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1 Introduction

In their seminal work, Hsiang and Kleiner [26] showed that for a closed, orientable,

positively curved Riemannian manifold M of dimension 4 admitting an isometric ac-

tion of the circle T 1, M is homeomorphic to S4 or CP2. This classification was

obtained via a study of the structure of the orbit space of such a circle action and

an analysis of the fixed-point sets of that action, combined with the homeomorphism

classification of 4-manifolds due to Freedman [12].

The orbit space M/T 1 is a positively curved Alexandrov space, and our understand-

ing of these spaces is much improved since the publication of [26]. By making use of

Alexandrov geometry, as well as the resolution of the Poincaré Conjecture, this clas-

sification has been strengthened to show that the manifolds are actually equivariantly

diffeomorphic to S4 or CP2 with a linear action by work of Grove and Searle [21] and

Grove and Wilking [23].

The nature of these results can be probed further by relaxing certain of the hypotheses.

If we assume only non-negative sectional curvature, it was shown independently by
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Kleiner [29] and Searle and Yang [44], that we add in, up to homeomorphism, only

S2 ×S2 and CP2#±CP2. Galaz-Garcı́a [13], Galaz-Garcı́a and Kerin [17], and [23]

showed that this classification too can be improved to equivariant diffeomorphism.

Alternatively, one can relax the assumption that the spaces are Riemannian manifolds.

In [47], Yeroshkin considers the case of positively curved Riemannian orbifolds. With

the additional assumption that the orbifold fundamental group is trivial, he proves that

the underlying topological space of the orbifold is homotopy equivalent to S4 or has

the cohomology of CP2. In the case where there is a 2-dimensional fixed-point set,

he improves the classification to homeomorphism, showing that it is S4 or a weighted

complex projective space, CP2
a,b,c. He conjectures that this also holds true when there

are only isolated fixed points (see Conjecture 5.3 [47]). We resolve this conjecture in

the affirmative.

Theorem 1.1 (Orbifold Classification). Let T 1 act isometrically and ef-

fectively on X4, where X4 is a 4-dimensional, closed, positively curved, orientable

Riemannian orbifold, with πorb
1 (X) = {0}. Then, up to equivariant homeomorphism,

the underlying topological space |X | is one of the following spaces:

1. The 4-sphere, with a linear action; or

2. A weighted complex projective space, with an action induced by a linear T 2

action on S5.

This result is obtained as an immediate corollary of a more general result, Theo-

rem 1.4, which relaxes further the hypothesis on the space to permit Alexandrov

spaces, a class of spaces that include Riemannian orbifolds. Symmetries of low-

dimensional Alexandrov spaces have been studied elsewhere (see work of Núñez-

Zimbrón [35] in dimension 3 and Corro, Núñez-Zimbrón, and Zarei [8] and Galaz-

Garcı́a [14] in dimension 4).

A crucial element of the Riemannian results described above is the determination of an

upper bound on the number of isolated fixed points in the space. This is established by

an elegant argument which relies on an understanding of the geometry of the space of

directions at these fixed points in the orbit space. In particular, the space of directions

contains no triangles with perimeter exceeding π, or, in the language of extents, the

3-extent is bounded above by π
3 . In this paper, we refer to such spaces of directions as

small.

The proof of the upper bound on the 3-extent is straightforward in the Riemannian

cases, both for manifolds and orbifolds, since the geometry of the space of directions

is rigid. The greater flexibility in general Alexandrov spaces creates a surprising diffi-

culty in proving the upper bound in full generality. We define here a condition which

permits the extension of this bound.

Definition 1.2 (Condition Q′). An isometric action of the circle T 1 on an

Alexandrov space Σ3 of dimension 3 with curv ≥ 1 is said to satisfy Condition Q′ if

it is fixed-point-free and the following hold:
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1. Σ3/T 1 is a small space;

2. The double branched cover of Σ3/T 1 over any two points corresponding to

finite isotropy is small; and

3. If there are three components of finite isotropy, diam
(
Σ3/T 1

)
≤ π

4 .

The first part of the condition is sufficient to bound the number of isolated fixed points.

The other two parts are used to obtain that the singular set is unknotted in the orbit

space. While Condition Q′ may seem technical, we show in Lemma 7.2 that it is

satisfied for any fixed-point-free isometric circle action on a 3-dimensional spherical

orbifold of constant curvature 1.

Definition 1.3 (Condition Q). An isometric action of the circle T 1 on a 4-

dimensional Alexandrov space is said to satisfy Condition Q if at every isolated fixed

point the isotropy action satisfies Condition Q′.

For example, any isometric circle action on a Riemannian 4-orbifold satisfies Condi-

tion Q by Lemma 7.2.

Main Theorem 1.4. Let T 1 act isometrically and effectively on X4 so as to sat-

isfy Condition Q, where X4 is a 4-dimensional, closed, positively curved, orientable

Alexandrov space. Then, up to equivariant homeomorphism, X is one of the following

spaces:

1. The suspension of a spherical 3-manifold, with a linear action; or

2. A finite quotient of a weighted complex projective space with a linear action.

Let us immediately point out how Theorem 1.1 follows from this result. First, the

Main Theorem 1.4 is applicable, since a closed, positively curved, orientable Rie-

mannian orbifold is an example of a closed, positively curved, orientable Alexandrov

space satisfying Condition Q. The restriction on the orbifold fundamental group sim-

ply means that we exclude any finite quotients from the classification, so that the

spherical 3-manifold can be taken to be S3.

Note that this list of possible spaces in the Main Theorem 1.4 is very restrictive, with

every space being the quotient of a sphere. The additional spaces obtained by relaxing

the Riemannian hypothesis arise only because the class of Alexandrov spaces is closed

under taking the quotient by an isometric group action, even when that action is not

free.

As in the manifold case, the bound on the symmetry rank of a positively curved n-

dimensional Alexandrov space is ⌊n+1
2 ⌋. It is interesting to compare the Main The-

orem 1.4 to the following result of the authors [27], which shows that all spaces that

achieve this bound are obtained as quotients of spheres.

Theorem 1.5 (Maximal Symmetry Rank Theorem [27]). Let X be an n-

dimensional, compact, Alexandrov space with curv ≥ 1 admitting an isometric T k

action with k = ⌊n+1
2 ⌋. Then either
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1. X is a spherical orbifold, homeomorphic to Sn/G, where G is a finite subgroup

of the centralizer of the maximal torus in O(n+ 1); or

2. Only in the case that n is even, X ≃ Sn+1/G, where G is a rank one subgroup

of the maximal torus in O(n+ 2)

and in both cases the action on X is equivalent to that induced by the maximal torus.

We note that while for positively curved Riemannian manifolds there is no difference

in dimension 4 between the maximal and almost maximal symmetry rank cases, there

is a difference for Alexandrov spaces. Namely, while the spaces obtained in Theo-

rems 1.4 and 1.5 are all linear quotients of S4 and S5, in the Main Theorem 1.4 there

are a greater variety of quotients possible, as the dihedral and binary polyhedral sub-

groups of SO(5) and SO(6) also occur.

Organization. The paper is organized as follows. In Section 2, we present nota-

tion and conventions, as well as background material about Alexandrov spaces, group

actions on Alexandrov spaces, and Seifert manifolds. In Section 3, we describe the

restrictions imposed by positive curvature on isolated singular points and singular

knots. In Section 4, we prove a topological classification when there are three isolated

points of circle isotropy. In Section 5 we classify isometric circle actions on posi-

tively curved 3-spaces and in Section 6 we address the 4-dimensional case, proving

the Main Theorem 1.4. In Section 7, we discuss a conjecture about the extents of

quotients of Alexandrov spaces by isometric group actions which, if true, would show

that Condition Q is always satisfied.
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2 Preliminaries

In this section we fix notation and recall basic definitions and theorems about Alexan-

drov spaces, as well as discuss how unnormalized invariants are assigned to Seifert

manifolds.

2.1 Alexandrov geometry

A finite-dimensional Alexandrov space is a locally complete, locally compact, con-

nected (except in dimension 0, where a two-point space is admitted), length space,

with a lower curvature bound in the triangle comparison sense. We assume through-

out that the space is compact, and usually without boundary, in which case it is said

to be closed. There are a number of introductions to Alexandrov spaces to which

the reader may refer for basic information (see, for example, Burago, Burago, and

Ivanov [4], Burago, Gromov, and Perelman [5], Plaut [42], and Shiohama [46]). Rie-

mannian orbifolds are simple examples of Alexandrov spaces: in fact, 4-dimensional

Alexandrov spaces are all homeomorphic to orbifolds.

The space of directions of an Alexandrov space Xn of dimension n at a point p is,

by definition, the completion of the space of geodesic directions at p and is denoted

by ΣpX or, when there is no confusion, Σp. It is a compact Alexandrov (n − 1)-
dimensional space with curv ≥ 1. A small metric ball around p, Br(p), is homeo-

morphic to an open cone on Σp by work of Perelman [39]. The local model for an

Alexandrov space is therefore given by a cone on any space of positive curvature. In

the case of a Riemannian orbifold, Σp is isometric to a quotient of the unit sphere by

a finite group.

The class of Alexandrov spaces is closed under taking quotients by isometric group

actions, even when those actions are not free. Furthermore, the subclass of spaces

with curv ≥ 1 is closed under taking spherical suspensions and spherical joins.

An Alexandrov space has an open dense subset which is a topological manifold, and in

the event that the space has no boundary then the complement of the manifold part has

codimension at least three. In low dimensions, the structure is then relatively simple.

In dimension three, the only topological singularities are isolated points with space

of directions homeomorphic to RP2. In fact, Galaz-Garcı́a and Guijarro [16] have

classified the positively curved 3-spaces as follows.

Proposition 2.1. Any positively curved 3-space is homeomorphic to a quotient

of S3 by some finite subgroup Γ of O(4). In particular, it is homeomorphic to the

suspension of RP2 or to a spherical manifold.

By Lemma 3.3 in [27], an Alexandrov space without boundary,X , is orientable if and

only if its manifold part is orientable. If, for some p ∈ X , Σp is not orientable, then X
does not even admit a local orientation near p. In general, if the space is not orientable,

it may be obtained as the quotient of an orientable Alexandrov space by an isometric

involution by Theorem 3.4 in [27] (see also [16] for the 3-dimensional case).

In an oriented Alexandrov space X , the intersection number of two subsets A and B,

#(A ∩B), is defined as usual on the manifold part of X . In this paper, A and B are
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either two curves in a surface, or a curve and a surface in a 3-dimensional space.

We recall Petrunin’s analogue of Synge’s Theorem [41] for Alexandrov spaces, giving

here the version from [27].

Theorem 2.2 (Generalized Synge’s Theorem). Let X be an Alexandrov

space of dimension n with curv ≥ 1.

1. Let X be even-dimensional. If X is either orientable or locally non-orientable

then X is simply connected, and otherwise it has fundamental group Z2.

2. If X is odd-dimensional and locally orientable then X is orientable.

2.2 Equivariant Alexandrov geometry

We now concentrate our attention on isometric group actions on Alexandrov spaces.

Given an isometric (left) action G × X → X of a Lie group G, and a point p ∈ X ,

we let G(p) = { gp : g ∈ G } be the orbit of p under the action of G. The isotropy

group of p is the subgroup Gp = { g ∈ G : gp = p }. Recall that G(p) ∼= G/Gp.

We denote the orbit space of this action by X̄ = X/G. Similarly, the image of a point

p ∈ X under the orbit projection map π : X → X̄ is denoted by p̄ ∈ X̄ . We assume

throughout that G is compact and its action is effective, that is, that
⋂

p∈X Gp is the

trivial subgroup {e} of G. By Theorem 2.2 in Galaz-Garcı́a and Guijarro [15], the set

of principal orbits forms an open dense subset of X .

As in the case of Riemannian manifolds, the space of directions at any point p decom-

poses as the spherical join of the orbital directions (the unit sphere in the Lie algebra)

and the normal directions νp, which in general might be any Alexandrov space with

curv ≥ 1, see Galaz-Garcı́a and Searle [18]. If G acts effectively on X then the in-

duced isometric action of Gp on Σp must be effective. Where Gp ⊳ G, it follows that

the Gp action on νp must also be effective.

We recall the following results from [27].

Theorem 2.3 (Slice Theorem [27]). Let G, a compact Lie group, act isomet-

rically on an Alexandrov space X . Then for all p ∈ X , there is some r0 > 0 such that

for all r < r0 there is an equivariant homeomorphism Φ: G×Gp
Kνp → Br(G(p))

where νp is the space of normal directions to the orbit G(p).

Lemma 2.4 [27]. Let T k act by isometries on X2n, a compact even-dimensional

Alexandrov space of positive curvature. Then T k has a fixed point.

Proposition 2.5 [27]. Let T 1 act isometrically and effectively on Xn, a compact

Alexandrov space. Then the components of the fixed-point set are of even codimension

in Xn.

An action of G on X such that XG 6= ∅ and dim(XG) = dim(X/G) − 1 is called

fixed-point homogeneous. The following description of positively curved fixed-point-

homogeneous Alexandrov spaces from [27] is very useful in our classification. Since ν
might be any positively curved space, this result of the authors shows that, in marked

contrast to the Riemannian setting, fixed-point homogeneity is not a very restrictive

concept in Alexandrov geometry.
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Theorem 2.6 (Fixed-point-homogeneous actions). [27] Let G, a com-

pact Lie group, act isometrically and fixed-point-homogeneously on X , an Alexandrov

space with curv ≥ 1. If F is the component of XG with maximal dimension then the

following hold:

1. There is a unique orbit G(p) ∼= G/Gp at maximal distance from F (the “soul”

orbit);

2. The space X is homeomorphic to (ν ∗G)/Gp, where ν is the space of normal

directions to the orbit at p and Gp acts on the left on the spherical join, ν ∗G,

the action on ν being the isotropy action at p and the action on G being the

inverse action on the right; and

3. The above homeomorphism is in fact G-equivariant, where the action of G on

(ν ∗G)/Gp is induced by the left action on ν ∗G given by the join of the trivial

action and the left action.

Consider the subset X̄(H) ⊂ X̄ which is the image of all orbits with isotropy sub-

group conjugate to H ⊂ G. Perelman and Petrunin [40] have shown that its closure

cl
(
X̄(H)

)
is an extremal subset of X̄ , that is, a closed subset which is preserved under

the gradient flow of dist(p, ·) for all p ∈ X̄ . Extremal sets stratify an Alexandrov

space into topological manifolds. Extremal sets of codimension one make up the

boundary. A primitive 1-dimensional extremal set, that is, one which cannot be ex-

pressed as a union of proper subsets which are also extremal, is a curve, which is either

closed or terminates in 0-dimensional extremal sets.

It is clear from the Relative Stability Theorem of Kapovitch [29] that, if the Alexan-

drov space X is a topological manifold and E is an extremal subset, the top stratum

of E, that is, the complement in E of any strictly smaller extremal subsets, is a locally

flat submanifold (see also Lemma 5.1 in [23]). Recall that a locally flat submanifold

is the topological analogue of an embedded submanifold in the differential category.

More precisely, if Mn is a manifold then Nk ⊂ Mn is locally flat if, for each p ∈ N ,

there is a neighborhood U of p so that (U,U ∩N) ∼= (Rn,Rk), where Rk is included

in Rn in the standard way.

2.3 Assigning unnormalized invariants to Seifert manifolds

In Section 4.1 we assign invariants to T 1-actions on orientable Alexandrov 4-spaces.

The 4-spaces under consideration there have isolated fixed points. Let p be any such

isolated fixed point. Then Proposition 2.1 implies Σp is homeomorphic to S3/Γ. The

isotropy action defines a Seifert fibration on Σp.

For this reason, Seifert fibrations are key to defining the invariants we need to classify

these 4-spaces, and so we establish here notational conventions for the invariants of

Seifert manifolds. Note that we do not include the Seifert invariants related to ori-

entability or the presence of fixed points, since these are not relevant here.

We follow the approach of Jankins and Neumann [28], since it is better suited to the

present work than the normalized Seifert invariants which were used by Fintushel [11]
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x̄1

V̄2

∂V̄3
R̄

Figure 1: The orbit space Z̄ in the case g = 2, n = 3.

to classify 4-manifolds with circle actions. We collect all of the notation into Table 1

at the end of this subsection for easy reference.

Let T 1 act on Z3, an oriented 3-manifold, without fixed points. Let the projection

map be denoted by π : Z → Z̄ = Z/T 1. Let g be the genus of Z̄ , which for the

purposes of this paper is always zero. Orient Z̄ so that its orientation followed by the

orientation of the orbits gives the orientation of Z3.

Let {x̄1, . . . , x̄n} ⊂ Z̄ be the image of a non-empty collection of orbits, which in-

cludes all of the exceptional orbits. In fact, it is sufficient to choose only the excep-

tional orbits unless this produces an empty collection, in which case the image of one

principal orbit suffices. Choose disjoint 2-disk neighborhoods, V̄i, of each x̄i. Orient

∂V̄i by its inward normal. The closure of the complement of the disks is denoted by

R̄ = cl
(
Z̄ \

(⋃n
i=1 V̄i

))
and is the surface of genus g with n boundary components.

See Figure 1.

The preimage of the disk, Vi = π−1(V̄i) ∼= D2 × S1, is a solid torus. Orient the

boundary torus ∂Vi
∼= T2 by its inward normal. Let xi be contained in π−1(x̄i), the

core of Vi. Denote the slice at xi by Si
∼= D2, and note that π(Si) = V̄i

∼= D2 is the

quotient of Si by the finite cyclic group T 1
xi

. Orient Si so that its intersection number

with T 1(xi), #
(
Si ∩ T 1(xi)

)
, is equal to +1.

Let mi be the boundary curve of Si, oriented by its inward normal. This curve is a

meridian of ∂Vi, that is, a curve representing a generator of H1(∂Vi;Z) which bounds

a disk in Vi. Let li be a longitudinal curve on ∂Vi, chosen so that #(li ∩mi) = +1.

Note that this does not uniquely specify li, which can be varied by adding any multiple

of mi. Further, we freely identify oriented curves with the corresponding elements of

H1(∂Vi;Z).

The pair (li,mi) now forms an oriented basis for H1(∂Vi;Z). The homology class of

any other closed curve t in ∂Vi may be written as t = ali+bmi for some a, b ∈ Z. The

coefficients then give the intersection numbers #(t ∩mi) = a and #(t ∩ li) = −b.

Let hi be an oriented principal orbit on ∂Vi. Writing hi = αili + γimi, we have that

#(hi ∩mi) = αi is the order of the isotropy group at xi (see Figure 2) and this gives

one Seifert invariant for the orbit over x̄i.

We remove the neighborhoods V̄1, . . . , V̄n from Z̄ to obtain the surface with boundary

R̄ = cl
(
Z̄ \

(⋃n
i=1 V̄i

))
. Recall that principal T 1-bundles over a base B are classified

by H2(B), so all principal T 1-bundles over surfaces with boundary are trivial. Thus,

we can choose a section, σ : R̄ → R. Consider the curves qi := σ(∂V̄i) for i =
1, . . . , n. These curves lie on the tori ∂Vi and, since they are sections, they intersect
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li

mi

hi

Figure 2: A meridian, mi, longitude, li, and principal orbit, hi, on ∂Vi. The inter-

section number of hi with mi is αi = 2, the order of the isotropy at the exceptional

orbit.

each principal orbit on ∂Vi exactly once, so #(hi ∩ qi) = ±1.

We orient the qi so that #(hi ∩ qi) = +1. The qi are the boundary components of the

image of the section, σ
(
R̄
)
, but to achieve this sign convention they must be oriented

by the outward normal to σ
(
R̄
)
. That is, the orientation of the qi is that which agrees

with the orientation of ∂V̄i as the boundary of V̄i.

The pair (hi, qi) form a second basis of H1(∂Vi;Z), with the same orientation, and so

they can be related by some element of SL(2,Z),
(
hi

qi

)
=

(
αi γi
−βi δi

)(
li
mi

)
.

Since qi = −βili+ δimi, we have that βi = #(mi ∩ qi) is independent of our choice

of longitude, and so we obtain a second Seifert invariant for the orbit. By choosing a

different section, σ′, the class qi may be altered by adding a multiple of hi, although

in this case at least some of the other qj for j 6= i must also change. The invariant βi

is therefore only determined up to a multiple of αi.

Since
( αi γi

−βi δi

)
∈ SL(2,Z), we have that gcd(αi, βi) = 1. Furthermore, inverting the

matrix, we can write mi = αiqi + βihi.

The pair (αi, βi) are the Seifert invariants for the orbit T 1(xi) and we say that the

Seifert invariants of the T 1 action on Z3 are

{g; (α1, β1), . . . , (αn, βn)}.

These invariants are not uniquely determined by the action, not only because the index

set may be permuted, but also for a more significant reason, already noted above: the

βi depend on the choice of section σ. However, the generalized Euler number given

by the sum

e = −
n∑

i=1

βi

αi

(1)
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is independent of the choice of σ.

In Proposition 6.14, we calculate the orbifold fundamental group of some 4-spaces. A

necessary ingredient in this calculation is the fundamental group of a Seifert manifold.

The following theorem shows how the Seifert invariants may be used to compute the

fundamental group of the manifold. See Theorem 6.1 in [28] for the proof. We give

the result below for the case g = 0, since this is the only case we are interested in

here.

Theorem 2.7. Let Z3 be a Seifert manifold with invariants

{0; (α1, β1), . . . , (αn, βn)}.

Then the fundamental group is given by

π1(Z) =
〈
q1, . . . , qn, h

∣∣ [qi, h] = 1, qαi

i hβi = 1, q1q2 · · · qn = 1
〉
.

Note that Seifert invariants are usually normalized [36]. The most frequent convention

is to impose the constraint 0 < βi < αi and to include an additional principal orbit of

type (1, b), so that we still have b+
∑n

i=1
βi

αi
= −e.

The most natural point of view to take in understanding the normalized invariants is

that they arise from making the choice of the sections qi first in order to satisfy the

constraints 0 < βi < αi. The obstruction to extending the qi to a global section σ is

then given by b. However, in the present work it is convenient to fix the global section

σ first, and so unnormalized invariants are more suitable.

Table 1: Table of notation for unnormalized Seifert invariants

Z A 3-manifold with a fixed-point-free T 1 action.

Z̄ Its orbit space, Z/T 1, a surface with singular points.

g The genus of the surface Z̄.

x̄i For i = 1, . . . , n, a collection of points in Z̄ which includes the image of

each exceptional orbit T 1(xi).
V̄i A 2-disk neighborhood of x̄i.

Vi Its preimage, a solid torus neighborhood of T 1(xi).
R̄ The complement of the V̄i, cl

(
Z̄ \

(⋃n
i=1 V̄i

))
, a surface with boundary.

σ A section of the action defined on R̄.

Si The slice at some xi, oriented so that #
(
Si ∩ T 1(xi)

)
= +1.

mi The boundary of Si, a meridian on ∂Vi.

li A longitude on ∂Vi chosen so that #(li ∩mi) = +1.

hi An oriented principal orbit on ∂Vi.

qi The oriented curve σ(∂V̄i) ⊂ ∂Vi, which depends on σ and is a section for

the action on ∂Vi such that #(hi ∩ qi) = +1.

αi The order of the isotropy at xi, given by #(hi ∩mi).
βi The intersection number #(mi ∩ qi), which depends on the choice of σ.
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3 Singularities and positive curvature

3.1 Extents of spaces of directions

For a metric space X , we define the q-extent of X to be the maximum of the average

distance function among q points in X :

xtq(X) = max
{x1,x2,...,xq}⊂X

1(
q
2

)
∑

i<j

dist(xi, xj).

In particular, the following lemma, originally given for the case where X is a quotient

of a Riemannian manifold but stated below in full generality, provides a particularly

nice application of extents to control the number of highly singular points in the pres-

ence of positive curvature.

Lemma 3.1 (Extent Lemma [22, 20]). Let X be an Alexandrov space. For any

choice of (q + 1) distinct points p0, . . . , pq ∈ X one has

1

q + 1

q∑

i=0

xtq(Σpi
X)

>

(=)

π

3

whenever one has curv(X) >
(=)0.

In light of this result, we make the following distinction between spaces of directions.

Definition 3.2 (Small Spaces). Let Σ be an Alexandrov space of curv ≥ 1.

We say that Σ is small if xt3(Σ) ≤
π
3 . Then for a general Alexandrov space X and a

point p ∈ X we say that p has a small space of directions if xt3(Σp) ≤
π
3 .

It then follows that in a positively curved Alexandrov space we can bound the total

number of points with small spaces of directions.

Proposition 3.3. Let X be a positively curved Alexandrov space. Then there can

be at most three distinct points with small spaces of directions.

Proof. Assume, aiming for a contradiction, that there are four such points. Then there

would be four points in X having spaces of directions with 3-extent bounded above by

π/3. By a simple application of the Extent Lemma 3.1, this is not possible. Therefore

there are at most three such points.

We remark that the application of the Extent Lemma in this proof essentially synthe-

sizes the argument given in the original paper of Hsiang and Kleiner [26] to bound the

total number of isolated fixed points.

By design, Condition Q ensures that the space of directions at the image in the orbit

space of an isolated fixed point is small. Therefore Proposition 3.3 yields the following

bound on the number of fixed points.

Proposition 3.4. Let X be a positively curved Alexandrov space on which T 1 acts

isometrically and effectively so as to satisfy Condition Q. Then there can be at most

three isolated fixed points.
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3.2 Singular knots

Under Condition Q, not only is the space of directions at the image in the orbit space

of an isolated fixed point a small space, so too is any double branched cover over two

points corresponding to finite isotropy. This allows us to investigate singular knots by

combining the results of the previous section with results on double branched covers

over knots. We define the following condition.

Definition 3.5 (Condition O). Let X3 be an Alexandrov space homeomorphic

to S3 containing an extremal closed curve, c. We say that (X, c) satisfies Condition O

if there are two points p1, p2 ∈ X , not necessarily on c, which have small spaces of

directions and that the corresponding points p̃i, i = 1, 2 in the double branched cover

of X over c, X2(c), also have small spaces of directions.

The following theorem synthesizes information from Section 2 of [23].

Theorem 3.6. Let X3 be a positively curved Alexandrov space homeomorphic to

S3. If c ⊂ X3 is an extremal closed curve and (X3, c) satisfies Condition O, then c is

unknotted.

Proof. Consider the double branched cover over the closed curve c, X3
2 (c). By Con-

dition O, we see that X3
2 (c) has at least two singular points with small spaces of di-

rections. Recall that by Lemma 5.2 in [23], X3
2 (c) is also positively curved. It follows

that its universal cover, X̃3
2 (c), is also positively curved, with at least 2|π1(X

3
2 (c))|

singular points. By Proposition 3.3, 2|π1(X
3
2 (c))| ≤ 3, hence X3

2 (c) is simply con-

nected.

Theorem C of [23] tells us that we can determine whether a closed curve, c, is knotted

by considering the double branched cover, X3
2 (c), over that curve. Namely, if c is the

unknot, X3
2 (c) is simply connected, and otherwise the fundamental group has order at

least 3. In particular, this allows us to conclude that c is the unknot.

3.3 Equivariant Suspension Theorem

If the orbit space of a G-action is given by a suspension, with the suspension points

corresponding to G-fixed points, then the G-action is also on a suspension. This

allows us to give an Alexandrov geometry analogue of Theorem 1.4 in [22], Grove

and Searle’s Equivariant Sphere Theorem.

Proposition 3.7. Let X be a closed, positively curved Alexandrov space on

which G acts by isometries. Suppose that p1, p2 ∈ X are two fixed points and that

X̄ = X/G is homeomorphic to a suspension so that the homeomorphism respects the

stratification by orbit types while taking p̄1 and p̄2 to the suspension points.

Then Σp1
∼= Σp2

∼= Σ are equivariantly homeomorphic, and X is equivariantly

homeomorphic to the spherical suspension of Σ.

Proof. Following the methodology of Section 4 of [27], let W be the “blow up” of X
at the fixed points p1 and p2. That is, remove the points p1 and p2 from X and replace
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them with their spaces of directions to obtain W . Then W admits a G-action and the

orbit space W/G corresponds to the blow up of X̄ at p̄1 and p̄2.

Since X̄ is a suspension, W/G is homeomorphic to Σ̄ × [0, 1], where the orbit types

respect the product structure and Σ̄ ∼= Σp̄1
∼= Σp̄2

. By the Covering Homotopy

Theorem of Palais [38] (see also Theorem II.7.1 in [1]), W is also a product and G
acts on it with a product action.

It follows that Σp1
and Σp2

are equivariantly homeomorphic, and so we identify them

as Σ. Then X is a suspension on Σ, and the group action on X is the suspension of

the isotropy action on Σ.

Theorem 3.8 (Equivariant Suspension Theorem). Let X be a closed,

positively curved Alexandrov space on which G acts by isometries. Suppose that

p1, p2 ∈ X are two fixed points and that diam(Σp̄i
) ≤ π

4 for i = 1, 2. Then

Σp1
∼= Σp2

∼= Σ are equivariantly homeomorphic, and X is equivariantly homeo-

morphic to the spherical suspension of Σ.

Proof. Denote by X̄ the orbit space X/G. Let q ∈ X̄ \ {p̄1, p̄2} be chosen arbitrarily.

Then ∠p̄1qp̄2 > π
2 . Then, just as in Theorem 4.5 in [39], the function dist(pi, ·) is

regular, so that X̄ \ {p̄1, p̄2} fibers over an interval, and X̄ is homeomorphic to the

suspension of Σ̄, where Σ ∼= Σp̄1
∼= Σp̄2

. Following the method of proof of the Rel-

ative Stability Theorem 4.3 of the authors’ previous work [27], this homeomorphism

respects the stratification by extremal subsets.

The result then follows from Proposition 3.7.

In Section 6.4, we apply this result in the context of T 1-actions on 4-dimensional

spaces satisfying Condition Q in order to understand the isotopy type of extremal θ-

graphs, that is, graphs with two vertices, three edges and no loops, with the shape of

the letter θ. Where the isotropy action at a fixed point p has three components of finite

isotropy, Condition Q′ at that point implies that diam(Σp̄) ≤ π
4 , and so the result is

applicable.

Alternatively, arguments similar to those used in Section 3.2 for extremal knots to-

gether with Lemma 2.3 of Calcut and Metcalf-Burton [6] could be applied to show

that the θ-graphs are unknotted.

4 Topological classification for three isolated fixed points

In this section we classify actions of T 1 on closed oriented Alexandrov spaces, X4,

such that the orbit space X̄3 ∼= S3 and the fixed-point set comprises three isolated

points, {p1, p2, p3}, with the entire singular set lying on a locally flat closed curve

c̄, which is unknotted. The classification is up to orientation-preserving, equivariant

homeomorphism.

The classification we obtain is based on Fintushel’s classification of simply connected

4-manifolds with circle actions [11]. We generalize his work, in the sense that we

consider Alexandrov spaces rather than manifolds, but we also specialize it by con-

straining the structure of the orbit space.
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In Section 4.1 we assign invariants,

(
β1

α1
,
β2

α2
,
β3

α3

)
∈ Q3,

to the actions in a manner similar to that of [11]. There are various degrees of free-

dom in how these invariants are defined, and in Section 4.2 we define an equivalence

relation on Q3 which removes these freedoms. The invariants are then uniquely de-

fined up to equivalence. In Lemma 4.5, we also show that certain invariants do not

correspond to actions: those where βi

αi
=

βj

αj
for some i 6= j. In Section 4.3, we prove

a uniqueness result, showing that if two 4-spaces have equivalent invariants then there

is an orientation-preserving, equivariant homeomorphism between them, so that these

invariants are sufficient for classification.

In Section 4.4, we prove an existence result which is a key ingredient in proving the

Main Theorem 1.4. Theorem 4.8 shows that every set of invariants, barring those

where two of the triple are equal, corresponds to an action on a finite quotient of some

CP2
a,b,c.

Remark 4.1. All of the results in Sections 4.1, 4.2 and 4.3 can easily be shown

to hold for any number n of isolated points lying on an unknotted curve with the

appropriate modifications. Note that those n-tuples for which βi

αi
= βi+1

αi+1
, where the

indices are taken modulo n, do not correspond to an action.

4.1 Assigning invariants to actions

In this subsection we assign invariants to actions on oriented 4-spaces. Fintushel refers

to these invariants as weights in [11], but to prevent ambiguity later when making use

of weighted projective spaces, we avoid this terminology.

Orient X̄ so that its orientation, followed by the orientation of the orbits, gives the

orientation of X4.

Label the arc of c̄ between the pair of fixed points (p̄i, p̄i+1) in X4/T 1 = X̄3 ∼= S3

by Ji, as shown in Figure 3, where the arithmetic here is modulo 3. Orient c̄ so that

it is traversed as (p̄1p̄2p̄3). Note that a renumbering of the p̄i permits the opposite

orientation of the curve.

Let Ū ∼= S1 × D2 be a closed neighborhood of c̄. We decompose Ū into three balls

B̄i, each containing one fixed point p̄i, so that B̄i ∩ B̄i+1 = V̄i, a locally flat 2-disk.

Then ∂Bi, a submanifold of X4, is a Seifert manifold, which we denote by Z3
i , and

we orient it by its inward normal.

Orient each disk V̄i so that the intersection number #
(
V̄i ∩ Ji

)
= +1. This is equiv-

alent to orienting it as a submanifold of Z̄i+1 (see Figure 4). We then orient the

boundary ∂V̄i by the inward normal.

We decompose X̄3 as Ū ∪ W̄ , where W̄ = cl
(
X̄ \ Ū

)
. Since c̄ is unknotted, W̄

is homeomorphic to S1 × D2 and, in particular, H2(W̄ ;Z) = 0. Indeed, a simple

application of the Mayer–Vietoris sequence shows that H2 is trivial even when c̄ is

knotted. The free circle action on W therefore corresponds to a trivial T 1-principal

bundle, which admits a section, σ : W̄ → W .
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V̄1

V̄2

V̄3

J1

J2

J3

p̄1

p̄2

p̄3

B̄1

B̄2

B̄3

Figure 3: Structure of the neighborhood U of the curve c̄ ⊂ X̄3 ∼= S3.

Z̄1

V̄1V̄3

J1

Figure 4: The base of the Seifert manifold Z1 = ∂B1. Note that V̄3 is oriented as a

submanifold of Z̄1, since J1 corresponds to the inward normal here. However, V̄1 has

the opposite orientation, and is instead oriented as a submanifold of Z̄2.
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Let the image of the restricted section σ|∂V̄i
, oriented by ∂V̄i, be denoted by qi. We

may use qi to define the pair of Seifert invariants (αi, βi) for the exceptional fiber in

Vi → V̄i, following the conventions given in Section 2.3. If Ji does not correspond

to a component of finite isotropy, then there is no exceptional fiber and the pair of

invariants is of the form (1, βi).

Definition 4.2. The invariants of the T 1 action on the oriented space X4, with

respect to the section σ and the labeling of the curve c̄, are
(
β1

α1
,
β2

α2
,
β3

α3

)
∈ Q3.

We always assume that fractions are written in their lowest terms, with a positive de-

nominator. Note that reversing the orientation of X4 changes the sign of the invariants.

These invariants differ from Fintushel’s weighted orbit spaces [11] in three key ways,

which we review here.

I. Normalization of invariants. Fintushel requires that the invariants for the

exceptional fiber in Vi → V̄i be normalized so that 0 < βi < αi. These normalized

invariants then correspond to a particular choice of section ∂V̄i → ∂Vi. Theorem 3.6

of [11] shows that these may be extended to a section ∂Ū → ∂U .

However, the existence of an extension relies in a key way on the spaces of directions,

Σpi
, being spheres, which does not hold in Alexandrov geometry. In our case, the

normalized invariants need not extend to a section over ∂Ū . For this reason, we begin

with the global section, and so use unnormalized invariants.

II. Virtual edges. If two of the three fixed points are not joined by a component

of finite isotropy, the singular set in the orbit space does not contain a closed curve.

Fintushel analyzes the resulting arcs and isolated fixed points separately. However,

given the limited number of orbit space types being considered here, it is simplest to

unify the treatment.

The singular set does lie on a closed curve, c̄, though some arcs Ji on the curve

correspond to principal orbits. These arcs are “virtual edges” in the orbit space. They

are treated as though they correspond to orbits with finite isotropy of order 1. This

results in the inclusion of invariants of the form (1, βi) in the set of invariants for Σpi
.

III. Weighted orbit spaces. Finally, Fintushel attaches his invariants to the orbit

space to create a weighted orbit space. The isomorphism type of this weighted orbit

space is a key concept in his arguments, and is a convenient way of keeping track

of the different links and arcs in the space. In our case, since an orbit space always

comprises a single unknotted curve in the sphere, we suppress any explicit mention of

isomorphisms of weighted orbit spaces. The concept can be reduced to the equivalence

of invariants, and this is done in the next section.

4.2 Equivalence of invariants

Observe that the section σ : W̄ → W is not unique, and hence the invariants of the T 1

action on X4 are not uniquely defined. Such a section is a map S1 ×D2 → T2 ×D2.
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Consider a longitudinal circle, S1 × {x} and lift it to T2 × D2. The homology class

of the lifted circle clearly does not depend on x, and it can be varied by adding kh,

where k ∈ Z and h ∈ H1(W ;Z) is an oriented orbit. Varying the section in this way

changes each of the βi to βi + kαi, adding k to each fraction.

Now we consider the impact of this change on the invariants for the Seifert manifold

Zi → Z̄i, oriented by its inward normal. There are two exceptional fibers, and they

have neighborhoods V̄i−1 and −V̄i, by which we mean V̄i with the reverse orientation

(see Figure 4). With respect to the original section σ, the invariants are therefore

{0; (αi−1, βi−1), (αi,−βi)}. Varying σ, we see that βi−1 is increased by kαi−1 while

−βi is decreased by kαi, so that the generalized Euler number, given by the sum of

the fractions as in Equation (1), is unchanged as required. Moreover, the labeling of

the fixed points on c̄ is also arbitrary. The starting point of the closed curve, as well as

its orientation, may be freely changed. These changes also alter the invariants.

The effects of these choices on the invariants can be expressed using the following

equivalence relation on Q3.

Definition 4.3. Two points in Q3 are related by the equivalence relation ∼ if they

are the same up to

1. Rotation of co-ordinates: (a, b, c) ∼ (b, c, a);

2. Reversal of co-ordinates with a change of sign:

(a, b, c) ∼ (−c,−b,−a);

3. Translation by an integer multiple of (1, 1, 1):
(a, b, c) ∼ (a+ k, b+ k, c+ k) for some k ∈ Z;

or any combination of Relations (1), (2), and (3).

The following lemma is then clear from the preceding discussion.

Lemma 4.4. Let T 1 act on X4, a closed oriented Alexandrov space, so that X̄3 ∼= S3

and the fixed-point set comprises three isolated points with the entire singular set lying

on a closed curve which is unknotted. If the action has invariants (a, b, c) ∈ Q3 with

respect to some section σ and some labeling of the curve, then for any (a′, b′, c′) ∼
(a, b, c) ∈ Q3 there is a section σ′ and labeling of the curve with respect to which the

invariants of the action are (a′, b′, c′).

Comparing once more to [11], we note that Relations (1) and (2), which are associ-

ated to the labeling of the curve, are referred to in Section 3.3 in [11], but Relation

(3), which is associated to the section, is not used, because of the decision to use

normalized invariants.

From now on, we simply refer to the triple
(

β1

α1
, β2

α2
, β3

α3

)
∈ Q3 as being the invariants

of the action, and only make reference to the section and labeling of the curve where

it is necessary.

As mentioned earlier, it is not the case that any triple of fractions can correspond to

an action. The next lemma gives a constraint on the values the fractions can take, and

we see later in Theorem 4.8 that it is, in fact, the only constraint. This result may be

compared to [11, Lemma 3.5], in the more rigid manifold situation.
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Lemma 4.5. Let T 1 act on X4, a 4-dimensional, closed, oriented Alexandrov space,

so that X̄3 ∼= S3 and the fixed-point set comprises three isolated points with the entire

singular set lying on a closed curve which is unknotted. Let the action have invariants(
β1

α1
, β2

α2
, β3

α3

)
∈ Q3. Then the fractions βi

αi
, for i = 1, 2, 3, are pairwise unequal.

Proof. Recall that the Seifert invariants of the T 1 action restricted to the manifold Zi

are {0; (αi−1, βi−1), (αi,−βi)}. By Theorem 4 in Orlik and Raymond [37], which

classifies circle actions on 3-manifolds, it therefore follows that Zi is a lens space,

unless
βi−1

αi−1
= βi

αi
, in which case Zi

∼= S2 × S1. However, Zi is homeomorphic to

the space of directions at pi, and so must admit positive curvature, and this yields a

contradiction. It follows that all three fractions βi

αi
are pairwise unequal.

4.3 Classification by invariants

In this subsection, we show that if two spaces admit circle actions with equivalent in-

variants then there is an orientation-preserving, equivariant homeomorphism between

them, so that these invariants suffice for classification. We then show, in the follow-

ing subsection, that for any possible set of invariants, there is a finite quotient of a

weighted complex projective space with a circle action with those invariants.

Before proceeding, we need a basic lemma on equivariant isotopies of the torus.

Lemma 4.6. Let T 1 act freely on the torus T2. Let σ, σ′ : S1 → T2 be two homolo-

gous sections of the action, and let f : T2 → T2 be an equivariant homeomorphism

which satisfies f ◦ σ = σ′. Then there is an orbit-preserving, equivariant isotopy

from idT2 to f , that is, an isotopy through equivariant homeomorphisms all of which

induce idS1 .

Proof. Note first that f is unique, since if g were another such homeomorphism then

g−1 ◦ f would be an equivariant homeomorphism fixing all points on the section σ,

and therefore g−1 ◦ f = idT2 . Let π : T 2 → S1 be the projection to the orbit space.

Write f as p 7→ (φ ◦ π(p)) · p, where φ : S1 → T 1 is a continuous map from the orbit

space into the circle group.

For any two sections σ and σ′ there is some k ∈ Z so that, in integral homology,

[σ′]− [σ] = k[h], where [h] is the homology class of the orbit (see Section 2.3). Since

f ◦ σ = σ′, we have deg(φ) = k. By assumption σ and σ′ are homologous, so that

deg(φ) = 0. It follows that φ is homotopic to a constant map and, in particular, to

the map to the identity element of T 1. This induces the desired isotopy from idT2

to f .

The following theorem generalizes Theorems 3.6 and 6.2 of [11] to the Alexandrov

space setting.

Theorem 4.7 (Uniqueness). Let X4
1 and X4

2 be two 4-dimensional, closed, ori-

ented Alexandrov spaces, each admitting isometric circle actions. Suppose that these

actions are such that X̄j
3 ∼= S3 for j = 1, 2 and that for each j the fixed-point set
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comprises three isolated points with the entire singular set lying on a locally flat un-

knot. Suppose further that the actions have equivalent invariants. Then there is an

orientation-preserving, equivariant homeomorphism X1
∼= X2.

Proof. Recall that invariants are defined with respect to a section and a labeling of

the curve. By Lemma 4.4, we may choose the sections and labelings so that the two

actions have invariants which are equal, rather than merely equivalent.

Denote by pi,1, for i = 1, 2, 3, the three fixed points in X4
1 . Denote the fixed points in

X4
2 by pi,2. TheXj induce orientations of the orbit spaces X̄j , and the orbit spaces can

be identified via an orientation-preserving, homeomorphism which carries p̄i,1 7→ p̄i,2
for each i. From here on we denote both X̄1

∼= X̄2 by X̄ . Let c̄ be the unknotted closed

curve, let Ū be a regular neighborhood of c̄, and let Ū be decomposed as described in

Section 4.1 (see Figure 3).

Let W̄ = cl(X̄ \ Ū) and let σj : W̄ → Wj ⊂ X4
j be the sections, which have been

chosen so that the invariants are equal. Using σ1 and σ2, we construct an orientation-

preserving, equivariant homeomorphism fW : W1 → W2 with f̄W = id|W̄ satisfying

fW ◦ σ1 = σ2.

Now consider two solid tori, Vi,1 ⊂ U1 and Vi,2 ⊂ U2, both over the disk V̄i ⊂
Ū ⊂ X̄ , corresponding to the pair of invariants (αi, βi). Let

( αi γi

−βi δi

)
∈ SL(2,Z).

Both Vi,j are equivariantly homeomorphic to S1 × D2 with a circle action given by

µ · (eiθ, reiφ) = (µαieiθ, µγireiφ). The choice of element in SL(2,Z) corresponds to

specifying longitudinal circles on each ∂Vi,j . The solid tori Vi,1 and Vi,2 are there-

fore equivariantly homeomorphic to each other, and we choose fi : Vi,1 → Vi,2, an

equivariant homeomorphism preserving the specified longitudes, so that f̄i = id|V̄i
.

Now consider the oriented curves σj

(
∂V̄i

)
. In ∂

(
S1 ×D2

)
these curves are both

homologous to ν 7→
(
ν−βi , νδi

)
. Therefore the equivariant homeomorphism fi is

such that fi ◦ σ1|∂V̄i
:= σ′

2 is a new section homologous to σ2|∂V̄i
.

We now let h = fi ◦ f
−1
W

∣∣
∂Vi,2

be the induced self-homeomorphism of ∂Vi,2. By

definition h ◦ σ2 = σ′
2, and this new section σ′

2 is homologous to σ2. Therefore

we can apply Lemma 4.6 to obtain an orbit-preserving equivariant isotopy from h to

id|∂Vi,2
. Composing, we obtain an isotopy from h ◦ fW |∂Vi,1

= fi|∂Vi,1
to fW |∂Vi,1

.

Since fi is defined over all of Vi,1, this allows us to extend fW over all of Vi,1 as well.

We can then extend the homeomorphism over the interior of the Bi by coning, which

gives us the result.

As previously noted in Remark 4.1, this result can be generalized to classify actions

with any number, n, of isolated fixed points, provided the entire singular set lies on an

unknotted closed curve in S3.

4.4 The weighted complex projective space CP2
a,b,c

Now, for any possible set of invariants, we construct a finite quotient of a weighted

complex projective space with a circle action with those invariants.

The circle actions constructed on weighted complex projective spaces are induced by

T 3 actions on S5. We first describe the basic set-up.

Documenta Mathematica 26 (2021) 1889–1927



1908 J. Harvey, C. Searle

When T 3 acts on S5, there are three distinguished circle subgroups, up to orientation,

acting fixed-point-homogeneously, and we take these circles to be the generators of

H1(T
3;Z).

The quotient space S5/T 3 is a 2-simplex, ∆2. The isotropy groups at the edges are

the circle subgroups of T 3 that act fixed-point-homogeneously on S5 and the isotropy

groups at the vertices are the T 2 subgroups generated by pairs of these.

Let a, b, c be integers satisfying gcd(a, b, c) = 1. Define the subgroup T 1
a,b,c →֒ T 3 by

the inclusion λ 7→ (λa, λb, λc). This group acts almost freely on S5, and the quotient

space S5/T 1
a,b,c is the weighted complex projective space CP2

a,b,c. It has an induced

action by T 2 = T 3/T 1
a,b,c. Note that by changing the signs of the weights, there are

eight different ways to represent each CP2
a,b,c, four in each orientation.

Since T 1
a,b,c acts almost freely, the isotropy subgroups of the T 2 action on CP2

a,b,c are

isomorphic to the isotropy subgroups of the T 3 action of S5. In particular, there are

three fixed points of the T 2 action and there are three distinct circle subgroups of T 2,

each acting fixed-point-homogeneously on CP2
a,b,c. It follows that any other circle

subgroup of T 2 has exactly three fixed points. We denote the homology classes in

H1(T
2;Z) of the fixed-point-homogeneous circle subgroups by m1, m2 and m3.

Choose a basis for T 2 so that none of the fixed-point-homogeneous circles are basis

elements. Consider the circle subgroup T 1 ⊂ T 2 given by µ 7→ (1, µ). Denote its

corresponding homology class by h ∈ H1(T 2;Z), so that h is a basis element of

H1(T
2;Z) and h 6= ±mi for any i. The numbers αi = #(h ∩mi), provide the order

of the finite isotropy groups. Since the choice of orientation of the mi was arbitrary,

we may assume αi > 0.

The orbit space CP2
a,b,c/T

1 is homeomorphic to S3. The T 3 action on S5 induces one

final circle action on CP2
a,b,c/T

1. As observed above, the orbit space is homeomor-

phic to the 2-simplex ∆2. There is an unknotted closed curve in S3 which contains

F̄ ∪ Ē, and this curve is fixed by the circle action. The image of the unknotted curve

is ∂∆2.

Theorem 4.8 (Existence). Consider a set of invariants

(
β1

α1
,
β2

α2
,
β3

α3

)
∈ Q3

so that the fractions βi

αi
, for i = 1, 2, 3, are pairwise unequal. Then there is a weighted

complex projective space CP2
a,b,c and a finite group Γ so that the standard T 2 action

on CP2
a,b,c/Γ contains a circle action with these invariants.

Proof. Consider an arbitrary weighted complex projective space, CP2
a,b,c. As noted

above, CP2
a,b,c admits an action by T 2, with orbit space a 2-simplex ∆2, and three

fixed-point-homogeneous circle subgroups represented in homology by ±mi.

Let T 1 be the circle subgroup of T 2 defined by µ 7→ (1, µ), and denote its homology

class by h. By a suitable choice of basis for T 2, we may assume h 6= ±mi. Denote the

homology class of the circle subgroup defined by ν 7→ (ν, 1) by q. The basis chosen

for T 2 determines an orientation on each orbit so that #(q ∩ h) = +1.
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x1

x2

x3

y1
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c1

c2

c3

Y

Figure 5: The structure of CP2
a,b,c/T

2, as in the proof of Theorem 4.8.

Orient ∆2 so that its orientation followed by the orientation of the T 2 orbits gives

the orientation of CP2
a,b,c, and orient ∂∆2 by its inward normal. Consider a collar

neighborhood Y of ∂∆2. Fix three points xi on ∂∆2, one on each edge, so that ∂∆2

with its orientation is traversed as (x1x2x3). Draw curves ci starting from each xi and

ending at yi ∈ ∂Y so that the ci split Y into three components as shown in Figure 5.

The preimage in CP2
a,b,c/T

1 ∼= S3 of this structure on Y consists of an unknot, c̄,

with a tubular neighborhood Ū , and three separating disks, denoted by V̄i, as depicted

in Figure 3. We can use these to define the invariants of the action.

Orient S3 by the orientation of ∆2, followed by the orientation of the orbit of the

induced circle action on S3. Our choice of T 1 ⊂ T 2 as the second basis element

guarantees that this orientation of S3, followed by the orientation of the orbit of T 1 on

CP2
a,b,c, is the orientation of CP2

a,b,c, as required.

Orient the unknot c̄ by ∂∆2. Then if ∂V̄i is given its orientation as the circle orbit over

yi, and V̄i is oriented by ∂V̄i with respect to the inward normal, #
(
V̄i ∩ c̄

)
= +1. To

see this, note that the inward normal to ∂V̄i descends to a vector which points in the

opposite direction to the inward normal to ∂∆2.

The regular part of the T 2 action on CP2
a,b,c is a trivial principal bundle over the

interior of ∆2 and so admits a section, τ . We can use the circle subgroup of T 2 given

by ν 7→ (ν, 1), whose homology class is denoted by q, together with the section τ to

define a section of the T 1 action, σ :
(
S3 \ c̄

)
→ CP2

a,b,c.

To use σ to define the invariants, we must identify the oriented curve σ
(
∂V̄i

)
⊂ ∂Vi.

Since ∂V̄i is oriented as the circle orbit over yi, σ
(
∂V̄i

)
= q. Recall, however, that

when ∂Vi is considered as the T 2 orbit over yi, we have #(h ∩ q) = −1, which

has the wrong sign for calculating invariants. This is resolved by observing that the

orientation of ∂Vi as a boundary is, in fact, opposite to its orientation as an orbit.

We also need to identify the meridian curves. Since the circle subgroup corresponding

to the curve mi fixes the core of the solid torus Vi, mi is contractible in Vi and so is a
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meridian.

The intersection number #(h ∩mi) = αi, the order of the finite isotropy, while

#(q ∩mi) = −βi. Therefore, we need mi = αiq + βih.

The map p : T 3 → T 3/T 1
a,b,c induces a map p∗ : H1(T

3;Z) → H1(T
2;Z) in ho-

mology. Clearly p brings the fixed-point-homogeneous circles in T 3 to the desired

mi ∈ H1

(
T 2;Z

)
if p∗ =

( α1 α2 α3

β1 β2 β3

)
. Note that p∗ is of full rank. If one row were a

multiple of the other, then βi

αi
would have the same value for each i, but each fraction

must be different.

In case ᾱ = gcd(αi) and β̄ = gcd(βi) are both 1, to realize this map, it is enough

to find the kernel of p∗ as a linear transformation R3 → R2, and note that this corre-

sponds to a circle subgroup of T 3, which should be taken to be T 1
a,b,c. The resulting

CP2
a,b,c carries a T 2 action. The quotient by the subgroup Zᾱ ×Zβ̄ can then be taken

if necessary.

Remark 4.9. It might appear at first sight that not all CP2
a,b,c can be obtained in

this way. For instance, any invariants associated to CP2 = CP2
1,1,1 must satisfy

( α1 α2 α3

β1 β2 β3

)( 1
1
1

)
= ( 00 ), which is not compatible with the constraint that αi > 0.

However, recalling that CP2
1,1,1

∼= CP2
1,−1,−1, for example, the equation can be

solved.

5 Almost maximal symmetry rank: dimension 3

We consider circle actions on positively curved Alexandrov spaces of dimension three

and four, beginning in this section with those of dimension three.

Remark 5.1. If a positively curved Alexandrov space has boundary, then there is a

unique point at maximal distance from the boundary and the space is homeomorphic

to a cone, with this “soul” point corresponding to the cone point. The soul point is

fixed by the action, and by the Slice Theorem 2.3 the isotropy action at the soul de-

termines the equivariant homeomorphism type (see [27]). For this reason, we always

assume that the spaces have no boundary.

We recall first the manifold classification. The topological classification of the under-

lying spaces follows from the work of Hamilton [25], which shows that the positively

curved manifolds are precisely the spherical space forms. The actions on these mani-

folds were classified by Raymond [43].

Theorem 5.2. Let T 1 act isometrically and effectively on M3, a closed, positively

curved Riemannian manifold. Then M is equivariantly diffeomorphic to S3/Γ with a

linear action, where Γ is a freely acting finite subgroup of SO(4).

The extension of Theorem 5.2 to Alexandrov spaces in dimension 3 is straightforward,

and we give it without the hypothesis of orientability.
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Proposition 5.3 (Circle actions in dimension 3). Let T 1 act isometrically

and effectively on X3, where X is a 3-dimensional, closed, positively curved Alexan-

drov space. Then X3 is equivariantly homeomorphic to S3/Γ with a linear T 1 action,

where Γ is a finite subgroup of O(4).

Proof. It was shown in [16] that every positively curved Alexandrov 3-space, X3, is

homeomorphic to either a spherical manifold or Susp
(
RP2

)
. If it is a manifold, the re-

sult follows by Raymond [43]. If it is Susp
(
RP2

)
, then it follows by the classification

of circle actions on closed three-dimensional Alexandrov spaces [35].

Note that not every Γ < O(4) yields an orbifold S3/Γ which admits a circle action:

Dunbar [9] demonstrates that there are twenty-one subgroups of SO(4) yielding non-

fibering orbifolds.

6 Almost maximal symmetry rank: dimension 4

We proceed to consider circle actions on positively curved Alexandrov spaces of di-

mension four. As before, we always assume that the space has no boundary. We pro-

vide the classification for orientable spaces only: the non-orientable spaces are quo-

tients by an involution which commutes with the circle action by Theorem A of [27].

We recall first the manifold classification.

Theorem 6.1 [26, 21, 23]. Let T 1 act isometrically and effectively on M4, a 4-

dimensional, closed, positively curved Riemannian manifold. Then M is equivariantly

diffeomorphic to S4, RP4 or CP2 with a linear action.

As mentioned in the Introduction, the proof for simply connected 4-manifolds is

given up to equivariant homeomorphism by [26] and up to equivariant diffeomorphism

by [21] and [23]. Note that while all these actions extend to actions by homeomor-

phisms of T 2 (see [23]), in contrast, in dimension three, S3/Γ does not admit a T 2

action when Γ is not a cyclic group by work of Mostert [33] and Neumann [34]. Thus,

we see that there are some spaces in the Main Theorem 1.4 which do not admit a T 2

action.

We now outline the proof of the Main Theorem 1.4. By Proposition 6.6, either (1) the

action is fixed-point homogeneous; or (2) the fixed-point set is comprised of two or

three isolated points.

Case (1) is covered by Proposition 6.7. In Case (2), Theorem 6.9 covers actions with

three fixed points, while those with two fixed points are addressed by Propositions 6.12

and 6.14.

6.1 The structure of the orbit space

We begin this subsection by demonstrating that when a circle acts on a 4-dimensional

Alexandrov space the structure of the orbit space is that of a stratified 3-manifold with

the singular strata consisting of the non-principal orbits.

Recall by Lemma 2.4, that when the 4-space is positively curved the fixed-point set

of the circle action is non-empty. We describe this fixed-point set and investigate
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the structure of the orbit space when there are only isolated fixed points. We show

in Lemma 6.4 that in this case the quotient space is homeomorphic to S3 and there

are no closed curves corresponding entirely to points of finite isotropy. Lemma 6.5

combined with Proposition 3.3 gives us that the number of fixed points must be two

or three.

We fix the following notation. Let π : X4 → X̄3 = X4/T 1. Let F denote the set of

fixed points and let E denote the set of points of finite isotropy in X4. Their images

in X̄3 are denoted by F̄ and Ē respectively.

Lemma 6.2. Let T 1 act isometrically and effectively on X4, a 4-dimensional, closed,

orientable Alexandrov space. Then X̄3 is a topological 3-manifold and the decom-

position of X̄ by orbit type gives a stratification into manifolds. Moreover, we can

describe the structure of the stratification as follows:

1. F̄ is the union of the (possibly empty) boundary of X̄3 with a (possibly empty)

set of isolated points in the interior of X̄3; and

2. Ē is the union of a (possibly empty) set of curves in the interior of X̄3. These

curves are locally flat submanifolds of X̄3 and have endpoints in F̄ or are sim-

ple, closed curves. No more than three curves in Ē can intersect at a point of

F̄ .

In other words, the strata are X̄0 = F̄ \ ∂X̄ , X̄1 = Ē, X̄2 = ∂X̄ \ cl(Ē) and

X̄3 = X̄ \ (F̄ ∪ Ē).

Proof. In order to show that X̄3 is a topological manifold, it suffices to show that at

every point the space of directions is either S2 or D2.

Orientable Alexandrov spaces of dimension three or less are topological manifolds

(see Exercise 10.10.4 Part (2) of [4]). Thus, the space of directions normal to any

orbit in X4 is an orientable, positively curved manifold. Additionally, the isotropy

action on it is orientation-preserving and so the quotient is an orientable, positively

curved 2-space, that is, S2 or D2. But the space of directions at a point in X̄3 is

precisely this quotient, proving the claim.

Note further that the only time D2 arises as a space of directions is when the isotropy

group is T 1. This shows that ∂X̄3 is a subset of F̄ .

At a fixed point p ∈ X4, the isotropy group T 1 acts on the 3-dimensional space of

directions Σ3
p. According to Proposition 5.3, the action is the quotient of a linear

action on a sphere. The fixed-point set of the isotropy action is therefore empty, or

a circle. Therefore each component of F̄ has corresponding dimension 0 or 2. The

components of dimension 0 are isolated fixed points, whose spaces of directions are

homeomorphic to S2 and thus are interior points. The components of dimension 2
make up the boundary of X̄3, thus proving Part (1).

To prove Part (2), consider a point p such that T 1
p = Zk. The orbit T 1(p) is a circle,

and so the normal space is homeomorphic to S2. The effective, isotropy action of Zk is

orientation-preserving, so the action is by a rotation, fixing two points. Hence, Σp̄X̄ ∼=
S2 and it has two points which make up Σp̄Ē, so that Ē is a locally flat 1-dimensional

manifold without boundary, with isotropy constant on connected components.
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Now we consider the endpoints of the connected components of Ē which are open

arcs. This is the set cl(Ē) \ Ē. Since points in cl(Ē) \ Ē are, by continuity, fixed by

a cyclic subgroup but are not themselves in Ē, they must be fixed by the entire circle,

so ∂Ē ⊂ F̄ .

Since a circle action on a positively curved 3-space can have no more than three

components of finite isotropy, the bound on the number of intersecting curves is ob-

tained.

Remark 6.3. In the case where X4 is a manifold, Σ3
p
∼= S3 for every point p. If p is

a fixed point, then the isotropy action of T 1 on Σ3
p cannot have both fixed points and

points of finite isotropy, which implies that F̄ ∩ Ē is comprised only of isolated points

of F̄ .

However, in general Σ3
p could have the type of any spherical 3-manifold. In case Σ3

p is

a lens space, the isotropy action can have both fixed points and a circle orbit of finite

isotropy. In this case, arcs of Ē can terminate in the boundary of X̄3.

The case where ∂X̄ 6= ∅ corresponds to fixed-point-homogeneous actions, and these

are classified in Section 6.2. For the remainder of this subsection, we restrict ourselves

to the case where ∂X̄ = ∅, so that the fixed-point set is discrete. In this case, the strata

are simply X̄0 = F̄ , X̄1 = Ē and X̄3 = X̄ \ (F̄ ∪ Ē).
By ruling out the possibility that Ē could contain simple closed curves, the next lemma

shows that, assuming positive curvature, the singular strata form an embedded multi-

graph in S3 having maximal degree at most three. Recall that a multigraph is a graph

where two vertices may be joined by multiple edges, or where an edge may join a

vertex to itself to form a loop.

Lemma 6.4. Let T 1 act isometrically and effectively on X4, a 4-dimensional, pos-

itively curved, closed, orientable Alexandrov space, with only isolated fixed points.

Then X̄3 is homeomorphic to S3 and Ē contains no simple closed curves.

Proof. By Lemma 6.2, X̄3 is a closed manifold. By the Generalized Synge Theorem

2.2, X4 is simply connected and it follows by Corollary II.6.3 of [1], that X̄3 is simply

connected. By the resolution of the Poincaré Conjecture, it is homeomorphic to S3.

Lemma 2.3 of Montgomery and Yang [32] then guarantees that there are no simple

closed curves in Ē. Since this Lemma is not given in precisely the correct context,

and the notation there conflicts confusingly with ours, we repeat the argument here.

Suppose c̄ ⊂ Ē is a closed curve, corresponding to isotropy Zk . Let Q̄ ⊂ X̄ be an

oriented surface bounded by c̄, and assume, without loss of generality, that Q̄∩ F̄ = ∅
and

(
Q̄ \ c̄

)
∩ Ē is finite.

Then Q \ c, after a closed submanifold of dimension 1 corresponding to finitely

many exceptional orbits is removed, is an orientable 3-manifold. Let z generate

H3(Q,Q ∩ E;Z) ∼= Z. Then ∂z ∈ H2(c;Z). We can see that 1
k
∂z is also an in-

tegral cycle on c, but it does not bound on Q, since z is not divisible by k. This shows

that Q has 2-torsion, which is a contradiction.

The following lemma provides a lower bound of two on the number of isolated fixed

points. In the Riemannian case, the simplest method of proof for Lemma 6.5 is to
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use the fact that the Euler characteristic of a Riemannian manifold or orbifold, which

in the simply connected case in dimension 4 is at least two, is given by the Euler

characteristic of the fixed-point set of any isometric circle action. The proof of this

(see Kobayashi [30]) relies on the Lefschetz Fixed-Point Theorem, and so ultimately

on the triangulability of Riemannian spaces.

The question of whether a general Alexandrov space is triangulable remains open.

Since S3 is triangulable, it is probably possible to lift a triangulation of S3 to X4, but

we do not investigate this question here.

Lemma 6.5. Let T 1 act isometrically and effectively on X4, a 4-dimensional, pos-

itively curved, closed, orientable Alexandrov space, with only isolated fixed points.

Then there are at least two fixed points.

Proof. By Lemma 6.4, the orbit space is X̄3 ∼= S3 and by Lemma 2.4, there is at

least one fixed point. We assume that there is exactly one fixed point, p, to derive a

contradiction. There are two cases to consider: Case (1), where there is finite isotropy,

and Case (2), where there is none. In both cases, we show that the space of direc-

tions at p, Σp, is homeomorphic to S1 × S2. Since S1 × S2 has infinite fundamental

group, by the Bonnet–Myers theorem it does not admit positive curvature, yielding

the contradiction.

We consider Case (1), where the action has points of finite isotropy. Then by Lem-

mas 6.2 and 6.4 the singular strata are given by a multigraph. It has only one vertex,

p̄, and the vertex has degree at most three. It follows that the multigraph can contain

only one loop. This unique closed curve is denoted by c̄.
Then, following the notation of Section 4.1, let Ū ∼= S1 × D2 be the closure of a

neighborhood of c̄ and let W̄ = cl
(
X̄ \ Ū

)
. Using the Mayer–Vietoris sequence

applied to X̄ = Ū ∪ W̄ , we see that W̄ has the integral homology of a circle. Since

c̄ = Ē ∪ F̄ , the action on W is free and so a section ∂Ū → ∂U can be specified.

The Seifert invariants of the isotropy action on Σp with respect to this section are then

{0; (αi, βi), (αi,−βi)}, so that Σp
∼= S1×S2 and we obtain the desired contradiction.

We now consider Case (2), where T 1 acts freely on the complement of p. Let ǫ > 0
be so small that Bǫ(p) is homeomorphic to the cone on ΣpX and Bǫ(p̄) ∼= D3. By

Theorem 4.4 of [27] and for sufficiently small ǫ, ∂(Bǫ(p̄)) ∼= S2 and admits a collared

neighborhood. Now, since X̄3 ∼= S3 by Lemma 6.4, it follows from the Generalized

Schoenflies Theorem (see, for example, Brown [2]), that X̄3 \Bǫ(p̄) ∼= D3.

The circle T 1 acts freely on the complement of Bǫ(p), U = X4 \ Bǫ(p). Hence U
is the total space of a principal T 1-bundle over D3 and is homeomorphic to S1 ×D3.

Then ΣpX
4 ∼= S1 × S2, and, once again, we obtain the desired contradiction.

Hence there are at least two fixed points.

We summarize the situation with the following proposition, which follows from the

foregoing Lemmas, except for the upper bound, which follows from Proposition 3.4.

Proposition 6.6 (Orbit space structure). Let T 1 act isometrically and ef-

fectively on X4, a 4-dimensional, positively curved, closed, orientable Alexandrov

space. Then either
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1. The action is fixed-point homogeneous; or

2. The orbit space X̄3 is homeomorphic to S3 and the non-principal orbits are

represented by an embedded multigraph of maximal degree three, having at

least two vertices. The vertices correspond to F̄ while the edges correspond to

Ē.

In the event that the action satisfies Condition Q and the fixed-point set is discrete,

there are at most three fixed points.

6.2 The fixed-point-homogeneous case

In this subsection we classify the fixed-point-homogeneous circle actions on positively

curved Alexandrov 4-spaces.

Proposition 6.7. Let T 1 act isometrically and effectively on X4, a positively

curved, compact, 4-dimensional Alexandrov space, in a fixed-point-homogeneous

manner. Then, X4 is equivariantly homeomorphic to either the spherical suspension

of S3/Zk or to a finite quotient of a weighted complex projective space with a linear

T 1 action.

Proof. Let T 1(p) be the orbit furthest from F 2, the unique codimension two compo-

nent of Fix(X,T 1). Then by Theorem 2.6, we have

X4 ∼= (ν ∗ T 1)/T 1
p ,

where T 1
p acts on the left on ν ∗ T 1, the action on ν being the isotropy action at p and

the action on T 1 being the inverse action on the right. The T 1-action on (ν ∗ T 1)/T 1
p

is induced by the left action of T 1 on itself.

In the case where T 1
p is finite, ν ∼= S2, and so X4 ∼= (S2 ∗ S1)/Zk

∼= Susp(S3/Zk).
In the case where T 1

p = T 1, X4 ∼= (ν3 ∗ T 1)/T 1 for some positively curved ν. By

Proposition 5.3, ν3 ∼= S3/Γ for some Γ ⊂ SO(4) and the circle action is induced by

a linear one. We claim that the space must be an orbifold. Since ν3 ∗ T 1 ∼= S5/Γ is

certainly an orbifold, it is enough to check that T 1
p does not fix points of ν3. If it did,

the fixed-point set would be of codimension two in ν3, so that p ∈ F 2, contradicting

the original choice of p. This proves the claim. These orbifolds are finite quotients of

CP2
a,b,c.

6.3 Three isolated fixed points

In the case where there are three isolated fixed points, we determine the structure of

Ē and Ē ∪ F̄ and then use Section 4 to obtain the classification.

Lemma 6.8. Let T 1 act isometrically and effectively on X4, a positively curved,

closed, orientable, 4-dimensional Alexandrov space, so as to satisfy Condition Q. If

there are three isolated fixed points, then Ē ⊂ X̄3 comprises at most one curve be-

tween each pair of points, and those curves are locally flat. If Ē∪ F̄ is a closed curve,

then it contains all three fixed points, and is unknotted.
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Proof. The proof makes use of the results and methods of Section 3.2. Local flatness

follows from Ē being an extremal set (see Section 2.2). If a pair of points were joined

by more than one curve, any two such curves would generate a closed curve c. The

third point would then appear twice in the double branched cover over c, X3
2 (c), and

so X3
2 (c) would have at least four singular points with small spaces of directions,

contradicting Proposition 3.3. Therefore any closed curve must contain all three fixed

points. Denoting the curve again by c, note that (X̄3, c) satisfies Condition O (see

Definition 3.5) and an application of Theorem 3.6 shows that the curve is unknotted.

In case the finite isotropy does not form a closed curve, we may choose additional

arcs between the fixed points so that the entire singular set Ē ∪ F̄ still lies on an

unknotted closed curve. Furthermore, we may assume that the curve is locally flat. By

adding these virtual edges, we take the multigraph representing the singular set to be

the complete graph K3, and treat all spaces with three fixed points in a unified way.

The problem of identifying the Alexandrov space now lies in the context addressed by

Section 4. Applying Theorem 4.8, we have the following result.

Theorem 6.9. Let T 1 act isometrically and effectively on X4, a positively curved,

closed, orientable Alexandrov space, so as to satisfy Condition Q. If there are three

isolated fixed points, then X4 is a finite quotient of a weighted complex projective

space. Furthermore, the circle action can be extended to an action by homeomor-

phisms of T 2, which is induced from the standard T 3 action on S5.

Remark 6.10. In contrast to Theorem 6.9, when there are just two isolated

fixed points, not all T 1 actions extend, including those actions that are fixed-point-

homogeneous.

6.4 Two isolated fixed points

We begin this section by analyzing the possible configurations of the singular strata in

the orbit space. We find two broad cases, which are investigated separately.

Lemma 6.11. Let T 1 act isometrically and effectively on X4, a positively curved,

closed, orientable, 4-dimensional Alexandrov space so as to satisfy Condition Q, with

fixed-point set consisting of two isolated points. Then the orbit space X̄3 is homeo-

morphic to S3 and the singular strata Ē ∪ F̄ are given by:

1. Two discrete points, F̄ , and at most three curves, Ē, each of which joins the two

points, so that the graph is unknotted, that is, the orbit space is homeomorphic

as a stratified set to the suspension of a 2-sphere with at most three points in its

0-stratum; or

2. Two discrete points, F̄ , and either one or two curves, Ē, of which one is an

unknotted loop based at one of the points while the other, should it exist, joins

the two points.
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p̄ q̄ p̄ q̄

(a) (b)

p̄ q̄ p̄ q̄

(c) (d)

p̄ q̄ p̄ q̄

(e) (f)

p̄ q̄ p̄ q̄

(g) (h)

Figure 6: Multigraphs on two vertices with maximal degree at most three.

Proof. From Lemma 6.2 and Proposition 6.6, we know that X̄3 is homeomorphic to

a 3-sphere. The non-principal orbits project to a multigraph in X̄3 which has two

vertices, corresponding to fixed points, and has maximal degree at most three.

Since the circle action satisfies Condition Q, the spaces of directions at the vertices

are small, and for any closed curve c in the multigraph, (X̄3, c) satisfies Condition O.

It follows that any closed curve in the multigraph is unknotted.

We consider the possible configurations by maximal degree of the multigraph, all

of which are shown in Figure 6. When the maximal degree is zero, there are two

disconnected vertices (a). If it is one, the vertices are joined by an edge (b). Both of

these are covered under Item (1).

When the maximal degree is two, there are three possible multigraphs. There may be

two edges, each connecting the two vertices (c). This space is also covered under Item

(1). There may be two loops, each based at a separate vertex (d). By taking a double

branched cover over one loop, and then over the other, we obtain a space with at least

four points with small spaces of directions, in violation of Proposition 3.3.

The final possibility in maximal degree two is that there may be only one loop, c,
based at one vertex, p̄, while the other vertex, q̄, is disconnected (e). This case falls

under Item (2). By adding a virtual edge between the vertices, we can treat this case

in a unified manner with (f).
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When the maximal degree is three, there are again three possible graphs. If there are

two edges, then one edge forms a loop while the other joins the two vertices (f), as

described under Item (2). If there are three edges, then two edges form loops, one

at each vertex (g). This is ruled out by the argument in the previous paragraph for

the case of two loops. Finally, the three edges may each join the two vertices (h). In

this case, the Equivariant Suspension Theorem 3.8 shows that the resulting graph is

unknotted, so that the case falls under Item (1).

We first consider the orbit spaces which fall under Item (1) in Lemma 6.11, which are

those shown in Figure 6 (a–c, h). We obtain the following proposition by applying

Propositions 3.7 and 5.3.

Proposition 6.12 (Suspension case). Let T 1 act isometrically and effectively

on X4, a positively curved, closed, orientable, 4-dimensional Alexandrov space with

fixed-point set consisting of two isolated points. Suppose that X̄3 is homeomorphic

as a stratified set to a suspension, that is, it is homeomorphic to S3, F̄ is two discrete

points and Ē is at most three curves, each of which joins the two points of F̄ , so that

the singular strata are unknotted.

Then X4 is equivariantly homeomorphic to the suspension of S3/Γ with a linear T 1

action for some finite Γ ⊂ SO(4).

Before we turn to the orbit spaces given by Item (2) of Lemma 6.11, which are those

shown in Figure 6 (e–f), we note that as part of this investigation we need to make use

of the fundamental groupoid. Recall that this is an enhanced version of the fundamen-

tal group allowing for multiple base points. If A is a set of base points in a topological

space X we write the fundamental groupoid as π1(X,A). The groupoid is made up

of the homotopy classes of paths between the base points, including the loops.

The fundamental groupoid is often represented in terms of category theory: the base

points provide the objects of the category and the paths between the base points are the

morphisms. Composition of morphisms is the concatenation of paths. All morphisms

are invertible, since paths can be traversed backwards. This permits a neat statement

of the Seifert–van-Kampen Theorem which does not require the intersections of the

two covering subsets to be path connected. The following version is stated and proved

in Section 1.6 in [3]1.

Theorem 6.13 [3]. Let X1, X2, be open subsets of a topological space X , with

X = X1 ∪ X2. Let X0 = X1 ∩ X2 and let A be a subset of X meeting each path

component of X1, X2, and X0 (and therefore of X). Let Ai = Xi ∩ A for i = 0, 1, 2.

Then the following diagram of morphisms induced by inclusion

π1(X0, A0)
a1

//

a2

��

π1(X1, A1)

b1

��

π1(X2, A2)
b2

// π1(X,A)

is a pushout of groupoids.

1The relevant extract is available at https://groupoids.org.uk/pdffiles/vKT-proof.pdf.

Documenta Mathematica 26 (2021) 1889–1927

https://groupoids.org.uk/pdffiles/vKT-proof.pdf


Positively Curved Orbifolds with Circle Symmetry 1919

We now consider the orbit spaces which fall under Item (2) in Lemma 6.11, which are

those shown in Figure 6 (e, f).

Proposition 6.14 (Loop-and-spur case). Let T 1 act isometrically and effec-

tively on X4, a positively curved, closed, orientable, 4-dimensional Alexandrov space

with fixed-point set consisting of two isolated points. Suppose that the orbits of ex-

ceptional isotropy project to one or two curves, Ē ⊂ X̄ , of which one is an unknotted

loop based at one of the points, while the other, should it exist, joins the two points.

Then X4 is equivariantly homeomorphic to a finite quotient of a weighted complex

projective space with a T 1 action induced by a linear action on S5.

Proof. To unify the treatment, if Ē contains only one curve, we add the geodesic p̄q̄
to the graph as a “virtual edge” which corresponds to orbits with isotropy Z1. The

multigraph given by the singular set is then that with two vertices, one loop, and one

edge. We denote the loop by c, the vertex on c by p̄, and the other vertex by q̄.

We show that X4 is the quotient by an involution of some space such that the lifted

circle action has three fixed points. Theorem 6.9 then gives us the result.

In order to do this we endow X4 with an orbifold structure. The only topological sin-

gularities in X4 are at the isolated fixed points of the action. Neighborhoods of these

points can be given charts with a local group Γ ⊂ SO(4) such that Γ is isomorphic to

the fundamental group of the space of directions. All other points are manifold points

and we take the local group there to be trivial.

Now we can calculate the orbifold fundamental group of X4, πorb
1 (X4). Using a

transversality argument, one sees that πorb
1 (X) is determined by the regular part of X

and singularities of codimension one and two only (see Theorem A.I.4 in [24]). So,

since X4 has no singularities of codimension two, πorb
1 (X4) ∼= π1(X

4
reg), where X4

reg

is the regular part of the orbifold.

We decompose X̄3 into four regions as shown in Figure 7, which lifts to a decompo-

sition of X4. It simplifies this discussion to treat the sets as though they were closed

sets which meet along their boundary. In order to apply the Seifert–van-Kampen The-

orem, we need an open cover of X4. However, using closed sets does not generate

any problems, provided the boundaries of these sets have collar neighborhoods.

Let Ā be a conical neighborhood of p̄ and let B̄ be a conical neighborhood of q̄ so that

they intersect in a D2 which is transverse to the edge p̄q̄. Let C̄ be a neighborhood of(
c \ Ā

)
homeomorphic to [0, 1]×D2, intersecting Ā at {0, 1}×D2 but disjoint from

B̄. Let D̄ be X̄ \
(
Ā ∪ B̄ ∪ C̄

)
. Note that D̄ ∼= S1 × D2. Let A, B, C and D be the

preimages of each of Ā, B̄, C̄ , and D̄, respectively.

Calculating π1(Areg ∪ Breg). The sets A and B are both cones on spherical

manifolds. It follows that Areg and Breg are homotopy equivalent to those spheri-

cal manifolds. We calculate the fundamental groups of those 3-manifolds from their

Seifert invariants.

Note that π : D → D̄ is a principal S1 bundle, and recall that these are classified by

H2(D̄) = 0. Therefore, there exists a section σ : D̄ → D. This section can be used

to define the invariants, as described in Sections 2.3 and 4.1. Let q1 and q2 be the two

components of σ
(
∂
(
Ā ∩ C̄

))
, where Ā ∩ C̄ is oriented as a submanifold of ∂Ā. Let

q3 be σ
(
∂
(
Ā ∩ B̄

))
, again with Ā ∩ B̄ oriented as a submanifold of ∂Ā.
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Ā
B̄

C̄

D̄

p̄ q̄c

Figure 7: Decomposition of X̄3 ∼= S3 into four closed sets, where D̄ is the comple-

ment of the solid torus, Ā ∪ B̄ ∪ C̄, viewed in S3 \ {∞}.

Without loss of generality, σ may be chosen so that the invariants of ∂A are

{0; (k,−1), (k, 1), (α, β)} and the invariants of ∂B are then {0; (α,−β)}. Where

the edge in the graph is only virtual, α = 1. Since ∂A cannot be S2 × S1, we have

β 6= 0. By assumption, the loop is not virtual and so k ≥ 2.

We may also assume that the three pairs of invariants correspond to the loops q1, q2, q3
in that order. Since the first pair is (k,−1), the curve q1 is, in fact, homotopic to the

corresponding exceptional orbit of isotropy Zk.

From these invariants, using Theorem 2.7, we obtain the following presentations of the

fundamental groups. Letting h be a principal orbit, the group π1(Areg, x) is generated

by h, q1, q2 and q3 and is given by

〈
q1, q2, q3, h

∣∣ [h, qi] = 1, qk1h
−1 = 1, qk2h = 1, qα3 h

β = 1, q1q2q3 = 1
〉
.

Note that the section q3 must have its orientation reversed for the calculation of

π1(Breg, x), while h is unchanged. Since β is the intersection number of q3 and

m, β also changes sign, so that we get

π1(Breg, x) =
〈
q−1
3 , h

∣∣ [h, q−1
3

]
= 1, q−α

3 h−β = 1, q−1
3 = 1

〉
= Z|β|.

When applying the Seifert–van-Kampen Theorem to calculate π1(Areg∪Breg, x) there

is no need to include any additional relations, since these are encoded in the use of q3
and h as generators of both groups. Taking advantage of q−1

3 = 1 we immediately

obtain q2 = q−1
1 . Since h = qk1 we may discard the relation [h, q1] = 1 as being

already implied, but it is convenient later to maintain both generators. The group

reduces to

π1(Areg ∪Breg, x) =
〈
q1, h

∣∣ qk1h−1 = 1, hβ = 1
〉
,

which is simply the cyclic group of order k|β|, generated by q1. We note once more

that q1 is an orbit with isotropy Zk corresponding to the “loop” in X̄3 and h = qk1 is a

principal orbit.

Calculating π1(Areg ∪ Breg ∪ Creg). In order to include C, observe that (A ∪
B) ∩ C has two components. This means we must make use of the fundamental
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groupoid rather than the fundamental group. Let l be a longitudinal curve on the torus

∂
(
Ā ∪ B̄ ∪ C̄

)
such that l ∩ C, and hence l ∩ (A ∪ B), is connected. We choose

y, z ∈ σ(l), one in each component of (A ∪B) ∩C, as the basepoints.

The groupoidπ1(Areg∪Breg, {y, z}) has the points y and z as objects. The morphisms

y → y and z → z are both given by the fundamental group, so they are the cyclic

group generated by q1. The morphisms y → z are given by the portion of σ(l) lying

in A∪B, which we call m, composed with an element of π1(Areg∪Breg, z) It is clear

that m followed by q1 ∈ π1(Areg ∪Breg, z) is homotopic to q1 ∈ π1(Areg ∪Breg, y)
followed by m.

Note that C̄ is contractible and that C = Creg, so π1(Creg, y) is the cyclic group

generated by q1. The full groupoid is then given by a second copy of the cyclic group

for π1(Creg, z) with the morphisms y → z given by the remaining part of σ(l), which

we call n, composed with an element of π1(Creg, z). Once more, n commutes with

q1.

We now obtain π1(Areg ∪ Breg ∪ Creg, {y, z}) by Theorem 6.13 as the push-out in

the category of groupoids. Note that the fundamental groupoid of the intersection,

π1((Areg ∪Breg)∩Creg, {y, z}), is given by two copies of the cyclic group generated

by q1 for morphisms y → y and z → z while the set of morphisms y → z is empty.

The composition of m followed by n−1 introduces a new loop based at y, which we

call a, that commutes with q1. Clearly a = σ(l). We obtain

π1(Areg ∪Breg ∪ Creg, y) =
〈
a, q1, h

∣∣ [a, q1] = 1, qk1h
−1 = 1, hβ = 1

〉
.

Similarly, if we use z as the basepoint, a loop a′ = m ◦ n−1 is introduced, so that

π1(Areg ∪Breg ∪ Creg, z) =
〈
a′, q1, h

∣∣ [a′, q1] = 1, qk1h
−1 = 1, hβ = 1

〉
.

Calculating π1(Areg ∪Breg ∪Creg ∪Dreg). Finally, D̄ is a solid torus, with fun-

damental group generated by m, the meridianal curve on ∂
(
Ā ∪ B̄ ∪ C̄

)
. Note D =

Dreg. Letting b = σ(m), the group π1(Dreg, y) is generated by b and h. The funda-

mental group of the boundaryπ1(∂Dreg, y) is generated by b, a and h. Since a is killed

by the inclusion ∂Dreg → Dreg and the inclusion ∂Dreg → (Areg ∪Breg ∪ Creg)
maps b 7→ q1, we are left with

πorb
1 (X4, y) ∼= π1(X

4
reg, y)

∼= Zk|β|,

a cyclic group generated by the orbit with isotropy Zk , where k ≥ 2 and β 6= 0.

Consequences. Now take the universal cover of X4, X̃ , and consider the lifted

circle action. The point p ∈ X4 has only one lift in X̃ , while q has k lifts. There are

therefore k+1 fixed points of the circle action on X̃ so, by Proposition 3.4, k+1 ≤ 3
and therefore k = 2. By Theorem 6.9 and the triviality of πorb

1 (X̃), X̃ is some

CP2
a,b,c. The space X4 is therefore a quotient by an involution of some CP2

a,b,c/Z|β|.

It is now possible to check that the local group at p, which is π1(Areg), is in fact the

dihedral group of order 4α|β|. The local group at the lift of p is generated by the loop

q3 ∈ π1(Areg), which is a cyclic normal subgroup of order 2α. The local group at the

lifts of q will be trivial, and therefore X̃ ∼= CP 2
±2α,1,1.
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6.5 Examples Producing the Loop-and-Spur Configuration

Here we explicitly give examples of involutions on weighted complex projective

spaces which produce the loop-and-spur configuration discussed in Proposition 6.14.

Recall the description of the weighted CP2
a,b,c in Section 4.4. Consider the T 2 action

on S5 ⊂ C3 generated by the circles T 1
2n,−1,−1 and T 1

3n,−2,−1, as well as the invo-

lution ι : S5 → S5 given by (z1, z2, z3) 7→ (z̄1, z̄3,−z̄2). The quotient of S5 by the

first circle is the space CP2
2n,−1,−1, and the second circle induces a circle action on

CP2
2n,−1,−1 with three fixed points and two components of finite isotropy of order n,

so that the Seifert invariants are
(
0
1 ,

−1
n
, 1
n

)
.

The involution descends to an involution ῑ on CP2
2n,−1,−1 which has exactly one fixed

point, corresponding to the circle (z1, 0, 0) ⊂ S5. The circles (0, z2, 0) and (0, 0, z3),
the other two fixed points of the circle action on CP2

2n,−1,−1, are interchanged by ῑ.
The circle still acts on CP2

2n,−1,−1/ῑ, and in fact the involution ι descends all the way

to CP2
2n,−1,−1/T

1 ∼= S3, where it fixes a circle. Since ῑ fixed only a single point in

CP2
2n,−1,−1, it follows that the circle action on CP2

2n,−1,−1/ῑ has a codimension 2
component of Z2 isotropy, and that in the orbit space, S3, this maps to a loop based at

the fixed point of ῑ. As noted earlier, the other two fixed points of the circle action are

identified by ῑ, so the orbit space has the structure of a loop of Z2 isotropy and a spur

of Zn isotropy.

7 General Alexandrov spaces

This work has been entirely motivated by the following conjecture.

Conjecture 7.1. Let T 1 act isometrically and effectively on X4, where X4 is a

4-dimensional, closed, positively curved, orientable Alexandrov space. Then, up to

equivariant homeomorphism, X is one of the following spaces:

1. The suspension of a spherical 3-manifold, with a linear action; or

2. A finite quotient of a weighted complex projective space with a linear action.

The only remaining obstacle to proving this conjecture is the requirement that the

action satisfy Condition Q. In this section we review how Condition Q is used in

proving the Main Theorem 1.4 in order to clarify what further work is necessary to

remove it.

Recall that there are three conditions for the isotropy action at a fixed point to satisfy

Condition Q′:

1. Σ3/T 1 is a small space;

2. The double branched cover of Σ3/T 1 over any two points corresponding to

finite isotropy is small; and

3. If there are three components of finite isotropy, diam
(
Σ3/T 1

)
≤ π

4 .
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As mentioned in the Introduction, while Condition Q′ may seem technical, the follow-

ing lemma shows that it is satisfied for any fixed-point-free isometric circle action on

any 3-dimensional spherical orbifold of constant curvature 1.

Lemma 7.2. Let T 1 act isometrically and without fixed points on a 3-dimensional

spherical orbifold Σ3 of constant curvature 1. Then the action satisfies Condition Q′.

Proof. We recall from McGowan [31] that if G is a compact Lie group acting by

isometries on the n-sphere Sn, and G0 denotes the connected component of the iden-

tity element, then G/G0 acts on Sn/G0 by isometries. So, for any isometric circle

action on Σ3, we have Σ3/T 1 = (S3(1)/T 1)/Γ, where Γ is a finite group. Note that

S3/T 1 is either a “football” orbifold or it is S2(1/2).
In the case that S3/T 1 is a football orbifold, there is a natural distance-decreasing

map from S2(1/2) to Σ3/T 1 as well as to the double branched cover over the points

of finite isotropy, showing that Conditions (1) and (2) are satisfied.

In the case where S3/T 1 = S2(1/2), then curv(Σ3/T 1) ≥ 4 and the same is true of

any double branched cover over points of finite isotropy. By comparison to S2(1/2),
see [20], Conditions (1) and (2) must hold. It is clear that if there are three components

of finite isotropy, then the group Γ is not cyclic. So the diameter bound, Condition (3),

holds by Greenwald [19] (see also Dunbar, Greenwald, McGowan, and Searle [10]).

The first condition guarantees that if p is a fixed point, then the image of the fixed

point, p̄ ∈ X4/T 1, has a small space of directions, Σp̄. If X4 is positively curved,

then Proposition 3.4 yields the crucial upper bound of three on the number of fixed

points.

Where there are three fixed points, the second condition is used in Lemma 6.8 to show

that Condition O is satisfied, which guarantees that any closed curve is unknotted and

passes through all three points. Here it is crucial that, for p a fixed point, not only is Σp̄

small, but its double-branched cover over two points corresponding to finite isotropy

is also small.

Where there are two fixed points, Lemma 6.11 uses the second condition in the same

way to guarantee that any closed curves are unknotted. The third condition is used to

show that θ-graphs are unknotted, by permitting the application of Theorem 3.8.

Since closed, orientable 3-dimensional Alexandrov spaces are equivariantly homeo-

morphic to S3/Γ with a linear T 1 action, the following conjecture would imply that

Condition Q′ is always satisfied.

Conjecture 7.3. Let T 1 act isometrically and without fixed points on Σ3 = S3/Γ,

a closed, orientable 3-dimensional Alexandrov space with curv ≥ 1. Then

xtq(Σ
3/T 1) = xtq((S

3)/Γ)/T 1) ≤ xtq((S
3(1)/Γ)/T 1),

where T 1 acts so that S3(1)/Γ and Σ3 are T 1-equivariantly homeomorphic.

In 4-dimensional Riemannian manifolds and orbifolds the spaces of directions are

isometric to S3(1) or finite quotients of the same, and so Conjecture 7.3 holds trivially.
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We are motivated in making Conjecture 7.3 by the general principle that spaces with

curv ≥ 1 are in some sense “smaller” than spaces with constant curvature 1.

In particular, Theorem A of Grove and Markvorsen [20] states that

xtq(X
n) ≤ xtq(S

n(1))

for any Alexandrov space X with curv ≥ 1. Conjecture 7.3 can then be viewed as

the correct equivariant version of Theorem A of [20], at least in the particular case of

spherical 3-manifolds.
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