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INTRODUCTION
Around 9000 cases of oesophageal and gastro-oesophageal 
junction (GOJ) cancers (referred to collectively in this 
review as oesophago-gastric cancers) are diagnosed in the 
UK each year and the incidence has risen by 6% over the 
past 20 years.1 Worldwide, there are more than 600,000 
new cases each year.2 Squamous cell carcinoma (SCC) 
is the most common subtype worldwide but adenocar-
cinoma is more common in the UK, USA, and Western 
Europe.3 Both are associated with poor prognosis, with 
5-year survival reported at 12% for SCC and 15% for 
adenocarcinoma.4

SCCs are distributed equally between the upper and mid-
thoracic oesophagus, whereas most adenocarcinomas are 
located in the distal oesophagus or at the GOJ.5 Using the 
current TNM eighth edition classification, Siewert Type 
1 and 2 GOJ tumours are staged as oesophageal cancers, 
and Siewert Type 3 tumours (with the epicentre in the 
proximal stomach between 2 and 5 cm from the GOJ) 
are staged as gastric cancers.6 The oesophagus has a rich 
bidirectional lymphatic drainage system, meaning lymph 
node metastases (and satellite nodules) can develop along 
the entire length of the oesophagus.7 Histological subtype 
is generally not taken into account when assigning the 

TNM classification, but the overall stage groups have subtle 
differences between subtypes.6

In terms of management, tumours confined to the mucosa 
(T1a) can be considered for endoscopic resection or abla-
tion, whereas tumours involving the submucosa (T1b) 
usually require oesophagectomy due to higher rates of 
occult lymph node metastases.8 Neoadjuvant therapy 
provides a survival benefit for patients with locally advanced 
disease but the benefit reduces in early tumours.9 Regional 
nodal involvement is a further indication for neoadjuvant 
therapy.9 Distant metastatic disease is present in up to 50% 
of patients at diagnosis, and generally precludes surgical 
management,10 although the value of surgical and ablative 
techniques in oligometastatic disease is being explored.11

Imaging is essential for all aspects of oesophago-gastric 
cancer management. In this review, we summarise current 
best practice and highlight how state-of-the-art imaging 
can improve diagnosis and staging, allow more effective 
treatment planning and monitoring, and improve risk 
stratification.

Current best practice in diagnosis and staging
Oesophago-gastric cancer is usually diagnosed following 
first-line endoscopy and biopsy, but disease staging is 
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ABSTRACT

Radiological investigations are essential in the management of oesophageal and gastro-oesophageal junction cancers. 
The current multimodal combination of CT, 18F-fluorodeoxyglucose positron emission tomography combined with CT 
(PET/CT) and endoscopic ultrasound (EUS) has limitations, which hinders the prognostic and predictive information 
that can be used to guide optimum treatment decisions. Therefore, the development of improved imaging techniques 
is vital to improve patient management. This review describes the current evidence for state-of-the-art imaging tech-
niques in oesophago-gastric cancer including high resolution MRI, diffusion-weighted MRI, dynamic contrast-enhanced 
MRI, whole-body MRI, perfusion CT, novel PET tracers, and integrated PET/MRI. These novel imaging techniques may 
help clinicians improve the diagnosis, staging, treatment planning, and response assessment of oesophago-gastric 
cancer.
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largely influenced by radiological techniques. A patient staging 
algorithm describing the current radiological pathway is in 
shown in Figure  1. The TNM v. 8.0 staging classification for 
oesophago-gastric cancer is described in Table 1.

CT
Contrast-enhanced CT is the primary radiological staging 
investigation (Figure 2), usually performed after endoscopy and 
biopsy.12,13 CT can identify patients with clear distant metastatic 
disease which usually signals palliative therapy and precludes 
futile radical treatment. However, CT cannot identify the layers of 

the oesophageal wall, therefore is inaccurate for early T-staging.14 
When dichotimising early (T1-T2) vs late (T3-T4) oesophageal 
cancer, CT has a reported diagnostic accuracy of 80–82% (n = 74 
patients).15 Using a 1 cm short-axis size threshold, the sensitivity 
in diagnosing lymph node metastases has been reported as 50%, 
and specificity as 83%.16

Endoscopic ultrasound
Endoscopic ultrasound (EUS) is used in some centres for more 
detailed locoregional staging (Figure 2).16 EUS may be used to 
differentiate between T1a and T1b tumours17 although when 

Figure 1. Typical radiological staging pathway for most patients diagnosed with oesophago-gastric cancer in the United Kingdom. 
EUS, endoscopic ultrasound; PET, positron emission tomography.

Table 1. TNM staging system for oesophageal carcinomas

T Category T Criteria
TX Tumour cannot be assessed

T0 No evidence of primary tumour

Tis High-grade dysplasia, defined as malignant cells confined to the epithelium by the basement membrane

T1a Tumour invades the lamina propria or muscularis mucosae

T1b Tumour invades the submucosa

T2 Tumour invades the muscularis propria

T3 Tumour invades adventitia

T4a Tumour invades the pleura, pericardium, azygos vein, diaphragm, or peritoneum

T4b Tumour invades other adjacent structures, such as the aorta, vertebral body, or airway

N Category N Criteria

NX Regional lymph nodes cannot be assessed

N0 No regional lymph node metastasis

N1 Metastases in one or two regional lymph nodes

N2 Metastases in three to six regional lymph nodes

N3 Metastases in seven or more regional lymph nodes

M Category M Criteria

M0 No distant metastases

M1 Distant metastases

Reproduced from: AJCC Cancer Staging Manual. eighth Edition ed: Springer International Publishing, 2017.
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dichotimising T1-T2 vs T3-T4 oesophageal cancer, EUS has a 
reported diagnostic accuracy of 81–85% (n = 74 patients).15 Its 
sensitivity and specificity for nodal metastases is 80 and 70%, 
respectively.16 A benefit of EUS is that it provides an oppor-
tunity to perform fine needle aspiration (FNA) of suspicious 
nodes, increasing its diagnostic accuracy from 74 to 87%.18 The 
limitations of EUS include its availability, accuracy related to 
operator experience, and stenotic tumours not traversable by the 
endoscope.19

PET/CT
18-Fluorine fluorodeoxyglucose (18F-FDG) PET/CT is recom-
mended for assessment of metastatic disease undetected by 
CT in those planned for curative treatment. 18F-FDG PET/CT 
has a greater sensitivity for distant metastases than CT (71% 
vs  52%).16 However, the sensitivity for perioesophageal nodal 
disease is poor, reported at 57%, with 85% specificity.16 This is, 
in part, due to the spatial resolution of PET limiting the differen-
tiation of perioesophageal nodes from the primary tumour. Use 
of 18F-FDG PET/CT has been reported to improve patient strat-
ification, reduce relapse rate, and increase overall survival after 
oesophagectomy.20 In surgical candidates, clinically relevant 
changes to staging have been reported in around 24%, mainly 
related to upstaging to M1 disease.21

CURRENT BEST PRACTICE IN IMAGING TO 
ASSESS RESPONSE
CT is routinely performed, and 18F-FDG PET/CT in some 
centres, after neoadjuvant therapy to assess response, although 
in current practice, this is simply to ensure that disease has not 
progressed and become unresectable (either due to advanced 
T-stage or development of metastases). Up to 10% of patients with 

potentially resectable oesophageal cancer develop metastases 
whilst on neoadjuvant chemotherapy.22,23 However, complete 
pathological response is reported in 32–52% depending on the 
criteria used24–26 and a management aspiration is that some of 
these patients may be candidates for surveillance programmes 
rather than oesophagectomy in future.

Contrast-enhanced CT has low sensitivity for residual disease, 
so cannot adequately assess for treatment response.27 EUS is 
also of little value in restaging after neoadjuvant therapy because 
post-treatment inflammation and fibrosis can be indistin-
guishable from residual tumour.28 A further challenge is that 
nodal response can be discordant with the primary tumour (in 
approximately 5%), and prognosis may be improved in cases 
with improved nodal disease, even in the absence of response 
in the primary tumour.29 Conventional morphological imaging 
may struggle to assess this, as even morphologically normal 
lymph nodes can contain metastasis. Foley et al reviewed resec-
tion specimens in 15 patients pre-operatively staged as N0 but 
with nodal metastases found on pathological assessment. In 50 
nodal metastases, 22% were 2 mm or less, and 82% were 6 mm or 
less, implying that novel methods that augment morphological 
assessment are required.30

CURRENT BEST PRACTICE IN FOLLOW-UP & 
SUSPECTED RECURRENCE
Following treatment, the final challenge for imaging is to monitor 
for disease relapse. Despite multimodality therapy, there are high 
rates of post-treatment relapse, reported at 45–53% within 2 
years of surgery.31,32 Anastomotic recurrence following surgery 
occurs in 7–12%, seen as nodular or concentric thickening in the 
region of the anastomosis on CT.31,33 In one study of recurrence 

Figure 2. Axial CT showing mural thickening of the distal oesophagus (a), axial fused 18F-FDG PET/CT (b) showing FDG uptake in 
the tumour. Clinical staging of both CT and PET/CT was cT3 N0 M0. Endoscopic ultrasound (c) showed that the distal oesophageal 
tumour (arrow) involved the diaphragmatic crus distally and there was a malignant perioesophageal lymph node (arrowhead), 
therefore the final staging was cT4a N1 M0 (Images courtesy of Dr K G Foley, Velindre Cancer Centre). FDG, fluorodeoxyglucose; 
PET, positron emission tomography.
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following oesophagectomy, 50% of the 435 recurrences were 
detected as a result of symptoms, and 45% were as a result of 
routine post-treatment CT studies.34 The role of cross-sectional 
imaging in the surveillance of patients post-oesophagectomy 
is contentious and further research is required to standardise 
practice.

18F-FDG PET/CT has the highest sensitivity for recurrent disease 
at 89–100%, although specificity is much lower (55–94%).33 Local 
inflammation in the oesophagus can cause false positive FDG-
uptake and should be confirmed with endoscopy.35 The radia-
tion doses associated with PET/CT mean it is currently used as 
a problem-solving tool in the setting of indeterminate findings 
on CT, rather than as part of a routine surveillance programme.

STATE-OF-THE-ART IMAGING IN STAGING
The combined limitations of CT, 18F-FDG PET/CT and EUS 
mean that new imaging technologies are needed to improve the 
delineation of disease extent, the detection of lymph node metas-
tases, and the assessment of treatment response. There is an 
opportunity for state-of-the-art imaging techniques to address 
these gaps, ensuring that patients are stratified to the most appro-
priate treatment.

MRI
MRI has excellent soft tissue contrast and can identify the 
normal layers of the oesophageal wall (Figure  3), with poten-
tial to improve stratification of patients towards endoscopic 
resection, upfront surgery or neoadjuvant therapy. In seminal 
work, Riddell et al showed T2 weighted images from 1.5 T MRI 
were comparable to EUS in differentiating T2 from T3, but 
overstaged T1 tumours. Overall, 83% (n = 28/37) were staged 
correctly against histology; 16% were overstaged and 8% under-
staged.36 Ex-vivo studies at ultra-high field strength (4.7 T 
and 7 T) have shown up to 100% accuracy for T- and N-stage, 
although application to clinical practice has not been tested.37 

MRI with diffusion-weighted sequences (DWI) has the potential 
to improve staging accuracy and assessment of tumour length.38 
A recent systematic review identified 984 patients in 19 studies 
and found that MRI (without any restriction on the sequences 
used) had a sensitivity of 67–91% and specificity of 91–92% for 
differentiating T2 tumours or less from T3 or above, compared 
to 85 and 75% for CT, and 68–100% and 75–100% for EUS.38–40

Notably, oesophageal MRI is challenged by organ peristalsis, 
cardiac and respiratory motion, aortic blood flow and pulsation, 
and artefact from medical devices. Additionally, due to its central 
position within the thorax, the oesophagus is distant from MR 
coils which lowers the signal-to-noise ratio.41 Use of 3 T MRI 
systems can increase the signal-to-noise ratio but at the cost of 
increased susceptibility artefact. Cardiac and respiratory gating 
and endoluminal or surface coils can improve image quality.36,42

In terms of differentiating node negative from node positive 
disease, MRI has a reported sensitivity of 59–100% and speci-
ficity 57–92%, dependent on the size threshold used to define a 
metastatic lymph node,39 compared to 83 and 75% for CT, 46 and 
91% for PET/CT, and 100 and 36% for EUS.38,39,43 In addition 
to size criteria, alternative imaging features have been proposed 
to differentiate malignant vs normal nodes. Alper et al used 
quantitative assessment of STIR (short tau inversion recovery) 
MRI to investigate nodal involvement in 35 patients, specifically 
looking at the signal intensity ratio between each lymph node 
and the normal oesophageal wall. Compared to histology, 152 
of 482 nodes were detected by MRI, with the signal intensity 
ratio significantly higher in pathological nodes.44 MRI enhanced 
with superparamagnetic iron oxide nanoparticle (SPIO) contrast 
has the potential to differentiate normal or reactive from meta-
static lymph nodes because normal nodes contain substantial 
phagocytosed SPIO, which appears low signal due to magnetic 
susceptibility and T2* shortening, whereas malignant nodes 
are intermediate signal.45 In oesophageal cancer, one study of 
nine patients showed this to be a feasible technique,46 although 
concerns around safety in clinical practice have been raised.47

Whole-body MRI
Following the success of the STREAMLINE-C trial in colorectal 
cancer,48 the role of whole body-MRI in oesophago-gastric 
cancer staging has been raised. Whole-body MRI might allow 
a more streamlined and cost-effective staging pathway, with 
local and distant staging of disease having equivalent accuracy 
to current investigations in a single radiological examination. 
However, high-quality studies in oesophago-gastric cancer are 
lacking. In one small study, whole-body MRI had a reported 
equivalent accuracy to PET/CT for N-stage and excluding meta-
static disease (n = 49 patients, using surgical specimens or EUS 
for N-stage, and metastases being detected in only two patients 
and with both modalities).43 This has not yet been tested within 
a rigorous clinical trial. In systematic review, albeit in gastric 
cancer, whole-body MRI was comparable to CT in detection 
of peritoneal disease, which is a common metastatic site from 
oesophageal cancer.49,50 The addition of DWI in a whole-body 
MRI protocol improves sensitivity over morphological images 
alone (90% vs  73% in assessment of 255 peritoneal deposits in 34 

Figure 3. Small field-of-view axial T2 weighted MRI. There is 
a primary tumour centred on the left-side of the oesophagus 
extending through the muscularis into the perioesophageal 
fat (arrow). The normal intact layers of the oesophageal wall 
are seen on the contralateral side (Image courtesy of Dr A M 
Riddell, Royal Marsden Hospital).
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patients, verified at laparoscopy and with histology, but again not 
in oesophageal cancer).51

Integrated PET/MRI
18F-FDG PET/MRI combines the benefits of both 18F-FDG PET/
CT and MRI, i.e. optimising locoregional and distant staging in 
one examination (Figure 4). Lee et al found a diagnostic accuracy 
of 67% for T-stage compared to 87% for EUS in a prospective 
study of 19 patients with pathological correlation. 18F-FDG PET/
MRI N-stage accuracy was 87% compared to 67% for EUS, and 
50% for CT.52 Good agreement between 18F-FDG PET/MRI and 
PET/CT for N- and M-stage has been reported.53 Sharkey et al 
compared TNM stage between tumour board consensus (from 
all available diagnostic tests, excluding PET/MRI), 18F-FDG 
PET/CT alone, and 18F-FDG PET/MRI alone. In this prospec-
tive study of 22 patients, 10 with metastatic disease, additional 
metastases were found on 18F-FDG PET/MRI in 30% of cases 
compared to PET/CT (two peritoneal and one liver), which has 
potential clinical relevance when detection of a single metastatic 
site can change management between curative and palliative 
therapy.54 18F-FDG PET/MRI can be time-saving compared to 
acquiring the images separately,55 however, this strategy assumes 
that patients will require a PET examination during their staging. 
Potential imaging biomarkers from 18F-FDG PET/CT (glucose 
metabolism) and MRI (perfusion phenotype from dynamic 
contrast-enhanced (DCE) MRI or cellularity from DWI) are 
discussed below. Acquisition of these modalities contemporane-
ously could be advantageous.

STATE-OF-THE-ART IMAGING IN TREATMENT 
PLANNING
In oesophago-gastric cancer, treatment decisions are based on 
a number of factors including disease stage, patient fitness and 

preferences, age and pathology. Neoadjuvant therapy prior to 
resection is the standard of care for patients with Stage II to III 
disease, offering a 5.1% absolute survival advantage at 2 years 
vs surgery alone in adenocarcinomas, highlighting the impor-
tance of accurate staging.56 However, only a minority of patients 
(14.8%) demonstrate a good response to treatment, defined as 
a tumour regression grade (TRG) of 1 or 2.57 Further, disease 
length is an important consideration when planning opera-
tion type or suitability for radiotherapy, the latter being depen-
dent on a maximum field length of approximately 12 cm.58 CT 
is traditionally used to define the tumour and organs at risk 
during radiotherapy planning, however, 18F-FDG PET/CT has 
now been incorporated into the planning process and uses the 
metabolic activity of the primary tumour and nodes to adjust the 
irradiated volumes.59 When performed, EUS provides measure-
ments defining the location of disease and important anatomical 
landmarks such as the aortic arch, carina and diaphragm which 
can be used to augment the radiotherapy plan (Figure 5). There 
is an opportunity for state-of-the-art imaging and biomarkers to 
improve patient selection for individualised treatment, enabling 
prediction of the likelihood of response, expediting patients for 
surgery who are unlikely to respond, and improved definition of 
disease.

STATE-OF-THE-ART IMAGING IN PREDICTING 
RESPONSE AND OUTCOME
Diffusion-weighted MRI
Apparent diffusion coefficient (ADC) values are lower in areas of 
increased cellularity such as tumour. There have been conflicting 
reports regarding the predictive value of pre-treatment ADC 
values. Aoyagi et al. (n = 80; SCC undergoing chemoradio-
therapy) reported that higher pre-treatment ADC values (1.1 × 
10−3 mm2/s and greater) were associated with increased likeli-
hood of response assessed by RECIST (hazard ratio 23.4 (6.1–
89.6)) and increased survival (42% 1 year survival versus 18%) 
in advanced SCC,60 whereas De Cobelli et al. (n = 32 oesoph-
ageal and gastric cancers; 81% adenocarcinoma; undergoing 
either chemoradiotherapy or chemotherapy, respectively) found 
responders to neoadjuvant therapy assessed by Mandard TRG 
had significantly lower pre-treatment ADC values (mean ADC 
in responders (TRG 1–3) was 1.32 ± 0.33 x 10−3mm2/s vs 1.63 ± 
0.41 x 10−3mm2/s in non-responders. p = 0.002).61

Perfusion imaging
Perfusion parameters from DCE-MRI or perfusion CT are 
a further potential avenue to predict response. The transfer 
constant (Ktrans) is the rate of leakage of contrast into the inter-
stitium and is related to blood flow and tissue permeability 
(Figure 6). In many studies, Ktrans is the DCE-MRI parameter 
which is most predictive of response to treatment. Higher 
pre-treatment Ktrans values have been associated with better 
response to neoadjuvant and palliative chemoradiotherapy (Sun 
et al n = 59 SCC and Lei et al n = 25 SCC).62,63 Heethuis et al. 
(n = 25, 84% adenocarcinoma) found significantly different 
pre-treatment MRI perfusion parameters (25% percentile of 
iAUC) in good pathological responders.64 Using perfusion CT, 
several authors have found increased blood flow associated with 
an increased likelihood of response. Hayano et al (n = 31 SCC) 

Figure 4. Axial fused 18F-FDG PET/MRI image showing FDG 
uptake in the primary tumour, locoregional nodes and liver 
metastasis in a patient with Stage IV oesophago-gastric can-
cer (Images courtesy of Professors G Cook and V Goh, St. 
Thomas’ Hospital). FDG, fluorodeoxyglucose.
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reported mean blood flow 90.2 ml/100 g/min in responders, 
defined by >50% tumour volume decrease, vs 35.9 ml/100 g/
min in non-responders (p = 0.0004).65 Zhao et al. (n = 27 SCC) 
found responders, assessed by RECIST, had mean blood flow 
42.1 vs 27.5 ml/100 g/min (p = 0.007) for non-responders.65,66 It 
is hypothesised that better perfused tumours may receive higher 
doses of chemotherapeutic agents which has direct relevance for 
treatment selection.

PET/CT
Published data on the value of 18F-FDG PET/CT parameters 
in prediction of response or survival are heterogeneous and 
conflicting. Authors have reported that increased maximum 
standardised uptake value (SUVmax) is associated with increased 
likelihood of response67 whilst others found the opposite68 or no 
relationship at all.69

Figure 5. CT-based radiotherapy planning image of a distal oesophageal tumour demonstrating the GTV (red), CTV (pink) and 
PTV (blue) with several isodose lines contoured by clinical oncologists during target volume delineation (Images courtesy of Dr 
Owen Nicholas, South West Wales Cancer Centre). CTV, clinical target volume; GTV, gross tumour volume; PTV, planning target 
volume.

Figure 6. Axial fat-saturated T1 weighted MRI performed before (a), 30 s (b), 70 s (c) and 120 s (d) after contrast administration in 
a patient with a distal oesophageal tumour (arrows). Contrast-enhancement curve showing a type-3 washout curve (e). Focussed 
Ktrans map showing mean Ktrans value of 0.39 min−1 within the oesophageal tumour (arrow) (f). (Images courtesy of Professor V 
Goh, St. Thomas’ Hospital).
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In addition to 18F-FDG, there are opportunities for use of novel 
PET tracers in oesophago-gastric cancer. Human epidermal 
growth receptor 2 (HER2-neu) is overexpressed in many 
oesophageal adenocarcinomas. Monoclonal antibodies targeting 
this receptor have been developed as immunotherapy-based 
treatments, e.g. Trastuzumab, which has been shown to improve 
overall survival in the metastatic setting.70 However, heteroge-
neity of metastatic sites is not a unique problem to oesophago-
gastric cancer and can lead to treatment failure. In a study of 33 
patients undergoing both 89Zr-Trastuzumab PET/CT and 18F-
FDG PET/CT, an average of 5.5 lesions per patients were iden-
tified using 89Zr-Trastuzumab PET/CT compared to 8 using 
18F-FDG PET/CT.71 This shows the potential of novel imaging 
tracers to promote and select patients for individualised treat-
ment plans. Further, the possibility of theranostic treatment 
options using 177Lu-Trastuzumab are being researched for 
HER2 positive breast cancer,72 which may translate to oesophago-
gastric cancer. Potential other molecular targets include vascular 
endothelial growth factor, epidermal growth factor receptor73 
and hypoxia imaging.74

State-of-the-art imaging in assessing response
Conventional imaging cannot adequately predict treatment 
response with sufficient accuracy to change current clinical path-
ways. There are opportunities for state-of-the-art imaging tech-
niques to meet this challenge and improve treatment response 
assessment. A further role of imaging could be to predict 
response at an earlier time point during neoadjuvant therapy, 
to allow changes to the treatment regimen, or an alternative 
approach.

Diffusion-weighted MRI
MRI does not involve ionising radiation, therefore can be used 
repeatedly throughout the staging and treatment pathway. 
Changes in tumour ADC values during neoadjuvant treat-
ment have been reported as a potential method of predicting 
response with early increases in ADC associated with favour-
able response (Figure  7).75,76 van Rossum et al (n = 20; 75% 
adenocarcinoma) reported that less than 29% ADC increase had 
100% sensitivity for residual tumour at the end of neoadjuvant 
therapy.76 Heethuis et al (n = 45; 84% adenocarcinoma) reported 
that ADC values increased during treatment in both good and 
poor responder groups, although the change was more marked 
in good responders (23.5 ± 20.5% and 9.8 ± 11.7%, respec-
tively, p = 0.035).77 Borggreve et al performed DWI before and 
weekly during neoadjuvant chemoradiotherapy to determine the 
optimum time to predict complete pathological response (TRG 
1). Seven of 24 patients had complete response. The percentage 
increase in ADC from baseline to the 2-week scan was most 
predictive of subsequent complete response (mean increase 36% 
in complete response vs 16% in non-complete response), with a 
c-index of 0.87, which increased to 0.97 after exclusion of small 
tumours.78 Visual assessment on post-treatment DWI had good 
sensitivity for detection of residual local disease, but low speci-
ficity (42–50%).79 Some authors have found an inverse relation-
ship between ADC values and TRG, with higher post-treatment 
ADC values associated with better response (de Cobelli et al n = 
32 oesophageal and gastric cancers; and more recently Giganti et 
al n = 18 oesophageal, including some of the same patients as the 
study by de Cobelli et al).38,61

Figure 7. Axial T2 weighted MRI, B900 diffusion-weighted MRI, and apparent diffusion coefficient map before (a, b, c) and after 
(d, e, f) neoadjuvant chemoradiotherapy. The tumour is at the gastro-oesophageal junction, above a moderate-sized hiatus her-
nia. The tumour decreased in bulk, and mean tumour apparent diffusion coefficient increased from 800 × 10−3 mm2/s to 1850 × 
10−3 mm2/s (Images courtesy of Professor V Goh, St. Thomas’ Hospital).
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Dual energy CT
Dual energy CT can provide quantitative information about 
iodine contrast uptake. A full review of different dual energy CT 
methodologies is described by McCollough et al80 but in brief it 
utilises varying X-ray energy spectra to simultaneously (either 
with two separate X-ray sources or with rapid kV switching) or 
sequentially acquire two sets of image data at the same anatom-
ical location. This can provide more information on the constit-
uent materials present within a voxel as the images are combined 
with spectral characterisation.81 In a single centre study of 45 
patients, iodine concentrations after chemoradiotherapy were 
significantly lower in patients that responded vs non-responders 
(assessed by RECIST v 1.1).82

Perfusion imaging
Decreased blood flow65,83 and increased mean transit time84 have 
been associated with improved response to chemoradiotherapy 
and increased survival. In a single centre study of 40 SCC patients 
following neoadjuvant therapy, Djuric-Stefanovic et al found 
increased blood flow and increased blood volume were associated 
with higher Mandard TRG scores (i.e. worse response). They found 
blood flow <30 ml/min/100g corresponded with complete patholog-
ical response.85

Using DCE-MRI, Heethuis et al (n = 45, 84% adenocarcinoma) 
found the change in iAUC (the initial area under the Gadolinium 
concentration curve, reflecting contrast inflow and vascular leakage) 
between pre-treatment MRI and MRI performed after one cycle of 
neoadjuvant therapy could discriminate between TRG 1–2 and 3–5 
(10.6±17.6% increase in iAUC in complete responders vs 45.2 ± 
41.5% increase in non-complete responders. p = 0.028).77 In oesoph-
ageal SCC (n = 59) treated with chemoradiotherapy and assessed with 
DCE-MRI before and after treatment, the absolute post-treatment 
Ktrans (the transfer constant, reflecting the rate of leakage of Gado-
linium from vessels to the interstitium) values were lower in complete 
responders (by RECIST v 1.1) vs the remainder, and the decreases 
in Ktrans and Kep (the rate constant, reflecting the rate of return of 
contrast back from the interstitium) values were significantly greater 
in complete responders.63 Other studies (n = 25 SCC) found signifi-
cantly lower Ktrans and higher Ve (the relative volume of extracellular 
extravascular space available to accumulate Gadolinium) in complete 
responders vs partial response when assessed by RECIST v 1.1.62 
Conversely, Heethuis et al did not find post-treatment iAUC was able 
to differentiate complete pathological responders vs non-complete 
responders.77 A combination of DCE-MRI (change in Ktrans between 
per- and pre-treatment) and DW-MRI (change in ADC between 
post- and pre-treatment) has yielded better performance than either 
individually (c-index 0.89 vs 0.79 and 0.75, respectively).77

PET/CT
Published data on the value of 18F-FDG PET/CT parameters 
for predicting response or survival are heterogeneous. PET/CT 
performed during treatment has been shown to predict response as 
metabolic changes can precede pathological response. In a 2017 meta-
analysis including 13 studies and 697 patients, 8 studies found some 
predictive value in performing PET/CT during neo-adjuvant chemo-
radiotherapy, whereas 5 did not. Pooled sensitivity for complete 
pathological response was 63–100% and specificity 50–76%.86 One 

study used early PET/CT during neoadjuvant chemotherapy to 
identify metabolic non-responders. Patients with greater than 35% 
decrease in SUVmax continued with the standard pathway, but those 
with less than 35% decrease were considered non-responders and 
proceeded straight to surgery, showing the potential of PET/CT to 
alter the neoadjuvant treatment pathway. Of 54 patients classified 
as non-responders on early PET/CT, none had a major histological 
response (<10% viable tumour remaining) at the time of resection.87 
Metabolic responders had better progression-free survival (29.7 vs 
14.1 months). To determine the effect of early PET/CT for treat-
ment change, it would be necessary to randomise metabolic non-
responders to either continued standard care or early surgery, which 
is currently lacking and may not be feasible.

18F-FDG PET/CT performed after neoadjuvant therapy can be chal-
lenging to interpret as radiation-induced oesophagitis or ulceration 
is common and also has FDG uptake, although this will generally 
resolve within 6–12 weeks of radiotherapy.88 Despite PET/CT having 
the highest sensitivity for identifying distant metastases, up to 5% 
of patients will have false-positive sites of uptake requiring further 
imaging or biopsy.89 Equally, a lack of FDG uptake at the primary 
site cannot distinguish between microscopic residual disease and 
complete pathological response.90 In one study of 135 patients 
with negative biopsies after neoadjuvant treatment, 85 had residual 
tumour at oesophagectomy.91 As part of the prospective preSANO 
trial, 129 patients underwent 18F-FDG PET/CT after neoadjuvant 
chemoradiotherapy and prior to surgery. They were able to identify 
complete response (TRG 1) with 80% sensitivity and 37% specificity. 
15% of patients with a poor response (TRG 3 or 4) had a complete 
metabolic response on PET/CT.23 A study by Cerfolio et al used an 
SUVmax cut-off of 3.25 and found this predicted complete response 
with 67% sensitivity and specificity.92 Further, FDG PET/CT was 
significantly better at predicting complete response than EUS and CT 
(89% vs 67 and 71%, respectively).92

Novel PET tracers could play a potential role in predicting response 
by investigating changes in uptake values early during treatment. 
18F-Fluorothymidine is a PET tracer that acts as a marker of cellular 
proliferation and is thought to discriminate between tumour and 
inflammation. Chen et al (n = 34 SCC) found a decrease in 18F-Fluo-
rothymidine uptake 4 weeks after starting neoadjuvant chemoradio-
therapy for SCC was associated with improved locoregional control 
and better 2 year progression-free survival, whereas 18F-FDG uptake 
was not predictive.93 In a pilot study of 26 patients undergoing both 
18F-FDG PET/CT and 11C-thiothymidine before and after neoad-
juvant treatment, lower post-treatment 11C-thiothymidine SUVmax 
and a greater percentage decrease in 11C-thiothymidine SUVmax 
were associated with pathological response. Similarly, the percentage 
change in 18F-FDG SUVmax was also associated with pathological 
response, however absolute 18F-FDG SUVmax was not.94

State-of-the-art imaging of recurrent disease
Only small studies have compared MRI vs CT in the setting of 
recurrent disease. In 23 patients with recurrent disease following 
oesophagectomy, CT and MRI performed equally well at iden-
tifying intraluminal local recurrence, liver metastases, and 
malignant pleural and pericardial effusions. MRI identified 
more bone metastases and was superior in identifying malignant 
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oesophageal wall thickening but performed worse in assessment 
of lung metastases.95 Shuto et al investigated DWI in assessment 
of nodal relapse (n = 47 suspected nodes identified on CT, with 
histology as reference standard), finding restricted diffusion 
assessed on ADC map had diagnostic accuracy of 81% compared 
to 87% from 18F-FDG PET/CT.96

CONCLUSIONS
State-of-the-art imaging techniques have the potential to trans-
form the diagnostic, staging and treatment pathway for patients 
with oesophago-gastric cancer. Whole body MRI, PET/MRI, and 
novel PET tracers have shown promise in early research studies 
of oesophago-gastric cancer and may allow more precise delinea-
tion of disease extent and prediction of treatment response thus 
optimising treatment decisions and patient outcomes.
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