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An underwater image quality assessment metric

Pengfei Guo, Hantao Liu, Delu Zeng, Tao Xiang, Leida Li, and Ke Gu

Various image enhancement algorithms are adopted to im-
prove underwater images that often suffer from visual distortions.
It is critical to assess the output quality of underwater images
undergoing enhancement algorithms, and use the results to
optimise underwater imaging systems. In our previous study,
we created a benchmark for quality assessment of underwater
image enhancement via subjective experiments. Building on the
benchmark, this paper proposes a new objective metric that can
automatically assess the output quality of image enhancement,
namely UWEQM. By characterising specific underwater physics
and relevant properties of the human visual system, image quality
attributes are computed and combined to yield an overall metric.
Experimental results show that the proposed UWEQM metric
yields good performance in predicting image quality as perceived
by human subjects.

Index Terms—Underwater, image quality, enhancement, hu-
man visual system, objective metric.

I. INTRODUCTION

THE acquisition of high quality images plays an important
role in marine industry [1]–[5] and other maritime activi-

ties [6]–[11]. However, the complexity of underwater environ-
ment poses many challenges to image acquisition. First, water
absorbs different wavelengths of light at different degrees [12];
and underwater images often suffer from greenish or bluish
color cast [13]. Second, object edges and details are often
blurred due to the scattering of light [14]. Third, the backward
scattering of light by particles can cause the effect of low
contrast [15]. Therefore, many algorithms have been developed
to improve the quality of underwater images [14], [16]–[22].

The underwater image enhancement algorithms can be cat-
egorized into image formation model-based (IFM-based) and
image formation model-free (IFM-free) approaches [23]. The
IFM-based methods improve the quality of underwater images
by estimating the optical properties of underwater imaging
and recovering color, sharpness and contrast [14], [17], [18],
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[22], [24]; and the IFM-free methods attempt to correct the
color and details of underwater images by re-distributing
their intensity values [16], [19], [20]. Assessing the output
image quality of these enhancement algorithms remains an
academic challenge [25], [26]. The first challenge lies in the
lack of subjective study on the perceived quality of underwater
images undergoing enhancement algorithms or processes. The
second challenge is to build a reliable algorithm to predict
image quality in close agreement with human judgements.
In our previous study [27], a benchmark was created for
quality assessment of underwater images undergoing various
enhancement algorithms. The ground truth of perceived image
quality revealed the way human viewers judge the output im-
age quality of these enhancement algorithms. When properly
conducted, subjective evaluation is the most reliable means of
measuring perceived image quality; however, it is cumbersome
and impractical in many circumstances. A more realistic way
to measure image quality is to develop an objective metric,
which can automatically assess perceived quality.

Image quality assessment (IQA) algorithms can be divided
into full-reference (FR), reduced-reference (RR), and no-
reference (NR) approaches [28]. The FR IQA algorithms use
the whole information of the reference image to evaluate the
quality of the test image [29], [30]. The RR IQA methods use
partial information of the reference image to assess the quality
of the test image [31], [32]. NR IQA methods rely on the test
image only and extract the IQA features for the measure of
image quality [33]–[38].

It should be noted that in the context of image enhancement,
a pristine reference image of “perfect” quality does not exist,
therefore, the objective IQA metrics must be available in the
no-reference (NR) framework. In the literature, developing
an NR metric has been the most challenging task in the
image quality research community, mainly due to our lack
of knowledge on the human visual system (HVS) [39]–
[41]. Some successful NR metrics have been developed and
proven effective for specific applications with specific visual
distortions [33]–[35]. These metrics, however, are generally
challenged when dealing with the complexity and diversity
in natural content. For underwater images, it is known that
the image statistics, due to e.g., light attenuation, scattering
and reflection, are different from the ordinary natural scene
statistics [27]. This makes the problem of developing an NR
IQA metric even more challenging, which is to be investigated
in this paper.

The contributions of this paper are:
• First, we exploit the image formation model [42]–[44],

which describes the processes of underwater optical
imaging. We propose to utilize the restoration model
parameters that represent the physical optics information
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Fig. 1. Illustration of an original underwater image (a) and results (b)-(f) of five image enhancement algorithms, HE, DS, IF, UDCP and NLD in the UEIQA
database [27]. (a) represents the original image with MOS (mean opinion score) = 1.6161, (b) represents the result of HE with MOS = 4.3007, (c) represents
the result of DS with MOS = 2.2353, (d) represents the result of IF with MOS = 5.8368, (e) represents the result of UDCP with MOS = 4.0820, and (f)
represents the result of NLD with MOS = 6.2122.

of underwater imaging to build relevant features for
image quality assessment.

• Second, we investigate the properties of the human visual
system (HVS), and build sophisticated image quality
descriptors for underwater images. More specifically, we
construct a new feature representation (i.e., Michaelson-
like) to assess the contrast of underwater images, which
can adequately reveal the changes of contrast under
the low light environment; a new feature representation
combining saliency and local binary patterns for the
assessment of texture quality of underwater images; and
a new feature representation based on color correlograms
to capture the color properties of underwater images.

• Third, the above underwater-specific and HVS-based IQA
features are integrated into a single metric. We thoroughly
analyse the selection and individual contribution of IQA
features, and compare our proposed metric to existing
state-of-the-art IQA metrics, including general-purpose,
underwater-specific and deep learning-based metrics. Our
proposed metric demonstrates superior performance in as-
sessing output quality of underwater image enhancement.

II. PROBLEM DEFINITIONS AND CHALLENGES

We briefly describe the UEIQA database as the benchmark
for measuring the output quality of underwater image en-
hancement. Also, we analyse the limitations and challenges of
objective quality measurement for this particular application.

A. The benchmark: subjective measure of output quality of
underwater image enhancement

We built a benchmark database for Underwater Enhance-
ment Image Quality Assessment (UEIQA) [27]. This database
contained 40 different underwater scenes with a resolution of
1280 × 720 pixels; and each scene yielded the results of five
enhancement algorithms, including Contrast Limited Adaptive
Histogram Equalization (HE) [16], Decorrelation Stretch (DS)
[19], Image Fusion (IF) [20], Underwater Dark Channel Prior
(UDCP) [18], and Non-local Dehazing (NLD) [45]. Hence,
the UEIQA benchmark consists of 40 originally acquired
images and 200 algorithmically enhanced images. A fully
controlled perception experiment was conducted, where each
image was evaluated by 18 subjects using a single-stimulus
method as prescribed in [46]. The mean opinion score (MOS)
of each stimulus was computed as the most reliable measure
of perceived image quality [29]. Fig.1 illustrates an original
underwater image and results of five image enhancement

algorithms in the UEIQA database; and the perceived quality
(i.e., MOS) resulted from the perception study.

B. Limitations and challenges: objective measure of output
quality of underwater image enhancement

As mentioned in Section I, the IQA metrics used for the
application of underwater image enhancement must be in a
no-reference (NR) framework. Now, we investigate the exist-
ing NR metrics, including general-purpose and underwater-
specific metrics, and analyse the limitations and challenges.

1) General-purpose image quality metrics
There are several no-reference (NR) IQA metrics that have

proven effective for general-purpose applications, including
BRISQUE [35], NIQE [34], BLIINDS II [47], SSEQ [48],
LPC [49]. These general-purpose NR metrics are based on
measuring structural changes when images undergoing certain
distortion types (e.g., BRISQUE, SSEQ, and LPC) or cap-
turing universal statistical information inspired by the human
visual system (e.g., NIQE and BLIINDS II). However, it is
unknown whether these general-purpose metrics are helpful
for measuring the output quality of underwater image enhance-
ment. To this end, we evaluate these metrics on the UEIQA
benchmark. The performance (i.e., Spearman rank order cor-
relation coefficient (SROCC)) of BRISQUE, NIQE, BLIINDS
II, SSEQ, and LPC metrics on the UEIQA benchmark is 0.40,
0.24, 0.27, 0.18, and 0.75, respectively (note the complete
results of performance comparison can be found in Table
IV). All metrics show poor or unsatisfactory correlation (e.g.,
SROCC<0.8) with subjective quality, suggesting that these
general-purpose NR metrics are useless for our application.

There are two possible reasons for the observed poor
performance: (1) The above-mentioned IQA metrics have been
designed to handle natural scenes, which exhibit different
image characteristics than underwater images. Fig. 2 illustrates
the histograms of an underwater image and an image of natural
scene. It can be seen that the intensities of former concentrate
on a narrow range of the histogram, whereas the histogram
of latter distributes in a wider range of intensity. (2) These
general-purpose IQA metrics have been designed to measure
conventional signal distortions caused by compression and
transmission. They may not necessarily capture the properties
of the unique distortions caused by underwater environment,
such as color cast caused by light attenuation in water [27].
More importantly, distortions that are inevitably introduced
by an underwater image enhancement process/algorithm could
complicate the inherent distortions [27]. Therefore, a dedicated
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IQA metric for underwater images undergoing enhancement is
desirable.

(a) (b)

(c) (d)

Fig. 2. Illustration of the histograms of an underwater image (a) and an image
of natural scene (b). The intensities of former concentrate on a narrow range
of the histogram (c) , whereas the histogram (d) of latter distributes in a wider
range of intensity.

2) Underwater-specific image quality metrics
Research has been undertaken to develop dedicated IQA

metrics for underwater images. In 2014, Yang et. al. first
reported an underwater image/video quality evaluator which
included a discriminator of underwater environment based on
the log-contrast power spectrum. This block-based metric cal-
culated a weighted-average of gray-scale contrast, the global
brightness and block average gradient [39]. Then, in 2015,
Yang et. al. conducted a series of experiments to measure un-
derwater image quality subjectively and objectively, and pro-
posed an Underwater Color Image Quality Evaluator (UCIQE)
[40] by transferring an RGB image to CIELab color space
and linearly combining the chroma, contrast, and saturation.
This metric aims to evaluate the color and sharpness factors of
underwater images. Panetta et. al. presented a new underwater
IQA framework [50] inspired by the human visual system. The
factors that cause low quality underwater images such as light
attenuation and scattering effects were explicitly considered;
and the color-cast, blurring and stereoscopic distortions were
described by three individual metrics i.e., the Underwater
Image Color Measure (UICM), Underwater Image Sharpness
Measure (UISM), and Underwater Image Contrast Measure
(UIConM), respectively. An overall metric, Underwater Image
Quality Metric (UIQM) is a linear combination of UICM,
UISM, and UIConM.

Now, we evaluate the underwater-specific IQA metrics on
the UEIQA benchmark. The performance (i.e., Spearman
rank order correlation coefficient (SROCC)) of UICM, UISM,
UIConM, UIQM, and UCIQE metrics is 0.69, 0.49, 0.77,
0.29, and 0.57, respectively (note the complete results of
performance comparison can be found in Table IV). It can
be seen that these metrics that include underwater-specific
features still show limited capabilities (e.g., SROCC<0.8) in
assessing the output quality of underwater enhancement. The

possible reasons are (1) Some methods are based on the his-
togram of features, which intuitively represents the statistical
characteristics of underwater images. However, local infor-
mation is not sufficiently reflected by these histogram-based
methods. Some methods include the human visual system
(HVS) properties, e.g., by measuring the perceptual preference
of color, sharpness and contrast. These methods adopt simple
HVS features and combine these features using a simple
linear model, which however, neglect the way (non-linear
behaviour) humans perceive the overall quality of images. (2)
Moreover, image enhancement algorithms applied to under-
water images often adopt physical optics prior information
for signal restoration. The output quality of underwater image
enhancement is not only related to the inherent distortions
caused by underwater environment but also related to the
signal distortions induced by the enhancement algorithms.
Therefore, for the problem of assessing the output quality
of image enhancement, the unique challenges regarding what
makes an enhanced image of “better” quality and how to
measure the output quality are largely unsolved and are to
be investigated in this paper.

III. PROPOSED METHOD

Since our goal is to evaluate the output quality of underwater
image enhancement and there is no reference image of “ideal”
quality, we consider image attributes that explicitly reflect
underwater optical imaging and human perceptions of image
quality aspects. To make a realistic metric, we construct
two pivotal types of attributes: the first type defines the
underlying physics of underwater optical imaging; the second
type addresses the human visual system (HVS) properties, in-
cluding contrast, texture, color and attention. IQA features are
formulated and spatial feature representations are calculated.
These extracted features are combined to yield a final metric,
using the random forest regression algorithm.

A. Underwater physics attribute

Based on the image acquisition system and environment,
underwater optical imaging can be formulated as an image
formation model (IFM) of Jaffe-McGlamery [53]. An under-
water image can be represented as the linear superposition of
three components:

ET(x) = EDT(x) + EFS(x) + EBS(x), (1)

where x denotes the pixel position of the image, ET(x) is the
total energy received by the underwater camera, EDT(x) rep-
resents the energy component of direct transmission, EFS(x)
and EBS(x) are the energy components of forward light
scattering and backward light scattering.

To approach underwater imaging as a restoration process,
the Jaffe-McGlamery model of equation (1) could be inter-
preted as an inverse engineering problem. To this end, a
simplified formation model [42]–[44] is proposed and widely
used in the literature for dealing with underwater images.
The simplified image formation model (or underwater image
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TABLE I
ESTIMATION OF BL AND TM BY DIFFERENT OPTICAL PRIOR BASED UNDERWATER IMAGE RESTORATION MODELS

Model index Optical prior BL Estimation TM Estimation

U-Model 1 DCP [17] Bc(I) = Ic(argmaxx∈I(minc(miny∈Ω(x) Ic(y)))) t(x) = 1−minc(miny∈Ω(x)(Ic(y)/Bc))

U-Model 2 UDCP [18] Bc(I) = Ic(argmaxx∈I(minc(miny∈Ω(x) Ic(y)))) t(x) = 1−minc∗ (miny∈Ω(x)(Ic∗ (y)/Bc∗ ))

U-Model 3 MIP [51]
MIP(x) = maxy∈Ω(x) Ir(y)−maxc∗ (maxy∈Ω(x) Ic∗ (y))

Bc(I) = Ic(argmaxx∈I(MIP(x)))

t(x) = MIP(x) + (1−maxx∈I(MIP(x)))

U-Model 4
MIP/UDCP

[24]

Idark
c (x) = miny∈Ω(x) Ic(y)

Bc(I) = Ic(argmaxx∈I(I
dark
c (x)− (maxc∗ Idark

c∗ (x))))

tc∗ (x) = 1−minc∗ (miny∈Ω(x)(Ic∗ (y)/Bc∗ ))

tr(x) = αmaxy∈Ω(x) Ir(y)

α =
Avg(tc∗ )

Avg(maxy∈Ω(x) Ir(y))

U-Model 5 IBLAP [14]

Bsel
c = {Avg(LV(Ic)),Avg(LB(Ic,Pblr)),DCPc}

Bmin,c = min{Bsel
c },Bmax,c = max{Bsel

c }

Bc(I) = βBmax,c + (1− β)Bmin,c,

β is sigmoid function based weight.

dD = 1− Strech(MIP(x))

dR = 1− Strech(maxy∈Ω(x) Ir(y))

dB = 1− Strech(Reconstruct(Pr(x))),

Pr(x) = maxy∈Ω(x)
1
n

∑n
i=1 |Igray(x)−Gî,̂i((x))|

t(x) = γ2[γ1dD + (1− γ1)dR] + (1− γ2)dB,

γ1, γ2 are the sigmoid function based weights.

U-Model 6 ULAP [52]

d(x) = µ1 + µ2 maxy∈Ω(x) Ir(y) + µ3 maxc∗ (maxy∈Ω(x) Ic∗ (y)),

µ1 = 0.5321, µ2 = −0.9106, µ3 = 0.5130

Bc(I) = Ic(argmaxx∈P0.1%
(d(x)))

tc(x) = Nrer
da(x)
c ,

da(x) = 10× d(x),

Nrerr = 0.83,Nrrrg = 0.95,Nrerb = 0.97

(a) DCP-TM map (b) UDCP-TM map (c) MIP-TM map (d) MIP/UDCP-TM map (e) IBLAP-TM map (f) ULAP-TM map

Fig. 3. Illustration of TM maps (visualized by MATLAB’s colormap function) of an original underwater image (i.e., Fig. 1(a)) estimated by U-Model 1,
U-Model 2, U-Model 3, U-Model 4, U-Model 5, and U-Model 6, respectively.

restoration model) describes the relationship between the ob-
served image and its restored image under the conditions of
underwater environment, and can be described as:

I(x) = t(x)J(x) + (1− t(x))B, (2)

where I is the raw captured image by the camera, J is the
restored image, t(x) is the transmission medium (TM) map,
and B is the background light (BL). As presented in the IFM
model of equation (1), underwater image degradation is caused
by light attenuation and light scattering. Therefore, a prior
that represents the optical properties is often constructed to
form the restored image J in the IFM model of equation (2),

such as Dark Channel Prior (DCP), Underwater Dark Chan-
nel Prior (UDCP), Maximum Intensity Prior (MIP), Image
Blurriness and Light Absorption Prior (IBLAP), Underwater
Light Attenuation Prior (ULAP), as shown in Table I. Based
on these optical priors, the BL and TM maps are estimated
from the camera captured image I by solving the inverse
problem of equation (2). These models (i.e., U-Model 1 to
U-Model 6 in table I) represent state-of-the-art optical prior
based underwater image restoration methods. Fig. 3 illustrates
the TM maps (visualized by MATLAB’s colormap function)
of an original underwater image (i.e., Fig. 1(a)) estimated by
U-Model 1 [17], U-Model 2 [18], U-Model 3 [51], U-Model 4



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Fig. 4. Illustration of underwater physics attribute. Top row from left to right: original underwater image and results of five image enhancement algorithms
used in the UEIQA database [27]. Second row shows the transmission medium (TM) maps estimated by one of the optical prior based underwater image
restoration models (i.e., U-Model 1 [17] in Table I).

[24], U-Model 5 [14], and U-Model 6 [52], respectively. Fig. 4
illustrates the TM maps estimated by the one of these models
(i.e., U-Model 1) for original and enhanced images (i.e., Fig.
1(a)-(f)).

For our problem of assessing output quality of image
enhancement, there is no “ideal” reference image of perfect
quality. We could formulate this problem using the above
image formation model of equation (2) by assuming the
current/test image (i.e., I in equation (2)) remains sub-optimal
and its quality could be further improved towards a restored
image of optimal quality (i.e., J in equation (2)). Since we
do not need to produce the final restored image, we only
use the optical prior based model to approximate the TM
as the underwater physics-related attribute to form part of
our IQA framework (note it can be seen from Table I that
TM is highly related to BL hence only TM is used for the
sake of simplicity). The formulas for TM estimation of DCP-
based, UDCP-based, MIP-based, MIP/UDCP-based, IBLAP-
based, and ULAP-based models are listed in Table I, where
c ∈ {r,g,b}, c∗ ∈ {g,b}, and r,g,b represent the R, G, B
channels in the RGB colorspace.

B. HVS-based attributes

Now, we present the HVS-based descriptors for the eval-
uation of output quality of underwater image enhancement,
including Michaelson-like contrast map, salient local binary
patterns, and color autocorrelograms.

1) Michaelson-like contrast map (MLC)
Due to backward scattering of light, underwater images

suffer serious contrast degradation. However, normal contrast
measures are not able to quantify the contrast of underwater
images under the low luminance conditions. Based on the
properties of the human visual system (HVS), Panneta et. al.
introduced the Parameterized Logarithmic Image Processing
(PLIP) operations that could overcome the problem of low
luminance conditions.

Let an RGB image denoted as I, and I be gray-scaled as
Igray = (Ir+Ig+Ib)/3. For any pixel x ∈ Igray, Ω(x) is the
3×3 window by both-side symmetric padding, and Imax(x) =
maxy∈Ω(x) Igray(y), Imin = miny∈Ω(x) Igray(y). We define

the Michaelson-like contrast map (MLC) at each pixel position
x as follows:

MLC(x) =
Imax(x)ΘImin(x)

Imax(x)⊕ Imin(x)
∗ log( Imax(x)ΘImin(x)

Imax(x)⊕ Imin(x)
),

(3)
where the symbols Θ, ⊕ and ∗ represent the PLIP operations
that are detailed below. First, the following gray-scale tone
function is used to process the original image as absorption
filters:

g(x) =M − Igray(x), (4)

where M represents the maximum of absorption of the human
eye and is set to be 1026 according to [54]. Then, the
operations Θ, ⊕ and ∗ are defined as follows:

p⊕ q = p+ q − pq

γ(M)
, (5)

pΘq =
p− q

k(M)− q
, (6)

p ∗ q = ϕ−1(ϕ(p)ϕ(q)), (7)

ϕ(p) = −λ(M) lnβ(1− f

λ(M)
), (8)

ϕ−1(p) = −λ(M){1− [exp(− f

λ(M)
)]

1
β }, (9)

where ⊕ is denoted as PLIP subtraction, Θ as PLIP addition,
∗ as PLIP multiplication, p, q are the gray-scale tone pixel
intensity values, f is the corresponding original gray-scale
image intensity value, β is a constant, and γ(M), k(M), λ(M)
are arbitrary functions of M . According to the analysis of
Panneta et. al. [54], The parameter and functions are set as
γ(M) = k(M) = λ(M) = 1026 and β = 2.

2) Salient local binary patterns (SLBP)
The local binary patterns (LBP) operator is adopted to

describe the texture information of images. The LBP method
was first proposed by Ojala et.al. [55]. Let I be a gray-
scale image, ΩP

R(x) is the P -neighbourhood centered at pixel
x = (ix, jx) with a radius R. For arbitrary point p = (ip, jp)
can be expressed as:

ip = ⌊ix +R cos(2π
P − p+ 2

P
)⌉, (10)

jp = ⌊jx −R sin(2π
P − p+ 2

P
)⌉, (11)
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Fig. 5. Illustration of the HVS-based attributes. Top row from left to right: original underwater image and results of five image enhancement algorithms used
in the UEIQA dataset [27]. Second row shows the Michaelson-like contrast (MLC) maps. Third row shows the salient local binary patterns (SLBP) maps.

where p ∈ {0, 1, ···, P−1}, and ⌊m⌉ means the nearest integer
of m. Define a detection function by the following formula:

σ(u, v) =

{
1, if u− v ≥ 0,

0, otherwise.
(12)

The LBP is computed in the P -neighbourhood with the
center x = (ix, jx) and radius R by the following equation:

LP
R(x) =

P−1∑
p=0

σ(I(ip, jp), I(ix, jx))2
p. (13)

From this definition, a feature vector (histogram) is yielded.
For example, when R = 1, P = 8, and LP

R(x) ∈ [0, 255], a
256-dimensional feature vector is formed. To reduce the di-
mension of the output feature vector, Ojala et.al. [55] improved
LBP into the “uniform LBP” method that defined as

L̃P
R(x) =


P−1∑
p=0

σ(I(ip, jp), I(ix, jx)), if Υ ≤ 2,

P + 1, otherwise,

(14)

where

Υ =

P−1∑
p=1

|σ(I(ip, jp), I(ix, jx))− σ(I(ip−1, jp−1), I(ix, jx))|

+ |σ(I(ip, jp), I(ix, jx))− σ(I(i0, j0), I(ix, jx))|.
(15)

For an input image, the LBP feature well captures local
texture information. However, the local spatial information
is not equally visible to the human visual system (HVS)
[56]. It is well known that visual attention plays a significant
role in image quality assessment [57]–[60]. To incorporate
visual attention, we calculate a saliency map (using the model
proposed by Vikram et. al. [56]) of the input image and use it
to weight the corresponding LBP map. The saliency weighted
LBP is called salient local binary patterns map (SLBP) [56].
Let SM denote the saliency map, SM is the [0, 1]-normalized
saliency map, and LBP = (LP

R(x))x∈I is the LBP map of

the input image I . The salient local binary patterns (SLBP) is
defined pixel-wise as

SLBP (x) = SM(x)LP
R(x). (16)

Fig. 5 illustrates the feature maps, including Michaelson-like
contrast (MLC) map and salient local binary patterns (SLBP)
map.

3) Color autocorrelogram (CAC)
Color correction/equalization plays an important role in

underwater image enhancement algorithms. For our goal of
assessing output quality of image enhancement, it would be
beneficial for the IQA metric to include colour perception-
related attributes that account for the behaviour of the human
visual system. We adopt the color autocorrelogram index [61],
which has proven superior in capturing the spatial correlation
of colors in an image.

Let Iin denote an index image of I with size m × n, we
quantify the colors of Iin into m colors c1, c2, · · ·, cm. Let
Iin(x) denote the color of pixel x and define the color level
set Iciin ≜ {x|Iin(x) = ci} for i = 1, 2, ...,m. Besides, the
distance of different pixels x1 and x2 is measured by using
the L∞-norm, i.e., dist(x1,x2) = ||x1 − x2||∞ ≜ max{|x1 −
x2|, |y1− y2|} for pixels x1(x1, y1) and x2(x2, y2). Then, the
color correlogram of image Iin at color piont (ci, cj) is defined
as the following formula:

Mk
ci,cj = Pr({x1 ∈ Iciin,x2 ∈ Icjin|dist(x1,x2) = k}), (17)

where i, j ∈ {1, 2, · · ·,m}, k ∈ {1, 2, · · ·, d} with a fixed
priori distance d, and Pr(Ri,j) denotes the probability of the
random event Ri,j = {x1 ∈ Iciin,x2 ∈ Icjin|dist(x1,x2) = k}.
The overall color correlogram M of image Iin is defined as
a m×md matrix, i.e., M = [{M1

ci,cj}m×m, {M2
ci,cj}m×m, · ·

·, {Md
ci,cj}m×m]. Specially, the color autocorrelogram of im-

age Iin that only captures spatial correlation of identical color
ci is formulated as follows:

Mk
ci,ci = Pr({x1,x2 ∈ Iciin|dist(x1,x2) = k}), (18)
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Fig. 6. The schematic overview of the proposed underwater image quality-aware feature (UWIQF). TM, MLCM, SM, LBP indicate transmission medium,
Michaelson-like contrast map, saliency map and local binary patterns. HSV and RGB indicate HSV colorspace and RGB colorspace.

where i ∈ {1, 2, · · ·,m}. Then, the overall color autocorrelo-
gram CAC of image Iin is defined as a md vector, i.e.,

CAC = (M1
c1,c1 , · · ·,M

1
cm,cm , · · ·,M

d
c1,c1 , · · ·,M

d
cm,cm). (19)

In order to improve the efficiency of CAC algorithm, the
probability definition in equation (18) can be transformed into
the following counting problem:

Sk
ci,ci = |{x1,x2 ∈ Iciin|dist(x1,x2) = k}|, (20)

where |·| denotes the cardinality of a set. The overall simplified
color autocorrelogram CACs of image Iin is defined as:

CACs = (S1
c1,c1 , · · ·,S

1
cm,cm , · · ·,S

d
c1,c1 , · · ·,S

d
cm,cm). (21)

To enhance the feature robustness [62], we compute the au-
tocorrelogram on both RGB colorspace (conventionally used,
i.e., RGB-CACs) and HSV colorspace (perceptually uniform,
i.e., HSV-CACs).

C. Overall metric

To generate an overall IQA metric, individual features are
formulated to vector representations, and combined to yield a
predictor using the random forest regression algorithm.

1) Feature vectors
We have generated features representing underwater physics

attribute, i.e., transmission medium (TM) map; and HVS-based
attributes i.e., Michaelson-like contrast (MLC), Salient local

binary patterns (SLBP), and simplified color autocorrelograms
(RGB-CACs,HSV-CACs). Now, we transform these features
into feature vectors for subsequent processes. Since the local
binary patterns (LBP) operator is a powerful visual descriptor,
we use this method to construct feature vectors for certain
feature maps as extracted in this paper. For the TM and MLC
feature maps, the transformation process is performed using
the equations (12)-(15), where an LBP map is first calculated
and then converted to a 10-dimensional feature vector. This
process yields two feature vectors, HTM and HMLC. For
the SLBP feature map, we follow the approach taken in
[56], which improves the robustness of a feature vector when
saliency weighting is applied for LBP. The implementation is
detailed as below.

The histogram/feature vector of SLBP (i. e., HSLBP) is
defined as

HP
SLBP,R = {fPR (0), fPR (1), · · ·, fPR (P + 1)}, (22)

where the frequency of HP
SLBP,R at each bin is defined as:

fPR (p) =
∑
x∈I

SM(x)δ(L̃P
R(x), p), (23)

where p ∈ {0, · · ·, P + 1}, and the δ-function is defined as

δ(u, v) =

{
1, if u = v,

0, otherwise.
(24)
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Moreover, in order to keep the uniform property of ex-
tracted features, the simplified color autocorrelograms of
RGB-CACs,HSV-CACs are transformed into two histograms
of 10 bins each. This forms two 10-dimensional feature vec-
tors HRGB−CACs

and HHSV−CACs
. After individual feature

vectors are yielded, they are each normalised to represent the
probability density function of the feature. These resulting
vectors are combined to form an underwater image quality-
aware feature (UWIQF) vector:

[HTM|HMLC|HSLBP|HRGB−CACs
|HHSV−CACs

]. (25)

Fig. 6 illustrates the schematic overview of the proposed
underwater image quality-aware feature (UWIQF).

2) Image quality metric
The UWIQF is used to build a metric for the assessment

of quality of underwater image enhancement. Due to the
high-dimensional and multi-modal feature space, we use the
learning-based random forest regression method to establish
the relationship between the UWIQF feature and the perceived
image quality (i.e., MOS). Let L = {(UWIQFn,MOSn)|i =
1, · · ·, N} denote the training set, Θ is a probability space, and
Θ1, · · ·,ΘM ∈ Θ are random variables in the same probability
space. Assume that a set of M random regression tree models
{ψL,Θm |m = 1, · · ·,M} trained on the same dataset L with
different random seed Θm. A random forest regression model
ψL,Θ1,···,ΘM

integrates the set of M random regression tree
models by averaging, yielding a ensemble model [63]:

ψL,Θ1,···,ΘM
(UWIQF) =

1

M

M∑
m=1

ψL,Θm
(UWIQF), (26)

The training error of the random forest regression model
ψL,Θ1,···,ΘM

can be computed as follows:

Errtrain =
1

N

N∑
n=1

(ψL,Θ1,···,ΘM
(UWIQFn)− MOSn)

2

=
1

N

N∑
n=1

(
1

M

M∑
m=1

ψL,Θm(UWIQFn)− MOSn)
2

(27)

The hyperparameters (Θ1, · · ·,ΘM ) are trained by mini-
mizing the above error of the ensemble model ψL,Θ1,···,ΘM

.
Moreover, the ambiguity decomposition of Errtrain guarantees
that the performance of random forest model is better than
a single regression tree [64]. Assume (Θ̃1, · · ·, Θ̃M ) are the
trained model parameters, in the prediction stage, for any test
quality-aware feature UWIQF, the predicted image quality is
given by the following formula:

ψL,Θ̃1,···,Θ̃M
(UWIQF) =

1

M

M∑
m=1

ψL,Θ̃m
(UWIQF). (28)

This gives an UnderWater image Enhancement Quality Metric
(UWEQM).

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we detail the implementation of the proposed
UWEQM algorithm. We also analyse the selection of optical

prior based models for the underwater physics attribute, and
contribution of individual IQA features. Moreover, the per-
formance of the proposed UWEQM metric is compared to
state-of-the-art metrics on the UEIQA database to show its
superiority.

A. Experimental setup

In this subsection, we present the experimental setups of our
proposed UWEQM algorithm that include evaluation criteria,
alternative IQA metrics for comparative analysis and model
implementation.

1) Evaluation criteria
To evaluate the performance of an IQA metric, the corre-

lation and/or difference between the metric outputs and sub-
jective mean opinion scores (MOSs) must be calculated. Four
measures are commonly used including the Pearson linear cor-
relation coefficient (PLCC), root mean square error (RMSE),
Spearman rank order correlation coefficient (SROCC), and
Kendall’s rank order correlation coefficient (KROCC) [29]:

PLCC =

∑K
i=1(xi − x̄)(yi − ȳ)√∑K
i=1[(xi − x̄)(yi − ȳ)]2

, (29)

RMSE =

√√√√ 1

K

K∑
i=1

(xi − yi)2, (30)

SROCC =

∑K
i=1(R(xi)−R(x))(R(yi)−R(y))√∑K

i=1(R(xi)−R(x))2
√∑K

i=1(R(yi)−R(y))2
,

(31)

KROCC =
2[N(concordant pairs)−N(discordant pairs)]

K(K − 1)
,

(32)
where K is the number of test images, xi and yi indicate
the metric score and subjective MOS of the i-th test image,
respectively, x̄ and ȳ are the mean values, R(·) denotes the
rank, and N(·) represents the amount of variable values. To
account for the non-linear behaviour of subjective scoring,
a logistic non-linear regression is commonly used to fit the
metric scores to subjective MOSs [46]:

f(xc) = β1[
1

2
− 1

1 + exp[β2(xc − β3)]
] + β4xc + β5, (33)

where xc represents the metric score, and the parameters
are estimated using the MATLAB’s nlinfit function. PLCC
and RMSE are computed between f(xc) and MOSs, whereas
SROCC and KROCC are computed between xc and MOSs.
The closer the values of PLCC, SROCC and KROCC to 1 and
the value of RMSE to 0, the better the performance of an IQA
metric.

2) Alternative IQA metrics for comparative analysis
We compare our proposed UWEQM metric with 11 state-

of-the-art IQA metrics including BRISQUE [35], NIQE [34],
BLIINDS II [47], SSEQ [48], LPC [49], UICM [50], UISM
[50], UIConM [50], UIQM [50], UCIQE [40] and UEIQM
[27]. UEIQM is a simple proof-of-concept IQA metric pro-
posed in our recent work [27]. The UEIQM metric is built
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TABLE II
PERFORMANCE OF SIX VARIANTS OF UWEQM USING DIFFERENT TM FEATURE VECTORS HTM DERIVED FROM DIFFERENT OPTICAL PRIOR BASED

UNDERWATER IMAGE RESTORATION MODELS. RESULTS ARE BASED ON THE UEIQA DATABASE

Criteria
Model UWEQMDCP UWEQMUDCP UWEQMMIP UWEQMMIP/UDCP UWEQMIBLAP UWEQMULAP

PLCC 0.8774 0.8764 0.8922 0.8590 0.8794 0.8759
SROCC 0.8698 0.8602 0.8816 0.8520 0.8740 0.8705
KROCC 0.6998 0.6834 0.7137 0.6759 6976 0.6948
RMSE 1.1262 1.1250 1.0534 1.1851 1.1075 1.1095

TABLE III
PERFORMANCE OF UWEQM VARIANT MODELS BASED ON SINGLE
FEATURE OR A COMBINED VECTOR OF MULTIPLE SUB-FEATURES.

RESULTS ARE BASED ON THE UEIQA DATABASE

Model

Criteria
PLCC SROCC KROCC RMSE

HTM 0.7950 0.7791 0.6034 1.2925

HMLC 0.8183 0.8092 0.6208 1.2761

HSLBP 0.6636 0.6463 0.4738 1.6926

HRGB−CACs
0.7040 0.6746 0.5086 1.5792

HHSV−CACs
0.5662 0.5443 0.3912 1.8739

HRGB−CACs
, HHSV−CACs

0.7319 0.7067 0.5226 1.5370

HTM,HMLC 0.8219 0.8072 0.6431 1.2561

HTM,HSLBP 0.8190 0.8062 0.6431 1.3010

HMLC,HSLBP 0.8344 0.8266 0.6466 1.2351

HTM,

HRGB−CACs
, HHSV−CACs

0.8134 0.7932 0.6106 1.3262

HMLC,

HRGB−CACs
, HHSV−CACs

0.8040 0.7880 0.6222 1.3283

HSLBP,

HRGB−CACs
, HHSV−CACs

0.7451 0.7189 0.5333 1.5205

HTM, HMLC,

HRGB−CACs
, HHSV−CACs

0.8570 0.8451 0.6647 1.1832

HTM,HSLBP,

HRGB−CACs
, HHSV−CACs

0.8154 0.7978 0.6113 1.3275

HTM, HMLC,

HSLBP

0.8645 0.8586 0.6801 1.1591

HMLC,HSLBP,

HRGB−CACs
, HHSV−CACs

0.8228 0.8178 0.6302 1.3041

Proposed UWEQM 0.8922 0.8816 0.7137 1.0534

by combining three simple off-the-shelf features represent-
ing color, sharpness, and contrast. Note all metrics are no-
reference (NR) models, so they are suitable for our target
application of assessing output quality of underwater image
enhancement.

3) Model implementation - k-fold cross-validation

To fairly evaluate the proposed UWEQM metric and its
generalizability, we adopt a standard k-fold cross-validation.
To this end, the benchmark UEIQA database is randomly
partitioned into k (k=5 in our experiment) equal sized non-
overlapped subsets; and one subset is used for testing and the
other subsets are used for training. The cross-validation pro-
cess is iterated 5 times, with each of the 5 subsets used exactly
once as the testing set. The 5-time test results are averaged to
yield a single estimation. Also, to reduce variability, multiple
(i.e., 100 rounds in our experiment) rounds of cross-validation
are performed using different random partitions, and the results
are averaged over all rounds to give a final estimation of the
IQA metric’s predictive performance.

B. Selection of underwater physics attribute

As mentioned in Section III.A, the transmission medium
(TM) represents the underwater physics attribute that is de-
rived from a optical prior based underwater image restoration
model. Based on the six state-of-the-art models in Table I,
six different TM maps can be estimated, resulting in six
alternatives of feature vector HTM. Now, we investigate which
TM estimation gives the best performance to our proposed
UWEQM metric on the UEIQA database. To this end, six vari-
ants of UWEQM are created using different TM feature vec-
tors, including UWEQMDCP, UWEQMUDCP, UWEQMMIP,
UWEQMMIP/UDCP, UWEQMIBLAP, and UWEQMULAP. In
Table II, we list the performance of UWEQM variants on the
UEIQA database. It can be seen that the UWEQMMIP yields
the best performance; however, other UWEQM variants also
produce comparable results. This suggests that MIP could be
the most suitable optical prior for the images of the UEIQA
database, where the depth of objects is about 3−4m in water.
Hence the UWEQMMIP is directly denoted as UWEQM in the
following of this paper. It should be noted that the selection
of underwater physics attribute can adapt to specific imaging
conditions, and the procedure can be used to find the feature
that better suits the specific IQA problem or application.
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TABLE IV
PERFORMANCE COMPARISON OF THE PROPOSED UWEQM METRIC TO THE STATE-OF-THE-ART NO-REFERENCE IQA METRICS ON UEIQA DATABASE

Criteria BRISQUE NIQE BLIINDS II SSEQ LPC UICM UISM UIConM UIQM UCIQE UEIQM UWEQM

PLCC 0.4148 0.3999 0.1718 0.1789 0.7591 0.7082 0.5204 0.7813 0.5230 0.6159 0.8055 0.8922
SROCC 0.4024 0.2366 0.2708 0.1764 0.7583 0.6947 0.4930 0.7720 0.2886 0.5691 0.7657 0.8816
KROCC 0.2737 0.1662 0.1948 0.1051 0.5659 0.4969 0.3429 0.5819 0.1832 0.4101 0.5806 0.7137
RMSE 1.9200 2.1998 2.0779 2.2058 1.4595 1.5829 1.9145 1.3994 1.7977 1.6617 1.2508 1.0534

C. Analysis of individual features

Since five different IQA features (i.e., HTM, HMLC,
HSLBP, HRGB−CACs

, and HHSV−CACs
) are extracted to

form the overall UWIQF vector of the proposed UWEQM
metric, it is worth investigating how well individual sub-
features or different combinations of sub-features can predict
the ground truth image quality. To this end, we simply replace
UWEQM metric’s UWIQF vector by a single sub-feature
or a combined vector of multiple sub-features; and re-run
the experiments as described above. Table III illustrates the
performance of these UWEQM variants. It can be seen that in
general the variant models based on multiple sub-features tend
to give better performance than the variant models based on
single sub-feature. Our final metric (i.e., proposed UWEQM)
based on all sub-features yields the best performance.

D. Performance comparison to state-of-the-art IQA metrics

We compare the proposed UWEQM metric to the state-
of-the-art no-reference (NR) IQA metrics, including general-
propose metrics (i.e., BRISQUE, NIQE, BLIINDS II, SSEQ
and LPC) and underwater-specific metrics (i.e., UICM, UISM,
UIConM, UIQM, UCIQE and UEIQM). For metrics that are
not machine learning-based, the results are produced by cal-
culating a metric on the entire UEIQA database. The learning-
based metrics (i.e., BRISQUE, BLIINDS II, SSEQ, UEIQM)
are evaluated using the 5-fold cross-validation method as
described in Section IV.A. Fig. 7 shows the scatter plot of
MOS versus the predictions of our proposed UWEQM metric.

The results of metric performance in terms of PLCC,
SROCC, KROCC and RMSE are listed in Table IV, with the
best performance for each evaluation criterion highlighted in
boldface. It can be seen that most general-purpose metrics,
BRISQUE, NIQE, BLIINDS II and SSEQ fail in predicting
the output quality of underwater image enhancement. These
metrics are based on natural scene statistics and do not
contain visual descriptors for the characterises of underwater
environment, such as light attenuation, light scattering, and
specific artifacts. LPC metric addresses the sharpness measure
using multi-scale local phase coherence in the wavelet trans-
form domain. Since sharpness/contrast is an important image
quality aspect of underwater images, the LPC metric pro-
duces relatively better performance than other general-purpose
metrics. For the underwater-specific metrics, UISM, UIQM,
UCIQE metrics are unable to accurately predict the quality of
underwater images undergoing enhancement algorithms. These
models contain underwater-specific visual features; however,
they simply combine these features and, hence cannot deal
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Fig. 7. Scatter plot of MOS versus our proposed UWEQM metric on the
UEIQA database. The curved line shows the nonlinear logistic fit.

with the complex interactive relationships between these fea-
tures for the determination of the overall image quality. The
other metrics, UICM, UIConM and UEIQM adopt a more
sophisticated way for integrating IQA-aware features, and
therefore significantly outperform the UISM, UIQM, UCIQE
metrics. In particular, it should be noted that the UEIQM and
UIConM metrics give the best and second-best performance
among the exiting metrics. This might be due to the fact
that both metrics contain a good measure of contrast under
low-luminance conditions, which is one of the most relevant
features for underwater image quality assessment. This tends
to suggest that the development of reliable underwater IQA
metrics should focus on identifying and quantifying relevant
underwater-specific image features as well as finding ways to
express the complex relationships between these features in
determining the perceived quality. Our proposed metric fol-
lows such concept and hence outperforms all existing metrics
in predicting output quality of underwater image enhancement.

The F-test (as used in [65]) is adopted to test the statistical
significance between each existing metric and our proposed
UWEQM metric. The value of the F-test is the ratio of the
standard deviations of normalized results (normalized by the
non-linear logistic regression model) of the selected metric and
our proposed metric. The F-test critical region is defined by
the F-distribution with the (N-1,N-1) freedom degree and the
significance level of 0.05, where N is the number of the test
images. The two metrics in question are statistically distinct if
the F-test value is in the critical region. The pairwise (i.e.,
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TABLE V
PERFORMANCE COMPARISON OF THE PROPOSED UWEQM METRIC TO THE STATE-OF-THE-ART DEEP LEARNING-BASED NR IQA METRICS. RESULTS

ARE BASED ON THE UEIQA DATABASE

Criteria
Model VGG CNN BIECON DIQaM RankIQA GraphIQA UWEQM

PLCC 0.7721 0.1693 0.0628 0.3761 0.8040 0.7842 0.8922
SROCC 0.7763 0.1411 0.0362 0.2415 0.7976 0.7876 0.8816
KROCC 0.6001 0.0963 0.0282 0.1673 0.6184 0.5993 0.7137
RMSE 1.3683 2.1234 2.2121 1.9963 1.2803 1.3352 1.0534

(a) UWEQM=2.7105 (b) UWEQM=4.3660 (c) UWEQM=4.0727 (d) UWEQM=2.5222 (e) UWEQM=3.4942

(f) UWEQM=3.0175 (g) UWEQM=4.0247 (h) UWEQM=4.3961 (i) UWEQM=2.8627 (j) UWEQM=3.8534

(k) UWEQM=3.6573 (l) UWEQM=3.3139 (m) UWEQM=5.2017 (n) UWEQM=2.8862 (o) UWEQM=3.9843

Fig. 8. An example to demonstrate the generalization ability of our proposed UWEQM metric. (a) an original underwater image; (b)-(o) results of underwater
enhancement algorithms that are not used in the UEIQA database, including HE, CLAHE, GC, ICM, UCM, RD, HVSMIF, DCP, UDCP, GB-UDCP, IBLA,
RGHS, RoWS, ULAP, respectively. In terms of the output quality, subjective quality could be visually assessed by the readers, and objective quality is predicted
by our UWEQM metric.

a selected metric versus our proposed metric) significance
testing results show that the proposed UWEQM is significantly
superior to any other metric in comparison.

V. DISCUSSION

A current trend in IQA research is to develop deep learning-
based IQA metrics. However, the challenge lies in the fact that
deep learning-based models heavily rely on large-scale anno-
tated data, and that creating “large” IQA databases is nontrivial
as reliable image quality scores must be derived from fully-
controlled psychophysical experiments [66]. Some approaches
have been attempted to exploit deep learning techniques in
IQA metrics [67]–[72], e.g., data augmentation methods are
applied to improve sample efficiency, and transfer learning and
domain adaptation are adopted to boost learning ability. We
compare the performance of our proposed UWEQM metric
to the state-of-the-art deep learning-based IQA metrics (note
only NR IQA metrics that have their open source code made
publicly available are included to ensure a fair comparison),
including VGG [67], CNN [70], BIECON [68], DIQaM [69],
RankIQA [71], GraphIQA [72]. It can be seen from Table
V that our proposed UWEQM gives the best performance,
which demonstrates the effectiveness of the proposed approach

that takes into account both underwater physics and human
visual system attributes. This, however, does not mean deep
learning is not a good alternative approach. To facilitate the
development of deep learning-based IQA, more psychophysi-
cal experiments should be conducted to provide more ground
truth IQA data, and advanced methods should be developed to
enhance learning capabilities of the model. Our future work
will focus on developing a deep learning-based model for
assessing the output quality of underwater image enhancement.

The generalization ability is critical for an IQA metric.
First, in the development of our proposed UWEQM metric,
we consider the attributes that are general representations for
the output quality of underwater image enhancement. These
attributes include underwater-specific physics and human vi-
sual system properties for contrast, texture, color and atten-
tion. Second, in training our metric on the UEIQA database,
the k-fold cross-validation is used to tune model parameters
and ensure there is no data leakage. The training and test
subsets per run (i.e., one 5-fold trial) do not overlap, and
the data splitting is randomly iterated 100 times (i.e., 100
5-fold trials) to eliminate the performance bias. Third, it
would be beneficial to conduct cross-database evaluation to
measure the generalization capability of our metric. However,
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to the best of our knowledge, the UEIQA is so far the only
database that is made publicly available for the assessment of
output quality of underwater image enhancement. It should be
also noted that the UEIQA database contains results of five
image enhancement algorithms. Due to the innate limitation
of psychophysical experimentation, increasing the number of
enhancement algorithms would make an IQA database too
large hence compromise the reliability of the subjective data
[73]. Therefore, to facilitate cross-database evaluation, we en-
courage researchers to create new IQA databases with different
underwater image enhancement algorithms following the same
protocols for the subjective testing of the UEIQA database.
Nonetheless, we expect our proposed model to generalise and
adapt to new unseen data. To demonstrate this in a nutshell, we
applied fourteen image enhancement algorithms that are not
used in the UEIQA database to an original underwater image,
including Bi-HE (note a different algorithm to the HE used in
the UEIQA database) [74], CLAHE [75],, Gamma Correction
(GC) [76], Integrated Colour Model (ICM) [77], Unsupervised
Colour Correction Method (UCM) [78], Rayleigh Distribution
(RD) [79], HVS-based multi-scale underwater image fusion
(HVSMIF) [80], DCP [17], UDCP [18], Green-Blue channels
Underwater Dark Channel Prior (GB-UDCP) [24], IBLA [14],
Relative Global Histogram Stretching (RGHS) [81], Removal
of Water Scattering (RoWS) [82], and ULAP [52]. Fig. 8
illustrates the results of these image enhancement algorithms.
In terms of the output quality, subjective quality could be
visually assessed by the readers (note a proper subjective IQA
experiment could be treated in a separate contribution in the
future), and objective quality is predicted by our UWEQM
metric as shown in Fig 8. It can be seen that our proposed
IQA metric shows a good generalization ability in assessing
the output quality of underwater image enhancement.

VI. CONCLUSION

In this paper, we have presented an objective metric
UWEQM for the assessment of the output quality of un-
derwater images undergoing enhancement algorithms. Since
there is no reference image of “perfect” quality in the context
of image enhancement, we propose to consider the physics
prior information of underwater optical imaging and relevant
characteristics of the human visual system including contrast,
texture, attention and color. The proposed metric UWEQM
is validated against the ground truth image quality scores
and it outperforms other alternative metrics in the literature.
Moreover, our proposed UWEQM metric shows a good gen-
eralization ability for image quality assessment.
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