managers decide the cate- 

ory that each repair job falls within the three categories (minor, 

edium, or major); this is done on the basis of the information 

rovided by one of the naïve methods considered in this study. Af- 

er that, the manager allocates jobs to different technicians. The 

ey issue is that the actual repair time spent by the technician on 

he job may be different from the manager’s original planning. The 

ctual repair time can be longer or shorter than expected. 

Wrong decisions lead to inefficient use of staff time and addi- 

ional (labor) costs. From a customer perspective, costs may relate 

o additional driver waiting time and unavailability of the vehicles 

o serve their tasks. It should be pointed out that costs associated 

ith the two types of errors could be asymmetric (e.g. Berrocal 

t al., 2010 ). That is, the implications of an actual major category 

isspecified as minor, are much more severe than the opposite. 

his is because under-forecasting leads to a shortfall of technicians 

nd the vehicle which is supposed to serve its own company being 

navailable for longer time than planned. Over-forecasting implies 

hat the job is finished earlier, in which the manager may inform 

he driver to collect the vehicle and allocate (if possible) other jobs 

o the available technician. 

Next, we set-up the framework for the analysis. Denote the 

anager’s decision as d and the actual category as k. Recall that 

, k ∈ { minor, medium, ma jor } in our context and the total number 

f categories K = 3 . A loss function L ( d, k ) is introduced to quan-

ify the cost of incorrect classification, which is defined as follows: 

 ( d, k ) = 

{
0 , i f d = k, 

l dk , i f d � = k, 
(8) 

here l dk > 0 . The probabilistic forecasting model, such as the or- 

inal logit model, provides the predicted probabilities associated 

ith each category, denoted as ˆ f k , where 
∑ K 

1 
ˆ f k = 1 . The cost of a 

ecision on each category is a random variable denoted as l d and 

ts expectation is 

 ( l d ) = 

K ∑ 

k =1 

ˆ f k l dk . (9) 

In line with Taylor and Jeon (2018) , the objective of rational de- 

ision making is to minimize the (long run) expected cost. Thus, 

he optimal decision based on the loss function associated with the 

redicted probabilities is shown below: 

 

l , ∗ = arg min 

d 

K ∑ 

k =1 

ˆ f k l dk . (10) 



S. Wang, A .A . Syntetos, Y. Liu et al. European Journal of Operational Research 306 (2023) 893–908 

e

d

t

d

i

t

i

t

t

t

d

t

f

b

r

s

u

c

o  

 

p

l

F

t

p

r  

a

s

t

l

c

m

h

n

s

c

b

i

t

l

i

T

e

t

h

p

i

5

w

B  

e

a

a

(

t

s

b

b

Fig. 7. Comparison of Optimal Decisions. 

Note: Upper panel: optimal decision d �, ∗ based on the expected loss. Lower panel: 

decision d f, ∗ based only on the predicted probabilities. Blue: decision of minor cat- 

egory; Green: decision of medium category; Yellow: decision of major category; 

White: not applicable because 
∑ 3 

k =1 
ˆ f k = 1 . 

Table 5 

Percentage cost savings with respect to Historical Average in the Test 

Sample. 

Asymmetric Loss Function Symmetric Loss Function 

θ = 60% 

LASSO 26% 11% 

Elastic Net 26% 10% 

KNN −1% −2% 

DL −4% −29% 

RG −19% −29% 

SM −46% −34% 

HA 0% 0% 

θ = 70% 

LASSO 24% 13% 

Elastic Net 25% 12% 

KNN −1% −3% 

DL 3% −12% 

RG −20% −29% 

SM −48% −33% 

HA 0% 0% 

θ = 80% 

LASSO 21% 11% 

Elastic Net 22% 11% 

KNN 2% 0% 

DL 4% −25% 

RG −19% −31% 

SM −50% −35% 

HA 0% 0% 

Note: Positive (negative) percentage values denote cost reduction (in- 

crease) with respect to the HA method. 
The traditional way to make decisions by point forecasting is 

xpressed as follows: 

 

f, ∗ = arg max 
d 

ˆ f d . (11) 

By combining the loss function and the predicted probabilities, 

he optimal decision d l , ∗ is not always the same as the decision 

 

f, ∗. We demonstrate this by two numerical examples presented 

n Table 4 . The upper panel refers to the asymmetric loss func- 

ion, while the lower panel to the symmetric loss function. Tak- 

ng the same predicted probabilities, ˆ f k = { 10% , 50% , 40% } , the op- 

imal decision is d l , ∗ = Major based on the asymmetric loss func- 

ion, and d l , ∗ = Medium based on the symmetric loss function. If 

he decision purely depends on the predicated probabilities, then 

 

f, ∗ = Medium because its 50% probability is the highest among 

hree categories, and this decision is regardless of whether the loss 

unction is asymmetric or symmetric. 

It can be argued that the example in Table 4 is too restrictive 

ecause it is based only on one set of predicted probabilities. To 

eveal the full picture, we find the optimal decision d l , ∗ for all pos- 

ible probabilities based on the asymmetric loss function (as in the 

pper panel of Table 4 ). Since there are only three categories, this 

an be easily accomplished by exhausting all possible combinations 

f ˆ f ( minor ) , ˆ f ( medium ) , and 

ˆ f ( ma jor ) . Given the constraint that
ˆ f ( minor ) + 

ˆ f ( medium ) + 

ˆ f ( ma jor ) = 1 , the procedure can be sim-

lified by exhausting the combination of any two of them. Without 

oss of generality, we choose to exhaust ˆ f ( medium ) and 

ˆ f ( ma jor ) . 

or comparison purposes, we repeat the same procedure to ob- 

ain the decision d f, ∗ based on the predicted probabilities. Fig. 7 

resents the area of d l , ∗ (upper panel) and d f, ∗ (lower panel) with 

espect to ˆ f ( medium ) and 

ˆ f ( ma jor ) . It can be observed that the

rea of managerial decision d l , ∗on minor and medium categories is 

uppressed, compared to the area of d f, ∗. This can be explained in- 

uitively as follows. The asymmetric loss function results in higher 

oss if the actual category turns out to be higher than the predicted 

ategory. When 

ˆ f ( medium ) is marginally higher than 

ˆ f ( ma jor ) , 

anagerial decisions are shifted to the major category due to the 

igher loss. The same rationale also applies for the shift from mi- 

or to medium. 

The next question is how much loss a garage may save, for one 

cheduled repair job, if the probabilistic forecasting is taken into 

onsideration. To answer this question, Fig. 8 plots the difference 

etween loss based on the optimal decision d l , ∗ and decision d f, ∗, 

.e. E( l d l , ∗ ) − E( l d f, ∗ ) . There are three important observations. First, 

he decision based on d l , ∗ is always associated with less or equal 

oss compared to the decision resulting from d f, ∗. Second, there 

s no difference in terms of loss when d l , ∗ is the same as d f, ∗. 

hird, the optimal decision d l , ∗ may prevent loss mainly in the ar- 

as where the predicted probabilities are marginally close between 

wo categories. 

The final question is how much loss the fleet company could 

ave saved in total if they were to use what we propose in this 

aper. To tackle this question, we couple the two loss functions 

n Table 4 with the results of probabilistic forecasting in Section 

 to compute the total loss for the seven methods. In accordance 

ith our confidentiality agreement with our industrial contributor 

T Fleet Solutions , the numerical values of losses in Table 4 are not

xpressed in monetary units, though they approximately represent 

ctual relative cost differences in the various categories. 

Table 5 shows the percentage cost savings with respect to HA, 

nd positive (negative) percentage values denote cost reduction 

increase) with respect to the reference method (HA). It is clear 

hat the ordinal logit model with LASSO or the elastic net is as- 

ociated with a substantial benefit in terms of cost savings (under 

oth asymmetric and symmetric loss functions). Additionally, the 

enefits of using the ordinal logit model over HA is substantially 
905 
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Fig. 8. The difference between the loss from optimal decision d �, ∗ and decision d f, ∗. 
Note: The white area is not applicable because 

∑ 3 
k =1 

ˆ f k = 1 . 
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arger under the asymmetric loss function. Overall, using θ = 60% 

or demonstration purposes, the cost can be reduced by 26% under 

he asymmetric loss function if the ordinal logit model with LASSO 

s used, rather than the HA. 

Having observed the potential benefits of the proposed meth- 

ds, it is worthwhile to briefly discuss implementation in practice. 

 decision support system (DSS) can be developed to embed the 

hole framework (including the probabilistic forecast models and 

he loss function) in order to support garage managers’ job allo- 

ations. The values of most predictor variables can be automati- 

ally retrieved from the database containing the historical main- 

enance records for registered vehicles. Some information, such as 

 i +1 , Por C i +1 , and isAc c i +1 , needs to be collected upon a new main-

enance request made by the driver. Then the DSS can provide the 

redicted probabilities for the three categories (minor, medium, 

ajor) and the suggested job allocation with the consideration 

f the loss functions. Ultimately, the garage manager can decide 

hether to use the suggestion from the DSS or judgmentally inter- 

ene in exceptional circumstances. 

. Conclusion 

This study employs LASSO to forecast categories of repair times 

or automotive engines, based on a large number of predictor vari- 

bles. The forecast performance is examined on a sizable dataset 

rovided by our industrial partner, BT Fleet Solutions . Our method 

hows superior predictive power and outperforms five bench- 

arks, including KNN deep learning, and three naïve methods. 

e further explicitly demonstrate how to use the predicted prob- 

bilities in operational decision making in garages. We find that 

he best decision is not always the same as the point forecast, if 

he loss function is asymmetric. Our results demonstrate that our 

ethod outperforms the company’s existing practice and may help 

hem achieve substantial cost savings, especially under asymmetric 

oss functions. 

Our framework, demonstrated by using automotive engines, can 

e naturally generalized to any repairable automotive parts or ma- 

hinery parts in other industries, such as vessels and aircrafts. Sub- 
906 
ect to the data availability, operations and maintenance managers 

ay choose several predictor variables based on their experience 

nd in accordance with the industrial context under concern, and 

ASSO can help select the most relevant predictors in order to 

roduce probabilistic forecasts. Additionally, practitioners may cus- 

omize their own loss functions, either symmetric or asymmetric, 

nd link them with the predicted probabilities to support decision 

aking for their own operations. 

One limitation of our study is the choice of predictor variables, 

hich is mainly subject to the data availability. Further work can 

onsider more variables collected from other sources. For exam- 

le, an increasing number of vehicles are equipped with Internet of 

hings (IoT) sensors nowadays, and such modern technologies can 

end real-time technical information via the mobile network. The 

nformation collected from IoT can generate a vast number of pre- 

ictor variables, which can be potentially selected by LASSO and 

urther enhance forecasting accuracy performance. Another limi- 

ation is that we mainly focused on the ordinal logit regression 

ith standard LASSO and elastic net, which already serves well for 

he purpose of categorical forecasting for repair time. Other gener- 

lizations of LASSO might also be applied, such as fussed LASSO 

 Tibshirani, Saunders, Rosset, Zhu & Knight, 2005 ), group LASSO 

 Yuan & Lin, 2006 ), and adaptive LASSO ( Zhang & Lu, 2007 ) and

urther studies could consider such applications. Additionally, some 

ecently developed techniques in machine learning for ordinal data 

ay also be considered, such as random forest for the ordered 

hoice model ( Lechner & Okasa, 2019 ). Lastly, the empirical results 

resented in this study utilize categories of repair times decided 

pon consultation with experts, which is exogenously determined. 

It should be noted that our framework is general and can ac- 

ommodate any arbitrary classification, including different num- 

ers of categories and their associated thresholds. This offers an 

pportunity to find the optimal classifications (number of cate- 

ories and their thresholds), with the aim to: 1) minimize the scor- 

ng rule; and/or 2) minimize the final loss value. Thus, future work 

ay consider the classification as endogenous variable and employ 

perational research techniques to find an optimal such classifi- 

ation. Another promising research line is to incorporate the loss 
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unction of misclassification into the estimation of forecast mod- 

ls, which allows the models to be directly optimized with respect 

o the loss function. A third future line of enquiry is to use textual 

nalysis and topic analysis to gather information from the quali- 

ative comments from drivers and turn them (quantify them) into 

seable predicator variables in the forecast models. 
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