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Abstract. 3D surface imaging generally is used extensively in computer-aided 

design and computer-aided manufacturing (CAD/CAM), where the advent of 

low-cost 3D printers and handheld 3D scanners has brought these technologies 

into the home. However, 3D surface imaging of the face specifically is a rela-

tively small research field globally; a search of PUBMED (in March 2022) indi-

cated that only 663 papers were published on 3D facial surface imaging in the 

last year, whereas a similar search on PUBMED using the term MRI yields 

45,819 “hits” over the same time period. Despite this disparity, 3D facial surface 

imaging is a healthy field of research with distinct areas of application. Here we 

outline methods of 3D surface image capture before describing shape represen-

tation and analysis. Applications of 3D facial surface imaging in dentistry and 

“beyond” are then considered. Finally, future research avenues for the Dental 

Data Science / 3D Imaging research group at Cardiff University are presented. 
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Before discussing applications of 3D facial surface imaging, we provide background 

[1] relating to 3D imaging techniques, as well as shape representation and analysis. 3D 

surface imaging techniques use light and so are “non-ionising,” which is a strong ad-

vantage. By definition though, they cannot yield much information into tissues beneath 

the skin. 3D laser imaging directs a laser beam across an object (e.g., the face) to pro-

duce a 3D shape image. By contrast, stereophotogrammetry takes images of a 3D object 

from different angles in order to reconstruct it digitally in 3D. It can provide 3D shape 

information and “textural” (i.e., photographic in this context) data. It can be used to 

provide “4D” shape information, i.e., changes in shape over time. Problems can occur 

due to reflections and elements for more complex structures that contain strong curves 

or holes (e.g., ears or nose). Structured light imaging (see Fig. 1) projects a pattern of 

light onto an object and then deformations of the resulting pattern reflected from a 3D 

object are resolved into 3D information. This approach has similar advantages and dis-

advantages to stereophotogrammetry. However, the practical application of this ap-

proach is strongly enhanced by the ability to stitch together individual images from 

different viewpoints to provide a complete reconstruction of a 3D object. 
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Fig. 1. (left) The Vectra camera, which uses structured light; (middle) simplified sche-

matic of structured light hitting an object; (right) 3D image of the one of the author’s 

face (DJJF) obtained using the Vectra, where 21 biologically relevant landmark points 

were placed here manually also. 

Common shape representations [2] are meshes (3D shapes are represented by con-

nected polygons, normally triangles), graphs, and point clouds (3D shapes are repre-

sented by collections of Cartesian coordinates). Manual placement of key landmark 

points (and as shown in Fig. 1) allows the regular placement of points across a set of 

images. Semi-landmark methods also position landmarks point regularly on an (often 

parametric) topological surface [3,4]. Another method used for consistent placement of 

points is by deforming a template based on the mean shape for each new face [5]. There 

are other forms of shape description [2], including: volumetric, projections, RGB-D, 

and multi-view. Procrustes transformations use rotations, translations, and scaling to 

provide a common centre and length scale for all shapes [3]. Principal components 

analysis (and variants therein) [3,6-8] and partial least-squares analysis [3,9] are com-

mon methods of shape analysis that require “regular” representations of shape as pro-

vided by landmarks. Deep Learning methods may also be used for shape analysis (see, 

e.g., a recent review in Ref. [2]).  

3D facial surface imaging has previously been used in orthognathic and in plastic 

and/or maxillofacial surgery (see, e.g., [10-13]). 3D surface imaging might be used 

alone or alongside other imaging modalities such as CT and MRI [1], where this evi-

dence can be viewed by the entire clinical team to arrive at a treatment plan; this might 

also include accurate quantitative measurements of distances or volumes. Statistical 

modelling [14] and machine or deep learning [15,16] have also been employed using 

3D facial surface data to understand and predict outcomes of surgery. However, a recent 

article [17] argues strongly that 3D surface imaging is not enough for “surgical simu-

lations” and that one should employ a model that also includes the complex (non-linear) 

mechanisms of soft tissues. Other topics using 3D facial surface imaging that are rele-

vant to evaluating clinical outcomes relate to “4D” videos of the dynamics of 3D facial 

expressions [18] and 3D facial aesthetics [19-21].  

Another very strong area of research relates to the (many) “determinants” of facial 

shape [22] (i.e., factors such as sex, age, etc.). The difficulty here is in disentangling 

the effects all of these different “determinants.” However, clear patterns do exist in 

some cases. For example, research into sexual dimorphism in 3D facial shape [22] 

shows consistently (see Fig. 2) that females tend to have more prominent cheeks and 
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generally rounder faces, whereas males are more likely to have more prominent chins, 

foreheads, and noses. 3D facial changes with age have also been studied extensively in 

order understand normal facial development in children [7,9,22] and in identifying typ-

ical markers of aging in older people [23]. A fascinating area of research relates to the 

role of genes on 3D facial shape, e.g., to describe normal 3D facial variation [22,24] 

and also to understand and identify syndromes affecting facial shape [25,26]. Clearly, 

there are many ethical issues relating to the investigation of such “determinants” of 

facial shape. Other areas of application of 3D imaging in dentistry and medicine are 

connected to CAD/CAM of dental prostheses [27] and face mask design and fit (see, 

e.g., [28]).  

3D facial surface imaging is also useful in areas outside of medicine and dentistry, 

such as facial identification and/or reconstruction in forensic sciences [29-31]. This re-

search is relevant to archeology, e.g., letting us see the face of a long-dead king based 

on their human remains [32]. Other very strong areas of research that utilise 3D facial 

surface imaging are 3D facial expression classification [33-36] and 3D facial recogni-

tion [37,38].  

 
Fig. 2. Average faces (data from Ref. [6,39]) over all male subjects (left) and female 

subjects (right).  

In conclusion, 3D facial surface imaging provides a valuable tool in medicine and 

dentistry; the Dental Data Science / 3D Imaging research group at Cardiff University 

will continue to carry out research in these areas. There are also potential applications 

of 3D facial surface imaging in forensics science and archeology that we might explore 

in future. Previously, impressions of the dental arch were carried out manually by using 

an impression material and a plaster cast of dentition is formed in the dental laboratory, 

which is subsequently used to inform the manufacture of restorations and prostheses. It 

is common nowadays to use intra-oral 3D surface image capture of dentition directly 

[40], which is likely to be more acceptable to the patient, quicker, and more reliable; 

we will carry out research in this area also. Another area that we hope to continue to 

work on in future relates to paediatric bruising, where previous 3D surface imaging 

studies have focused primarily on bite marks [41,42]. Clearly this research also has 

many ethical issues, although we note that 3D surface imaging might provide useful 

additional evidence in future in deciding whether bruises are from abuse or not and/or 

also in bruise age estimation [43]. Underpinning all of these practical applications, we 

will continue to develop and apply mathematical and computational methods of 3D 

shape representation, analysis, and visualisation [6-9]. 
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