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I 

General Summary 
 

Magnetoencephalography (MEG) and Diffusion Tensor Imaging (DTI) are important tools for 

probing functional and structural properties of the brain. The interactions between the brain’s 

local and long-range circuitry could provide a key to understanding schizophrenia as a disorder 

of dysconnectivity and related risk factors in the healthy population.  

 

The aim in the first chapters of this thesis was to understand how high frequency local visual 

circuitry and long-range low frequency connectivity can be best estimated from MEG data. It 

was shown that using a finer sampling grid in source estimation leads to improved measures of 

high frequency responses. Furthermore, that networks usually measured in the resting-state can 

be extracted from task data was another key discovery and has positive implications for data 

quality and participant comfort going forward.  

 

The second aim of this thesis was to understand how specific local and global entities interact by 

investigating the relationships between local visual circuitry and long-range structural and 

oscillatory connectivity. An important finding was that the magnitude of local connectivity in the 

superficial layers of the visual cortex, as probed by gamma amplitude, was associated with 

reduced long-range connectivity beyond primary visual areas. The other novel finding was that 

the frequency of local visual oscillations was correlated with structural measures, possibly 

reflecting increased myelination.  

 

The third aim of this work was to better understand how psychosis-risk relates to functional and 

structural connectivity in health and schizophrenia. Schizotypy was robustly correlated with 

reduced long-range functional connectivity but not structural connectivity. The opposite was true 

for correlations between polygenic risk and connectivity. However, the aforementioned risk 

factors were not robustly correlated with local functional connectivity. The last chapter showed 

novel but non-significant differences in local and global oscillatory connectivity that were related 

to excitatory-inhibitory copy number burden in patients. 
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Chapter 1. Introduction 

 

1.1 General Aim 

Up to 1 percent of the population suffer with schizophrenia (NIMH, 2022). Though the 

prevalence is relatively low, the disorder is associated with several health, economic and social 

issues. Despite continued neurological discovery and theoretical advancements in the fields of 

psychiatry, psychology and academia, heterogeneity exists in the schizophrenia literature. This 

thesis will look beyond the classical diagnostic approach to schizophrenia (DSM-V, American 

Psychiatric Association, 2013), with the aim of identifying potential neuroimaging phenotypes 

which could help delineate differences between sufferers and in the literature. The overall aim is 

to investigate connectivity associated with schizophrenia-risk with a combination of functional 

task-based and resting-state paradigms, as well as structural connectivity measures. This will 

provide new mechanistic insights into the underlying neurobiological pathology that could help 

inform stratification of disease, treatment planning and novel drug discovery.  

 

1.2 Schizophrenia 

Schizophrenia is a severely debilitating disorder characterised by the presence of positive (e.g., 

hallucinations and delusions), negative (e.g., avolition and adhedonia), and cognitive symptoms 

(i.e., working memory and executive function deficits). Increased disease co-morbidity together 

with ineffective anti-psychotic medications and side effects, are among the factors that contribute 

to suffers experiencing a poorer quality of life and significantly shortened life span; on average 

15% (Buckley, Miller, Lehrer, & Castle, 2009; Fitzgerald & Watson, 2018). A higher incidence 

of suicide is also reported in groups with schizophrenia or related psychoses compared to those 

in the normal population, with ~1 in 3 people attempting suicide during their lifetime (Hor & 

Taylor, 2010; Pompili et al., 2007).  

 

Recent evidence suggests that the Covid-19 pandemic disproportionately affected the mental 

health of young people (“COVID-19 mental health and wellbeing surveillance: report,” 2021), 

where the onset of psychosis is usual. Furthermore, suicide risk is especially elevated within the 

first year of presentation, at 12 times greater than in the healthy groups in Europe (Nordentoft et 
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al., 2004), suggesting that better interventions are required for those in the early stages of illness 

and in the at-risk population.  

 

The primary medical intervention for schizophrenia continues to be anti-psychotic medications 

which target dopaminergic pathways in the brain. While these dopamine blockades have 

fundamental value in relieving acute psychosis, their usage over ~ 60 years has shown 

ineffectiveness in relieving negative and cognitive symptoms. There is now strong animal, 

genetic, pharmacological and imaging evidence to suggest that other systems are also involved 

(Egerton et al., 2020; Friston, Brown, Siemerkus, & Stephan, 2016; Krogmann et al., 2019; 

Legge et al., 2021; Pocklington et al., 2015; Zhao et al., 2018). Specifically, serotonergic, 

glutamatergic, gamma-aminobutyric acid (GABA), acetylcholinergic and inflammation factors 

have been implicated, with research on associated actions and interactions ongoing. Principally, 

the last 20 years has seen increasing support for disturbances of glutamatergic and GABAergic 

processes (Chung, Fish, & Lewis, 2016; Glausier & Lewis, 2017), which underpin the synaptic 

excitatory-inhibitory (E-I) balance of the healthy brain (Alan Anticevic & Lisman, 2017).  

 

Proposed neurobiological mechanisms for schizophrenia fall largely into four categories; 1) the 

dopaminergeric hypothesis in which positive symptoms are associated with dopamine 

hyperactivity at D2 dopamine receptors in mesolimbic pathways, with medications antagonising 

D2 receptors there (Meltzer & Stahl, 1976; Winterer & Weinberger, 2004), 2) the NMDA 

receptor hypo-function hypothesis where glutamate signalling is dysregulated in the limbic 

system and results in aberrant dopamine pathways and hypodopaminergia  downstream (Snyder 

& Gao, 2013;  Stahl, 2007),
 
3) the dysfunction in neuromodulation of GABAergic receptors on 

inhibitory interneurons and subsequent dysregulation of pyramidal neuron firing  (Guiotti et al., 

2005; Lewis et al., 2005) and 4) the inflammatory hypothesis, where a hyper-activated immune 

system influences serotonergic and glutamatergic neurotransmission (Müller, Weidinger, 

Leitner, & Schwarz, 2015). 

 

1.3 Dysconnectivity Theory 

Such mechanisms feature in Friston’s theory of Dysconnectivity (Friston, 1998; Friston et al., 

2016), which proposes that schizophrenia aetiology is, at least partly, due to impaired synaptic 
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connectivity both between and within brain regions, and is a popular mode of interpretation. 

Predictive Coding and Bayesian Inference are prominent components of the theory which 

successfully collate heterogeneous experiences of positive symptoms in patients. Here, the 

iterative interaction between bottom-up encoding processes (in superficial pyramidal cells) and 

top-down representations (in deep pyramidal cells) in the cortical hierarchy, is the process by 

which representations are updated and if disturbed can result in prediction errors and false 

representations. The idea that weights attributed to sensory versus internal representations during 

perception are unbalanced in schizophrenia, builds on previous theories such as Aberrant 

Salience (Howes & Kapur, 2009), which postulate that dopamine dysregulation in psychosis 

results in perceptual attribution to stimuli otherwise extraneous. More recent evidence has also 

demonstrated that people with early psychosis have a disposition to favour existing knowledge 

over new sensory information (Teufel et al., 2015). 

 

Synaptic gain is the excitability of neuronal populations (e.g., superficial pyramidal cells) one 

function of which is reporting prediction errors. GABA is the primary inhibitory 

neurotransmitter in the brain whereas glutamate is the primary excitatory neurotransmitter. Thus, 

beyond dopaminergic systems, GABA and glutamate are closely tied to modulated gain control. 

Computationally, abnormal gain control within local canonical circuits in schizophrenia has been 

demonstrated with Dynamic Casual Modelling (Adams et al., 2022; Friston, Harrison, & Penny, 

2003; Friston, 2008; Pinotsis et al., 2017; Shaw et al., 2017; Shaw, Knight, et al., 2020).  

 

Abnormal gain control, perhaps via impairments of these neurotransmitter systems, can also lead 

to desynchronised populations of neurons across the cortex, reflected in abnormal connectivity 

measures (Bowyer, 2016; Buzsaki & Draguhn, 2004; Friston, 2011). Interestingly, glutamate has 

been associated with positive, negative and cognitive symptoms in schizophrenia, and 

GABAergic inhibition is negatively associated with negative symptoms (Balu, 2016; Kantrowitz 

& Javitt, 2010; Krogmann et al., 2019; Shaw, Knight, et al., 2020; Stone, 2011; Tsai & Coyle, 

2002; Uno & Coyle, 2019), such that the aforementioned neurotransmitter systems may be 

implicated in the full spectrum of schizophrenia symptomology.  

 

1.3.1 Genetic contributors 
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Genetic studies show that that both common and rare variation in genetics contribute to 

schizophrenia susceptibility (Rees et al., 2015). The latest Genome Wide Association Study 

(GWAS) found single nucleotide variants at 270 loci to be associated with schizophrenia 

(Consortium, Ripke, Walters, & O’Donovan, 2020). Consistent with described neurobiological 

models, a large study (N>26,000) found individuals with schizophrenia also have increased Copy 

Number Variant (CNV) burden on genes involved in inhibitory GABAergic and excitatory 

glutamatergic signalling, as compared with controls (Polkington et al., 2015). 

 

Additionally, while heritability in schizophrenia is estimated at ~80 % (Owen, Sawa, & 

Mortensen, 2016), de novo mutations appear to be important, with new genetic changes being 

overrepresented among glutamatergic postsynaptic proteins comprising activity-regulated 

cytoskeleton-associated protein (ARC) and N-methyl-d-aspartate receptor (NMDAR) complexes 

(Fromer et al., 2014). A variety of genetic and neurodevelopmental factors are causally important 

and influence effective synaptic transmission (Owen et al., 2016), however faulty NMDA 

receptors have been heavily implicated in dysconnectivity (Balu, 2016; Friston et al., 2016; 

Harrison & Weinberger, 2005). 

 

1.4 Neuroimaging schizophrenia 

In the healthy brain, at the microscopic scale, axonal and dendritic connections and synaptic 

terminals connect neurons to other neurons forming both multicellular and local neuronal 

circuits. Meso- and macroscopic circuits comprise neural columns and largescale brain regions 

which are connected by close and long-range axonal white matter projections. Interactions 

between meso– and larger scale networks, studied under systems neuroscience, allow the 

complex functioning of the brain.  

 

Neuroimaging is a dominant mode of systems neuroscience and has provided valuable pieces to 

the neuropathological puzzle that is schizophrenia. Functional connectivity comprises the 

dependencies of remote neurophysiological events (Friston, 2011) and can be captured by 

analysis of the oscillatory Magnetoencephalography (MEG) or Electroencephalography (EEG) 

signal, or by analysis of the slower Blood Level Oxygen Dependent (BOLD) signal obtained 

from functional Magnetic Resonance Imaging (fMRI). The slowness of the fMRI signal is 
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because it is reliant on the haemodynamic response and can therefore be confounded by 

respiratory and other physiological factors. Regardless, such methods, in addition to modelling 

techniques, have revealed both local and global functional dysconnectivity in schizophrenia 

using both task paradigms and investigations of the resting-state.  

 

1.4.1 Resting-state studies 

Resting-state paradigms are easily implemented in a neuroimaging protocol. By avoiding 

potential confounds related to the completion of a task, measuring connectivity at rest is useful in 

investigating spontaneous networks. That being said, because there is no task, it is difficult to 

know exactly what the participant is doing in the scanner and therefore some scans can be poorly 

controlled. Globally, fMRI studies have revealed reduced connectivity in schizophrenia 

(Pettersson-Yeo, Allen, Benetti, McGuire, & Mechelli, 2011; Yu et al., 2012; Zhou et al., 2007), 

whereas oscillatory connectivity measures have revealed both hyper-and hypo-connectivity, 

across the oscillatory frequency bands (Alamian et al., 2017b; Bowyer et al., 2015; Cetin et al., 

2016; Hinkley et al., 2011; Uhlhaas & Singer, 2010a).  

 

Among the most consistent findings are reduced frontal connectivity, aberrant fronto-

parietal/occipital connectivity, particularly in the alpha band (Liu et al., 2019b; Trajkovic et al., 

2021), and aberrant parieto-temporal connectivity (Alamian et al., 2017b; Houck et al., 2016; 

Maran, Grent-‘t-Jong, & Uhlhaas, 2016). These findings are interesting in the context of 

schizophrenia symptoms, where deficits in executive functioning, working memory and auditory 

and visual hallucinations are common, and closely tied to the aforementioned areas.  

 

One explanation for the differences in electrophysiological connectivity profiles is the effect of 

disease stage and duration ( Liu et al., 2019a; Zhao et al., 2018). For example, Grent-‘T-Jong 

(2018) found increased resting-state high gamma power, in clinical-high-risk (CHR) groups, 

over frontal and temporal structures, while schizophrenia groups showed reduced broadband 

gamma power, with first episode subjects also showing increase gamma power in the visual 

cortex (VC). In support, glutamatergic NMDAR-related gamma signatures associated with early 

and chronic disease stages have been shown to be distinct (Anticevic et al., 2015). Importantly, 

hyper-connectivity seen in At-Risk and First-Episode groups could comprise a precursor to 
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illness (Di Lorenzo et al., 2015; Krukow, Jonak, Grochowski, Plechawska-Wójcik, & Karakuła-

Juchnowicz, 2020; Zhao et al., 2018), which could be exploited  a clinical risk marker.  

 

At present, it remains unclear to what extent the global connectivity network effects are driven 

by local aberrant connectivity. Graph theoretical descriptions (where brain areas are represented 

as a set of local nodes with connections between represented as edges) have helped, with metrics 

such as smallworldness, modularity, global efficiency and path length representing the local and 

global properties of neural networks. Most functional graph theory studies have focused on fMRI 

in the resting-state, with results showing disrupted smallworldness (quantified integration and 

segregation properties of neural populations), in patients (Liu et al., 2008), and reduced local 

efficiency and increased global efficiency (Yu et al., 2012). 

 

1.4.2 Task-based studies 

Task-based studies have also been fundamental to our understanding of domain specificity and 

task related integrative connectivity in schizophrenia. Visual grating, auditory steady state and 

sensory motor tasks are now common in schizophrenia imaging pipelines due to 

neurophysiological research showing disturbances in the corresponding visual gamma, auditory 

40hz steady state response (SSR) and beta activity phenomena (Gascoyne et al., 2021; Shaw et 

al., 2017; Spencer, Salisbury, Shenton, & McCarley, 2008). Dynamic Causal Modelling (DCM) 

has provided a means by which such responses can be tied to excitatory and inhibitory 

connections within canonical microcircuits and at the meso- and macro-neuronal scale (Friston et 

al., 2003), and subsequently the opportunity to better non-invasively understand E-I imbalance in 

schizophrenia. DCM is based on Bayesian Inference, where essentially change in one region 

predicts rate of change in another and provides considerable support to Friston’s Dysconnectivity 

theory (Friston et al., 2016). 

 

Task-based studies have also been useful in unpicking cognitive symptoms that are at present 

poorly treated. For example, Nielsen (2017) found that fronto-parietal connectivity was 

modulated by working memory during an N-back task using DCM, and that modulation was 

reduced in FE patients. Exploiting time series data in this way has provided evidence that local 
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and global functional connectivity impairments seen in patients are causally involved in 

presentation.  

 

Oscillatory functional connectivity disturbances have been related to positive, negative and 

cognitive symptoms in schizophrenia, though the nature of these relationship is also unclear with 

positive and negative trends being found (e.g., Chen et al., 2016; Fehr et al., 2001, 2003; Kim et 

al., 2014; Spencer et al., 2008; Sperling et al., 2002; Sperling et al., 2003). Interestingly, 

Manzano and colleagues (2017) found that MEG resting-state data in individuals with chronic 

schizophrenia had high frequency amplitude profiles across the cortex which could distinguish 

predominant symptom dimensions (i.e., disorganisation, reality disturbance and poverty 

slowness), suggesting that MEG oscillations could provide a unique opportunity for 

understanding functional systems across the different clinical domains (Manzano et al., 2017).  

 

1.4.3 Structural connectivity 

While functional connectivity is not isomorphic with structural connectivity, it is constrained by 

the structural connectome. ‘Connectomics’ is the study of the brain’s architecture and how it 

supports brain functioning (Fornito, Zalesky, Pantelis, & Bullmore, 2012; Sadaghiani, Brookes, 

& Baillet, 2021b). The structural connectome refers to the anatomical structure of the brain and 

its interconnections. It includes, though is not limited to, white matter projections, white matter 

volume and axonal microstructure, metrics for which are obtained through neuroimaging 

methods like Diffusion Tensor Imaging (DTI). DTI is a specific MRI sequence which utilises the 

signal generated from water molecules when combining radiofrequency pulses with magnetic 

field gradients. Alternating the direction of gradient pulses across different planes provides 

diffusivity metrics in 3 directions and allows structural pathways to be reconstructed with 

tractography modelling.  

 

Structurally, individuals with schizophrenia show several abnormalities. Historical imaging 

studies have shown clear volumetric and morphological differences, including reductions in 

prefrontal, temporal and thalamus volume (Breier et al., 1992; Gaser, Nenadic, Buchsbaum, 

Hazlett, & Buchsbaum, 2004). More recent network studies have shown abnormalities in DTI 

measures such as Fractional Anisotropy (FA), Radial diffusivity (RD) and Axial Diffusivity 
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(AD), which index the movement of water within white matter tracts. Reductions in FA and 

increases in RD, representing reduced overall diffusivity and increased diffusivity in the 

perpendicular orientation of the tract, respectively, have most commonly been found in 

schizophrenia (Joo et al., 2018; Parnanzone et al., 2017). Graph theoretical studies have also 

shown increased clustering and modularity and increased path length, suggesting there could be 

increased segregation of areas connected by white matter tracts in patients (Fornito et al., 2012; 

Van Den Heuvel, P & Fornito, 2014). While these findings contrast functional evidence showing 

increased local efficiency in schizophrenia, their existence is not necessarily contradictory, as 

functional hyper-connectivity may also be pathological (Fornito & Bullmore, 2015; Friston et al., 

2016). 

 

1.5 The visual cortex (VC) 

The VC, an extensively studied local modality of the brain, is highly implicated in schizophrenia 

on account of its role in processing bottom-up and top-down visual information (Lawrence, 

Norris, & De Lange, 2019). Both volume and neuron number are reduced in the VC of patients 

(Dorph-Petersen, Pierri, Wu, Sampson, & Lewis, 2007). Disrupted local interneuron circuitry 

and NMDA hypofunction in VC are also reflected in the high frequency oscillatory disturbances 

frequently reported in schizophrenia groups (Carlén et al., 2012; Gonzalez-Burgos, Cho, & 

Lewis, 2015; Grent-‘t-Jong et al., 2016; Kujala et al., 2015). Furthermore, complementary to E-I 

theories (Lewis, Curley, Glausier, & Volk, 2012), GABA concentration is reduced in VC in 

patients (Yoon et al., 2019, 2010).  

 

Persons with psychotic disorder show altered processing of contextual visual information, which 

is the background or context of the visual stimulus or activity in addition to existing top-down 

biases, knowledge or expectations (Glöckner & Moritz, 2008; Yang et al., 2013). In fact, even 

the earliest responses in V1 show contextual modulation (Seymour et al., 2013). Nevertheless, it 

has been suggested that the long-range integration of information is fundamentally disturbed in 

schizophrenia (Glöckner & Moritz, 2008; Northoff, Sandsten, Nordgaard, Kjaer, & Parnas, 

2021), and is reflected in intra-area connectivity differences. For example, dysconnectivity 

between VC and amygdala has been associated with visual hallucinations (Ford et al., 2015) and 
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dysconnectivity between VC and thalamus has also been related to attentional impairments 

(Yamamoto et al., 2018).  

 

Interestingly, the VC may be a therapeutic target for schizophrenia considering recent 

longitudinal work which has shown that visual acuity and visual impairment in childhood is 

associated with increased psychotic experience in 17–24-year-olds (Shoham, Hayes, Cooper, 

Theodorsson, & Lewis, 2021). This effect has also been shown in a cohort of 1 million Swedish 

men studied between adolescence and adulthood (40+ years) (Hayes et al., 2019). Such studies 

demonstrate the importance of understanding neuropathological inter- and intra- areal 

interactions in VC. 

 

1.6 Beyond diagnostics 

Friston’s dysconnectivity hypothesis provides an excellent framework for reconciling 

schizophrenia imaging findings. However, studying the normal population with schizophrenia 

risk factors can also be beneficial for several reasons. For example, as Duration of Untreated 

Psychosis (DUP) is associated with poorer long-term outcomes (Murru & Carpiniello, 2018), 

acutely unwell individuals are usually fast-tracked onto antipsychotic medication. However, 

antipsychotics have structural and functional neural correlates which can compromise the 

reliability of findings in clinical cohorts (Tarcijonas & Sarpal, 2019). Furthermore, inflammation 

has been increasingly implicated in psychosis, as indexed by cytokines and C-reactive protein 

(Boozalis, Teixeira, Cho, & Okusaga, 2018; Fond, Lançon, Korchia, Auquier, & Boyer, 2020), 

and accumulating evidence suggests that inflammation affects E-I neural circuitry (Fourgeaud & 

Boulanger, 2010; Fourgeaud et al., 2010; Landek-Salgado, Faust, & Sawa, 2015). Finally, the 

nature of schizophrenia disorders is heterogeneous, with individuals exhibiting a diversity of 

symptoms differentially weighted by genetic, clinical, biological and neurodevelopmental 

factors.  

 

The dimensional view of schizophrenia suggests genetic and clinical risk factors for 

schizophrenia are dispersed in the normal population (Grant, Green, & Mason, 2018). Clinical 

risk includes factors like symptom presentation and adverse circumstances (Paolo Fusar-Poli et 

al., 2013). Genetics risk refers to the presence of identified variants i.e., Single Nucleotide 
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Polymorphisms or CNVs associated with schizophrenia. Increasingly such factors have become 

targets for investigation as increased genetic or clinical burden is related to psychosis onset 

(Barrantes-Vidal, Grant, & Kwapil, 2015; Marshall et al., 2017; Nenadić et al., 2020) and will be 

discussed further in this thesis. 

 

1.6.1 Identifying biomarkers and imaging markers in psychology and psychiatry 

The aforementioned factors highlight the importance of investigating neuropathology beyond 

classical diagnostics. For this, the identification of bio-imaging markers in both the healthy brain 

and psychopathology has a considerable number of advantages. Firstly, probing the healthy brain 

provides an opportunity to further develop understanding of the brain’s equilibrium, mechanisms 

and its associated physiological processes. Secondly, markers which differ in disease provide a 

key to identifying clinical, genetic and environmental differences between heterogeneous 

individuals and between disorders in general. And third, neurobiological impairment is common 

prior to the onset of clinical symptoms and in related groups; bio-imaging markers are a means to 

better understanding of risk and subsequent avenues for prevention. 

 

1.6.2 Research Domain Criteria (RDoC) 

The identification of biomarkers supports the 6-domain translational RDoC approach (Insel, 

2014), which aims to understand the nature of mental health disorders in terms of biological 

systems and psychological mechanisms. At present, the 6 domains include: Positive Valence 

systems, Negative Valence Systems, Cognitive Systems, Arousal and Regulatory Systems, Social 

Processing and Sensorimotor Systems. These can be studied using different units of analysis, 

which include genetic, physiological, behavioural, and self-report assessments. The RDoC 

approach differs to the traditional diagnostic approach to research, where a binary categorisation 

system applies and tools such as the Diagnostic and Statistics Manual (American Psychiatric 

Association, 2013) and International Classification of Diseases (WHO, 2018) are employed. 

 

Understanding specific neurobiological impairments under the umbrella term of ‘schizophrenia’ 

would facilitate the administration of individualistic care. Through this research process, it is 

hoped that functionally important mechanistic markers will be uncovered.  
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1.7 What is an oscillation? 

Oscillations comprise rhythmic signals which represent neural fluctuations. In laboratories, 

intracellular single unit recordings measure the oscillatory activity of a neuron, while 

extracellular local field potentials measure the summation of oscillatory activity originating from 

a group of neurons. In humans, oscillations are typically recorded by scalp EEG and MEG 

(MEG) and occasionally by cortical and depth electrodes during surgery, which all yield 

complicated oscillatory waveforms comprised of energy in different frequency bands. Unlike 

animal recordings, scalp-recorded oscillations do not directly measure neuronal bursting, but 

instead measure fluctuations in neural activity. They are considered an assembly of local field 

potentials, which are thought to come mostly from post-synaptic potentials, representing the 

synchronous activity of a large set of neurons or neural circuits. 

 

1.8 Gamma oscillations and the healthy brain 

1.8.1 Gamma oscillations – Background 

Since the early discovery of fluctuations in EEG signal in the human VC at ~ 10Hz associated 

with eyes open and eyes closed states (Berger, 1929) our understanding of neural oscillations has 

grown immensely. In 1989, Grey and colleagues were able to show that visual simulation elicited 

synchronous inter-columnar neural oscillations at 40-60Hz, ‘the gamma range’, in the cat 

occipital cortex (Gray & Singer, 1989;  Gray, König, Engel, & Singer, 1989a).  Most importantly 

they were able to show that the nature of the oscillations was altered with the stimulus 

configurations. That is, different cortical columns in the VC were responsive and synchronised, 

to spatially separate features (Gray et al., 1989). They suggested this rhythmic synchronisation in 

the gamma range reflects the integration of these separate visual features. A cascade of research 

followed.  

 

The findings were supported by studies of different species and different brain areas (Engel, 

Konig, Kreiter, & Singer, 1991; Kreiter & Singer, 1996, Gieselmann & Tiele, 2008) and led the 

Wolf Singer lab to propose the popular Binding By Synchrony (BBS) theory (1999). BBS 

postulates that synchronised activity acts as a binding tag, linking neurons and allowing 

representation of complex inputs. Multisite recordings in cat also demonstrated that these 
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oscillatory synchronisations were not only occurring in highly localised bundles of neurons but 

across structures in the cortex (Brecht, Singer, & Engel, 1998). 

 

In the Communication Through Coherence theory, Fries (2005) proposed that the mechanism 

which governs the encoding of co-ordinated neural information is by synchronised, phase-

locked, self-generated oscillations. Communication or ‘effective connectivity’ between neural 

assemblies, within and between brain regions, is underpinned by coherent rhythmic 

synchronisations. A later revision of theory proposed that connectivity has directedness, on basis 

that many studies have shown a non-zero, delayed, phase coherence; now so called ‘effective 

connectivity’ (Bastos et al., 2015; Bosman et al., 2012). 

 

Generally, oscillations in the gamma band occur in highly localised neuronal groups, with plenty 

of research in support (Cardin et al., 2009; Gieselmann & Thiele, 2008; Hasenstaub et al., 2005; 

Sohal, Zhang, Yizhar, & Deisseroth, 2009). That being said, more recent studies have shown that 

connectivity exists at relatively high frequencies across inter-areal and intra-areal neuronal 

groups, which may relate to feedforward and feedback mechanisms (Bastos et al., 2015a; 

Bosman et al., 2012). Gamma oscillations are continuously modulated by excitatory and 

inhibitory factors, though the exact mechanisms remain unknown (see subsequent ‘Gamma 

Oscillations- a probe of local excitation-inhibition balance’). What is known is that excitability is 

not modulated by linear or sinusoidal rhythmic synchronisations but by a complex regularisation 

system calibrated by inhibitory and excitatory neurons and constituting a short excitation period 

with a long inhibition period (Fries, 2015; Merker, 2016). 

 

1.8.2 The Role of Gamma Oscillations 

Changes in band activity are functionally relevant and have been associated with different 

sensory and cognitive processes, in animals and humans (see reviews Moran & Hong, 2011; 

Uhlhaas & Singer, 2010). Gamma band activity (30-90Hz), occurs spontaneously across the 

cortex (Mitra, Nizamie, Goyal, & Tikka, 2015) and in response to stimulation. Stimulus related 

gamma can be broken into two temporal components of interest (Uhlhaas et al., 2006). Early 

evoked gamma is phase locked to the stimulus and events can be averaged over a number of 

trials. Evoked responses have a maximal amplitude and have inter- and intra-individual 
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reliability in the healthy population (Muthukumaraswamy, Singh, Swettenham, & Jones, 2010), 

which has made them popular candidates for investigation in clinical populations (Sensory 

Gating - Boutros, Korzyukov, Jansen, Feingold, & Bell, 2004). Being phase-locked to the 

stimulus suggests evoked gamma has a primary sensory role (Tallon-Baudry et al., 1996). 

 

The second component of the gamma signal is the self-generated sustained, induced or 

oscillatory period, where the signal is not phase locked to the stimulus and would be essentially 

cancelled out through averaging across trials. This sustained/induced gamma is fundamental to 

Perceptual Binding Theory (Tallon-Baudry et al., 1996, 1998; Uhlhaas et al., 2006). Following 

the work of Wolf Singer and colleagues (1999), PBT states that bundles of firing of neurons, at 

gamma frequency, can each process different object feature and allow the integration of features 

over this specific time window. Hence, the number of representations that can be held at one 

time is multiplied considerably.   

 

According to the PBT, stimulus specificity effects are shown in the sustained gamma period, 

induced at around 280msc after stimulus onset (Tallon-Baudry et al., 1996). Tallon-Baudry 

(1999) extended the theory to include integration over sensory modalities (e.g., visual-auditory), 

providing an explanation for gamma synchronisations found not just across intra-areal groups but 

distinct parts of the cortex. Top-down factors have also been included, involving integration 

from memory rather than bottom-up processes (Tallon–Baudry, 1999), without ignoring the role 

of attentional and perceptual mediators (Uhlhass & Singer, 2006).  

 

A subsequent body of research has implicated sustained gamma band activity in top-down and 

bottom-up local processes, especially attention (Fries, Reynolds, Rorie, & Desimone, 2001; 

Tallon-Baudry, Bertrand, Hénaff, Isnard, & Fischer, 2005) and perception (Gray, König, Engel, 

& Singer, 1989; Castelhano et al 2013). Consciousness (Melloni et al., 2007), synaptic 

plasticity (Wespatat, Tennigkeit, & Singer, 2004), pattern recognition and object recognition 

(Rodriguez et al., 1999; Tallon-Baudry & Bertrand, 1999), memory load (Howard et al., 2003), 

face recognition (Dobel, Junghöfer, & Gruber, 2011) and age dependent executive function (Paul 

et al., 2005), have also been associated. Importantly, considering early single electrode studies 

using the visual systems of anesthetized animals to generate gamma oscillations, changes in 
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gamma oscillations do not always require attention, suggesting likely top-down and bottom-up 

interactions in these processes. 

 

That being said, the attribution of cognitive functions to oscillatory characteristics constitutes a 

‘jump in the literature’ considering the continued uncertainty on the origins and mechanisms of 

oscillations. Recent thinking supports a more modest role for gamma oscillations in brain 

functioning, i.e., an intrinsic role in local processing via the excitation–inhibition balance rather 

than as a cognitive operator (Merker, 2016). In this case, findings of cognitive covariation are 

likely to represent relationships with the activation of local circuitry, rather than the oscillatory 

gamma signal itself. Despite disagreement over the higher order functions of gamma oscillations, 

what is generally accepted is the association with neurocircuitry and local synchrony, which is of 

relevance to this thesis.  

 

1.8.3 Gamma oscillations – a probe of local inhibition-excitation balance 

Healthy brain functioning requires an equilibrium in excitatory and inhibitory processes, that if 

disturbed can lead to dysfunction. The predominant cells in the cortex, the pyramidal cells, are 

glutamatergic and excitatory. Gamma-aminobutyric acid (GABA)-ergic inhibitory interneurons 

comprise about 20% of the cell population and prevent the over excitement of the cortex (Moore, 

Carlen, Knoblich, & Cardin, 2010). This process is particularly fine-tuned as inhibitory 

responses are co-ordinated in accordance with individual excitation levels (Xue, Atallah, & 

Scanziani, 2014). 

 

Parvalbumin (PV) positive basket cells are fast-spiking interneurons that express the calcium-

binding protein PV and receive N-methyl-D-aspartate (NMDA)-dependent excitatory input from 

pyramidal cells (Jones & Bühl, 1993). These cells have a key role in regulating gamma 

oscillations as they are inhibitory, and their genetic removal has been shown to lead to disturbed 

gamma activity (Carlén et al., 2012). PV interneurons also have a high sensitivity to 

pharmacological substances, such as ketamine, which antagonize NMDA receptors and have 

been shown to influence gamma oscillations (Ehrlichman et al., 2009; Jingyi Ma, 2000; 

Muthukumaraswamy et al., 2015).  
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The exact mechanisms behind gamma oscillation generation, however, are not clear. Putative 

mechanisms have been suggested via computer models in animals (Jensen & Lisman, 1996; 

Leung, 1982; Tiesinga & Sejnowski, 2009; Traub et al., 2001; Traub, Whittington, Stanford, & 

Jefferys, 1996; Wang & Buzsáki, 1996). This work supports two main circuit models for gamma 

rhythm generation, Inhibitory models (I-I) or Excitatory inhibitory models (E-I), specifically the 

Interneuron Network Gamma (ING) model and the Pyramidal Interneuron Network Gamma 

(PING) model (Buzsáki & Wang, 2012a; Whittington, Traub, Kopell, Ermentrout, & Buhl, 

2000). 

 

Figure 1.1. PING and ING gamma models1.  

 

The main difference between models is that in the PING model the pyramidal cells are directly 

involved in the gamma rhythm production. The pyramidal neurons are mediated by phasic 

excitatory glutamatergic currents which then trigger interneuron activation and feedback 

inhibition (Gonzalez-Burgos & Lewis, 2012). The ING model assumes some kind of continuous 

excitation current to the interneurons (non-glutamatergic). In this case, oscillations are 

                                                           
1 Note: Adapted from Gonzalez-Burgos, G., & Lewis, D. A. (2012). NMDA receptor hypofunction, 

parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophrenia 

bulletin, 38(5), 950-957. 
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modulated by the interaction between parvalbumin basket cells (GABAergic interneurons) and 

not by pyramidal neurons directly. Rather, the pyramidal cells are synchronised passively with 

the oscillation rhythm (Gonzalez-Burgos & Lewis, 2012). The consensus falls with the PING 

model as several lines of animal research suggest it is better supported (Börgers, 2017; 

Gonzalez-Burgos & Lewis, 2012). For example, research with modified mice has supported the 

phasic excitation role of pyramidal cells in gamma oscillations (Fuchs et al., 2007). Furthermore, 

the genetic knock out of the I-I link in mice does not strongly affect hippocampal gamma power 

(Wulff et al., 2009).  

 

The PING model proposes that gamma oscillations are generated in superficial layers (2/3) of the 

cortex and are mediated by fast GABAA and AMPA receptors as well as slower NMDA 

receptors (Oke et al., 2010). Simulation studies have suggested gamma rhythms in neocortical 

layer 5 also have the potential to obscure simultaneous gamma in layer 2/3 (Lee & Jones, 2013). 

Nonetheless, AMPA and NMDA receptors are fundamental to glutamate-mediated circuitry. 

AMPA receptors have a large contribution as shown by animal studies (Fuchs et al., 2007; Oke 

et al., 2010). For example, the removal of AMPAR in rodent is associated with significantly 

reduced or eliminated gamma power (Fuchs et al., 2007). NMDA receptor antagonism is also 

consistently associated with aberrant gamma oscillations, usually with positive directionality in 

the animal literature (Gonzalez-Burgos & Lewis, 2012). Strong support comes from ontogenetic 

and pharmacological studies in vitro and in vivo (Hakami et al., 2009; Hong et al., 2010; 

Muthukumaraswamy et al., 2015a).  

 

As mentioned, GABA is the major inhibitory neurotransmitter in the brain and has an essential 

role in local PING circuitry. Two types of GABA receptor exist (GABAA & GABAB) but 

inotropic GABAA receptors are abundant on neurons and glial cells and mediate the majority of 

GABA inhibition (Kandel, Schwartz & Jessel, 2000). With the development of Magnetic 

Resonance Spectroscopy (MRS) techniques allowing measurement and advanced differentiation 

(GABA from creatine) of metabolites in vivo, the association between GABA concentration and 

gamma oscillations has become well established (Chen et al., 2014; Kujala et al., 2015; Kuki et 

al., 2015; Muthukumaraswamy, Edden, Jones, Swettenham, & Singh, 2009).  
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Associations between GABAergic inhibition and gamma have mostly been found in the VC 

(Muthukumaraswamy et al., 2009; Shaw et al., 2020) and paradigms which induce changes in 

occipital gamma oscillations have been commonly employed in electrophysiological research. 

The inference from the PING model is that these paradigms allow the local excitation-inhibition 

system to be passively perturbed. Support comes from Dynamic Causal Modelling work on the 

canonical microcircuit in V1 (Shaw et al, 2017). Specifically, the model suggests the main 

determinants of the amplitude of the visual gamma response (to a visual grating stimulus) are 

connections between pyramidal cells and interneurons in the superficial layers (2/3) of the 

cortex. Additionally, increased inhibition of pyramidal cells, with GABAergic tiagabine, was 

found to result in reduced amplitude and increase frequency of gamma activity (Shaw et al., 

2017).  

 

On this basis, induced gamma oscillations have been taken as a proxy for local circuitry in the 

VC. Furthermore, as key theories of schizophrenia propose an impairment of GABAergic and 

glutamatergic systems (Stone, Raffin, Morrison, & McGuire, 2010), oscillatory gamma has been 

a prime candidate for investigation in schizophrenia and schizophrenia-risk research.   

 

1.9 Local and global processes in the healthy brain-a commentary 

Some of the fundamental questions in neuroscience are to what extent and how are regional and 

inter-regional areas of the brain connected; what are the characteristics and functions of these 

relationships? These questions are on-going, with many approaches and accompanying jargon 

having been devised. For example, the study of micro-circuitry, mesocircuitry and 

macrocircuitry in physiologically informed research (Kennedy, Van Essen, & Christen, 2016), 

smallwordness properties in graph theory (Farahani, Karwowski, & Lighthall, 2019), local and 

global functional properties (Donner & Siegel, 2011; Gandal, Edgar, Klook, & Siegel, 2012; 

Siegel, Donner, & Engel, 2012), modelling systems specialisation and integration (Friston, 

Harrison, & Penny, 2003) and the connectome and cortices (Romme, de Reus, Ophoff, Kahn, & 

van den Heuvel, 2017) are all broadly concerned with these same questions.  

 

Neuroimaging tools have been crucial to advancements in our understanding of functional 

connectivity in both health and disease; particularly in disorders such as schizophrenia where 
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through comparisons with healthy controls, both impairments in local visual areas and global 

networks have been found (Uhlhaas & Singer, 2010a). The consideration of these impairments is 

a key theme in this thesis, however to better place explorations of the relationship between local 

visual and global functioning in schizophrenia using MEG, here some current findings and 

hypotheses on local-global interactions in healthy individuals will be discussed. 

 

The co-ordinated modulation of membrane potentials across a number of pyramidal cells in a 

network enables groups of neurons to fire synchronously, in the way that is reflected in 

measurable oscillatory activity. The central idea in the local-global story is that high frequency 

oscillatory activity (>30 Hz, gamma) is reflective of local processes, whereas lower frequency 

alpha and beta oscillations (8-12Hz, 13-30Hz) appear to be reflected in the synchronous 

communication of neurons over distant brain areas. Occurrences of synchronous gamma 

oscillations across brain areas have been observed, though the interpretation that this represents 

high frequency long- range connectivity is not well supported (see Buzsáki & Schomburg, 2015). 

 

In the frequency domain, higher frequencies oscillations appear to travel shorter distances than 

slower frequency oscillations, the rates of which are modulated by neuronal conductance delays 

(Buzsáki & Draguhn, 2004). The generation of faster (gamma) and slower (beta) oscillations has 

been demonstrated in individual neuron work, via a reduced network of 2 excitatory and 2 

inhibitory neurons (E-E & E-I connections), by Kopell and colleagues (2000). While an 

extremely reduced model, the principle has been considered to generalise to larger more realistic 

models or circuits (Kopell, Ermentrout, Whittington, & Traub, 2000b; Moran & Hong, 2011). 

Gamma oscillations, in particular, have been studied extensively in single- and multi-electrode 

work where an origin in intra- areal Excitation-Inhibition (E-I), spiking and Local Field Potential 

interactions, is suggested (Buzsáki & Schomburg, 2015a). 

 

Evidence for gamma reflecting activation of local neuronal circuitry comes from the 

physiologically informed Dynamic Causal Modelling (DCM), based on the Pyramidal 

Interneuron Network Gamma (PING) model (Gonzalez-Burgos et al., 2015). In short, the PING 

model suggests that gamma oscillations are generated by the interaction between glutamatergic 

pyramidal cells and GABAergic parvalbumin interneurons (Shaw et al., 2017). This was found 



 

19 

 

with DCM based on a canonical microcircuit in V1 (a simple model of a cortical column). 

Specifically, the model suggests the main determinants of the visual gamma response 

(amplitude) are connections between pyramidal cells and interneurons in superficial layers (2/3). 

Increased inhibition of pyramidal cells, with GABAergic tiagabine, was also shown to result in 

reduced amplitude and increase frequency of gamma activity (Shaw et al., 2017). That being 

said, other DCM work has also suggested that deep layer cholinergic input enhances superficial 

layer activity in V1 (Pinotsis et al., 2017). Regardless, a subsequent study has shown visual 

gamma frequency is associated with the superficial layers and reduced in schizophrenia (Shaw et 

al., 2020).  

 

Exactly how pyramidal- interneuron interactions result in the signals measured and analysed in 

global oscillatory connectivity analysesis not well understood. However, beta peak differences 

have also been shown to be predicted by between-subject differences in deep layer (5/6) 

pyramidal cells and interneurons using DCM (Shaw et al., 2017); with longer inhibition periods 

related to slower oscillations. A recent version of the model, including a thalamo-cortical 

parameter, shows reduced free energy along with the generation of an alpha peak (Shaw et al., 

2020). This finding supports the notion that alpha is generated over more extensive areas, namely 

thalamo-cortical loops (Vijayan, Ching, Purdon, Brown, & Kopell, 2013; Vijayan & Kopell, 

2012). 

 

Prominent theories of brain organisation and cognition suggest that communication between 

brain areas arises by means of the synchronisation of distant groups of neurons. That is, the 

phase alignment of signal generated by regional excitatory-inhibitory units (Coupled synchrony-

Florin & Baillet, 2015; Communication through coherence- Fries, 2015; Perceptual binding- 

Tallon-Baudry & Bertrand, 1999). With long-range connectivity measures (amplitude- 

amplitude, phase-amplitude coupling), this is often found in the alpha and beta band (von Stein 

& Sarnthein, 2000), in large scale patterns that are largely consistent with network patterns found 

at higher spatial resolution using fMRI (Brookes et al., 2011a; Brookes et al., 2011b).  

 

The spatial characteristics of gamma, beta and alpha oscillations and the connectivity of the brain 

has prompted the consideration of oscillations as important in local and distance interactions 
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(Siegel et al., 2012); with gamma in particular being a proxy for local connectivity (Donner & 

Siegel, 2011).  

 

Meso- and macroscopic modelling approaches have been particularly useful for investigating 

such interactions. For example, Cabral and colleagues (2011) sought to investigate the 

relationship between low frequency BOLD resting-state activity and local gamma oscillators. 

The model they provide is based on the Kuramoto model of phasic oscillators, wherein slow 

resting-state network functional dynamics can be seen as a product of dispersed local dynamics 

and structural connectivity. When gamma oscillators were simulated in nodes across the cortex, a 

network of rhythmic slow neural activity occurred. This arose in a pattern that correlated with 

empirical functional connectivity (BOLD) data when realistic conductance delays (axonal 

conductance) were added to the model, suggesting resting-state activity could be a function of 

local dynamics and interactions rather than a connectivity pattern per se.  

 

With regard to electrophysiological findings, oscillations as communications along the biological 

(cortical) and conceptual hierarchy has become a popular mode of interpretation (Baillet, 2017; 

Friston, 2008; Michalareas et al., 2016). Taking the VC, both van Kerkoerle and Michalareas and 

colleagues were able to show, using a combination of human MEG (granger causality) and 

macaque anatomical projections, that gamma was causally implicated in feedforward projections, 

whereas alpha and beta were implicated in feedback projections (Kerkoerle et al., 2014a; 

Michalareas et al., 2016b). These studies also support existing evidence (Bastos et al., 2015) 

suggesting a primary sensory, bottom-up, influence of gamma, where projections up the cortical 

hierarchy (e.g., V1>v4) are reflected in gamma synchronisations. Correspondingly, beta and 

alpha oscillations are involved in top-down influences, in line with projections down the cortical 

hierarchy (Bastos et al., 2015; Michalareas et al., 2016). 

 

The idea of a cortical hierarchy with feedforward and feedback influences is central to prediction 

error theory (Bastos et al., 2012; Bastos et al., 2015; Friston & Kiebel, 2009), which has become 

fundamental to our modern interpretation of brain functioning. Higher areas combine incoming 

evidence and prior knowledge to generate predictions, which then feedback to the sensory areas 

and are compared with sensory evidence in a continuous loop. The difference between sensory 



 

21 

 

evidence and predictions comprises prediction errors which are forwarded to higher areas. An 

efficient system would require prediction errors to move faster than predictions, which is 

consistent with feedforward processes being reflected in fast gamma oscillations and feedback or 

top-down processes being reflected in slower alpha and beta oscillations.  

 

Oscillatory interactions have also been investigated in the form of frequency mediation effects, 

i.e., the extent to which oscillations mediate each other’s top-down/bottom-up effects. Baillet’s 

model of polyrhythmic integration considers hierarchical influences in the context of local-global 

questions, with a focus on MEG findings (Baillet, 2017). At a global level, gamma bursts occur 

in volleys at certain phases of lower frequency activity, alpha and below, and have been thought 

to have a modulatory effect, in the resting-state at least (Roux, Wibra, Singer, Aru, & Uhlhaas, 

2013). Several studies have shown alpha-gamma coupling, suggesting that alpha oscillations, 

which are associated with attention, could regulate gain control and higher frequency activity 

(Keitel et al., 2019; Romei et al., 2008). However, a recent frequency tagging study found that 

the attentional control of alpha oscillations and the (high) frequency response in V1 were 

uncorrelated (Popov, Kastner, & Jensen, 2017), with the sources of alpha being downstream. 

Mechanisms behind the co-occurrence of alpha-gamma oscillations appear to be more complex 

than a direct modulation of cortical excitability.  

 

Mesoscopic beta oscillations have not been found to be mediated by gamma and are most studied 

in the motor cortex. However, it is feasible that gamma and beta may exert similar bottom-up 

and top-down influences across the brain, as shown at regional level of the VC, with additional 

thalamus interactions (a dynamical relaying centre) (Baillet, 2017). The testability and 

mechanistic understanding of this postulation in humans is presently limited, though the concept 

is increasingly endorsed (Jaramillo, Mejias, & Wang, 2019; Markov et al., 2014; Sikkens, 

Bosman, & Olcese, 2019).  

 

Interestingly, using a Hidden Markov Modelling approach, Hirschmann and colleagues 

(Hirschmann et al., 2020a) were able to show that spontaneous network activity (in the resting-

state) in the beta range and below (<35Hz) accounts for variability in induced visual gamma 

response. In this approach, complex time series data can be filtered into brain ‘states’ much like 
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how components are derived in Independent Component Analysis (ICA). Rather than a static 

snapshot, these brain states represent recurring patterns of dynamic network activity. Resting 

states characterised by high alpha and beta power in central areas, predicted reduced visual 

gamma power. The opposite was true for a state characterised by widespread reduced alpha and 

beta power, i.e., it accounted for reduced visual response across participants. These findings 

support other work suggesting a convergence between local task-based activity and the resting-

state (Cole, Bassett, Power, Braver, & Petersen, 2014; Smith et al., 2009). 

 

A coincidence of bottom-up visual gamma and lower oscillatory feedback would seem 

fundamental to our experience of visual stimuli and our visual perception. Hierarchical 

predictive coding provides a framework by which the integration of higher order and sensory 

information allows us to make inferences and update beliefs (Friston, Brown, Siemerkus, & 

Stephan, 2016). If, as believed, oscillations are signatures of these interactions, the continued 

study of local and global oscillatory dynamics will provide important insight into these processes 

in both health and disease.  

 

1.10 General aims and objectives 

Though our understanding of structural and functional connectivity in healthy and in 

schizophrenia patients, and those with increased risk of psychosis, has developed considerably 

over the last 20 years, much ambiguity remains around the nature of neural impairments in 

different individuals and particularly the extent to which impairments are local or global. The 

primary aim of this thesis is to explore different oscillatory and structural connectivity measures 

in relation to factors associated with increased psychosis risk and thus aid the cohesion of 

neuroimaging evidence accumulated in the psychosis literature.  

 

In support of this aim two methods chapters will be completed as optimal utility and analysis of 

data acquired with MEG is fundamental to its applications. Furthermore, reducing the duration of 

scanning sessions is critical for participant comfort and for quality data acquisition, particularly 

in clinical cohorts. Therefore Chapter 3 will explore the optimal beamformer sampling grid 

resolution for obtaining estimates of local gamma oscillations, keeping in mind the significance 

of identifying functional activity at its source. Chapter 4 of this thesis will explore the extraction 
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of global resting-state networks from task data, investigating the necessity of a resting-state 

paradigm. Chapter 5 explores the functional and structural connectivity data, that will be further 

described in chapters 6, 7 and 8, using a network reduction method called Non-Negative Matrix 

Factorisation.  

 

Those with schizophrenia show both local and global functional impairments and understanding 

the interaction between which is of upmost importance. However, presently the nature of local 

and global functional interactions is still to be understood in healthy individuals. The sixth 

chapter of this thesis will explore the relationship between local functional connectivity in VC 

and global oscillatory connectivity and structural connectivity, in the healthy population. Local 

functional connectivity will be probed with a visual grating MEG paradigm while global 

functional connectivity will be probed with amplitude correlations based on the Hilbert envelope, 

throughout the thesis. A range of structural metrics derived with tractography will also be 

explored.  

  

The simultaneous study of structural and functional impairments in schizophrenia is receiving 

increasing attention. Chapter 7 will investigate how the schizotypy trait, a clinical risk factor for 

psychosis, is related to global structural and functional connectivity. The eighth chapter will 

investigate how polygenic risk score (PRS), a genetic risk measure for schizophrenia, is related 

to global structural and functional connectivity. Chapter 9 will investigate local connectivity in 

VC in relation to PRS and schizotypy.  

 

Recent models have proposed schizophrenia as a disorder of dysregulated synaptic gain or E-I 

balance. The last experimental chapter will explore the effect of GABAergic and glutamatergic 

CNVs on local and global functional connectivity.  

 

 

 

 

 

 



 

24 

 

Chapter 2. General Methods 

 

2.1 Magnetoencephalography 

All electrical currents, including those from neuronal activity, generate an associated magnetic 

field. Magnetoencephalography (MEG) is a non-invasive neuroimaging technique that detects 

magnetic fields generated by synchronous neuronal activity. As a direct measure of neuronal 

activity, as with Electroencephalography (EEG), the main advantage of MEG is its superior 

temporal resolution (<1ms). However, compared to EEG, MEG also has superior spatial 

resolution because, unlike the EEG signal, magnetic fields are undistorted by transmission 

through the brain, skull and scalp. Thus, the accuracy and resolution of MEG localisation in the 

superficial cortex is a few millimetres, depending on the signal-to-noise ratio. One of the main 

advantages of MEG is its utility in the mapping and characterisation of physiologically informed 

oscillatory activity, which is a limitation of its functional Magnetic Resonance Imaging (fMRI) 

counterpart. MEG is, therefore, an excellent tool for studying rapid and dynamic sensory and 

cognitive processes in the brain.  

 

2.1.1MEG Instrumentation 

The MEG system is constructed of ~275 evenly distributed Super Conducting Quantum 

Inference Devices (SQUIDS) contained in a dewar unit above the head. SQUIDs consist of tiny 

loop(s) of superconducting material (metal or alloy) and many Josephson Junctions. A Josephson 

Junction is made up of two superconducting loops with a thin insulating layer between them. 

When cryogenically cooled, the Josephson Effect (Josephson, 1974) shows that current flows 

around the loops and across the insulating gap, with no voltage, making SQUIDs extremely 

sensitive detectors. As superconduction can normally only occur at exceptionally low 

temperatures the SQUIDs are encased in a liquid helium pool, with a vacuum-insulated dewar, 

which maintains them at -269 degrees. When an external magnetic field becomes large (exceeds 

a critical value), e.g., due to magnetic fields from neural activation, a voltage occurs across the 

Josephson Junction which is measurable at the ordinary (rather than quantum) scale.  
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SQUIDs are extremely sensitive devices, allowing them to pick up the small magnetic fields (< 

10 femtotesla) generated by neuronal activity in the brain. However, the MEG system is limited 

by a low signal to noise ratio as SQUIDs are sensitive to external noise, such as construction, 

power lines and traffic, which is of several orders of magnitude higher than the biomagnetic 

brain signals of interest (Hämäläinen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993). 

Biological noise is also created from intrinsic processes such as blinks, heartbeat and muscle 

movements which requires consideration and steps taken in the preparation scanning and 

analysis to account for this.  

 

2.1.2 Noise reduction  

To minimise the interference in the MEG signal, due to external environmental sources, the 

scanner is housed in a sealable magnetically shielded room, made of many layers of aluminium 

and nu mental. Each SQUID is also paired with a magnetometer/gradiometer which enhances the 

magnetic brain signal received by the SQUID. Magnetometers are made of a single 

superconducting coil, whereas gradiometers are made up of two oppositely wound coils, either in 

an axial (vertical) or planar (horizontal) position to each other. Gradiometers are sensitive to 

inhomogeneous magnetic fields like those generated in the brain but insensitive to homogeneous 

magnetic fields such as distance noise sources (and uniform field gradients) which are essentially 

cancelled out due to the double coil configuration (Hämäläinen et al., 1993). 

 

Furthermore, collecting simultaneous measures of biological signals such as Electromyography 

(EMG), Electrooculography (EOG) and Electrocardiography (ECG) and external noise using a 

reference electrode, together with visual data inspection and averaging across trials, allow 

biological artefacts to be mostly accounted for in the in analyses. The system at Cardiff 

University Brain Research Imaging Centre is a CTF 275 axial gradiometer design. The inbuilt 

275 channels and 3rd order noise cancellation provided by a reference superconducting quantum 

interference devices (SQUID) array in the dewar affords an enhanced signal to noise ratio and 

ample spatial resolution.  

 

 

 



 

26 

 

2.1.3 Signal origins 

Normal brain functioning requires a balance in excitatory and inhibitory cellular mechanisms (E-

I balance). Neuronal firing is commonly described in terms of spiking activity, bursting activity 

and post-synaptic potentials. Single spiking activity refers to very brief rapid neural activity, i.e., 

action potentials, and bursting activity refers to a short succession of spikes. Post-synaptic 

potentials are temporally slower and reflect changes in the post-synaptic terminal of the chemical 

synapse.  

 

In this way, ionic currents generated by activated neurons can be split broadly by their temporal 

dynamics; fast and slow(er). In the former, sufficient net gain of positive charge mediated by 

sodium (Na-) -potassium (K+) transmission, leads to rapid depolarisation of the cell, triggering 

an action potential along the neuronal axon and dendrites and reflected in spiking and bursting 

activity.  

 

Slower ionic currents are generated by the action of neurotransmitters at the synapse. These 

result in excitatory (positive ions in) or inhibitory (positive ions out or negative ions in) post-

synaptic potentials (EPSPs or IPSPs), the bulk effect of which is measured with MEG. The type 

of post-synaptic potential generated is dependent on the neurotransmitters, receptor types and 

ionic interactions involved (Lopes Da Silva, 2010). Of note, GABA is the main inhibitory 

neurotransmitter in the brain and glutamate is the main excitatory neurotransmitter. 

 

The net action of ionic currents can be thought of as electrical current dipoles which have an 

orientation and measurable magnitude. To understand the origin of the MEG signal requires 

consideration of the following factors:  

 

1) The magnetic field generated by a single neuron is tiny, requiring detectable magnetic 

fields to be generated by the synchronous activity of bundles of (>10,000) neurons. 

Spikes are very brief and do not sum temporally (and spatially) to give a measurable 

signal.  
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2) MEG dipole source modelling relies on the principle of mutual orthogonality (the right-

hand rule) i.e., that electrical current flows at a right angle to the generated magnetic 

field. 

 

3) Radial sources of activity, i.e., where dipoles point out from the centre of the brain, will 

be poorly imaged with MEG. The reason is, due to the (roughly) spherical shape of the 

head secondary volume currents will largely cancel out the magnetic fields generated by 

radial dipoles. In reality, however, a fairly small proportion of the brain is oriented 

radially (e.g., the sulci).  

 

4) Magnetic fields decay as a function of distance. Therefore, MEG is generally sensitive to 

cortical sources and insensitive to deeper sources. 

(Hämäläinen et al., 1993; Hillebrand & Barnes, 2005, Hillebrand & Barnes, 2002) 

 

The MEG signal is, therefore, thought to reflect magnetic fields generated by synchronous 

electrical activity from the dendrites of excitatory pyramidal cells. This is because pyramidal 

dendrites tend to be perpendicular to the cortical surface and provide detectable signal from the 

cumulative summation of the long asymmetrical dendritic extensions. When post synaptic 

potentials from millions of neurons fire together an excitatory or inhibitory Local Field Potential 

(LFP) is generated. The net effect of dendritic EPSP/IPSP activity, or LFP, is often insufficient 

to trigger action potentials, especially simultaneous action potentials, represented as a spike in 

the MEG signal, and is instead reflected in the slower oscillatory dynamics of the signal (Lopes 

Da Silva, 2010). MEG oscillations are therefore assumed to reflect the aggregate activity of 

populations of neurons represented by fluctuations in their extracellular LFPs.  

 

2.1.4 MEG Analysis 

The MEG signal can be analysed into various components depending on the process of interest. 

Broadly, these can be categorised as evoked signals or oscillatory signals. As discussed in 

Chapter 1, evoked signals appear to have a primary sensory role (Tallon-Baudry et al., 1996), 

whereas oscillations, reflected in the induced response, are implicated in connectivity and 

communication across the brain ( Bastos et al., 2015b; Bowyer, 2016; Fries, 2005; Shaw et al., 
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2017), as well as in cognition (Donner & Siegel, 2011; Siegel, Engel, & Donner, 2011). MEG 

analysis is generally conducted in two modes; 1) in sensor space, in which characteristics of the 

signals are viewed at the level of the sensor, and 2) in source space, which considers where the 

signal origin is localised in the brain.  

 

Sensor space 

The characteristics of oscillatory activity can be described in terms of phase, frequency and 

amplitude. Conventionally, decomposition of the MEG signal allows neuronal activity to be 

separated into frequency bands delta (<4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), 

gamma (30 Hz+) over time. Using spectral analysis, oscillatory power (amplitude squared) can 

be represented as a function of frequency, rather than time, by means of a Fourier transform 

(frequency domain, power spectrum) (Boashash, 2003). The power spectrum is an efficient way 

of representing the magnitude of activity in relation to frequency, averaged over time, which can 

then be compared at different time points, for example between pre- and post-stimulus periods as 

in this thesis.  

 

However, many psychological experiments are (also) interested in how neural responses and 

signals change over time. For this, time frequency analysis can be performed which involves 

splitting the signal into shorter segments in time and applying various transforms. For example, a 

Moving Window Fourier Analysis (Richardson et al., 2019), where the time window has a fixed 

length independent of frequency, Wavelets and Multi-Taper transforms (van Vugt, Sederberg, & 

Kahana, 2007), where the time window decreases in length with increased frequency, or by 

applying a Hilbert transform (Hilbert, 1912). Each of these methods produce representations of 

amplitude and frequency as a function of time.  

 

Source analysis 

MEG and EEG measures, where data are collected outside of the head, are subject to both 

forward and inverse problems. The forward problem involves calculating the sensor potential, or 

field, for a given source configuration, i.e., neuronal activity, at a known location. The inverse 

problem, i.e., inferring the unknown current distribution within the brain from the external 

measurements, is harder to solve. That is, without any given source information, the cumulative 
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signal detected at the sensor level could come from an infinite number of different combination 

of sources in the brain; a problem known as non-uniqueness.  

 

Understanding the origin of activity of interest, in ‘source space’ is a key aim in neuroscience. 

Fortunately, the number of possible solutions is reduced with a-priori information about a likely 

source. An understanding of brain histology, structure, and physiology can be used to this end 

(Barnes et al., 2006). Furthermore, prior knowledge can be provided computationally in the form 

of a source covariance matrix and several inversion algorithms exist. A lot of work has been 

done on finding inversion algorithms which are insensitive to noise and provide an accurate 

solution (Hillebrand & Barnes, 2005). 

 

Common methods include Simple Dipole Models, where one or few active sources are assumed, 

and distributed current models/current density models, which estimate the continuous 

distribution of current within the brain by assuming a minimum-norm solution. The beamformer 

algorithms, however, have been found to be a robust method for acquiring biologically plausible 

source reconstructions with minimum assumptions (Van Veen et al., 1997; Hillebrand, et al, 

2005., Barnes et al., 2006). Beamforming fundamentally involves the generation of weights, 

which are a linear weighted combination of the MEG channels, and when combined with the 

sensor data provide estimates of time-varying activity at any given location.  

 

2.1.5 Beamforming 

The beamforming approach benefits from enhanced noise rejection by considering each area 

individually, as a linear weighted combination of the channels. Selectively weighting the 

contribution of each sensor to the overall output not only increases sensitivity to detect sources in 

an area of interest but does not require the a-priori specification for a fixed number of sources. 

Furthermore, for any given source with a particular signal-to-noise ratio, there will be a sampling 

resolution that is optimal for obtaining accurate estimates. This is likely to differ across different 

areas of the cortex (Barnes, Hillebrand, Fawcett, & Singh, 2004). 

 

Beamforming is also particularly useful for studying the induced or oscillatory signal as it does 

not rely on phase-locking across trials (Hillebrand & Barnes, 2005). Before beamforming was 
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widely implemented, studies were often limited to acquiring the phase- and time-locked evoked 

responses, as in order to accurately localise any given source at the appropriate signal to noise 

ratio they needed to assume one or few known and repeatable sources. 

 

Beamforming has one significant disadvantage which is that perfectly correlated sources are 

cancelled out. This could be unhelpful in certain situations. For example, where bilateral areas 

are simultaneously activated, or in studies of evoked activity where nearby sources are likely to 

be highly correlated. That being said, it would seem unlikely for the complexity of the brain to 

depend on linearly interacting sources (Hillebrand & Barnes, 2005). Beamforming also requires 

additional computational resources compared with traditional methods; however, this is not 

significant problem in the present day.  

 

2.1.6 Modes of analysis  

Considerable researcher degrees of freedom can be employed in selecting a MEG analysis 

methods, due to the wealth of information in the MEG signal, along with the variety of 

experimental paradigms that exist. Nonetheless, as mentioned above, analyses are generally 

concerned with the amplitude, frequency and/or phase of the signal. At the local level, this might 

involve selecting peak amplitude and frequency values from spectral analysis performed in a 

specific region, for example, the visual cortex, which is relevant to this thesis.  

 

Alternatively, connectivity across different areas of the brain can be investigated with 

correlations between the amplitude and/or phase of oscillatory time series between voxels 

(Bowyer, 2016). Phase coherence refers to consistency in the phase of a signal of the same 

frequency. As shown in Figure 2.1, this can be at zero-time lag (left panel) or non-zero lag (right 

panel). Non-zero, delayed, phase coherence is often used to infer directionality of connectivity 

(Siegel et al., 2012). Amplitude-amplitude coupling refers to covariance between Hilbert 

envelopes that are generated around the signal extremes. Amplitude correlations can therefore be 

performed on signals of the same or different frequencies but do not comprise phase information. 

In fact, phase coherence and amplitude correlation are generally independent of one another 
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(Siegel et al., 2012). 

 

Figure 2.1. Correlations between phase and amplitude signals2: the top shows a correlation 

between the amplitude and phase of signals in two different areas of the brain and the bottom 

shows a correlation between the amplitude envelopes in two different areas of the brain.  

 

Amplitude-amplitude correlations, particularly in the alpha and beta bands, have been shown to 

be robust and repeatable (Colclough et al., 2016) and are implemented in this thesis. In order to 

explore anatomically relevant networks, data can either be projected onto an atlas, such as the 

AAL atlas (AAL, Tzourio-Mazoyer et al., 2002), where 90 anatomical regions are pre-defined, 

or, explored using Independent Components Analysis (ICA) (Brookes, Woolrich, et al., 2011). 

Both ICA and atlas-based methods have revealed functionally relevant resting-state networks 

(Brookes, Woolrich, et al., 2011; Hillebrand, Barnes, Bosboom, Berendse, & Stam, 2012). 

However, an atlas-based approach can aide interpretation and comparison with other modalities 

(Hillebrand et al., 2012) and was the chosen approach for this work.  

 

 

                                                           
2 Note: Adapted from Siegel, M., Donner, T. H., & Engel, A. K. (2012). Spectral fingerprints of large-

scale neuronal interactions. Nature Reviews Neuroscience, 13(2), 121-134. 
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2.1.7 Further analysis  

Various modelling techniques can be applied to MEG data including, Dynamic Causal 

Modelling (DCM), where MEG data is fitted to a physiologically informed model of a cortical 

microcircuit, and can elucidate relationships between specific connections and characteristics of 

the MEG data (Friston et al., 2003; Shaw et al., 2017; Shaw, Muthukumaraswamy, et al., 2020a), 

and Graph Theory, which is a mathematical technique that assesses the inter- and intra-

connectedness of ‘hubs’ or specific areas of the brain (Bassett & Bullmore, 2006; Power, Fair, 

Schlaggar, & Petersen, 2010). Methods such as Non-Negative Matrix Factorisation (Lee & 

Seung, 1999) can also be applied to the connectivity data to reveal anatomically relevant sub-

networks, as will be described in Chapter 5 of this thesis.   

 

2.2 Structural Magnetic Resonance Imaging (MRI) 

2.2.1 Basic principles of MRI 

MRI is the most utilised non-invasive neuroimaging technique and has unchallenged spatial 

resolution. MRI operates by means of Nuclear Magnetic Resonance (NMR). The notion of ‘spin’ 

is critical to resonance and describes the rotation of subatomic particles around their axes. If a 

nucleus has an odd number of protons or neutrons, for example the hydrogen atom which has 

one proton and no neutrons, it will have a net spin or magnetic moment (magnetic strength and 

orientation) (Grover et al., 2015). Usually these spins are randomly oriented, however when 

placed in a strong magnetic field, i.e., in an MRI scanner (B0), there is an increased tendency for 

these to align with the magnetic field and precess at a frequency proportional to the strength of 

the magnetic field (42.58 MHz/Tesla); the Larmor frequency (Larmor, 1897). It is the hydrogen 

atoms in water that are usually imaged with MRI, and these have a Larmor resonant frequency of 

127.74 MHz at 3 Tesla. 

 

Additional radiofrequency (RF) pulses (B1), applied at the Larmor frequency, perpendicular to 

the B0 gradient, perturb this system away from equilibrium. Once the RF pulses are turned off 

two occurrences happen 1) the spins return to alignment and the time taken is referred to as the 

longitudinal relaxation time (T1), and 2) the precession of the spins differs between the protons 

because they experience slightly different magnetic fields. This loss of phase coherence is called 

the transverse relaxation time (T2). The loss of energy from the perturbed system is recorded via 
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the receiver coils. Importantly, tissues in the brain have different water properties and it is the 

contrast between T1 and T2 in these tissues that allow the brain to be imaged. Three sets of 

gradient coils are used in nearly all MRI scanners and allow the spatial encoding of the MR 

signal in the x, y and z directions as the gradients induce a spatially-varying change in the 

resonant frequency. The application of a Fourier transform allows the signal to be interpreted as 

an image or a frequency spectrum (Grover et al., 2015). 

 

2.2.2 Diffusion Tensor Imaging 

Diffusion Tensor MRI is a neuroimaging method which allows the measurement of 

microstructure in vivo. It relies on the fact that the diffusion of water molecules in the brain is 

not unconstrained, but is influenced by the microenvironment (i.e., fibres, macromolecules, etc.) 

around the water molecules. In grey matter and in the cerebrospinal fluid (CSF) the diffusion is 

isotropic. In the white matter, however, the water molecules are constrained to move along the 

axons only, and that makes their diffusion movement highly anisotropic.  

 

2.2.3 Acquisition and instrumentation  

In humans, a diffusion-weighted sequence is implemented using a MRI scanner with a field 

strength of between 1.5 and 7 Tesla. To sensitize the MR scanner to diffusion, the magnetic field 

is varied within the scanner by a field gradient. Since precession is proportional to the magnetic 

field strength, the water molecules begin to precess at different rates, resulting in dispersion of 

the phase. Another gradient is subsequently applied, with the same magnitude but in the opposite 

direction to the original one, aiming to bring the spins back in phase. This refocusing is not 

perfect because the water molecules move due to diffusion during the time interval between the 

pulses, and the signal measured by the MRI scanner is reduced. By careful choice of the MRI 

sequence, therefore, images can be reconstructed which are sensitive to different directions of 

water diffusion within the brain. A basic sequence can be acquired in 5- minutes, however most 

experiments require more time.  

 

2.2.4 The diffusion tensor (DT) 

A diffusion tensor model is a 3-dimensional Gaussian model applied to each voxel in the 

diffusion-weighted images, which provides a description of the diffusion in the underlying tissue. 
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It is generated by modelling the displacement of molecules in three orthogonal directions 

(eigenvectors) and assigning three eigenvalues. This 3x3 matrix represents the DT, where the 

largest eigenvector signals the principal direction of diffusion along white matter tracts and the 

eigenvalues (λ1,λ2,λ3) give the diffusivity in each direction. The tensor can be applied to the 

signal across the brain but looks quite different between the isotropic and anisotropic areas. The 

DT can also be represented as an ellipsoid of diffusion probability.  

 

2.2.5 Analysis and tractography 

A diffusion tensor model is generated at each voxel by comparing the reduced signal to the 

original signal (without the gradients). For the 3x3 DTI (6 independent values), the minimum 

number of images required would be 7: 6 images with diffusion weighting and 1 baseline image 

without diffusion weighting - in practice, however, many more images, with diffusion estimated 

in several different directions, are required to get a reliable estimate of the diffusion tensor. 

Information gathered from the Diffusion Weighted Image (DWI) can be represented as a scalar 

or as glyphs (ellipsoid visualisation). Scalar values represent some component of the magnitude 

of diffusivity. For example, axial diffusivity (AD) is the eigenvalue in the main direction of 

diffusivity and mean diffusivity (MD) is the average values of the three eigenvalues. Anisotropy 

measures represent the extent to which the DT differs from an isomorphic tensor i.e., a perfect 

sphere. Fractional anisotropy (FA) is the most common measure of anisotropy and represents the 

fraction of the tensor that is anisotropic or the normalised variance of the eigenvalues as shown 

in equation 2.1 (O’donnell & Westin, 2011).  

 

2.1 

 

Tractography is the process of reconstructing the trajectories of white matter tracts based on 

information gained from the DWI at each voxel. This is achieved by streamline reconstruction. 

The streamline curve is any curve whose tangent is parallel to the vector field representing the 

principal diffusion directions (Behrens, Sotiropoulos, & Jbabdi, 2014). The vector field can be 

visualised as a collection of arrows with magnitude and direction largely in the direction of the 

principal eigenvector in each voxel. Different fibre-tracking algorithms exist which piece 
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together information in the diffusion data to infer fibre trajectories (Jones & Cercignani, 2010). 

Deterministic algorithms assume one main diffusion direction in each voxel, and the tract is 

generated by defining a start point, propagating that direction across voxels and linking them. 

Probabilistic algorithms trace a large number of potential pathways from the start point, by 

considering many different diffusion directions compatible with the data and propagating them 

across voxels. Both result in a visual representation of the underlying white matter tracts or fibre 

bundles. The white matter tracts can then be weighted by different DW metrics. A variety of 

Region Of Interest (ROI) or whole brain analyses can follow, such as looking at individual tracts, 

or performing network analysis.  

 

Obtaining estimates of myelin density in the white matter requires a different MRI sequence. The 

mcDESPOT sequence acquires 25 images for each participant. The fast (water constrained by 

myelin) and slow (free-moving water in intra- and extracellular space) components of the T1 and 

T2 times, and a nonexchanging free-water component were identified using a 3-pool algorithm 

(Deoni, Matthews, & Kolind, 2013; Zacharopoulos et al., 2017). The ratio of the myelin bound 

water to total water is calculated by taking advantage of T1 and T2 acquisitions. This is known 

as the Myelin Water Fraction.  

 

2.2.6 Structural network generation 

The structural data considered in this thesis was projected onto the same AAL atlas as the 

functional data (AAL, Tzourio-Mazoyer et al., 2002). Figure 2.2 shows a circular plot schematic 

of the 90 AAL regions. Edges of the networks were weighted by different structural measures: 

the number of streamlines measures from the tractography analysis, mean diffusivity (MD), 

radial diffusivity (RD), axial diffusivity (AD) and, finally, myelin content. These metrics will be 

further defined within the experimental chapters. Non-Negative Matrix Factorisation (Lee & 

Seung, 1999) was also applied to the structural connectivity matrices and will be explained 

further in Chapter 5.  
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Figure 2.2. Anatomical labels for AAL regions on the connectivity plot. An example of valid 

connections. Blue: frontal, Gold: Insula/Anterior-Posterior cingulate, Purple: Medial temporal, 

Green: Temporal: Teal: Parietal and Sensorimotor, Maroon: occipital, Lilac: Precuneus. In 

house plot function (Singh, date). 
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Chapter 3. An investigation of the optimal sampling grid 

resolution for MEG beamforming 
 

3.1 Rationale  
MEG has excellent temporal resolution as shown in Chapter 2. However, improving the spatial 

resolution of MEG is an ongoing effort for researchers across hardware, methods and applied 

fields. In neuroscience, particular attention is given to localising signals of interest, such as 

gamma in the visual cortex. For this, several source-localisation algorithms exist, including 

beamforming. A beamformer applied at a higher spatial sampling resolution would be expected 

to give more accurate signal estimates, at the expense of computational resources. The aim of 

this chapter was to explore differences in gamma estimates obtained in the visual cortex, 

analysed with different (finer – coarser) sampling grids, to ascertain the optimal sampling 

resolution for source localisation in visual cortex. 

 

3.2 Introduction  
One of the fundamental problems in electrophysiological imaging is identifying neural activity at 

its source, by solving the inverse problem. In short, source analysis involves identifying spatial 

characteristics using a combination of the recorded signal, physiological assumptions and the 

electromagnetic forward model (estimating the sensor observations from a model with a given 

set of parameters) (Jaiswal et al., 2020). A number of approaches exist. Most commonly, dipole 

fitting has been applied, where a number of dipoles are specified (1 or 2 usually) at an 

expected ‘source’ location. Location and orientation are optimised and dipoles are considered 

collectively. Other methods include distributed source imaging which calculates source estimates 

across the whole source space (cortex) simultaneously. Well-known linear methods 

are eLORETA (low-resolution brain electromagnetic tomography-Pascual-Marqui, Michel, & 

Lehmann, 1994) and Minimum Norm Estimation MNE (Hämäläinen & Ilmoniemi, 1994). Non-

linear versions also exist (Gramfort, 2013).   

  

More recently beamforming algorithms have been increasingly advocated. Unlike 

the aforementioned methods, they operate adaptively, estimating the activity of each source as a 

linear, weighted combination of the channels. As such, beamformers are a spatial filter 
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comprised of source weights. The most common beamformer in the time domain, which is of 

particular interest in MEG research, is the Linearly Constrained Minimum Variance (LCMV -

Sekihara, Hild, & Nagarajan, 2006; Spencer, Leahy, Mosher, & Lewis, 1992; Van Veen & 

Buckley, 1988). The LCMV beamformer estimates the activity at a point source per voxel, as 

defined by a pre-specified template grid, while simultaneously suppressing the contributions 

from sources at other locations, captured in the data covariance matrix.   

  

As with all source localisation methods, however, beamforming is subject to the problem of non-

uniqueness. That is, weightings between sensors and sources are not absolute, which requires 

consideration and constraint of the possibilities. This is done by providing the covariance of the 

sensor channels and the forward model. The forward model is essentially a mapping of currents 

per voxel, which asks if a current exists, what that would look like on the scalp. It is estimated 

using the conductance model, which considers how conductive the tissue between the area is, in 

combination with the geometry of the brain (usually measured using T1 weighted MRI). 

Conductance models come as part of popular LCMV tools, in packages such as 

Fieldtrip  (Oostenveld, Fries, Maris, & Schoffelen, 2011), SPM12 (Litvak et al., 2011) and 

Brainstorm (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011).   

  

While beamforming does assume non-temporally correlated sources i.e., perfectly correlated 

sources will mutually supress each other, its principal merit is its relative lack of prior 

assumptions. A breadth of research questions in both task and rest data can be answered with 

beamforming because the weights are independent of sources in other regions. This is different 

to algorithms such as minimum norm, where reconstructions are dependent on the sources 

allowed in source space. Whole brain reconstructions are now commonplace due to the 

availability of computational resources, which were limited 20 years ago.  

 

Recurrent questions in MEG methods research, however, concern achievable spatial resolutions, 

the spatial sampling resolutions required and how this affects analysis outputs. The smoothness 

of a reconstructed beamforming image depends on the characteristics of the sensor array (e.g., 

number of channels) and the signal to noise ratio of the data. Theoretically, the beamformer 



 

39 

 

image should be improved with a finer spatial sampling grid and conventionally studies have 

considered a 5-8mm sampling grid to be adequate.  

 

However, Barnes and colleagues (Barnes et al., 2004) conducted an investigation using both 

simulated and experimental data (a visual grating paradigm) and found around 10% of the source 

space has a point spread function (FWHM) of less than 5 mm and 50% less than 8 mm. This 

problem could be considered a spatial equivalent to the Nyquist sampling theorem (Barnes et al., 

2004), where use of an overly coarse grid will lead to under-sampling and missed information. In 

the paper by Barnes and colleagues (2004) this was particularly applicable to the occipital cortex, 

suggesting a 5+mm sampling grid might not be sufficient for investigation of this area. In fact, in 

a 64 electrode (.5mm spaced) electrocorticogram (ECoG) study of broadband gamma in the 

human motor cortex and superior temporal gyrus, Freeman and colleagues showed an optimal 

spatial sampling resolution of 1.25 mm, in avoiding undersampling and aliasing at the cost of 

computational resources (Freeman, Rogers, Holmes, & Silbergeld, 2000). The result of 

undersampling is reduced amplitude of the reconstructed source and potential misidentification 

of the true source. This is problematic for biomarker development and the identification of 

therapeutic targets, where source consistency is essential.  Despite this, spatial sampling of 

~6mm in MEG beamformer reconstructions is common. 

 

To explore sampling resolution dependent differences in derived amplitude and frequency 

metrics, the same visual gamma data will be systematically explored from high (1mm) to low 

(6mm) spatial grid resolution. The visual gamma pipeline involves the insertion of a virtual 

electrode at the point of peak gamma power. Essentially, this process estimates what the time 

series would look like if an electrode was placed at the source of greatest amplitude in visual 

cortex. Visual gamma is related to local neuronal circuitry (Buzsáki, 2010; Buzsáki & Wang, 

2012a; Donner & Siegel, 2011; Kopell, Ermentrout, Whittington, & Traub, 2000a; Shaw et al., 

2017; Traub et al., 2001) and has been shown to be altered in clinical cohorts (Robinson & 

Mandell, 2015b), so, it is important that the sampling resolution and availability of information is 

optimal.  
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3.2.1 Aim and hypothesis  

I sought to explore the optimal beamforming resolution for broadband (induced) visual gamma 

analysis (30- 80Hz) by comparing gamma output from 1mm, 2mm, 4mm and 6mm sampling 

grids and otherwise identical analysis pipelines. The hypothesis is that the use of a finer grid 

would provide more accurate (i.e., higher) visual gamma estimates of amplitude and frequency 

due to better sampling of the true sources.   
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3.3 Method  

3.3.1 Participants 

The 100-Brains project at Cardiff University Brain Imaging Centre (CUBRIC) was a large 

genetic and multimodal imaging study conducted in the healthy population (Brealy, 2015). There 

were 100 participants recruited of which 97 had MEG data. Participants were all right-handed 

(Edinburgh Inventory-Oldfield, 1971), absent of neuropsychiatric conditions (General Health 

Questionnaire, Goldberg & Williams, 1988), and of Caucasian ethnicity. Participants were 

university students (male 35%, female 65%) and, as such, similar in education level and age (m 

24, SD 3.5). None of the participants had a history of drug or alcohol abuse.  

 

3.3.2 Task and data acquisition  

Visuomotor MEG data was acquired for 96 of the 97 participants. The paradigm involved 100 

trials and lasted ~ 10 minutes. The visual grating stimulus was presented centrally. It comprised 

a vertical, stationary, maximum contrast square-wave grating with a spatial frequency of 3 cycles 

per degree (8° x 8° visual angle). The background was of mean grey luminance. Stimuli were 

jittered in length of between 1.5-2 seconds and followed by an inter-stimulus interval (ITI) of 2 

seconds. Participants were required to push a button with their right hand every time the grating 

disappeared. Participants were notified if no response was detected after 750ms. Such tasks have 

been shown to induce large gamma responses in visual cortex (Muthukumaraswamy & Singh, 

2013). The motor component of the response was not analysed here.  

 

All data were acquired using the CTF-Omega axial gradiometer (275 channel) system, at Cardiff 

University Brain Research Imaging Centre (CUBRIC), which is placed inside a magnetically 

shielded room. Participants were sat upright in the scanner. Data were sampled at 1200Hz, with a 

300Hz lowpass antialiasing filter. Three fiducial coils (nasion, left pre-auricular and right pre-

auricular) were used for head localisation before and after the scan. For noise cancellation, data 

were acquired with 29 references channels and were analysed in third-order gradiometer mode as 

recommended by Vrba and Robinson (2001). 
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3.3.3 Pre-processing 

Data were pre-processed and co-registered by Jennifer Brealy. Data were pre-processed 

manually in DataEditor. Third-order gradient mode was applied, transforming the primary 

sensors for environmental noise reduction. Data were epoched into 4 second trials (-2, 2), around 

the stimulus onset. Each trial was inspected and those trials which contained large blink, motion 

or muscle artefacts were excluded. 

 

Co-registration  

MRIs (1mm- isotropic, T1 weighted), were acquired on the 3 Tesla General Electric system at 

CUBRIC. Co-registration was achieved by matching the MRI voxels that corresponded to the 

three fiducial coils using photographs taken in the MEG scanning session.  

 

3.3.4 Visual gamma analysis  

Data analysis was performed in Matlab (version 2017), using Fieldtrip (version 20190219) in 

house and custom scripts. Previously co-registered MRIs were defined in CTF co-ordinate space. 

The analysis was run 4 times. A weighted LCMV beamformer algorithm was used across the 

sampling grid manipulations (1mm, 2mm, 4mm & 6mm). Other than the change in sampling grid 

resolution, the analyses were identical.  

  

The forward model  

Using Fieldtrip, MRIs were segmented to distinguish ‘brain’, ‘skull’ and ‘scalp’ tissues. The 

outer brain surface was extracted from the MRI and a description of the brain surface 

(brainmask), created using vertices and triangles. This semi-realistic head model method was 

developed by Nolte (2003) and generates a single-shell headmodel. The headmodel, along with a 

description of tissue conductivity and derived mathematical parameters, comprises the volume 

conduction model. 

 

A Montreal Neurological Institute (MNI) template grid was used in generating the source model. 

Data were transformed onto 1, 2, 4 and 6mm versions of the grid. The finer grid resolutions were 

employed at the cost of increased computational demand. To account for this, beamforming was 

conducted only on a sub-volume consisting of all bilateral visual areas from the AAL atlas 
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(Tzourio-Mazoyer et al., 2002); namely, Left Calcarine, Right Calcarine, Left Cuneus, Right 

Cuneus, Left Lingual, Right Lingual, Left Superior Occipital, Right Superior Occipital, Left Mid 

Occipital, Right Mid Occipital, Left Inferior Occipital, Right Inferior Occipital. At each location 

in this source grid, beamformer weights were calculated based on the covariance of the MEG 

data in a 30–80Hz bandwidth, over the whole dataset. The covariance time window was set to -

1.5 – 1.5 s. A regularisation procedure (lambda 5%) was applied (Treder & Nolte, 2018). 

 

Source power was projected separately for the baseline and stimulus periods in order to contrast 

them. The sustained gamma period was of primary interest here due to its oscillatory nature and 

a period between 0.3s- 1.5s after stimulus onset was selected (baseline -1.2 -0s). The percentage 

gamma power change between stimulus and baseline was then calculated. The coordinates of the 

source with the maximal percentage change in gamma power were extracted. 

 

Reconstructing a virtual sensor 

The timecourse at the peak source was calculated by multiplying the beamformer weights at the 

peak source location by the MEG timecourse of each trial. This virtual sensor (VS) timecourse 

was used to look at the gamma power spectra and time- frequency representations.  

 

Power spectrum (frequency domain) 

A slepian multi-taper method and frequency analysis was applied over the entire analysis 

window (4s trial epoch). The multi-taper method overcomes some issues associated with 

traditional Fourier Analysis, such as estimation bias in low trial analyses (Thomson, 1982). The 

multi-taper method increases signal to noise at the cost of temporal precision by averaging over 

the signal tapered in different ways (slepian method) and is helpful in identifying non-phase 

locked activity. Trial padding (1s, each side) and 2 Hz smoothing also was applied. The stimulus 

and baseline time-windows were analysed separately using a frequency-of-interest (FOI) window 

of 0-100Hz, padded to length of 2 seconds. The percentage change in power between them 

calculated and averaged over trials.  
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Time- frequency domain 

Hilbert analysis was applied to each trial over +/-4 Hz wide, overlapping, frequency intervals, 

stepped from 0Hz to 100Hz in 0.5Hz steps, generating a time-frequency spectrogram for each 

trial. Time-frequency spectrograms were averaged over trials and the percentage change between 

the mean of the baseline period and the whole trial was calculated. This resulted in a ‘single 

channel’ time-resolved time/frequency reconstruction for each participant, and at each 

reconstruction grid size.   

 

 

Figure 3.1. Visual gamma pipeline. Schematic denotes the generation of the multi-taper spectra 

(middle) and the time-frequency spectra (right).  

 

Spectra in Figure 3.1 are smoothed with the Matlab ‘smooth’ function. This smooths data in 

column vector y using a moving average (default 5 data points). Furthermore, the beamformer is 

based on a 30-80 Hz window, however the reconstructed data is broadband. While not important 

to the analysis in this chapter, it should be acknowledged that slower signal may be the result of 

source leakage from another location(s). 

 



 

45 

 

3.3.5 Output Measures 

Multi-taper Spectra Measures 

 Peak Amplitude- largest gamma power change between stimulus and baseline at peak 

source (VS), collapsed across time. 

 Mean Amplitude- mean power change collapsed across time at peak source.  

 Peak Frequency- highest frequency value collapsed across time at peak source.   

 Centre of Mass (weighted) Frequency (Lozano-Soldevilla, Ter Huurne, Cools, & Jensen, 

2014a) . The centre of mass frequency was generated by calculating the mean frequency 

over the frequency window of interest (30-80=55Hz) as shown in equation 3.1. The mean 

is then weighted by the amplitude of the gamma response at each frequency. This finds 

the frequency values where the tendency of the peak to be maximal is.  

 

 

                                                        3.1 

Time-frequency domain measures- Hilbert transform 

 Peak Amplitude- largest gamma amplitude change between stimulus and baseline at peak 

source over time (highest intensity). 

 Mean Amplitude- mean amplitude change over time.  

 Peak Frequency- highest frequency value over time.  

 

3.3.6 Statistical analysis 

All statistics were completed in Matlab (version 2017) and IBM SPSS (25). To identify group 

differences due to the manipulation of the sampling grid, a repeated-measures ANOVA was used 

to compare estimates across the 4 levels (1mm, 2mm, 4mm & 6mm) of grid size. Grid size was 

the independent variable. Peak amplitude, peak frequency, centre of mass frequency and mean 

amplitude, estimates in the multi-spectra domain were dependent variables. Post hoc Bonferroni 

adjustment was applied for comparison of main effects.  

 

Relationships between multi-taper and time-frequency spectrogram measures of peak amplitude, 

peak frequency and mean amplitude, using a 1mm grid, were also visually explored.multi-taper.  
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3.4 Results 
3.4.1Estimates from multi-taper spectra 

The mean values of induced amplitude and frequency across the different sampling grids can be 

seen in Table 3.1. 

 

Table 3.1. Descriptives 

  

N=96 

1mm 

Mean SD 

2mm 

Mean SD 

4mm 

Mean SD 

6mm 

Mean SD 

Peak Amplitude 

(power) 
297 242 296 243 292 236 283 222 

Peak Frequency 50 8 50 8 50 8 51 8 

Weighted 

Frequency 
52 4 52 3 52 4 52 4 

Mean Amplitude 

(power)  
103 67 103 67 101 66 100 64 

 

ANOVAs 

Peak amplitude values were significantly different (F(1.463, 138.973) =15.272 , p<.001), 

sphericity not assumed. Mean amplitude values were significantly different (F (1.556, 

148.806)=38.651, p<.001), sphericity not assumed. Amplitude pairwise comparisons are shown 

in Tables 3.2 & 3.3. Neither peak (F(2.376, 225.715) =.809, p=.465 ), or COM (F(1.953, 

185.507) =1.648, p=.196), frequency were significantly different, sphericity not assumed.  

 

Table 3.2. Peak Amplitude ANOVA 

(I) GridSize (J) GridSize 

Mean 

Difference (I-

J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 0.76 0.77 1.00 -1.31 2.83 

4 4.438* 1.44 0.02 0.57 8.30 

6 13.377* 2.92 0.00 5.51 21.24 

2 1 -0.76 0.77 1.00 -2.83 1.31 

4 3.68 1.75 0.23 -1.04 8.39 

6 12.614* 3.12 0.00 4.22 21.01 

4 1 -4.438* 1.44 0.02 -8.30 -0.57 

2 -3.68 1.75 0.23 -8.39 1.04 

6 8.940* 2.38 0.00 2.54 15.34 

*. The mean difference is significant at the .05 level. 
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b. Adjustment for multiple comparisons: Bonferroni. 

 

Table 3.3. Mean Amplitude ANOVA 

(I) GridSize (J) GridSize 

Mean 

Difference (I-

J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 0.31 0.14 0.16 -0.06 0.68 

4 1.924* 0.36 0.00 0.96 2.89 

6 3.650* 0.53 0.00 2.24 5.06 

2 1 -0.31 0.14 0.16 -0.68 0.06 

4 1.614* 0.29 0.00 0.82 2.41 

6 3.340* 0.48 0.00 2.04 4.64 

4 1 -1.924* 0.36 0.00 -2.89 -0.96 

2 -1.614* 0.29 0.00 -2.41 -0.82 

6 1.726* 0.37 0.00 0.74 2.72 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

There was no significant difference between power at 1mm and 2mm (p>.05). However, 

differences between metrics at 1mm and metrics at 4 & 6mm were significant (p<.05). 

Differences between power metrics a 6mm and all other grid sizes were significant (p<.05).  

No significant differences were found between peak frequency or centre of mass frequency 

metrics across grid sizes (p>.05). As a further check, amplitude (sqrt power) was compared 

across grid sizes and the same pattern of results were found.  
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Figure 3.2. Shows the multispectra estimates of peak power (top left), mean power (top right), 

peak frequency (bottom left) and centre-of-mass frequency (bottom right), at 1mm, 2mm and 

4mm resolution, plotted against 6mm output, with line of reference. 

 

The figure above (3.2) shows a modest increase in power at 1mm & 2mm resolution.   
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Figure 3.3. Peak amplitude, mean amplitude and peak frequency (multi-taper spectra) versus the 

analogous time-frequency metric, with line of reference. 

 

There was a trend between all multi-taper spectra metrics and time-frequency metrics. Peak 

amplitude was higher in the time-frequency spectra compared to the multi-taper spectra. Power 

measures were naturally higher (~factor 3) than amplitude measures because power is directly 

proportional to amplitude squared. Peak frequency estimates were mostly higher in the time-
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frequency domain compared to the multi-taper spectra. Peak frequency appears to be less 

consistent than amplitude over multi-taper spectra and time frequency domains.  

 

 
Figure 3.4. Peak amplitude against Difference in peak frequency (multi-taper spectra peak 

frequency minus time-frequency peak frequency). This plot shows how frequency estimates 

differed with amplitude.  

 

The consistency of frequency metrics between the muti-taper and time-frequency estimates, in 

relation to amplitude, was explored in Figure 3.4. The more divergent peak frequency gamma 

estimates were obtained at lower gamma amplitude. Conversely, high amplitude estimates 

appear to have less different peak frequency values between the two methods of analysis.  
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3.5 Discussion  
The aim of this chapter was to investigate the effect of the sampling resolution of LCMV 

beamforming on visual gamma (range 30-80Hz) estimates of amplitude and frequency. In 

summary the results showed sustained gamma amplitude significantly differed with grid size, 

with highest estimates at 1mm sampling resolution; 6mm estimates were significantly ‘poorer’ 

than all others. Consistent with the hypothesis, using a higher resolution sampling grid increased 

sustained visual gamma estimates (amplitude), albeit moderately, with a 1mm grid being 

optimal. This is an improvement because higher amplitude represents increased signal to noise. 

Frequency estimates did not significantly differ with grid size. Weighted frequency appears to be 

a more stable measure of frequency, than peak frequency. However, in support of conclusion 

made by Barnes and colleagues, frequency signals at lower amplitude, where signal to noise is 

lower, may be more uncertain (Barnes et al., 2004).  

 

Obtaining optimal estimates of sustained visual gamma is important considering its role in local 

circuitry. For example, direct Local Field Potential (LFP) studies in cat and macaque have shown 

that gamma amplitude and/or frequency are sensitive to characteristics of visual stimuli, such as 

orientation and velocity (Friedman-Hill, 2000; Gray & Singer, 1989). In humans, studies have 

associated visual gamma frequency with both the BOLD response (R = -0.64) and MRS GABA 

concentration, a primary inhibitory neurotransmitter,  (R = 0.68), in the visual cortex 

(Muthukumaraswamy et al., 2009). This work supports the Pyramidal Interneuron Gamma 

(PING) model of gamma oscillations which suggests that local cortical inhibition-excitations 

systems can be probed with visual gamma paradigms.  

 

Visual gamma is disturbed in several clinical samples, for example in schizophrenia patients 

(Spencer, 2008) and in major depressive disorder (Fitzgerald & Watson, 2018). In schizophrenia, 

reductions in visual gamma have been considered a biomarker of the disorder (Shin, O’Donnell, 

Youn, & Kwon, 2011). Acquiring an optimal reconstruction of the gamma signal is therefore 

important for the identification of dysfunction and to give the biomarker potential for clinical 

use. 
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Dynamic Causal Modelling (DCM) suggests that visual gamma response is mediated by 

connections between superficial pyramidal cells (in layers 2/3- signal reflected in MEG) and 

interneurons (Shaw et al., 2017b; Sumner, Spriggs, & Shaw, 2021) in V1. Coupling strength 

between inhibitory neurons and layer 2/3 superficial pyramidal cells has also been shown to 

predict performance on the visual orientation task (Shaw et al., 2020). Recently, layer 4 stellate 

cells - superficial pyramidal (L4S->SP) connections have also been implicated (Sumner et al., 

2021).  

 

MEG recordings of the sustained component of the gamma response has an established 

electrophysiological basis as far as the sustained period is known to be oscillatory (Cohen, 2014). 

The evoked signal is short and phase-locked to the stimulus, while the sustained period is non-

phase-locked, or induced, with a longer duration.  Evoked responses are highly repeatable 

between participants, even when a sustained gamma signal barely exists, suggesting the evoked 

response is less subject to individual differences (Muthukumaraswamy et al., 2010). It is the 

sustained oscillatory period that is of interest in the upcoming analyses in this thesis.  

 

In addition to a role in local circuitry (Buzsáki & Wang, 2012b; Donner & Siegel, 2011; Shaw et 

al., 2017), gamma oscillations have been associated with cognitive processes such as visual 

binding (Tallon-Baudry, 2009). Fundamentally, ability to infer such processes requires accurate 

source estimates. In resting-state data, the LCMV beamformer has been shown to perform well 

even in lower SNR/high sensor noise circumstances (Tait, Ozkan, Szul, & Zhang, 2020), which 

is often the case in clinical data. However, peak frequency estimates at low amplitude, i.e., lower 

signal to noise (SNR), appear to be more uncertain. Furthermore, the comparison of frequency 

estimates extracted with multi-taper spectra and time frequency methods show frequency 

estimates were more different at lower amplitude. The uncertainty in peak frequency may be 

mitigated with increased sampling resolution as amplitude estimates were significantly higher 

using a 1mm grid. Uncertainty in frequency estimates may also be mitigated by using the centre 

of mass frequency method, estimates from which appear to be more consistent over different 

spatial sampling resolutions and individuals.  

 

Limitations 
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The study was subject to some limitations and subsequent points of further investigation. 

Although implementation of the LCMV with Fieldtrip, as compared with MNE-Python, 

FieldTrip, DAiSS (SPM12), and Brainstorm, has been shown to have adequate accuracy and 

sensitivity (Jaiswal et al., 2019), improvement in amplitude measures were not as large as 

expected. This could be for a couple of reasons, 1) a beamformer can reconstruct a strong gamma 

response, at high SNR, if sampling is conducted at the exact source location. However, even with 

a 1mm grid it is unlikely that a peak at that precise location will be reconstructed, so amplitude 

will usually be underestimated & 2) the strength of the sustained gamma response is limited, so 

the improvement is likely to also be modest.  

 

Furthermore, interpretation of the statistical improvement in sustained amplitude should be made 

with some caution as the increased number of data points at 1mm due to the higher resolution 

could have led to statistical differences. Nonetheless, the nature of the beamformer necessitates 

an improvement to estimates with a finer grid and the purpose of this this chapter was to consider 

the nature of the difference in estimates with a finer grid in light of the following chapters in this 

thesis. Admittedly, the difference in estimates was not as large as anticipated, however estimates 

at 1mm are of greater amplitude, and therefore higher SNR, which is important for subsequent 

analyses. In fact, amplitude increases might be relatively larger with paradigms that do not 

induce such a strong gamma response and where several sources might exist. This is something 

that could be explored using a non-grating stimulus.  

 

One unexpected finding was that amplitude and frequency estimates appeared to be higher in the 

time frequency spectra than multi-taper spectra. This might be attributed to differences the multi-

taper and Hilbert transforms. For example, the generation of the time-frequency spectrograms 

involves smoothing each line by ~4Hz across frequencies which could enhance amplitude. 

However, this is beyond the scope of this chapter and could be further explored elsewhere.  

 

Future directions/Uses 

This work could be important to clinical studies which usually generate data at lower SNR and 

would benefit from improved source estimates. It should be noted that this is not a repeatability 

analysis as this would require an alternative dataset or analysis of a control region. However, this 
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could be completed elsewhere and would allow additional statistical probing. Furthermore, the 

centre-of-mass frequency measure provides more consistent estimates than peak frequency and 

future research would benefit from the inclusion of this metric. Peak frequency or mean 

frequency estimates are, however, most common in previous literature and therefore these 

measures were used in other chapters of this thesis. Uncertainty in peak frequency estimates at 

low SNR appears to be somewhat mitigated by using a high resolution (1mm) grid, nevertheless 

at lower sampling resolutions, a centre of mass approach is endorsed.  

 

Overall, a 1mm grid allowed the highest estimates of amplitude to be reconstructed. A difference 

was not seen for frequency. While use of a 1mm grid appears to be optimal, it seems that if 

computation time has priority, reconstructions at 2mm or 4mm have no considerable 

disadvantage when considering sustained gamma.  
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Chapter 4. Extracting long-range networks from task data 
 

4.1 Rationale 
Optimising the utility of our experimental paradigms is also of considerable importance for the 

acquisition of quality MEG data. Previous findings suggest that similar long-range network 

patterns can be extracted in task and rest data. Where MEG scan sessions are long, or 

participants vulnerable to head-motion, i.e., in clinical cohorts, excluding a resting-state task 

(~10minutes), would be advantageous. Finding established oscillatory network characteristics in 

task data may lead to the question of whether a resting-state paradigm is required in certain 

scanning protocols.  

 

4.2 Introduction  
The dominant functional network patterns observed in so-called ‘at-rest states’ are well 

established (Sietzman et al., 2019). Resting-state networks (RSNs) represent synchronous 

activity across different neuronal populations in the absence of a task or stimulation. These have 

mostly been explored with fMRI, with its high spatial localisation and sensitivity to slow 

metabolic dynamics (≈0.01–0.1 Hz), revealing distant connectivity patterns across the brain. The 

default mode network, fronto-parietal network, fronto- temporal network and occipital network 

have subsequently become signatures of the brain at rest (Damoiseaux, Rombouts, Barkhof, 

Scheltens, Stam, Smith, Beckmann, et al., 2006; Seitzman, Snyder, Leuthardt, & Shimony, 

2019). These areas have been implicated in several cognitive functions such as motor function, 

visual processing, executive functioning and auditory processing. Functional networks are now 

becoming better understood in the oscillatory and time domains and RSNs revealed with M/EEG 

have been shown to converge with fMRI findings (Brookes et al., 2011; Brookes et al., 2011).  

 

An interesting question in this area, is to what extent RSNs are unique, i.e., as the brain is never 

truly at rest, how do these networks differ to those in stimulated circumstances? Despite a clear 

distinction in the literature between ‘rest’ and ‘task’ studies, numerous studies have shown a 

relationship between stimulus associated activity and RSNs (Northoff, Qin & Nakao, 2010). For 

example, when Smith and colleagues (2009), compared the resting fMRI networks of 36 

subjects, to activation studies (ICA derived networks), in the BrainMap Database (~30,000 
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subjects). They found considerable overlap in visual, default mode, cerebellum, sensorimotor, 

auditory, executive control and fronto-parietal networks (Smith et al., 2009). Furthermore, Cole 

and colleagues (2014), also found high similarity between fMRI connectivity matrices from a 64-

task paradigm and the resting-state (Pearson correlation coefficient r=0.90, p<.00001), which 

suggests the existence of intrinsic connectivity patterns. The multi-task paradigm comprised 

minimal changes in perceptual features across tasks, but targeted different cognitive domains: 

logic, sensory and motor, etc. (Cole, Bassett, Power, Braver, & Petersen, 2014).  

 

Evidence from the time-resolved imaging and modelling literature suggests these intrinsic global 

within-frequency-band connectivity patterns are more likely to be observed in the lower 

frequency ranges, i.e., 8-13Hz, 13-30Hz (Cabral et al., 2011; de Pasquale et al., 2010; Samogin 

et al., 2020; Wang, Jiao, Tang, Wang, & Lu, 2013). One plausible reason is because alpha and 

beta oscillations have been considered to reflect connectivity, or synchronisation, between long-

range populations of neurons (Pascal Fries, 2015). These networks are synaptically driven, 

however, the exact mechanism behind these findings is yet to be understood. 

 

Interestingly, in a reliability MEG study of connectivity methods, Colclough and colleagues, 

found that the most repeatable and consistent static connectivity methods, at the individual and 

group level, were alpha and beta networks, extracted with amplitude envelope correlation 

(Colclough et al., 2016). These findings could support the existence of intrinsic oscillatory 

connectivity patterns in the alpha and beta bands, both within and across individuals. Moreover, 

intrinsic connectivity patterns should remain in the presence of high frequency activity (i.e., the 

gamma range >30Hz), as PET studies suggest that the brain’s metabolic processes only require a 

minimal amount of additional energy, for mentally demanding tasks (Raichle, 2006; Raichle & 

Mintun, 2006).  

 

In neuroimaging, it is well known that long scanning sessions comprising different tasks can lead 

to fatigue effects. Subsequent head motion effects, movement effects and ‘off-taskness’ have an 

impact on data quality, with the latter being a more discrete and worrisome problem in analysis 

and interpretation. This is particularly the case in clinical cohorts, where individuals may already 

be experiencing symptoms or discomfort. While wellbeing maintenance is paramount in research 
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and ensured via ethical procedures, reducing scan time can only be of benefit to both participants 

and data quality.  

 

The quantification of connectivity networks is critical to clinical studies, particularly our 

understanding of neuropathology in schizophrenia. Experiences of individuals suffering with 

symptoms make scanning sessions prone to confounding factors. Therefore, it is essential that 

scanning sessions are as short as possible. Being able to dispense with the RSN paradigm and 

extract global networks from task data would help, not to mention improving the tolerability of 

sessions for participants.  

 

4.2.1 Aims and hypotheses  

The aim of this chapter is to compare static amplitude-amplitude connectivity networks extracted 

from visuomotor task (VM) or resting-state (RS) MEG data from the same individuals. The 

following research questions will be explored 1) how do the patterns of connectivity compare 

between RS and VM data, 2) how does the strength of connectivity compare between RS and 

VM data, 3) how do node activity and connectivity compare over RS and VM data, 4) how 

consistent are connectivity matrices across participants in RS and VM data, 5) how do NNMF-

derived network weightings compare between RS and VM data?  

 

The first hypothesis is that those connections that show strong connectivity (averaged across 

participants) in VM data would also show strong connectivity in RSN data. Considering the 

robustness of amplitude-amplitude functional connectivity in the alpha and beta bands 

(Colclough et al., 2016; Godfrey & Singh, 2020), it is also hypothesised that similar long- range 

connectivity networks can be extracted from both task and rest data in these frequency ranges. 

As the visuomotor (gamma) task induces local gamma oscillations (increases amplitude) in 

visual cortex (Muthukumaraswamy et al., 2010), it is not expected that occipital gamma 

connections will be consistent in task and rest data. 

 

 

 



 

58 

 

4.3 Method 
4.3.1 Participants 

The MEG-Partnership project was a large UK-wide multisite project. The data acquired at 

Cardiff University are included in this thesis. All participants were healthy individuals with no 

history of neurological or neuropsychiatric dysfunction. Participants were right-handed, with 

British-Caucasian ethnicity and English as their first language, of age 21-55 years.  

 

Table 4.1. MEG-Partnership demographics 

 
 N 88 Mean SD 

Age n 88 25.5 (years) 6.73 

Gender n 88 61f:27m  

 

4.3.2 MEG Acquisition and Tasks 

All data were acquired using the CTF-Omega axial gradiometer (275 channel) system, at 

CUBRIC. Participants were sat upright in the scanner, which is placed inside a magnetically 

shielded room. Data were sampled at 1200Hz, with a 300Hz lowpass antialiasing filter. For head 

localisation, electromagnetic coils were attached to the fiducial areas; nasion and right and left 

pre-auricular. Head localisation was completed at the beginning and the end of each scan. For 

noise cancellation, data were acquired with 29 reference channels and were analysed in third-

order gradiometer mode as recommended by Vrba and Robinson (Vrba & Robinson, 2001). 

 

Each participant completed a battery of tasks in the scanner, including a resting-state paradigm 

and a visuomotor task. The resting-state task comprised a 5-minute presentation of a central 

fixation cross. Participants were instructed to focus, with eyes open, at the cross for the duration 

of the scan. Resting-state data was acquired for 88 participants.  

 

The visuomotor task comprised 100 trials in total, which lasted ~ 13 minutes. The visual 

stimulus presented in the lower left visual field was a stationary, vertical, maximum contrast, 

three cycles per minute, square-wave grating, subtended vertically and horizontally at a 4° angle. 

The stimulus was presented for 1.5-2 seconds, jittered, on a mean luminance background. The 

ITIs were either 4 seconds or 8 seconds and allocated to half of the trials, presented in random 

order. Participants were also required to perform a finger abduction with the index finger on the 
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right hand whenever the grating disappeared. This task can be referred to as visuomotor task and 

visual gamma task interchangeably, but will be referred to as VM in this chapter. The motor 

component was not analysed in this thesis. Visual data were acquired for 84 of the 88 

participants with resting-state data, and it is this subset of 84 that was taken forward for 

comparative analysis.  

 

Both paradigms were programmed in Matlab (2015) and presented at a refresh rate of 100Hz.  

 

4.3.3 Pre-processing 

Data analysis was performed in Matlab (version 2017) and with Fieldtrip (revision 20190219). 

The resting-state data were split into 2 second epochs and visually inspected for large blink 

muscle or movement artefacts in DataEditor. These epochs were removed from the data. VM 

data were split into 4 second epochs around the stimulus onset (-2, 2). Trials with large blink, 

muscle or movement artefacts were also manually removed from the data.  

 

MRIs and co-registration 

MRIs (1mm- isotropic, T1 weighted), were acquired on the 3 Tesla General Electric system at 

CUBRIC. Co-registration was completed with photographs taken of the fiducial coils (nasion, 

left and right pre-auricular) during the MEG scanning session. Fiduciary markers were placed at 

three anatomical landmarks identifiable in the subject’s anatomical MR scan. Their locations 

were then manually marked in the MR image.  

 

4.3.4 Resting-state Analysis  

CUBRIC’s in-house amplitude-amplitude functional connectivity pipeline (kAAL_ConnectKL) 

was applied to both the resting-state and VM data. In summary, data were read in as continuous 

data, down-sampled to 600 Hz, and filtered with a 1 Hz high-pass and a 150 Hz low-pass 

filter. Data were split into 2 second trials and filtered into canonical frequency bands. A 

covariance matrix was generated for each of the following bands: Delta 1-4Hz, Theta 4-8Hz, 

Alpha 8-13Hz, Beta 13-30Hz, Low Gamma 30-60Hz and High Gamma 60-90Hz. Source 

localisation was achieved with a LCMV beamformer, a 6 mm sampling grid and a single-shell 

forward model (Nolte, 2003).  
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Virtual sensor data for each trial was created and concatenated per voxel. A representative 

timecourse for each AAL region, i.e., the virtual sensor with the largest temporal standard 

deviation was then selected and orthogonalisation applied to reduce source leakage (Colclough, 

Brookes, Smith, & Woolrich, 2015). Matlab’s hilbert function was then used to generate the 

analytic signal for each of these 90 orthognalized timeseries – the absolute amplitude of this 

yields the time-varying amplitude envelope of the band-passed signal, here called the Hilbert 

envelope. This envelope was then temporally downsampled (1Hz) and conditioned (despiked to 

remove artefactual temporal transients using a median filter and trimmed to avoid edge effects; 

removing the first 2 and last three samples). Pairwise correlations were calculated between the 

90 Hilbert envelopes, providing connectivity matrices comprised of 4005 unique correlations 

(connections) per frequency band for each participant. 

 

Finally, global effects can arise from experimental factors such as head size, head movement and 

head position within the MEG dewar. In this case, after the correlation matrices were generated, 

the global normalisation procedure applied involved subtracting a Gaussian of the weakest 

connections considered to be noise, per participant, (i.e., a null mean and standard deviation) 

from all connections for that participant (see appendix A). This resulted in a normalised 90x90 

connectivity matrix for each subject, where each value represents the strength of connectivity 

between two regions.  

 

The corresponding 84 VM and resting-state (RS/N) matrices were carried forward for further 

analysis.  
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Figure 4.1. A schematic of the amplitude-amplitude connectivity pipeline3.  

 

4.3.5 Non-Negative Matrix Factorization (NNMF) 

Whole brain connectivity data is complex, with many node-node connections. It has previously 

been shown that many of these individual connections can be grouped into functionally relevant 

sub-networks, using data-driven reduction methods such as Principal Components Analysis 

(PCA) or Independent Components Analysis (ICA) (Brookes et al., 2011; Smith, Hyvärinen, 

Varoquaux, Miller, & Beckmann, 2014; Smith et al., 2012). Analyses such as these allow the 

consistency of networks across participants to be observed. 

 

                                                           
3 Note: images of sensor data, source localisation template brain and the Hilbert envelope are adapted 

from Koelewijn, L., Lancaster, T. M., Linden, D., Dima, D. C., Routley, B. C., Magazzini, L., ... & Singh, 

K. (2019). Oscillatory hyperactivity and hyperconnectivity in young APOE-ɛ4 carriers and 

hypoconnectivity in Alzheimer’s disease. Elife, 8, e36011. The brain template depicting 90 AAL nodes is 

adapted from Pang, E. W., & Snead Iii, O. C. (2016). From structure to circuits: the contribution of MEG 

connectivity studies to functional neurosurgery. Frontiers in neuroanatomy, 10, 67. 
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In the specific case we have here, namely amplitude-amplitude connectivity matrices, all of the 

significant connectivity values tend to be positive (Koelewijn et al., 2017) and conceptually it 

makes sense for each participant to have positive-only loadings on to each sub-network. 

Therefore, a specific algorithm, similar to PCA, was used, which constrains both the sub-

networks and their loadings to be positive, namely Non-Negative Matrix Factorization (NNMF, 

Lee & Seung, 1999; Phalen, Coffman, Ghuman, Sejdić, & Salisbury, 2019; Doherty et al., 2021; 

Messaritaki et al., 2021a). Each component comprises a linear combination of the original data 

points. In this case, a number of network components are generated which co-vary across 

participants. Each participant has one component weighting per component in each frequency 

band (Delta 1-4Hz, Theta 4-8Hz, Alpha 8-13Hz, Beta 13-30Hz, Low Gamma 30-60Hz and High 

Gamma 60-90Hz). 

 

A specific challenge with NNMF is choosing how many sub-network components in which to 

decompose the original network matrices. Conventional methods of looking at the explained 

variance do not tend to work well, as NNMF will increasingly use components which only load 

on to very few participants. In this way, increased components always lead to a better fit. So, a 

rule for iteratively assessing the fit was chosen, but with a set of stopping rules based on how 

many participants have non-zero component weightings. Namely, in each frequency band, there 

were a maximum of 20 components allowed; every component need to have a non-zero value in 

at least 50% of participants and, averaging across all components, the mean number of non-zero 

weightings needed to be greater than 70% of participants, in order for the algorithm to continue.  

 

4.3.6 Planned Comparisons 

From the connectivity matrices the following measures were derived and used for dataset 

comparisons across 3 levels (separately for each frequency band): across connections (i.e., the 90 

AAL regions/nodes), by participant (across subjects’ comparisons) and by NNMF components.  

 

Node measures  

a) Mean effect activity at each node is a measure of temporal variation in the Hilbert-

derived envelope. It is generated by, first, taking the Hilbert envelope of each virtual time series 

at each node. Then, summarising how variable this envelope is over the entire data run by 
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calculating the coefficient-of-variation (i.e., temporal SD/temporal Mean). This results in a 

temporal activity measure at each of 90 AAL regions for each participant (Doherty et al., 2021; 

Koelewijn et al., 2019).  

b) Node strength connectivity is how connected each of the 90 AAL nodes is to every other 

node, i.e., the sum of weights (connection strength) of links connected to the node. 

 

Participant consistency measures 

The datasets were also assessed with two participant consistency measures. This was to explore 

whether the within-group network estimates were more or less variable in the VM data than the 

resting-state data. 

a) Mean rank, in this case, is a measure of the consistency of magnitude of connections, 

across participants. Connections are first ranked in order of magnitude, with the strongest 

connection being given the value 1 and the weakest given value 0. The mean rank is then found 

across participants for each connection (Godfrey & Singh, 2021). If the connectivity matrices are 

all randomly dissimilar across participants, then the sorted mean rank would be flat, around 0.5. 

b) Spatial correlation is a measure of how similar each person’s connectivity profile is to the 

mean connectivity map across participants. A vector of the mean z-score connectivity values is 

calculated across participants. A vector of mean connectivity scores is also generated for each 

participant and correlated with the mean across participants. A high pattern correlation represents 

robust networks across participants, whereas low pattern correlations represent networks that are 

variable between participants.  

 

Non- Negative Matrix Factorization  

To compare the component weightings between the resting-state and VM datasets, connectivity 

matrices from both the VM and RSN datasets were concatenated. This was to ensure that the 

same spatial sub-networks were extracted. If the analyses were run separately the networks 

would not be guaranteed to be identical. The NNMF algorithm was then run over the combined 

168 datasets. This resulted in two component weighting values, per network, per frequency band 

for each subject and allowed a direct comparison, in the same spatial sub-networks, of the 

network weightings from the VM and RSN experiments.  
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Results were explored visually, with Pearson’s correlation, repeated measures T-tests and simple 

linear regression methods.  
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4.4 Results  

4.4.1 Connection comparisons 

The datasets were first compared across connections in each frequency band (Figure 4.2). 

                                    a)                                               b)                                                             c)                                                 d) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

66 

 

Figure 4.2. Patterns of connectivity in RS and VM data. For each frequency band (one per row), 

the figure shows a) a correlation matrix showing the mean connectivity between the 90 AAL 

regions across participants extracted from the resting-state data (colour-scale represents the 

corrected Z-scores for each correlation), b) a correlation matrix showing the mean connectivity 

between the 90 AAL regions across participants extracted from the VM data, c) a circular 

network plot showing  connections in which the mean rank is >.8 in the resting-state data, and d) 

a circle plot showing connections in which the mean rank is >.8 in the VM data.  

 

Mean connectivity and the connections which fall in mean ranks >.8 appeared to be very similar 

across the datasets in the alpha and beta bands. The same number of connections met the ranking 

threshold in theta, but these connections were between different areas in each of the two datasets. 

Connectivity strength was also similar in delta, although a slightly different pattern of 

connections met the ranking threshold across datasets. Patterns of connectivity in the high- and 

low-gamma bands differed considerably between the two datasets. No connections met the >.8 

threshold in the lower gamma band, suggesting these connections were inconsistent across 

participants, perhaps due to low SNR or a lack of genuine connectivity in this band. 

 

Differences and similarities in the strength of connectivity between the datasets were further 

explored (Figure 4.3).  
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  a)                                                             b)                                           c)                                           d)               
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Figure 4.3. Differences and similarities in strength of connectivity in RS and VM datasets. For 

each frequency bands (one per row), the figure shows, a) connectivity differences – a matrix 

showing the paired t-statistic for each connection when comparing the resting-state data to the 

VM data (VM-RSN). Red pixels represent positive t-statistics (i.e., VM values are larger than 

RSN values) and blue represent negative t-statistics (i.e., RSN values are larger than VM values). 

The magnitude of the effect is shown by depth of colour, b) connectivity similarities- a matrix 

showing pairwise correlations across participants (p>0.001) between connectivity (z-score 

measure) in the resting-state data and connectivity in the VM data, c) A scatter graph showing 

the connectivity magnitude from the VM data plotted against the connectivity magnitude from the 

RSN data, for the connection with the highest correlation between these two datasets for each 

frequency band – each dot represents one participant and d) the correlation between RSN and 

VM datasets for each connection (Y axis), plotted against the RSN mean connectivity strength, 

for each connection (X axis).  

 

As might be expected, connections were stronger in the visual cortex in the gamma range in the 

VM data. Consistent with evidence showing a suppression of alpha during visual stimulation in 

posterior cortex (Brookes et al., 2005; Hämäläinen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 

1993; Singh, Barnes, & Hillebrand, 2003), connections were weaker in the visual cortex in the 

alpha band in the VM data. Connections were also reduced in the beta occipital-parietal areas, in 

the VM data. Visual connections also appeared to be reduced in the VM data in the delta and 

theta bands. Differences between RS and VM connections, outside of these areas, were of mixed 

direction. Notably, positive and negative differences in gamma connections exist outside of the 

visual cortex.  

 

Column (b) shows that connection magnitude is most correlated, between datasets and across 

participants, in the theta, alpha and beta bands. Connections appear to be most correlated in the 

visual areas in alpha and theta. In beta, correlations were high over widespread areas, with the 

strongest connection being between the left and right precuneus. Column (d) shows that stronger 

RS connections (i.e., at higher SNR), for example in alpha and beta, have a higher correlation 

with connections in the VM dataset. 
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To consider patterns of the strength of connectivity at each node in each frequency band, average 

node strength was compared between the RSN and VM data and plotted in Figure 4.4, below.  

 

Figure 4.4. Node Strength (Sum of Z-scores) at each node per frequency band for each of the 

datasets. RS data is in blue. VM data is in red.  

 

Node strength values were highly similar, both in terms of their magnitude and distribution 

within nodes, across datasets. The largest global difference in node values between datasets was 

in the delta and high gamma range. However, the across node trend in connectivity strength 

remained similar.  

 

Activity at each node was also compared between the RSN and VM data and plotted in the 

Figure 4.5, below.  
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Figure 4.5. Activity at each node, for each dataset, per frequency band. RS data is in blue. VM 

data is in red.  

 

Activity values were highly similar between datasets across all frequency ranges. Interestingly, a 

spike in activity can be seen in areas of the visual cortex (nodes 43 and 44), in the low gamma 

VM data. Nodes 43 and 44 are V1 (left calcarine, right calcarine). Peak gamma activity appears 

in the right calcarine which is encouraging considering the task stimulus was presented in the left 

visual field and is therefore what we would expect due to the lateralisation of the brain. Alpha 

activity also appeared to be slightly reduced in the VM data, in the same nodes.  

 

For each frequency band the node strength and activity correlation coefficients, are plotted in 

Figures 4.6 and 4.7; that is, correlations between the VM data and the RS data at each node 

across participants. The figures demonstrate the magnitude of similarity between the data at any 

given area. Any correlations below the grey line are negative at those nodes.  
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Figure 4.6. For frequency bands delta, theta and alpha, the figure shows, left) the node strength 

correlation coefficient (between RSN and VM data) per node, and right) the Activity correlation 

coefficient (between RSN and VM data, per node. A horizontal line is shown at 0. Where a 0 line 

is not visible correlation values are all positive (>0).  

 

Correlations of the node strength measure between runs were particularly high in the alpha and 

beta bands, with most nodes correlated at r=0.4-0.8. The activity measures were also correlated 

at between 0.2-0.8, in most nodes in alpha and beta. Correlations between gamma node strength 

measures, were weaker (r=0- 0.4). Similarly, correlations between activity measures, in gamma, 

centred around the zero line, with maximum node correlations of r= 0.4 -0.6. Node strength 

measures in the theta band were moderately correlated, across nodes, at r= 0.2-0.7. The activity 
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measures were less correlated in the theta band. Most nodes were correlated at < r=0.4, in the 

delta band, across both the node strength and activity measures.  

 

Figure 4.7. For frequency bands beta, low gamma and high gamma  the figure shows, left) the 

node strength correlation coefficient (between RSN and VM data) per node, and right) the 

Activity correlation coefficient (between RSN and VM data, per node. A horizontal line is shown 

at 0. Where a 0 line is not visible correlation values are all positive (>0).  

 

The least correlated effect activity and node strength areas in alpha and beta, are nodes 21 and 

41; these comprise the olfactory bulb and amygdala, which are not well imaged with MEG due 

to their depth. Generally, areas 71-90 were also not well correlated between datasets. These 

comprise the caudate, thalamus and temporal areas.  
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Node strength and activity measures were further explored in the alpha and beta bands, where 

consistent and reliable network effects have previously been shown (Colclough et al., 2016; 

Godfrey & Singh, 2021) 

 
 
Figure 4.8. The relationship between node strength and activity measures at the 90 nodes, 

averaged over participants, in the alpha and beta bands. 

 

For both the VM and RSN datasets, a positive relationship can be seen between node strength 

and activity measures suggesting that nodes which have the highest amount of activity were also 

the most functionally connected and suggesting both node strength and activity measures were 

capturing the same variance. 

 

Together, results in this section suggest both node connectivity and activity are reproducible 

across paradigms in the alpha and beta bands.  
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4.4.2 Consistency across participants’ comparisons  

Next, the consistency of network estimates were considered across participants. This was to 

assess the variability of estimates between individuals in the VM and RS and data. Large 

differences in within-group variability could have implications for significance testing 

differences in networks extracted from task and rest data , i.e., under the assumption of equality 

of variances.  
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Figure 4.9. Shows the ranked connectivity matrices across participants (1st column), where the 

flatter the line around mean rank 0.5, the more dissimilar participant’s matrices are, and 

correlations, by participant, with the mean connectivity matrix across participants (2nd column). 
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Both plots show RS (blue) and VM (orange) data. Result in the delta, theta and alpha bands are 

shown here.  

 

Both RS and VM datasets followed a similar trend of across participants’ connectivity, even in 

the gamma range. Across participants’ connectivity was most similar in VM and RS data in the 

theta, alpha and beta bands. Participant’s datasets in the gamma range were most dissimilar to 

each other.  
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Figure 4.10. Shows the ranked connectivity matrices across participants (1st column), where the 

flatter the line around mean rank 0.5, the more dissimilar participant’s matrices are, and 

correlations, by participant, with the mean connectivity matrix across participants (2nd column). 
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Both plots show RS (blue) and VM (orange) data. Results in the beta, low gamma and high 

gamma bands are shown here.  

 

4.4.3 NNMF sub-network decomposition 

To explore similarities between sub-networks derived with NNMF, a comparison was made 

between network weightings for each dataset in a repeated measures design. In the delta, theta 

and high gamma frequency bands 10 sub-network components were derived. Alpha, beta and 

low gamma frequency matrices were more densely populated with connections and 11 sub-

network components were derived.  
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Figure 4.11. Shows resting-state weightings plotted against VM weightings (Z-scores) for the 

different frequency bands. The reference line is an equality line. Each dot represents one of the 

NNMF components for participant; delta, theta and high gamma-84*10 values, alpha, beta and 

low gamma-84*11 values. 

 

The delta weightings were unevenly dispersed around the equality line, with some having much 

higher RS values and others having much higher VM values. Theta weightings were, overall, 

evenly dispersed around the equality line. Alpha and beta weightings were, overall, evenly 
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dispersed around the equality line, with a few values being higher in the alpha resting-state. 

Neither low nor high gamma weightings were tightly distributed across the line, suggesting 

values differ in the resting and VM data. 

 

Paired correlation between the VM and RSN paradigms, across participants, was conducted for 

each component weighting separately, and plotted across the frequency bands (Figure 4.12).  

 

 

 

Figure 4.12. Shows the paired correlation coefficients between resting-state and VM  NNMF 

weightings, across components (63 components total).  

 

Network weightings were highly correlated in the theta, alpha and beta bands (r=0.35-0.85). 

Correlations between network weightings in the delta and gamma ranges were, overall, weaker; 

the majority between 0.2 and 0.4. Two delta components did reach a moderate to high correlation 

(r>0.6).  
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4.4.4 Additional analyses 

A clear gamma peak can be seen in the VM connectivity analyses in visual cortex (Figure 4.5). 

This finding was further explored in relation to metrics derived with conventional visual gamma 

analysis (described in full in Chapter 3). Being able to extract both long-range alpha and beta 

connectivity as well as the induced gamma signal from task-based connectivity analysis could 

considerably reduce the amount of time that would otherwise be needed for pre-processing and 

analysis of two different datasets.  

 

Extracting gamma from the gamma RSN connectivity analysis 

The spike in low gamma activity can be seen at node 44, which is the right calcarine. Two 

gamma measures were extracted for each participant: 1) the difference in RSN gamma activity 

and VM connectivity activity at node 44, and 2) the percentage change in gamma activity at node 

44, with the resting value as baseline.  

 

Traditional visual gamma analysis 

To summarise, visual gamma data was sampled at 1200Hz, with a 300Hz lowpass antialiasing 

filter and then epoched in 4 second trials around the stimulus onset. Data were manually co-

registered to the participant’s MRI (isotropic T1-weighted). LCMV beamformer source 

localisation was conducted on the 12 visual AAL regions, based on the data covariance between 

30-80 Hz. Source power was projected separately for baseline (-1.2-0s) and stimulus periods. 

The sustained period of the response was of interest and the oscillatory period was selected at 

0.3s- 1.2s after stimulus onset. A virtual sensor was inserted at the point of the peak source. 

Estimates of peak amplitude and peak frequency in the power domain were considered here.  

 

Gamma measures 

Gamma activity in the VM connectivity analysis: 1) differences between resting and gamma 

values and 2) the percentage change between resting and gamma values.  

Sustained gamma in the traditional visual gamma analysis: 3) amplitude at the point of peak 

source, and 4) frequency at the point of peak source. 
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Pearson correlation did not reveal any significant relationships between gamma extracted with 

conventional visual gamma analysis and the VM connectivity analysis, as shown in Table 4.2. 

 

Table 4.2. Results of correlations between gamma measures 

 

Peak 

Amplitude 

Peak 

Frequency 

Gamma 

Difference 

(node 44) 

Gamma 

Difference 

(node 44) 

Peak Amplitude Pearson r 1 -.114 -.124 .082 

p value  .302 .260 .457 

Peak Frequency Pearson r -.114 1 .009 .145 

p value .302  .933 .188 

Gamma Percentage 

Change (node 44) 

Pearson r -.124 .009 1 .091 

p value .260 .933  .413 

Gamma Difference 

(node 44) 

Pearson r .082 .145 .091 1 

p value .457 .188 .413  
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4.5 Discussion 
In this chapter, networks extracted from the resting-state and VM task data have been compared 

across 3 levels: across connections, across participants and across NNMF derived network 

components. As previously mentioned, fMRI studies have found the default mode network, 

fronto-parietal network, fronto-temporal networks and occipital networks to be signatures of the 

brain at rest (Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, Beckmann, et al., 2006; 

Seitzman et al., 2019). This chapter provides evidence that intrinsic network connections can be 

revealed, using amplitude- amplitude coupling analysis, in both MEG rest and task data. 

 

An exploration of connection patterns, across the 90 AAL regions, found the pattern of 

connections to be highly similar in the alpha and beta bands across datasets. The datasets had 

some consistency in delta and theta connections, though connections meeting the mean rank 

(>.8) threshold (connection strength) differ, especially in theta. As expected, the stronger 

connections in the gamma-range differed noticeably between the datasets.  

 

Notably, in the visual cortex (VC), connections were stronger in the gamma band and reduced in 

the alpha band, in the VM data. Beta was also reduced in the visual-parietal areas in the VM 

data. This is unsurprising considering previous literature on frequency coupling in the visual 

cortex (Bastos et al., 2015b; Bonnefond & Jensen, 2015; Kerkoerle et al., 2014b; Lozano-

Soldevilla et al., 2014a). A discussion of the possible underpinnings of these findings is beyond 

the purpose of this chapter, particularly as there has been some recent evidence suggesting 

gamma–alpha oscillations are not directly coupled in VC, as previously thought (Zhigalov & 

Jensen, 2020). However, it does suggest that caution should be applied to comparisons of 

connections in the VC.  

 

Regarding magnitude of connectivity, across the datasets the strongest connections were in the 

alpha and beta bands. These were also the most correlated between the datasets (<.65, moderate 

correlation), which makes sense considering that these are the connections at highest SNR. This 

is consistent with the hypothesis that those with strong oscillatory RSN connectivity will also 

have strong oscillatory connectivity during a task paradigm. Connection strength also was fairly 

well correlated in the theta band, with the strongest correlations located in the visual-parietal 
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areas. Connection magnitude was weakly correlated across the 90 AAL regions between datasets 

in delta and gamma. The limited magnitude of connectivity in the delta and gamma bands 

suggests these correlations could be spurious.  

 

Connectivity and activity at each node were, subsequently, explored across the frequency bands. 

The node connectivity values were found to be strikingly similar across the resting-state and VM 

datasets (reaching high correlations, r>.8). These node correlation values were like those found 

by Cole and colleagues with fMRI (Cole et al., 2014). Small global differences in node 

connectivity were found in delta and high gamma. Activity at each node was also highly similar 

between datasets in the delta, alpha and beta bands. Interestingly, a spike in activity was 

observed in the visual cortex in the low gamma activity band (VM data) due to the grating 

stimulus.  

 

It is noted, however, that neither the difference, nor the percentage change in gamma between 

VM connectivity and resting-state connectivity correlated with traditional gamma amplitude or 

frequency metrics. One reason could be that in the connectivity analysis, concatenated data are 

downsampled to 1Hz, meaning temporal information (i.e., changes in the envelope greater than 

1Hz) is lost. The translations between visual stimulation and baseline would, therefore, have 

been smoothed out by the RSN analyses pipeline. Furthermore, more variation exists in the 

baseline, i.e., the resting-state, in the connectivity measures, with some RSN values being higher 

than their VM counterpart. This was an ad hoc exploration. It is also possible that the 

difference/percentage change metrics were not sensitive enough to extract gamma from the 

connectivity analysis. Measures were also obtained at different beamformer sampling resolutions 

(RSN 6mm, Gamma 1mm). In view of Chapter 3, it is expected that the beamforming at 1mm 

would have given more precise estimates of gamma. Until this is further explored, the 

conventional method for extracting gamma metrics remains the recommended approach.  

 

The Non-Negative Matrix Factorization signal processing method has become increasingly 

popular in neuroimaging methods because complex patterns of connections can be simplified and 

presented as coherent sub-networks. The pipeline used in this thesis generates 4005 unique 

connections (e.g. ((90x90)-90)/2), so reducing these to fundamental components with NNMF 
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aids interpretability of functionally relevant sub-networks, as well as reducing the issue of 

multiple comparisons. The results here show that NNMF component weightings, while not 

identical, are highly comparable in the alpha, beta and theta frequency bands in both resting-state 

and VM task data. This was not the case for delta and gamma weightings which was to be 

expected considering 1) that one of the paradigms is known to induced gamma oscillations and 

2) artefacts such as eye movement affect connectivity in the lower frequencies (Godfrey & 

Singh, 2021). 

 

Lastly, connectivity was also variable across participants in a way that was expected considering 

previous work (Godfrey & Singh, 2020). Matrices were most dissimilar in the gamma range and 

most similar in the beta range. However importantly here, the trends of similarity were highly 

comparable between the resting-state and VM data, across the frequency bands.  

 

In summary, therefore, alpha and beta connections had a high level of consistency between 

resting-state and VM data. This was demonstrated across the different modes of analysis here. 

However, connections in the VC differed and caution would be urged in comparing connections 

in this area. Connectivity and activity were also surprisingly well correlated between the datasets 

in the theta band, across many nodes. Correlations between theta NNMF components were also 

high. However, connectivity patterns (strongest connections) did appear to differ in theta. The 

idea that theta connectivity is more variable than alpha and beta connectivity, is supported by 

recent work which found considerable fluctuations in measures of network organisation in theta 

(Zink, Mückschel, & Beste, 2021), i.e., measures of local (small-worldness), and global network 

properties. This could limit the comparability of rest and task data in this frequency band. 

 

Limitations and future directions 

This chapter is subject to some limitations. For example, a reliability comparison was not 

possible, as this would have required additional resting-state data in the same cohort. This, in 

fact, has been undertaken elsewhere (Colclough et al., 2016; Dimitriadis, Routley, Linden, & 

Singh, 2018). The primary aim of this chapter was to explore the extraction of intrinsic networks 

in task and rest data, which has been achieved. However, it is unclear how these findings apply 

to other MEG network extraction methods, for example, phase measures, such as the phase lag 



 

86 

 

index (PLI), which has been shown to have poor test-retest reliability  (Colclough et al., 2016). 

Also, no comments can be made about task data where paradigms stimulate modalities outside of 

the VC. In future, multi-modality task data collected in the same session might be compared in 

an analogous way.  

 

Furthermore, it would also be interesting to explore whether clinical factors, for example 

diagnosis status, or genetic risk, are sensitive to the same connections in task and rest data. If the 

same connections were predicted, it would suggest a resting-state paradigm could be superfluous 

to requirement, in some studies. This the next step for this research. 

 

In conclusion, this chapter has provided comparisons between functional networks extracted 

from resting and visual task MEG data. Patterns of connectivity were different in the visual 

cortex across frequency bands. Gamma band connectivity was also non-comparable. However, 

alpha, beta and theta connectivity, outside of the visual cortex, was comparable. This calls into 

question the use of a resting-state paradigm in some studies, particularly in challenging 

populations who can less tolerate long experimental sessions. It may be that long-range static 

connectivity measures can be extracted from other task-based scans. Task-based paradigms have 

the additional advantage of helping to maintain alertness and compliance.  
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4.6 Appendix A 
 

1. An example of the normalisation procedure applied to connectivity matrices.

 

Each participant’s connectivity matrix was corrected for global effects caused by head size, head 

motion and position within the MEG helmet. The null mean and standard deviation of 

connectivity was estimated by selecting the weakest connections, considered noise, and fitting a 

Gaussian to the peak (± 1 standard deviation) of the distribution. This mean and SD was then 

applied as a z score to the strength of connectivity (z) values for the respective person. See 

Messaritaki et al., (2021). 

The images on the left show a global (mean) shift in gamma connectivity in the RSN data prior 

to the normalisation procedure (images on the right). This may have been due to increased 

participant head motion during the resting-state scans.  
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Chapter 5. Identifying sub-networks with Non-Negative 

Matrix Factorization: Initial results   
 

5.1 Rationale 
The following experimental chapters include MEG resting-state data and structural data obtained 

in ~ 183 subjects, collected as part of the 100-Brains and MEG-Partnership projects. To probe 

global functional and structural sub-networks a Non-Negative Matrix Factorization (NNMF) 

procedure was applied to the data. Results are presented on template brain plots here, so that the 

spatial organisations of the sub-networks can be visually explored. Identifying subnetworks is 

useful because 1) they summarise biologically-relevant functional sub-units, and 2) they allow 

more efficient statistics i.e., tens of tests instead of 100s or 1000s and therefore reduce the innate 

multiple comparisons problem in neuroimaging research. Relationships between these networks 

and predictors of interest are explored in subsequent chapters.  

 

5.2 Non-Negative Matrix Factorization 
NNMF is a mathematical approach (Lee & Seung, 1999) whereby matrices can be reduced into 

fundamental networks, in a method akin to Principal Components Analysis (PCA). In this 

respect components reflect consistency of networks across participants, with the first component 

being most present and so on. The component networks are generated across individuals. 

Individuals are then assigned a weighting value for each component which represents the extent 

to which their data contributes to that component. In this respect, the network weightings 

represent the consistency of any given network across participants. Functional connectivity 

analysis in the resting-state using Hilbert envelope correlation lends itself well to NNMF as 1) 

amplitude-amplitude correlations are usually positive, and 2) unlike methods such as PCA which 

can result in both positive and negative network weightings, NNMF produces only positive 

weightings, which is helpful for understanding the contribution of each person’s data to any 

given network.  

 

The number of components for investigation are selected apriori meaning this requires caution, 

as components which are variable in only a few participants could be included. Conversely, a cut 

off that is too stringent could lead to information being missed. In this thesis, NNMF was 
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performed on the 90x90 Automated Anatomical Labelling connectivity matrices (AAL Tzourio-

Mazoyer et al., 2002), weighted by different functional and structural measures.  

 

Data were analysed in MATLAB (version 2019) using in-house scripts. To prevent overfitting, 

components were selected for further analysis until one of the following stopping criteria was 

met: 1) a maximum of 20 components, 2) the percentage of people who have a non-zero score 

for each component must be more that 50%, and 3) the average score (percentage) of non-zero 

scores across all the components must be greater than 70%. If all of these conditions were 

satisfied the algorithm moved on to the next component.  

 

The NNMF algorithm, as used in this thesis, uses the variance across participants to identify a set 

of spatial components. Then for each of these components there is an associated weight, one per 

person in this case, that represents how strongly that person’s data contributes to any given 

network. The weights were then statistically analysed in relation to predictors of interest with 

regression and T-test analyses in subsequent chapters.  

 

5.3 Functional components  

The functional NNMF components were derived, separately per frequency band, across the 183 

resting-state datasets in the 100-Brains and MEG-Partnership cohorts (described in Chapters 3 & 

4). Alpha (8-12Hz) and beta (13-30Hz) components are considered in this thesis; 11 and 9 

components were derived, respectively. Components were projected onto an AAL atlas 

(Tzourio-Mazoyer et al., 2002) which comprised 90 anatomical areas (nodes) and are presented 

in Figures 5.1 and 5.2 below.  
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Figure 5.1. 11 Alpha components, axial view from overhead. Top 10% of non-zero connections 

are plotted on an MNI template brain surface. Note, scaling applied so the boldness of edges 

indicates the strength of connection, with weaker connections less visible.  

 

The networks shown in Figure 5.1 appear to be consistent with known resting-state networks 

(Brookes, Woolrich, et al., 2011; Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, & 

Beckmann, 2006). The implicated anatomical areas are shown in Table 5.1.  
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Table 5.1. Shows the anatomical labels for the top 10% of nodes in each of the alpha components 

1 2 3 4 

Calcarine_R   

Calcarine_L   

Lingual_L  

Lingual_R   

Occipital_Inf_R   

Occipital_Inf_L   

Cuneus_L   

Cuneus_R   

Occipital_Sup_L  

Occipital_Sup_L   

Occipital_Mid_R   

Precuneus_R   

Cuneus_R   

Occipital_Sup_R   

Occipital_Mid_L   

Cuneus_L  

Occipital_Inf_R  

Parietal_Sup_R   

Parietal_Inf_L   

Precuneus_R   

Angular_R   

Angular_L   

SupraMarginal_L  

Heschl_L   

Precuneus_L  

Parietal_Inf_R   

Paracentral_Lobule_R   

Temporal_Inf_R  

Temporal_Mid_R   

Fusiform_R   

Temporal_Sup_R   

Occipital_Mid_R   

Angular_R   

Occipital_Inf_R   

Hippocampus_R  

Occipital_Sup_R   

5 6 7 8 

SupraMarginal_R  

Postcentral_R   

Paracentral_Lobule_R   

Parietal_Inf_R   

Rolandic_Oper_R   

Precuneus_L  

Paracentral_Lobule_L  

Parietal_Sup_R   

Postcentral_L   

Temporal_Mid_L  

Temporal_Mid_R   

Occipital_Mid_L  

Temporal_Inf_L  

Fusiform_L   

Lingual_L   

Occipital_Inf_L  

Postcentral_L   

Parietal_Sup_L   

Paracentral_Lobule_L  

Occipital_Mid_L   

Parietal_Sup_L  

Paracentral_Lobule_R   

Cuneus_L   

Occipital_Sup_R   

Calcarine_L   

Fusiform_R   

Precuneus_L   

Precentral_R   

Supp_Motor_Area_L  

Parietal_Inf_R  

Supp_Motor_Area_R  

Postcentral_R   

Precentral_L  

SupraMarginal_R  

Paracentral_Lobule_L   

Postcentral_L   

9 10 11  

Hippocampus_L   

Temporal_Inf_L   

Temporal_Pole_Mid_L   

Temporal_Mid_L  

SupraMarginal_L   

Temporal_Pole_Sup_L   

Heschl_L   

ParaHippocampal_L   

Temporal_Sup_L  

Frontal_Mid_Orb_L   

Frontal_Inf_Orb_L   

Rectus_L   

Frontal_Med_Orb_L   

Temporal_Pole_Mid_L   

Rectus_R  

Frontal_Mid_Orb_R 

Frontal_Sup_Orb_R   

Caudate_L   

Supp_Motor_Area_R   

Cingulum_Mid_L   

Supp_Motor_Area_L   

Precentral_R   

Paracentral_Lobule_L   

Postcentral_L   

Frontal_Sup_R   

Parietal_Sup_R   

Lingual_L  
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Figure 5.2. 9 Beta components, axial view from overhead. Top 10% of non-zero connections are 

plotted on an MNI template brain surface. Note, scaling applied so the boldness of edges indicates 

the strength of connection, with weaker connections less visible.  

 

Again, the networks shown in Figure 5.2 appear to be consistent with known resting-state networks 

(Brookes, Woolrich, et al., 2011; Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, & 

Beckmann, 2006). The corresponding AAL labels for each component (top 10% of implicated 

nodes) are shown in Table 5.2.  
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Table 5.2. Shows the anatomical labels for the top 10% of nodes in each of the beta components 

1 2 3 4 

Paracentral_Lobule_R   

Postcentral_R   

Supp_Motor_Area_R   

Postcentral_L   

Precentral_R  

Precentral_L   

SupraMarginal_L   

Paracentral_Lobule_L   

Cingulum_Mid_L   

Fusiform_R   

Occipital_Inf_L   

Fusiform_L   

Occipital_Inf_R   

Lingual_L   

Calcarine_L   

Lingual_R   

Calcarine_R   

Cuneus_R   

SupraMarginal_R   

Temporal_Mid_R   

Angular_R   

Parietal_Inf_R   

Temporal_Inf_R   

Temporal_Sup_R   

Parietal_Sup_R   

SupraMarginal_L   

Heschl_R   

Occipital_Mid_R  

Paracentral_Lobule_R   

Precuneus_L   

Cuneus_L   

Occipital_Mid_L   

Precuneus_R   

Occipital_Sup_L   

Parietal_Sup_L   

Cuneus_R   

5 6 7 8 

Angular_R  

Parietal_Sup_R   

Parietal_Inf_R   

Postcentral_R   

Precuneus_R   

SupraMarginal_R   

Frontal_Inf_Oper_R   

Rolandic_Oper_R   

Cingulum_Mid_L   

Occipital_Sup_R   

Cuneus_R   

Lingual_R   

Cuneus_L   

Calcarine_R   

Occipital_Sup_L   

Occipital_Inf_L   

Occipital_Mid_L   

Calcarine_L   

Temporal_Inf_L   

Angular_L  

Temporal_Pole_Sup_L   

Temporal_Sup_L   

Temporal_Mid_L   

Frontal_Inf_Tri_L  

Heschl_L  

ParaHippocampal_L   

SupraMarginal_L  

Cingulum_Mid_R   

Frontal_Mid_R   

Frontal_Inf_Tri_R   

Frontal_Sup_L   

Frontal_Mid_L   

Supp_Motor_Area_L  

Parietal_Inf_L   

Caudate_R   

Frontal_Inf_Oper_R   

9    

Rectus_L   

Frontal_Mid_Orb_R  

Rectus_R   

Frontal_Med_Orb_R  

Frontal_Inf_Orb_L  

Frontal_Mid_Orb_L  

Temporal_Pole_Mid_L 

Frontal_Sup_Orb_L 

Frontal_Sup_Orb_R  
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5.4 Structural components (DTI measures) 

The same NNMF algorithm was applied to the structural connectivity matrices (comprising 4005 

undirected connections). Identical thresholding parameters, to those described above, were 

applied to avoid overfitting. This resulted in between 10-18 components for each of the structural 

measures: 4 Streamline measures, Fractional Anisotropy (FA), Radial Diffusivity (RD), Axial 

Diffusivity (AD), Mean Diffusivity (MD) & myelin content. The structural measures will be 

described in detail in the experimental chapters. In short, streamlines result from tractography 

analysis and represent reconstructed white matter tracts. There are four measures because the 

analysis can be conducted in different ways (and with different thresholds) and this work 

provides an opportunity to compare them. FA is a measure of anisotropy of water diffusion 

within white matter tracts. RD and AD are measures of water diffusion in the perpendicular and 

parallel directions, respectively, and MD is the mean of diffusivity in the tract over 3 directions. 

Myelin content is a measure of diffusivity within myelin and is an indirect measure of myelin 

density.  

 

The structural measures were derived by Eirini Messaritaki (Messaritaki et al., 2021a). The 

streamline components were generated over both the 100-Brains and MEG-Partnership cohorts 

(N=161). The diffusivity and myelin measures were available for the 100-Brains cohort (N=90). 

The structural components were also projected onto the AAL atlas and the first 10 were plotted 

on template brains, as seen in Figures 5.3-5.11. The top 5% of non-zero connections were plotted 

on the same scale in each case.  

 

5.4.1 The streamline measures  

Generally, the minimum number of streamlines that would allow us to assume that a tract has 

been reliably reconstructed has been selected somewhat arbitrarily, limiting the quantitative 

nature of streamline measures (Daducci, Palù, Lemkaddem, & Thiran, 2015). The COMMIT 

method (Daducci et al., 2015) is a data-driven alternative. Instead of rejecting tracts 

reconstructed with a number of streamlines lower than an arbitrary threshold, it rejects any 

streamlines that are not consistent with the overall diffusion signal in the diffusion-weighted 

images. This is done by fitting a linear combination of restricted and/or hindered contributions of 

candidate tracts and selecting those which result in the best global fit of the signal in each voxel.   
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To assess networks generated with the COMMIT method of streamline selection, the traditional 

method of streamline selection was also conducted with a minimum threshold of 18; that is, with 

the same sparsity of tracts selected with the COMMIT method. NNMF analyses were conducted 

on connectivity matrices weighted by streamlines selected with the COMMIT and the traditional 

approach and can be seen in Figures 5.3-5.6. 

 

Figure 5.3. Number of streamlines derived with the COMMIT method, axial view from overhead. 

Component matrices are plotted on a template brain. Top 5% of non-zero connections are 

plotted. The boldness of edges indicates the strength of connections. 
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Figure 5.4. Standardised streamlines components derived with the COMMIT method, axial view 

from overhead. Component matrices are plotted on a template brain. Top 5% of non- zero 

connections are plotted. The boldness of edges indicates the strength of connections. 

 

Figure 5.5. Number of streamlines derived with a minimum threshold of 18, axial view from 

overhead. Component matrices are plotted on a template brain. Top 5% of non-zero connections 

are plotted. The boldness of edges indicates the strength of connections. 
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Figure 5.6. Standardised streamlines components derived with a minimum threshold of 18, axial 

view from overhead. Component matrices are plotted on a template brain. Top 5% of non- zero 

connections are plotted. The boldness of edges indicates the strength of connections.  

 

5.4.2 Diffusivity measures 

 

Figure 5.7. FA components, axial view from overhead. Component matrices are plotted on a 

template brain. Top 5% of non- zero connections are plotted. The boldness of edges indicates the 

strength of connections. 

 

Figure 5.8. RD components, axial view from overhead. Component matrices are plotted on a 

template brain. Top 5% of non- zero connections are plotted. The boldness of edges indicates the 
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strength of connections. 

 

Figure 5.9. AD components, axial view from overhead. Component matrices are plotted on a 

template brain. Top 5% of non- zero connections are plotted. The boldness of edges indicates the 

strength of connections. 

 

Figure 5.10. MD components, axial view from overhead. Component matrices are plotted on a 

template brain. Top 5% of non- zero connections are plotted. The boldness of edges indicates the 

strength of connections.  
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5.4.3 Myelin content 

 

Figure 5.11. Myelin components, axial view from overhead. Component matrices are plotted on 

a template brain. Top 5% of non- zero connections are plotted. The boldness of edges indicates 

the strength of connections.  

 

This is the first time that the NNMF algorithm has been applied to structural connectivity 

matrices. In the main, the structural sub-networks do not map onto the alpha and beta functional 

networks shown in Figures 5.1 and 5.2. This is consistent with recent work by Messaritaki et al. 

who used different structural connectivity metrics (number of streamlines, fractional anisotropy, 

myelination, radial diffusivity, and a binary weighting) and function predicting algorithms to 

predict NNMF components derived from functional MEG resting-state data (Messaritaki et al., 

2021). The structural connectivity measures were assessed on how well they could predict the 

observed MEG functional connectivity data. Mostly, only weak correlations (r<.45) between 

predicted and observed functional connectivity were shown. Number of streamlines and 

myelination were the measures that had the highest correlations between the predicted and the 

observed functional connectivity. In general, the structural components shown here are either 

sparse or diffuse. Structural connectivity may, therefore, be necessary but not sufficient for 

functional connectivity. As mentioned, the weightings generated from the NNMF procedure 

were carried forward for further analysis, as the outcome variables, in the next chapters.  
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Chapter 6. Relationships between local and global 

oscillatory measures of connectivity and structural 

connectivity in the healthy population  
 

6.1 Rationale 

Understanding relationships between the brain’s local and long-range, or global, networks is 

important in both health and disease and required for the attribution of cognitive functioning. As 

seen in chapters 3 and 4, MEG allows us to quantify local functional connectivity, reflected in 

high frequency oscillations, and global functional connectivity processes, reflected in the lower 

frequencies. Previous literature suggests that individuals with strong local gamma connectivity 

also have strong global connectivity, such that the amplitude of local and global oscillatory 

measures is correlated. Relationships between the brain’s structure and function are also of 

considerable interest. Therefore, how individual variability in the structural connectome is 

related to individual variability in local and global connectivity will also be assessed.  

 

The aim of this chapter is to 1) further define physiologically-informed inter- intra-areal 

oscillatory relationships by investigating relationships between local and global MEG measures, 

and 2) to explore how functional connectivity relates to the underlying structural connectome by 

investigating local connectivity and its relationship to a variety of structural connectivity 

measures. An improved understanding of these relationships will provide a perspective from 

which to better explore neural markers of disease.  

 

6.2 Introduction  

A healthy brain requires organised structural and functional networks (Bowyer, 2016; Buzsáki & 

Schomburg, 2015b; Collin & Keshavan, 2018; Damoiseaux, Rombouts, Barkhof, Scheltens, 

Stam, Smith, Beckmann, et al., 2006; Sadaghiani & Wirsich, 2020; Schreiner et al., 2017; Zink 

et al., 2021). Numerous studies have shown that clinical cohorts, for example those with 

schizophrenia, have functional and structural impairments at both the local and global level 

(Brookes et al., 2016; Gonzalez-Burgos, Cho, & Lewis, 2015; Kelly et al., 2017; Shaw et al., 

2020; Uhlhaas & Singer, 2010). Understanding the characteristics of connectivity and associated 
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interactions across frequency bands and modalities, in the normative population, is a primary 

concern and will facilitate our understanding of clinical impairments.  

 

In the functional literature, gamma oscillations are taken to reflect local circuitry (Buzsáki & 

Wang, 2012; Donner & Siegel, 2011; Fries, Schröder, Roelfsema, Singer, & Engel, 2002; Shaw 

et al., 2017), particularly in visual cortex (VC), with several lines of evidence in support. For 

example, in cat, the insertion of an electrode directly into V1 reveals increased gamma amplitude 

in response to visual stimuli (Gray et al., 1989b). In mice, the genetic knock out of local 

pyramidal- interneuron connections, fundamental to local circuitry, also causes a reduction in 

gamma amplitude (Fuchs et al., 2007). In humans, gamma oscillations induced with a visual 

grating paradigm are tightly coupled with the haemodynamic BOLD response in V1 

(Muthukumaraswamy et al., 2009). Furthermore, with Dynamic Causal Modelling, it has been 

shown that connectivity between the superficial layers (2/3) of the cortex is associated with the 

amplitude and frequency of the induced visual gamma response (Shaw et al., 2017; Shaw et al., 

2020). While the gamma signal has several forms, the induced or oscillatory or non-phase locked 

part, is suggested to have a higher order role, beyond primary sensory processing (Cohen, 2014; 

Fries, 2005; Tallon-Baudry, 2009). Extracting the gamma power spectrum can be viewed as 

taking a static snapshot of these processes (Donner & Siegel, 2011). Local connectivity therefore 

refers to connectivity at the microcircuit level i.e., parameters around pyramidal<>interneuron 

coupling (PING model, Wang & Buzsáki, 1996). 

 

At the global functional level, though large-scale networks have most frequently been studied 

with functional Magnetic Resonance Imaging (fMRI), advancements in electrophysiological 

source localisation techniques have encouraged a surge in MEG/EGG connectivity studies. 

Subsequent comparisons with fMRI data have shown that MEG has the required sensitivity to 

detect network effects (Brookes et al., 2011; Brookes, et al., 2011; de Pasquale et al., 2010; Lui 

et al., 2010). Specifically, oscillatory connectivity in the alpha and beta ranges has been shown 

to, most closely, reflect established functional MRI networks, for example the default mode 

network (DMN), and in this instance represent a static snapshot of global functional processes 

(Brookes et al., 2011; Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, & Beckmann, 

2006; Siegel, Donner, & Engel, 2012). Furthermore, regarding static resting-state networks, 
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improved reliability of amplitude envelope correlations, as compared with phase measures, has 

been shown (Colclough et al., 2016; Dimitriadis et al., 2018). Amplitude-amplitude networks 

have been implicated in healthy brain functioning and found to be disrupted in diseases such as 

schizophrenia (Friston et al., 2016; Manzano et al., 2017), and Alzheimers disease (Koelewijn et 

al., 2017).  

 

Alpha oscillations are generated via thalamo-cortical loops (Vijayan et al., 2013), though there is 

also some evidence that the cortex may also have an independent contribution  (Lopes Da Silva, 

Pijn, Velis, & Nijssen, 1997). Nonetheless, the functionality of alpha oscillations is diverse. In 

the VC for example, increased alpha oscillations are strongly associated with reduced attention 

and also have an active role in dynamic temporally tuned perception (Clayton, Yeung, & Cohen 

Kadosh, 2015; Clayton, Yeung, & Kadosh, 2018). The latter finding led to the suggestion that 

alpha has a modulatory effect on cortical excitability (Keitel et al., 2019; Romei et al., 2008). In 

more recent years, it has been shown that while the 8-13Hz oscillation may not have a direct role 

in modulating cortical excitability in V1 (Zhigalov, Herring, Herpers, Bergmann, & Jensen, 

2019; Zhigalov & Jensen, 2020), it could have a feedback role in updating prediction errors, in 

accordance with Prediction Theory (Alamia & VanRullen, 2019; Clayton, Yeung, & Kadosh, 

2018; Michalareas et al., 2016a). In this case, alpha-band oscillations may facilitate the 

transmission of top-down representations to VC. The final function of alpha, which is of 

relevance to this chapter, is that alpha synchronisations or coherence is found across widespread 

areas of the brain, including frontal to posterior areas (Clayton, Yeung, & Kadosh, 2018). These 

synchronisations between areas result in alpha networks, which are considered to support intra-

areal communication (Palva & Palva, 2007; Uhlhaas, Haenschel, Nikolić, & Singer, 2008).  

 

The origins of beta oscillations are yet to be established. However, it is known that beta 

oscillations are sensitive to GABA-drug manipulations with Tiagabine and benzodiazepines 

(Jensen et al., 2005; Shaw et al., 2020). While the motor cortex and basal ganglia have been 

implicated as generators of beta oscillations (Jensen et al., 2005; Mirzaei et al., 2017), it is 

unclear whether they form part of a cortical – basal ganglia network or are independent. 

Similarly, there is current debate over whether beta does occur as a rhythmic oscillation or rather 

brief bursting activity over time (Barone & Rossiter, 2021). Changes in beta amplitude are 
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predominantly seen in the sensorimotor cortex and have a proposed role in movement 

preparation and cessation (Barone & Rossiter, 2021; Gascoyne et al., 2021; Jurkiewicz, Gaetz, 

Bostan, & Cheyne, 2006). That being said, in oscillatory connectivity measures, beta 

synchronisations occur in widespread networks (Baillet, 2017; Brookes, Woolrich, & Barnes, 

2012; Doesburg et al., 2010; Godfrey & Singh, 2020; Pasquale et al., 2010; Tewarie et al., 2019), 

beyond the somatosensory cortex, and have therefore been implicated in long distance 

communication, which facilitates processes such as decision making, working memory and 

semantic processing (Hirvonen et al., 2017; Siegel et al., 2012, 2011; Spitzer & Haegens, 2017).  

 

Without the assumption that oscillations act as cognitive operators, higher and lower frequency 

oscillations may simply harmonise local and global processing in the brain (see introductory 

section ‘The oscillatory local-global story’). Certainly, oscillatory coupling has been shown both 

within (Bonnefond & Jensen, 2015), and between brain regions (Siegel et al., 2012). 

Furthermore, Hidden Markov Modelling has previously shown a relationship between induced 

gamma amplitude and connectivity in the resting-state (Hirschmann et al., 2020a). Additional 

research on the interactions between these phenomena might facilitate understanding of 

GABAergic and glutamatergic mechanisms both in local excitation-inhibition and in dispersed 

systems.  

 

In recent years there has also been increasing interest into relationships between structural and 

functional features of the brain: in particular, the overlap between structural networks and 

functional networks. On one hand, considerable overlap has been shown. For example, the 

Default Mode Network revealed with fMRI has significant spatial consistency with the hubs of 

the structural connectome (Power et al., 2010). Furthermore, with bifurcation analysis, it has 

been shown that the excitation of relevant structural network eigenmodes allows the specific 

prediction of alpha and beta functional resting-state networks (Tewarie et al., 2019). On the other 

hand, however, structure –function relations have been shown to be sensitive to the structural 

measures employed. For example, a MEG – DTI paper found that the ability to predict MEG 

resting-state functional connectivity networks generated with Non-negative Matrix Factorization 

(NNMF), from the structural connectome, depended highly on the structural parameters involved 

(Messaritaki et al., 2021b).  
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Such studies fall under the bracket of Connectomics (Charvet, 2020; Sadaghiani, Brookes, & 

Baillet, 2021a; Tewarie et al., 2020) which has become a popular mode of neuroscience. 

However, exploring structure-function relationship over the global functional connectome is not 

trivial. Functional resting-state networks represent averaged dynamic activity acquired over a 

time frame and over the whole brain, at rest. The study of structural and functional connectomics 

has, therefore, become associated with the use of increasingly complex modelling techniques 

(Cabral, Kringelbach, & Deco, 2017; Kopell, Gritton, Whittington, & Kramer, 2014).  

 

As local connectivity in the VC is better understood (at least at the physiological/ mechanistic 

level) than global functional networks, exploring relationships between local functional 

connectivity and the connectome might be fruitful. Slower oscillatory fluctuations may have a 

role in connecting local oscillatory units via the structural connectome, for example, considering 

modelling work that has shown, with a structurally informed model, that the generation of local 

gamma oscillators is associated with widespread slower oscillatory fluctuations in BOLD 

activity in healthy individuals (Cabral et al., 2011). As mentioned, BOLD connectivity has been 

correlated with alpha and beta connectivity networks (Brookes et al., 2011).  

 

Relationships between local micro-circuitry and long-range oscillatory connectivity are 

particularly interesting in the context of the clinical literature. Individuals with schizophrenia, for 

example, have been shown to have both reduced local visual connectivity (Grützner et al., 2013; 

Rutter et al., 2009; Shaw et al., 2020; Uhlhaas & Singer, 2013; Vierling-Claassen, Siekmeier, 

Stufflebeam, & Kopell, 2008) and reduced long-range connectivity (Alamian et al., 2017b; 

Karbasforoushan & Woodward, 2013; Pettersson-Yeo, Allen, Benetti, Mcguire, & Mechelli, 

2010), so that the amplitude of visual gamma might be correlated with the amplitude of long-

range connections. Elucidating relationships between local and global connectivity in the healthy 

population, first, would be useful. 

 

6. 2. 1 Aim and hypotheses 

The aim of this chapter is two-fold. First, is to investigate the relationship between local 

oscillatory connectivity and long-range oscillatory connectivity, across participants, using MEG.  
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Based on previous modelling findings, it is hypothesised that increased gamma amplitude will be 

associated with increased alpha and beta connectivity, such that healthy individuals with stronger 

connectivity in VC with also have stronger global functional connectivity. In the process, 

whether these static-snapshot measures of connectivity capture the same or distinct aspects of 

covariance in connectivity, might be better understood4. The relationship between visual gamma 

frequency and global functional connectivity is also to be explored.  

 

 

Figure 6.1. A model of high frequency ‘local’ and lower frequency ‘global’ interactions 5. 

 

Second, is to explore relationships between local functional connectivity in VC and global 

structural networks. As an exploratory analysis no formal hypotheses are provided, however, 

using simple regression analysis it is hoped that further insight into structure- function 

                                                           
4 At the time no other studies had investigated the relationship between these task and resting oscillatory 

measures. 

5 Note: The schematic of the canonical microcircuit in visual cortex, on the left, adapted from Shaw, A. 

D., Knight, L., Freeman, T. C., Williams, G. M., Moran, R. J., Friston, K. J., ... & Singh, K. D. (2020). 

Oscillatory, computational, and behavioral evidence for impaired GABAergic inhibition in 

schizophrenia. Schizophrenia bulletin, 46(2), 345-353 
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relationships might be gained. Both functional and structural data will be reduced to fundamental 

networks using Non- Negative Matrix Factorization (NNMF). This method has been used 

previously to investigate structural and functional correlates (Messaritaki et al., 2021a; Phalen et 

al., 2019).  
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6.3 Method  
6.3.1 Participants  

100-Brains  

The 100-Brains project was a large genetic and multimodal imaging study conducted in the 

normative population. There were 100 participants recruited of which 97 had MEG data. 

Participants were all right-handed (Edinburgh Inventory-Oldfield, 1971), absent of 

neuropsychiatric conditions (General Health Questionnaire, Goldberg & Williams, 1988), and of 

Caucasian ethnicity. Participants were university students and, as such, similar in education level 

and age. None of the participants had a history of drug or alcohol abuse. Ethics was granted by 

the School of Psychology Ethics Committee at Cardiff University.  

 

Table 6.1. 100-Brains demographics 

100-Brains N 97 Mean SD 

Age n 97 24 3.5 

Gender n 97 63f:34m   

 

Participants completed a battery of tasks in the MEG scanner including a resting-state and visual 

gamma paradigm.  

 

MEG-Partnership 

The MEG-Partnership project was a collaboration between MEG sites across the UK. Data 

collected at Cardiff University Brain Research Imaging Centre (CUBRIC), is included in this 

thesis. All participants were healthy individuals with no history of neurological or 

neuropsychiatric dysfunction. Participants were right-handed, with British-Caucasian ethnicity 

and English as their first language and of similar age. Ethics was granted by the School of 

Psychology Ethics Committee at Cardiff University. 
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Table 6.2. MEG-Partnership demographics 

MEG-

Partnership 

N 88  Mean SD 

Age n 88 25.5 6.73 

Gender n 88 61f:27m  

 

Each participant completed a battery of tasks in the scanner, including a resting-state paradigm 

and a visuomotor task. Consistency in task paradigms and demographics allowed data from the 

two cohorts to be compiled in this chapter.  

 

6.3.2 Tasks and data acquisition  

Visual gamma tasks differed slightly between cohorts. The 100-Brains paradigm involved 100 

trials and lasted ~ 10 minutes. The stimulus comprised a visual grating presented centrally. The 

grating was a vertical, stationary, maximum contrast square-wave grating with a spatial 

frequency of 3 cycles per degree (8° x 8° visual angle). The background was of mean 

luminescence. Stimuli were jittered between 1.5-2 seconds and followed by an inter-stimulus 

interval (ITI) of 2 seconds.  Participants were required to push a button with their right hand 

every time the grating disappeared. Participants were notified if no response was detected after 

750ms.  

 

The MEG-Partnership visuomotor task also had 100 trials in total and lasted ~ 13 minutes. The 

visual stimulus presented in the lower left visual field was a stationary, vertical, maximum 

contrast, three cycles per minute, square-wave grating, subtended vertically and horizontally at a 

4° angle. The stimulus was presented for 1.5-2 seconds, jittered, on a mean luminance 

background. The ITIs were either 4 seconds or 8 seconds and allocated to half of the trials, 

presented in random order. Participants were also required to perform a finger abduction with the 

index finger on the right hand whenever the grating disappeared. This task has been referred to 

as the visuomotor task (Gascoyne et al., 2021), though the motor component was not analysed 

and not of primary interest to the research questions addressed in this thesis. 

 

The resting-state paradigm used in each cohort was identical. It comprised a 5–minute 

presentation of a central fixation cross. Participants were instructed to focus, with eyes open, on 
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the cross at the centre of the screen. Both paradigms were programmed in Matlab (2015) and 

presented at a refresh rate of 100Hz.  

 

All data were collected on a 275-channel axial gradiometer CTF system at Cardiff University. 

Participants sat upright in the scanner. For head localisation, electromagnetic coils were attached 

to the fiducial areas; nasion and right and left pre-auricular. Head localisation was completed at 

the beginning and the end of each scan.  

 

6.3.3 Visual gamma analysis 

Pre-processing and co-registration  

Third-order gradient mode was applied, transforming the primary sensors for environmental 

noise reduction. Data were sampled at 1200Hz, with a 300Hz lowpass antialiasing filter. Data 

were then epoched into 4 second trials (-2, 2) around the stimulus onset, before being manually 

inspected for artefacts in DataEditor. Any trials that contained movement, muscular or ocular 

artefacts were discarded. MRIs (1mm- isotropic, T1 weighted), were acquired on the 3 Tesla 

General Electric system at CUBRIC. Participant’s data was manually co-registered to their MRI 

by localising the fiducial markers, using photographs taken in the MEG scanning session, in CTF 

space. 

 

Visual gamma analysis 

Visual gamma metrics were extracted with the method described in Chapter 3, which will be 

summarised here. LCMV beamforming was completed on 6 bilateral visual areas: Calcarine, 

Cuneus, Lingual, Superior Occipital, Mid Occipital and Inferior Occipital. The leadfield was 

constructed using a 1mm MNI sampling grid. The beamformer weights were based on the global 

data covariance between 30-80 Hz. Source power was constructed separately for baseline (-1.2-

0s) and stimulus periods. The sustained period of the response was of interest and the oscillatory 

period was selected at 0.3s- 1.2s after stimulus onset. A virtual sensor was inserted at the point of 

the peak source amplitude. That is, at the coordinates of the source with the maximal percentage 

change in gamma power. Estimates of peak amplitude and peak frequency of the virtual sensor, 

estimated from the power spectrum, were carried forward for further analysis.  
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6.3.4 Functional Resting-state Analyses 

Pre-processing and co-registration 

Data was pre-processed in DataEditor software. After downsampling to 600Hz and band-pass 

filtering (1-150 Hz), data were split into 2 second intervals. Intervals including large muscle 

artefacts, cardiac artefacts, eye movements or environmental artefacts were discarded. Individual 

anatomical MRIs (1mm- isotropic, T1 weighted), were collected on a 3 Tesla General Electric 

system at Cardiff University. Data was manually co-registered to the MRIs by localising the 

fiducial markers, using photographs taken in the MEG scanning session, in CTF space. 

 

Amplitude- amplitude connectivity analysis 

The same LCMV beamforming approach, as described above, was applied for source 

localisation. Due to the computational demand of considering all the cortical areas, a coarser 

6mm sampling grid was employed. The MNI inverse-warping procedure was adopted to ensure 

source grid consistency across participants. Data were band filtered into the canonical frequency 

bands (Delta 1-4Hz, Theta 4-8Hz, Alpha 8-13Hz, Beta 13-30Hz, Low Gamma 30-60Hz and 

High Gamma 60-90Hz) and analysed continuously. A virtual time series was constructed in each 

brain area according to the AAL atlas (90 regions in total). Data were orthogonalized to 

minimise source leakage (Colclough et al., 2015) and a Hilbert transform applied to give an 

estimate of amplitude and phase per region. Amplitude envelope covariance across regions was 

then calculated to assess the strength of connectivity between regions. Connections across the 

frequency bands were also inspected by combining band specific data in the following way: 

Combined ij = sqrt (Delta ij2 + Theta ij2 + Alpha ij2 + Beta ij2 + LowGamma ij2 + 

HighGamma ij2 (Koelewijn, 2017). 

 

To account for potential between participant sources of variance arisen in data collection, and for 

interpretation, raw covariance matrices were standardised (z-scored) by subtracting the grand 

mean from each connectivity score and dividing the difference by the overall standard deviation. 

Therefore, each connection value represents the strength of connectivity (z- score correlation), in 

relation to the mean. 

 

6.3.4 Statistical analysis – Functional connectivity 
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Edge level 

To investigate the relationship between visual gamma metrics and resting-state networks a 

regression model using visual gamma amplitude (and frequency), gender6 and age as regressors, 

was constructed. To control for the slight difference in visual gamma paradigms used in the 100-

Brains and MEG-Partnership cohorts, paradigm type was also included as a regressor. Results 

therefore show to what extent visual gamma amplitude and frequency predict strength of 

connectivity across the frequency bands. Over both cohorts 179 participants had both visual 

gamma and RSN datasets.  

 

Statistical analyses were completed at 4 stages for each of the 6 frequency bands and for the 

combined frequency band, in the connectivity analysis.  

1) Owing to the shape of the undirected, and hence symmetrical, connectivity matrices (90 x 

90), 4005 unique connection values were generated. Self-connections were set to 0. All z-

scored connections were ranked to a strength between 0-1 for each participant. Ranked 

connections were then averaged across participants and those connections with a mean rank 

of greater than 0.8 (i.e., mean rank in top 20%) were selected as valid connections. 

2) Univariate linear regression, with visual gamma as the main predictor, was conducted on 

valid connections (p< .05).  

3) A further 1000 iteration randomisation test with omnibus thresholding was conducted to 

assign significance to each edge connection while correcting for multiple comparisons. 

Omnibus testing finds the absolute maximum null r value across all connections and tests 

against it. This method reveals connections adjusted for multiple comparisons. All other 

connections were set to 0.   

                                                           
6 Note: Gender is the primary descriptive of choice in this thesis as responses were self-reported and at 

least half of the overall cohort (MEG-Partnership) were explicitly asked to state their gender. Participants 

in the 100-Brains cohort were asked to select a ‘male’ or ‘female’ option. As the data were pooled there 

are some instances where ‘gender’ and ‘sex’ are used interchangeably, though it is acknowledged that 

they are not the same and it is possible some differences could exist. This statement applies to Chapters 6-

9.  
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4) To consider the generalisability of results, a 95% confidence interval was generated on the 

regression slope for each connection in the univariate analyses. In subsequent circular plots 

connections were plotted in the direction of the effect if its corresponding confidence interval 

did not include 0. 

 

Non-Negative Matrix Factorization – Functional connectivity 

Non-Negative Matrix Factorization was performed on the functional resting-state data, as 

described in Chapter 5. NNMF is a mathematical approach (Lee & Seung, 1999) whereby 

matrices can be reduced into fundamental networks, in a method akin to Principal Components 

Analysis (PCA). NNMF components were derived separately per frequency band. Alpha and 

beta components are considered here; 11 and 9 components were derived, respectively.  

 

Statistical analyses were based on the General Linear Model (GLM), implemented in Fieldtrip 

(2019). Separate GLMs were constructed with peak amplitude and peak frequency as the main 

predictors; covariates, age, gender and visual gamma task, were included. Cook’s distance was 

set to 3. Cook’s distance is the scaled changed in the coefficients due to the deletion of an 

observation (subject in this case). Thus, Cook’s distance is useful for identifying high-leverage 

outliers in observations for predictor variables. Individuals with a Cook’s distance of greater than 

3*mean, were rejected from the analysis. Subjects were also rejected if they have a Cook’s 

distance of >0.5, which is considered large.  

 

6.3.5 Structural analysis  

Structural connectivity measures were derived by Dr Eirini Messaritaki (Messaritaki et al., 

2021a). Structural regions were defined with an AAL labeling atlas (90 cortical and subcortical 

regions). Structural networks were then also represented as 90 × 90 symmetrical matrices, for 

each participant.  

 

MRI data acquisition and pre-processing  

All MRI data were acquired on a GE Signa HDx 3T scanner (GE Healthcare, Milwaukee, WI). 

T1 images were acquired with a three-dimensional fast spoiled gradient and downsampled to 1.5-

mm isotropic resolution. 
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Diffusion weighted MRI data were acquired with a peripherally cardiac-gated sequence with b = 

1,200 s/mm2, TR = 20 s, TE = 90 ms, isotropic resolution of 2.4 mm, zero slice gap, FOV = 230 

mm. Diffusion data were co-registered to the T1. Corrections for head movement and eddy 

current distortions were made. Free-water correction was also conducted.  

 

mcDESPOT data (which can provide myelin measures) were acquired using multicomponent-

driven equilibrium single pulse observation of T1 and T2 (Deoni, Rutt, Arun, Pierpaoli, & 

Jones, 2008). Images for each participant were linearly coregistered to a spoiled gradient recall 

(SPGR) image, to correct for subject motion. Nonbrain tissue was removed using a mask 

computed with the BET algorithm (Smith, 2002). Registration and brain masking were 

conducted with FSL (Jenkinson, M, Beckmann, CF, Behrens, Woolrich, & Smith, 2012). 

 

Tractography analysis 

White matter tracts can be represented as connections, or edges, in a structural network. 

Tractography was performed on the DTI data, using the streamline algorithm in MRtrix 3.0 

(Dhollander, Raffelt, & Connelly, 2016). White matter tracts were localised using a WM mask 

generated from the T1-weighted images using FSL fast (Jenkinson et al., 2012). The minimum 

and maximum tract lengths were 30 and 250 mm, respectively.   

 

Streamline selection 

As mentioned in Chapter 5, the minimum number of streamlines that would allow us to assume 

that a tract has been reliably reconstructed has been selected arbitrarily, limiting the quantitative 

nature of streamline measures (Daducci et al., 2015). The COMMIT method (Daducci et al., 

2015) is a data-driven alternative. Instead of rejecting tracts reconstructed with a number of 

streamlines lower than an arbitrary threshold, it rejects any streamlines that are not consistent 

with the overall diffusion signal in the diffusion-weighted images. This is done by fitting a linear 

combination of restricted and/or hindered contributions of candidate tracts and selecting those 

which result in the best global fit of the signal in each voxel.  

 

mcDESPOT analysis 

https://www.tandfonline.com/doi/full/10.1080/17470919.2016.1229215
javascript:;


 

114 

 

A mcDESPOT algorithm was used to detect the fast (water constrained by myelin), and slow 

(free-moving water in intra- and extracellular space), elements of the T1 and T2 times, and a 

nonexchanging free-water component (Deoni et al., 2013). The fast volume fraction was taken as 

a map of the myelin water fraction. The ratio of myelin-bound water to total water was 

calculated, which is the myelin volume fraction (MVF). A MRtrix function (tcksample), was 

used to assign a proportion of the MVF to each streamline, in each tract.  This measure was 

averaged over its streamlines, providing a myelin-weighted value (MM), for each tract.  

 

The matrices that resulted from these procedures were normalised by dividing by the largest 

value of each matrix, so that, within any given matrix, the values range from 0 to 1. Self-

connections (diagonals) were set to zero. 

 

The structural measures that resulted are: 

White matter tractography DTI measures 

The following measures are of interest because 1) the streamlines measures index the 

reconstruction of any given tract and 2) the subsequent diffusivity measures give values for the 

diffusion of water within any given tract and provide information, indirectly, on the tract’s 

microstructural properties. 

 Number of streamlines (NSC) is number of streamlines in the tracts as selected by the 

COMMIT method described above.  

 Standardised number of streamlines (SSC), is number of streamlines within a tract 

divided by the length of the tract, selected by the COMMIT method.  

 Fractional Anisotropy (FA) is a measure of the anisotropy in the diffusivity of water 

molecules calculated from three eigenvectors. An isotropic tensor would have equal 

eigenvectors.  

 Radial Diffusivity (RD λ┴) is a measure of water diffusion perpendicular to the direction 

of the tracts. 

 Axial Diffusivity (AD λ║) is a measure of water diffusion parallel to the direction of the 

tracts.  

 Mean Diffusivity (overall diffusivity) is the mean of the three eigenvalues ((λ1+ λ2+ 

λ3)/3) of the diffusion tensor.  
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mcDESPOT measures 

 Myelin Water Fraction (MM), measures water diffusivity within the myelin giving an 

indirect measure of myelin density in the voxels including tracts.  

 

Number of streamlines connectivity measures were available for the 100-Brains and MEG-

Partnership cohorts (N=161). The other structural connectivity metrics were only available for 

the 100-Brains cohort (n=90). The MEG-Partnership cohort underwent only some of 

microstructural scans that were completed in the 100-Brains cohort and had not been analysed.  

 

Non-Negative matrix Factorization 

The same NNMF algorithm was applied to the structural connectivity matrices. For undirected 

correlations, there were 4005 unique connections which are taken forward for analysis. Self-

connections were set to 0. Identical thresholding parameters were applied to avoid overfitting. 

This resulted in between 10-18 components for each of the structural measures; NST, SST, NSC, 

SSC, FA, RD, AD, MD & MM.  

 

6.3.5 Statistical analysis- Structural connectivity  

The structural components were analysed with regression analysis. Visual gamma response 

(amplitude and frequency) was the main predictor and age and gender were covariates. 

Bonferroni correction was applied to adjust for the number of components within each regression 

model.  
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6.4 Results  
6.4.1 Functional edge level connectivity 

First, analyses at the edge level were conducted to explore any relationships between gamma and 

individual connections. In each frequency band ‘valid’ connections were selected based on the 

mean rank >.8 criteria (shown in column 1 of subsequent aggregate circle plots). Two levels of 

regression analysis were performed. First, univariate regression was performed where each 

connection is considered separately in relation to the predictors of interest (shown in column 2 of 

subsequent circle plots). Second, the regressors were randomised and tested against an omnibus 

threshold, revealing connections that withstood multiple comparison correction. No connection 

met this this threshold and are not therefore plotted in subsequent circle plots. A 95% confidence 

interval was generated for each connection in the univariate regression which indicates the 

generalisability of associated connections in the population. Connections were plotted if their 

associated CI did not include zero (shown in column 3 of subsequent circle plots). Visual gamma 

amplitude (Figure 6.2) and frequency (Figure 6.3) were investigated as main predictors.  
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Figure 6.2. Connectivity maps showing functional connections predicted by peak gamma 

amplitude in the combined 100-Brains & MEG-Partnership cohorts, when controlling for age, 

gender and cohort. The first column, valid connections, shows the connections at mean rank 

>0.8, per frequency band and across the combined frequencies. The second column shows  

connections significantly associated with gamma amplitude (p<0.05) at the uncorrected level 

(univariate regression). To consider the generalisability of associated connections, the third 

column shows univariate connections where the confidence interval (95%) on the regression 
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slope did not include zero. In column 2 and 3, positive correlations, i.e., increased connectivity, 

are represented with red lines whereas negative correlations, i.e., decreased connectivity are 

represented with blue lines. 

 

Gamma amplitude was significantly negatively associated with posterior alpha connectivity 

(lateral parietal and parietal-temporal). Some increased posterior beta connectivity was also 

shown along with one parietal- temporal and one occipital hypoconnection. The combined 

analyses show increased lateral occipital connectivity with reduced parietal temporal 

connectivity in the left hemisphere. One frontal delta hyper-connection withstood multiple 

comparison testing, however, is acknowledged with caution as MEG amplitude-amplitude frontal 

delta connections have been related to ocular artefacts (Godfrey, 2021).  
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Figure 6.3. Connectivity maps showing functional connections predicted by peak gamma 

frequency in the combined 100-Brains & MEG-Partnership cohorts, when controlling and age 

gender and visual gamma paradigm.  The first column, valid connections, shows the connections 

at mean rank >0.8, per frequency band and across the combined frequencies. The second 

column shows connections significantly associated with gamma frequency (p<0.05) at the 
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uncorrected level (univariate regression). To consider the generalisability of associated 

connections, the third column shows univariate connections where the confidence interval (95%) 

on the regression slope did not include zero. In column 2 and 3, positive correlations, i.e., 

increased connectivity, are represented with red lines whereas negative correlations, i.e., 

decreased connectivity are represented with blue lines. 

 

Gamma frequency was negatively associated with a few reduced occipital, parietal and 

precuneus connections in the alpha band, although not significantly. One reduced connection in 

the beta band (lateral parietal), was observed. The combined analyses showed some 

hyperconnectivity in the left hemisphere and posterior dysconnectivity. 

 

6.4.2 Non-Negative Matrix Factorization – Functional Networks 

Functional sub-networks were revealed in the alpha and beta bands with NNMF of the resting-

state networks and investigated in relation to the gamma metrics. As the visual gamma 

paradigms differed slightly between the two grouped cohorts a visual gamma task covariate was 

also included.  
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Figure 6.4. Functional NNMF connectivity components in alpha and beta, across gender, age, 

peak amplitude and peak frequency. The within component text shown the effect size (beta) and 

the p-value. Red boxes represent positive relationships. Blue boxes represent negative 

relationships. Text in white shows relationships which meet multiple comparison adjustment 

(p<.05), whereas text in black shows relationships significant at the uncorrected level (p<.05). 

 

Peak amplitude negatively predicted 4 alpha components and positively predicted 1 alpha 

component. One of the negative relationships met multiple comparison adjustment suggesting 

gamma amplitude is associated with reduced alpha weightings in this network (plotted below in 

Figure 6.5) i.e., those participants with greater induced visual gamma magnitude had less alpha 

connectivity within this posterior network component. No beta components were predicted by 

peak gamma amplitude.  

 

Figure 6.5. Left, shows alpha component 1 plotted on a template brain and circular plot. The 

blue edges represent the negative correlation with gamma amplitude. Right, shows the 

regression residuals plotted against peak amplitude.  

 

This finding is interesting in consideration of previous work which has shown coupling between 

posterior gamma and alpha oscillations (Bastos et al., 2015; Jensen & Colgin, 2007; Lozano-

Soldevilla, Ter Huurne, Cools, & Jensen, 2014).  
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Peak frequency did not significantly predict any alpha or beta NNMF components (p>.05). Both 

age and gender had a positive relationship with some alpha and beta components, demonstrating 

the importance of including these variables as covariates in the gamma-network models. Age 

was associated with 5 alpha components and 1 beta component after multiple comparisons 

adjustment.  

 

Within-task relationships 

To investigate whether this effect was detectable in data acquired in the exact same session, 

within paradigm local gamma and global connectivity relationships were also explored in a sub-

cohort of participants using resting-state analysis of the visual gamma data (as detailed in 

Chapter 4). 

 

 

Figure 6.6. Connectivity maps showing functional connections associated with peak gamma 

amplitude in the MEG-Partnership cohort, when controlling age and gender. The first column, 

valid connections, shows the connections at mean rank >0.8, per frequency band and across the 

combined frequencies. The second column shows significant connections (p<0.05) at the 

uncorrected level (univariate regression). To consider the generalisability of associated 

connections, the third column shows univariate connections where the confidence interval (95%) 

on the regression slope did not include zero. In column 2 and 3, positive correlations, i.e., 

increased connectivity, are represented with red lines whereas negative correlations, i.e., 

Confidence Interval Regression P<.05 
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decreased connectivity are represented with blue lines. No connections withstood multiple 

connection testing with omnibus thresholding.  

 

At the edge level, as with the analysis shown in Figure 6.6, peak amplitude negatively predicted 

posterior connections in the alpha band, but these did not meet multiple comparisons adjustment. 

Peak frequency, activity at node 44 (v1) and percentage change in gamma activity at node 44 

((Gamma-RSN)/RSN), were also investigated as predictors of gamma connectivity (within 

paradigm). Few associated connections were found, and these also did not meet multiple 

comparison adjustment.  

 

Covariate relationships 

Regarding the covariates, peak amplitude differed with visual gamma task (p<.05). Peak 

amplitude was higher in the 100-Brains cohort (M 295, SD 245.63) where the stimuli was 

presented centrally, as opposed to the MEG-Partnership cohort (M 204, SD 156.78) where the 

stimulus was presented subtended vertically and horizontally at a 4° angle.  

 

Males had significantly higher peak frequency than females (Male= M 53Hz, SD 6.44, 

Female=M 51Hz, SD 8.44). However, due to the gender differential in the sample this is 

interpreted with caution. Age differed with visual gamma task which represents a cohort effect. 

This difference was negligible (Brains M 23.6, SD 3.51, Meg-P M 25.5, SD 6.73).    
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Figure 6.7. Boxplot showing the distribution of gamma frequency (Hz) scores for men and 

women. The horizontal lines represent the distribution quartiles, with the blue area representing 

the interquartile range.  

 

6.4.3 Non-Negative Matrix Factorization-structural networks 

Functional sub-networks have been successfully revealed here and in previous research using 

NNMF (Doherty et al., 2021; Messaritaki et al., 2021a; Phalen et al., 2019). Both functional and 

structural connectivity matrices projected in AAL space were available in the 100-Brains cohort. 

Structural connectivity matrices are more densely populated with connections than functional 

matrices. Therefore, part of the work in this thesis is to explore the application of NNMF to 

microstructural connectivity with the aim of revealing dominant microstructural sub-networks 

across participants, and also their relationships with the correlates of interest. In this chapter, to 

explore structure-local function relationships, gamma amplitude and frequency were investigated 

as predictors of a variety of structural NNMF components. Age and gender (and where 

appropriate Cohort) were included in the gamma models as covariates.  
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Streamline measures 

The results of the regression models where amplitude and frequency were main predictors (with 

age, gender and cohort covariates) can be seen in Figure 6.8.  

 

Figure 6.8. Streamlines NNMF connectivity relationships across gender, age, peak amplitude 

and peak frequency. The within component text shown the effect size (beta) and the p-value. Red 

boxes represent positive relationships. Blue boxes represent negative relationships. Text in white 

shows relationships which meet multiple comparison adjustment (p<.05), whereas text in black 

shows relationships significant at the uncorrected level (p<.05). 
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Peak gamma amplitude positively predicted two streamlines components, however these did not 

survive multiple comparisons adjustment. Peak gamma frequency positively predicted 3 

streamlines components and negative predicted 2 others, but these also did not meet multiple 

comparisons adjustment. Both age and gender positively and negatively predicted many 

streamlines components. However, no clear patterns between measures derived with the standard 

thresholding approach or the COMMIT approach, can be seen.  
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Structural measures 

NNMF was also applied to structural connectivity measures derived from the tractography and 

McDespot analyses. These were explored in regard to peak amplitude and peak frequency. Age 

and gender were included in the regression models.  

 

Figure 6.9. Top to bottom: FA, RD, AD, MD, MWF & ED NNMF connectivity components 

explored across gender, age, peak amplitude and peak frequency. The within component text 

shows the effect size (beta) and the p-value. Red boxes represent positive relationships. Blue 

boxes represent negative relationships. Text in white shows relationships which meet multiple 
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comparison adjustment (p<.05), whereas text in black shows relationships significant at the 

uncorrected level (p<.05). 

Peak amplitude was negatively associated with different structural NNMF components, though 

none of these relationships survived multiple comparisons adjustment. Peak frequency, however, 

was negatively associated with 10 RD components and 4 AD components, after adjustment. Peak 

frequency had no association with FA. In fact, none of the predictors had a relationship with FA.  

Consistent with previous research suggesting that an effect of aging on diffusivity (Kumar, 

Chavez, Macey, Woo, & Harper, 2013a), age was negatively associated with AD, RD, MD and 

myelin component weightings. That both peak frequency and age significantly negative predict 

similar components could implicate a modulation effect between these variables. However, age 

was included as a covariate in the frequency regression model to account for variation in RD and 

AD associated with age. RD and AD components predicted by gamma frequency are plotted in 

Figures 6.10 and 6.11, respectively.  
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Figure 6.10. Shows the significant RD network components predicted by visual gamma 

frequency (right to left, 1-10). Blue lines represent a negative relationship between frequency 

and the network weightings.  

8) 

2) 
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Figure 6.11. Axial diffusivity (AD) network components predicted by visual gamma frequency. 

Blue lines represent a negative relationship between frequency and the network weightings. 

 

Gender significantly predicted 3 AD components after adjustment, however these results are 

interpreted with caution due to the gender differential in the sample.  

 

Additional exploration of structure-function relationships  

To further explore the gamma frequency relationships, node strength of connections in the VC 

was extracted (12 AAL areas). A regression model was built with gamma frequency, age and 

gender as predictors and visual node strength (summed), as the outcome variable, for both RD 

and AD visual connections. Gamma frequency did not significantly predict strength of visual RD 

connections (b=3.482e-05, p=0.57), nor strength of AD connections (b= 4.867e-05, p=0.57), 

suggesting the NNMF relationships were not driven by connections to or from the VC.  

5) 

 

3) 

8) 7) 
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The spatial distribution of significant components, shown in Figure 6.10 and Figure 6.11, were 

widespread across the brain. To explore, therefore, whether the relationships between gamma 

frequency and RD, AD and MD components were driven by a global factor(s), the mean RD, AD 

and MD values were calculated across the structural 90 AAL nodes, per person, and used as the 

outcome in a regression model with gamma frequency and gender predictors. Gamma frequency 

did not predict global RD (b=5.401e-07, p= 0.06), though this relationship was at trend, and did 

not predict global AD (b= 1.323e-07, p= 0.61), nor MD (b= 3.875e-07, p= 0.13), suggesting it 

was not a global effect driving the gamma frequency NNMF relationships. The RD relationship 

at trend could warrant further exploration.  

 

Finally, to briefly explore relationships between global RSN functional connectivity and the 

structural NNMF components, average node strength across the AAL regions was calculated for 

each person in the alpha and beta bands and correlated with the RD and AD NNMF components. 

No relationships were found between alpha RSN connectivity and the structural components 

(p>.05). Average node strength in the beta band significantly positively predicted 10 RD 

components (p<.05), but these relationships did not meet multiple comparison correction. 

Average node strength in the RSN beta band also predicted 7 AD components (p<.05), but these 

also did not meet multiple comparison adjustment. These results suggest there might be a global 

RSN functional connectivity relationship, but further investigation is needed.  
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6.5. Discussion 
In this chapter, the extent to which local and global functional oscillatory measures, extracted 

with MEG, are related, was investigated. At the edge level, no significant relationships were 

found between local visual gamma amplitude and alpha and beta connectivity measures in the 

resting-state, nor between visual gamma frequency and alpha and beta connectivity measures. 

However, when exploring resting-state subnetworks derived with NNMF, visual gamma 

amplitude was found to negatively predict one bilateral occipital alpha network. To explore 

whether this effect could also be observed in within-task data visual gamma amplitude was 

correlated with edge level connectivity derived from the visual gamma data. In the same 

direction, gamma amplitude was negatively correlated with alpha connectivity, but connections 

did not survive multiple comparisons correction.  

 

The gamma-alpha finding is contra-prediction in as far as increased gamma was correlated with 

supressed long–range alpha. However, it supports recent work by Hirschmann and colleagues 

who found a relationship between induced gamma activity in VC and brain states in the resting-

state below 35Hz, using HMM (Hirschmann et al., 2020a). Previously, phase and amplitude 

coupling of gamma and lower frequency oscillations has been shown both within (Bonnefond & 

Jensen, 2015; Michalareas et al., 2016a) and between brain regions (Bowyer, 2016; Siegel et al., 

2012). Results such as these suggest there is an interaction between visual gamma and long-

range connectivity which might support local-global communication in the healthy brain, 

however providing a mechanistic explanation for such findings is non-trivial.  

 

Bonneford and Jensen (2015) found coupling between gamma amplitude and the phase of alpha, 

and that higher alpha amplitude was associated with lower gamma amplitude in the alpha trough. 

These observations were interpreted as a gating mechanism whereby alpha modulates cortical 

excitability in V1 (Bonnefond & Jensen, 2015). The relationship between V1, probed with the 

gamma paradigm, and occipital alpha connectivity, could provide support for this theory as the 

correlational design means no directionality can be assumed. That being said, recent research 

using a frequency tagging paradigm has suggested that alpha oscillations do not modulate V1 but 

have a downstream role, localised in the occipito-parietal sulcus (Zhigalov & Jensen, 2020).  
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In other research, gamma has a role in encoding local information in a feedforward fashion 

(Donner & Siegel, 2011; Fries et al., 2002; Shaw et al., 2020), whereas slower alpha and beta 

oscillatory connectivity is thought to have a role in feedback and large-scale integrative 

processes ( Bastos et al., 2015b; Michalareas et al., 2016a; Siegel et al., 2012). In this regard, 

alpha and gamma oscillations have distinct, but interlinked roles in visual circuitry, that facilitate 

perception via the updating of prediction errors (Alamia & VanRullen, 2019; Michalareas et al., 

2016a) and could be reflected in the association between local gamma amplitude and long-range 

alpha suppression shown here.  

 

Beyond the driving mechanism, this is an important finding considering clinical cohorts show 

disturbances in both induced visual gamma and amplitude connectivity MEG measures (Friston, 

Brown, Siemerkus, & Stephan, 2016; Grent-‘t-Jong et al., 2016; Koelewijn et al., 2017; Phalen et 

al., 2019; Shaw et al., 2020). The relationship between alpha and gamma oscillations in the 

occipital lobe might then be a good target for investigation in clinical groups.  

 

Relationships between visual gamma amplitude and frequency and structural networks, derived 

with NNMF, were also explored. No notable relationships between gamma amplitude and any 

structural measures were found. Interestingly, however, visual gamma frequency was negatively 

associated with several RD and AD network components. These relationships were robust to 

multiple comparisons adjustment.  

 

Further exploration of the structure-function relationships suggests the gamma frequency 

relationships were not driven by a global effect. This is reassuring, particularly regarding AD, 

which has been previously shown to change with age (Kumar et al., 2013a). For that reason, both 

age and gender were included as covariates in the regression models reported here. Tangentially, 

a relationship between global functional connectivity in the resting-state and structural 

connectivity NNMF components may also exist in a positive direction. However, due to the aims 

of this chapter this was a limited exploratory step, which could be pursued elsewhere.  

 

Interpretation of white matter measures requires some caution because diffusivity parameters are 

based on tractography performed at the voxel level (Jones, Knösche, & Turner, 2013). One 
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problem, for example, is values based on the diffusion tensor can be compromised by crossing of 

white matter fibres. However, despite this, increased RD and reduced AD values are commonly 

taken to reflect demyelination and reduced axonal integrity, respectively, in light of a series of 

microstructural studies which induced ischemia and demyelination in animals (Song et al., 2003; 

Sun et al., 2006). In this view, a reduction in RD could reflect improved myelin integrity, which 

could support the healthy excitability of the cortex. 

 

Work using PING informed Dynamic Causal Modelling (Shaw et al., 2017a; Sumner, Spriggs, & 

Shaw, 2021), has shown that the amplitude of the MEG induced gamma response is associated 

with coupling strength between inhibitory neurons and layer 2/3 superficial pyramidal cells, 

supporting the idea that gamma oscillations reflect local inhibitory processes 

(Muthukumaraswamy et al., 2015b). Theoretically, the frequency of the oscillation is under the 

control of the interneurons, within the cortical laminae, and recorded from superficial pyramidal 

cells. Therefore, connections between superficial interneurons (SI) and superficial pyramidal 

cells (SP), in directions SI->SP, SI->SI and SP->SI, are implicated in local gamma circuitry 

(Sumner et al., 2021). The superficial pyramidal to superficial pyramidal (SP->SP) connection is 

also inhibitory and adds to the frequency response. While gamma is, therefore, an excellent 

probe of intrinsic local connectivity, exploring specific DCM parameters in relation to alpha 

connectivity would be particularly interesting in future.  

 

Pharmacological studies also suggest that gamma frequency is under the control of local 

GABAergic circuitry, as the administration of substances, such as tiagabine (a GABA reuptake 

inhibitor), reduce amplitude and increase gamma frequency (Shaw et al., 2017b). This is 

interesting in the context of the structural findings in this chapter. In taking gamma frequency as 

a proxy for cortical excitability in VC, whereby altered gamma frequency represents altered 

GABAergic inhibition, the following postulations may be made, bearing in mind AD reflects 

axonal integrity and RD reflects myelin density (Winklewski et al., 2018) : 

 

1) Altered inhibition in local circuitry in VC (increased frequency) is related to reduced 

global axonal integrity (AD↓) in white matter networks.  
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2) Altered inhibition in local visual gamma circuitry (increased frequency) is related to 

increased myelin integrity (RD↓) in white matter networks.  

 

While it must be emphasised that these are postulations, the potential structure-function 

relationships are interesting in the context of existing Transcranial Magnetic Stimulation (TMS) 

research, which has shown an association between cortical excitability and structural 

connectivity in stroke patients (Guder et al., 2020).  

  

The second postulation is less intuitive as increased myelination supports the transmission of 

neural signals, which might be expected to support balanced Excitatory-Inhibitory functioning. 

Considering the at-trend relationship between gamma frequency and average RD values, a global 

effect could be at play and further exploration is warranted. A final comment on the gamma and 

diffusivity findings is that gamma frequency was also negatively correlated with MD 

components, which suggests there may be general a diffusivity effect. The extent to which mean 

diffusivity is physiologically informative, however, remains to be established.  

 

Regarding the covariates, an unexpected finding was that men had a significantly higher peak 

frequency than women, suggesting men and women may exhibit differences in local processing 

in VC. A previous study, which used the same paradigm to induce gamma oscillations, failed to 

find any gender differences in amplitude or frequency (Muthukumaraswamy et al., 2010). 

Evoked studies, conversely, have shown higher amplitude of Event-Related Potential responses 

(ERPs), in women (Guillem & Mograss, 2005; Orozco & Ehlers, 1998). To the authors 

knowledge this a novel finding, however any conclusions are made with caution, as there was a 

much higher proportion of women to men in the sample and thus the response distributions 

differed by group.  

 

Limitations and future directions 

There were some additional considerations and limitations in this chapter. While both the visual 

gamma paradigm and the resting-state connectivity are considered to capture oscillatory 

connectivity at the local and global level, these measures provide a static snapshot of dynamic 
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processes. In view of the recent work by Hirschmann and colleagues these relationships might be 

further explored with a dynamic approach. 

 

Moreover, the visual gamma response is variable between individuals (Muthukumaraswamy et 

al., 2010). The analyses presented here were across participants with the loss of some 

information associated with the error term in the General Linear Model. However, these 

differences could be exploited in future work which might involve investigating local – global 

relationships on a participant level, to better explore individual differences in connectivity. 

Additionally, within-gamma task local-global relationships might also be further explored with 

NNMF, in view of the relationship found in the resting-state.  

 

In view of the attention literature, a measure of alertness might have also been useful in this 

analysis. Alertness is associated with alpha-band suppression (Clayton et al., 2015; Clayton, 

Yeung, & Cohen Kadosh, 2018) and naturally some participants will be more engaged than 

others. It is feasible, therefore, that those who were more alert in the resting paradigm were also 

more compliant in the gamma task. Spatial attention has been shown to have a gamma boosting 

effect (Magazzini & Singh, 2018) which may contribute to the alpha-gamma relationship seen in 

this chapter. Collecting a simultaneous measure of attention in future would provide a means for 

delineating these effects.  

 

Furthermore, structural measures were projected onto an AAL map to make structure-function 

comparisons in the same atlas space, as has been conducted in previous research (Messaritaki et 

al., 2021a). However, by representing white matter connections in this way it is acknowledged 

that some spatial tractography information is lost. Furthermore, structural connectivity matrices, 

being static white matter measures, are densely populated with connections in comparison to the 

dynamic functional connectivity matrices. Thus, applying the NNMF algorithm with the same 

thresholding procedures to both structural and functional data, resulted in less constrained 

structural networks than functional networks, making the spatial characteristics of the 

components challenging to interpret. In future, it would be interesting to mask the structural 

connectivity matrices with the functional NNMF networks prior to investigating the correlates of 

interest. This would provide a spatial constraint to the structural networks.  
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In conclusion, this chapter has investigated the relationship between local visual gamma 

oscillations and global functional alpha and beta connectivity in 183 healthy individuals. At the 

functional level, visual gamma amplitude was negatively associated with an occipital resting-

state network. This is interesting considering gamma-alpha coupling phenomena previously 

observed. Structural connectivity, in the same participants, was also explored in relation to the 

local oscillatory measures, which revealed a negative relationship between visual gamma 

frequency and AD and RD network components. Postulations are made about these findings; 

however, additional research is required.  
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Chapter 7. Schizotypy and global functional and structural 

networks 
 

7.1 Rationale 
Schizophrenia can be thought of as a disorder of dysconnectivity (Friston & Frith, 1995; Friston, 

Brown, Siemerkus, & Stephan, 2016). Identifying dysconnectivity markers in those at-high-risk 

and prior the onset of acute psychosis has fundamental implications for our understanding of the 

continuity between health and schizophrenia as well as the prevention of schizophrenia 

disorders. Individuals with Schizotypal Personality Disorder (SPD) and those who score highly 

on schizotypy traits measures, have ‘schizophrenia-like’ experiences, albeit to a far lesser degree. 

Individuals with high schizotypy, though clinically normal, are more likely to develop 

schizophrenia (Barrantes-Vidal, Grant, & Kwapil, 2015). Therefore, schizotypy makes an 

excellent candidate for studying clinical risk and brain connectivity in the healthy population.  

 

7.2 Introduction 
Schizophrenia is a multifaceted and debilitating disorder, facets of which remain poorly 

understood and treated. Nevertheless, the view of schizophrenia as a disorder of functional and 

structural dysconnectivity has become well established (Friston & Frith, 1995; Friston, Brown, 

Siemerkus, & Stephan, 2016). A recent meta-analysis of fMRI resting-state studies (patients and 

controls, N < 2,500, seed based) found hypoconnectivity in the auditory network (left insula), 

core network (right superior temporal cortex), default mode network (right medial prefrontal 

cortex, and left precuneus and anterior cingulate cortices), self-referential network (right superior 

temporal cortex), and somatomotor network (right precentral gyrus) in patients (Li et al., 2019). 

Frontal and occipital reductions and altered network characteristics, investigated with graph 

theory, have also commonly been reported (Karbasforoushan & Woodward, 2013).  

 

Patterns of aberrant functional connectivity differ with disease stage (Anticevic et al., 2014; 

Grent-’t-jong et al., 2018), genetics (Kirov, Grozeva, et al., 2009; Purcell et al., 2009) and 

imaging analysis (Karbasforoushan & Woodward, 2013; Yu et al., 2013). An example of the 

latter is that more long-range reduced connectivity is found with seed-based fMRI methods, 

compared with ICA methods (Yu et al., 2012).  
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Characterisation of neural oscillations, using MEG, affords a rich electrophysiological picture of 

connectivity differences in schizophrenia (Bowyer et al., 2015; Cetin et al 2016; Hinkley et al., 

2011; Houck et al., 2017; Kim et al., 2014; Robinson & Mandell, 2015; Sanfratello, Houck, & 

Calhoun, 2018; Zhang et al., 2015). Relative to MRI, MEG research remains in its infancy, with 

hypo- and hyper-connectivity being revealed in patients (Alamian et al., 2017a).  

 

Several studies have investigated oscillatory coherence; a frequency domain measure that 

quantifies coupling in terms of amplitude and phase (Bowyer et al., 2015, Kim et al., 2014, 

Hinkley et al., 2011). Hinkley and colleagues (2011), for example, found decreased connectivity 

in left PFC and right superior temporal cortex, whereas increased connectivity was observed in 

left extrastriate cortex and the right inferior PFC in the alpha band. Moreover, Bowyer and 

colleagues (2015) found increased amplitude connectivity in patients with schizophrenia in the 

right inferior frontal lobe, left superior frontal lobe, right middle frontal lobe and right cingulate, 

whereas Kim and colleagues (2014) found decreased coherence in patients between the posterior 

cingulate cortex and medial PFC in the gamma band.  

 

In patients, oscillatory disruptions across the frequency bands have been related to positive, 

negative, and cognitive symptoms, with both positive and negative trends being found (e.g., 

Chen et al., 2016; Fehr et al., 2001, 2003; Kim et al., 2014; Spencer et al., 2008; Sperling et al., 

2002; Sperling et al., 2003). Importantly the study of oscillatory activity may provide a window 

into the underpinnings of persistent cognitive and negative impairment in psychosis which is, at 

present, unclear.  

 

In addition to the aforementioned functional cortical impairments, numerous studies have shown 

individuals with schizophrenia have structural white matter abnormalities, revealed with 

Diffusion Tensor Imaging (DTI) methods. The consistency and clarity of these findings, 

however, is limited. One finding, that does seem to be consistent, is that patients have increased 

Radial Diffusivity (RD), within white matter tracts (Joo et al., 2018; Parnanzone et al., 2017). 

RD is a measure of diffusion perpendicular to the direction of tracts, and has been considered a 

marker for myelin density (Winklewski et al., 2018), with increased RD representing 
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demyelination. Due to the difficulty of co-registering histology to DTI findings, however, this 

theory is yet to be fully verified (Winklewski et al., 2018). Nonetheless, a recent paper by Joo 

and colleagues (2018), found increased RD in the left thalamo-occipital tract, right uncinate 

fascicle, the right middle longitudinal fascicle (MDLF), and the right superior longitudinal 

fascicle, in patients (Joo et al., 2018).   

 

Other commonly reviewed white matter metrics are Fractional Anisotropy (FA), of the diffusion 

tensor, which is a measure representing directionality of water diffusion (with values varying 

from 0 for isotropic diffusion to 1 for anisotropic diffusion), and Axial Diffusivity (AD), which 

represents the magnitude of water diffusion parallel to white matter tracts. Both have been 

considered to reflect axonal integrity (Leow et al., 2009; Winklewski et al., 2018), however, the 

aforementioned measures should be interpreted with caution because they are measured at voxel-

level and are not specific to one type of change in the white matter tracts (Jones et al., 2013). In 

schizophrenia, numerous patient groups have been shown to have decreased FA values 

(Parnanzone et al., 2017), whereas increased FA has also been found locally (De Erausquin & 

Alba-Ferrara, 2013), and in early onset patients (Canu, Agosta, & Filippi, 2015). In 22q.11 

deletion carriers, who have significant increased risk of developing schizophrenia, both 

reductions in FA and AD have been found (Kikinis et al., 2012).  

 

As with functional impairments, white matter abnormalities appear to worsen with disease stage 

(Biase et al., 2017a; Canu et al., 2015), with chronic patients displaying more widespread 

network disruptions than recent onset patients; where, for example, reductions in connectivity 

have been shown in the anterior corpus callosum (Biase et al., 2017b). The extent to which 

structural and functional dysconnectivity in schizophrenia are related is also an increasingly 

popular question (Cabral et al., 2013; Pettersson-Yeo et al., 2010). Intuitively, functional 

dysconnectivity could be the result of impairments in the forming of white matter hubs or tracts 

during development (Fornito & Bullmore, 2015). In general, however, research has failed to 

establish a link between functional alterations and structural typology in patients (Cabral et al., 

2013; Pettersson-Yeo et al., 2011), suggesting functional and structural techniques reveal 

different neuropathology in schizophrenia.  
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Notably, long-range oscillatory functional connectivity is reliant on excitatory-inhibitory (E-I) 

synaptic balance, via neurotransmitters (Alamian et al., 2017b; Uhlhaas, 2013). Therefore, even 

subtle changes in the temporal measures, including Long-Range Temporal Correlations (LRTCs) 

within the brain could be associated with significant cognitive impairments, even if there are no 

visible structural changes.  

 

Beyond diagnosis status, abnormal connectivity is also found in those at clinical high risk (CHR) 

of psychosis. For example, with fMRI, Du and colleagues (2018) found both CHR and early 

onset schizophrenia groups showed significant differences, primarily in DMN, salience, 

auditory-related, visuospatial, sensory-motor, and parietal resting-state networks, compared with 

controls. CHR individuals usually show some attenuated positive symptoms and may score 

highly on other risk areas such as lifestyle and genetics. Identifying neural markers in individuals 

before the onset of acute psychosis could be fundamental to the prevention of disease 

progression and highlights the importance of studying ‘at-risk’ individuals.  

 

In the dimensional approach (Claridge & Beech, 2010; Eysenck & Peck, 1962; Liddle, 1987), 

schizophrenia symptomology is viewed as a continuum, from asymptomatology or rare 

symptoms in the normal population, through schizotypy traits, to acute psychosis (Esterberg & 

Compton, 2009). Schizotypy is associated with proneness to schizophrenia (Barrantes-Vidal, 

Grant, & Kwapil, 2015), and refers to the presence of schizophrenia-like personality 

characteristics and experiences, such as non-delusional ideas of reference, magical thinking, and 

odd perceptual experiences. Given that family members of those with schizophrenia have been 

shown to have high schizotypy traits (Vollema, Sitskoorn, Appels, & Kahn, 2002; Yaralian et al., 

2000), the genetic contribution and underlying aetiology between schizophrenia and schizotypy 

is thought to be similar.  

 

One advantage of studying schizotypy is that participants are usually drug-naïve due to the trait 

being  distributed in the healthy population. Thus, investigations are free from confounds such as 

anti-psychotic medication exposure and medical co-morbidities known in affected individuals, 

while still providing important insight into Schizophrenia Disorders (Vollema et al., 2002).  
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Evidence suggests that connectivity deficits found in schizophrenia extend to high schizotypy 

individuals. A recent fMRI study found resting-state connectivity to be impaired in high-

schizotypy individuals across temporal-occipital-striatal networks (Waltmann et al., 2019). Zhu 

and colleagues also found reduced connectivity between the bilateral precuneus and 

parahippocampal gyrus in Schizotypal Personality Disorder (SPD), with a negative association 

between connectivity and schizotypy scores (Zhu et al., 2017). In a task-based MEG study, 

oscillatory phase-locking-factor in the gamma and beta band has also been shown to be reduced 

in fronto-central and fronto-occipital areas, during working memory (Koychev, Deakin, 

Haenschel, & El-Deredy, 2011a). Moreover, in line with the reduced motor-sensory beta rebound 

effect in schizophrenia (Gascoyne et al., 2021; Robson et al., 2016), Hunt (2018), found a 

negative correlation between schizotypy scores and MEG beta rebound on a visuomotor task in a 

sample of 160 participants. Variance in this study was driven by scores on the disorganisation 

and interpersonal factors which are known to severely impact quality of life (Pinikahana, 

Happell, Hope, & Keks, 2002).   

 

Until recently, few DTI studies have investigated schizotypy, per se. SPD individuals have been 

shown to have white matter abnormalities in the temporal lobe (Hazlett, Goldstein, & Kolaitis, 

2011), and lower FA in the corpus callosum (Lener et al., 2015). Studies, specifically looking at 

schizotypy, have found increased white matter connectivity probability between the right insula 

and the right middle frontal gyrus, between the left precuneus and the left angular gyrus (the 

DMN) (Wang et al., 2020), reduced FA in the anterior corona radiata, (Wang et al., 2020), 

increased FA in the in the left arcuate fasciculus (Volpe et al., 2008), and FA reductions in 

fronto-temporal white matter tracts (Nelson et al., 2011). Additional research could further 

clarify these findings.  

 

7.2.1 Aims and hypotheses  

The aim of this chapter was to explore how schizotypy, as a clinical risk factor for schizophrenia, 

affects functional resting-state connectivity and structural white matter connectivity. At the time 

of the analysis no other studies have investigated schizotypy and MEG amplitude-amplitude 
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connectivity7, alongside structural connectivity measures, in a large sample covarying for age 

and gender.  

 

A linear regression model, employed in the analysis here, is a powerful tool for analysis of 

continuous data, as all subjects can be included (subject to outliers etc.). Based on previous 

findings (Koychev, Deakin, Haenschel, & El-Deredy, 2011b; Williams, 2018), it is expected that 

schizotypy will predict reduced functional connectivity in the alpha and beta band across 

parietal- precuneal and occipital areas. 

 

Furthermore, it is expected that schizotypy will be associated with white matter abnormalities. In 

view of papers by Parnanzone, Joo and colleagues, it is expected that schizotypy will negatively 

predict FA connectivity and positively predict RD (Joo et al., 2018; Parnanzone et al., 2017). 

Regarding the other WM measures, due to the mixed nature of previous findings in 

schizophrenia and schizotypy, the directionality of abnormalities is to be explored.  

 

 

 

 

 

 

 

 

 

                                                           
1 A subset of the functional data (MEG-Partnership & 100-Brains, N=183), has been previously analysed 

using a between groups method without covariates, by Dr Gemma Williams. High and low schizotypy 

groups were formed by taking the top and bottom 20% of schizotypy values (H n=33, L n=33). Resting-

state connections that met the signal to noise threshold (top 20%), were compared between groups. The 

analysis revealed significantly reduced left precuneus -paracentral lobule alpha connectivity in high 

schizotypy individuals. Reduced parieto-parietal beta connectivity was also suggested but did not reach 

significance. 
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7.3 Method 
7.3.1 Participants  

Participants were recruited as part of the ‘100-Brains’ and 'MEG-Partnership' studies. 

Participants were screened and excluded based on psychiatric illness history and use of 

psychoactive drugs. Of the 183 recruited, 168 had completed the Schizotypal Personality 

Questionnaire (SPQ-Raine & Raine, 1991), and were included in the analysis. The SPQ is a self-

rated questionnaire consisting of 74 items that fall under nine sub-scales: ideas of reference, 

social anxiety, odd beliefs/magical thinking, unusual perceptual experiences, eccentric/odd 

behaviour and appearance, no close friends, odd speech, constricted affect and 

suspiciousness/paranoid ideation.  

 

Table 7.1. Demographics 

 N Mean(SD) Range Ratio 

Schizotypy 168 12.04(9.83) 43(0-43) - 

Age 183 24.5(5.38) 37(18-55) - 

Gender 183 

(123F/60M) 

- - 0.48 M:F 

 

Schizotypy is naturally a left skewed measure as in the normal population individuals will often 

report no schizotypy traits. Logged schizotypy scores were also considered with no notable 

difference to the subsequent analyses' outputs.  

Figure 7.1. Left shows a histogram of the schizotypy scores. Right shows a histogram of logged 

schizotypy scores.  
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7.3.2 Resting-state analysis 

MEG connectivity analyses were the same as those described in Chapter 4, but are summarised 

here. Resting-state MEG recordings were collected at 1200Hz using a CTF275 MEG system. 

Synthetic third-order noise cancellation was applied. Participants were oriented upright and 

completed a 5-minute eyes open paradigm, where they were asked to fixate on a red fixation 

point. MRI, T1-weighted anatomical images were collected on a 3T GE scanner and used for co-

registration.  

 

Pre-processing steps were completed in DataEditor. After down sampling to 600Hz, datasets 

were epoched into 2-second trials and then visually inspected for ocular and muscular artefacts. 

Any trials containing artefacts were discarded. Manual co-registration was completed on the MR 

image using photographs of the fiducial marks made on the participants during the MEG 

recording.  

 

Whole-brain connectivity analysis was performed in Fieldtrip (2019), using LCMV 

beamforming source localisation and amplitude - amplitude coupling pipelines (Koelewijn et al., 

2017; Routley, Singh, Hamandi, & Muthukumaraswamy, 2017) providing connectivity measures 

across six frequency bands (delta 1-4Hz, theta3-8Hz, alpha8-13Hz, beta 13-30Hz, low gamma 

40-60Hz and high gamma 60-90Hz). Based on the Automatic Labelling Atlas (AAL)  (Tzourio-

Mazoyer et al., 2002) 90 nodes were selected for analysis. Beamforming was completed using a 

6mm grid and single shell forward model (Nolte, 2003); a vector norm normalisation was 

applied to weights in each frequency band separately (Hillebrand et al., 2012), and a MNI 

inverse-warping procedure was adopted to ensure source grid consistency across participants. A 

virtual time course for each region was selected. This involved keeping the time-courses with the 

greatest temporal standard-deviation in each of the 90 AAL regions.  

 

To adjust for potential spurious correlations between virtual sensor data, the 90 time-series were 

orthogonalized (Colclough et al., 2015). Amplitude envelopes were calculated using a Hilbert 

transform. A median filter and edge trimming were applied to account for any transient spiking 

and edge effects (first 2 and last 3 samples removed).  
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Finally, within-frequency band correlations between amplitude envelopes, across the AAL 

regions, were calculated and a Fisher transform applied, generating a connectivity matrix of 

variance-normalised Z-scores for each frequency band. An across-frequency band connectivity 

matrix was also created by taking the square root of the summed, squared connectivity matrices 

in each frequency band.  

 

7.3.3 Statistical analysis 

Functional edge-level measures 

Connectivity matrices were z-scored by participant (demeaned, unit variance) to account for 

possible across-group sources of variance such as differences in data quality between recordings.  

As a result, the value of each connection is a strength of connectivity (Z-scored correlation) in 

relation to the mean. Valid connections were selected by ranking each of the connections by 

strength for each participant and then discarding the poorest 80% of consistently ranked 

connections across the whole group.  

 

A linear regression (p<0.05, uncorrected) was then performed on the valid connections in each 

frequency band and the combined map using schizotypy score as the main predictor and age and 

gender as covariates. To adjust for multiple comparisons a 10,000 iteration randomisation test 

with omnibus thresholding was also performed (p<0.05). To assess generalisability a 5000-

iteration resampling procedure was performed to construct a 95% confidence interval for 

connections per frequency band. Mean connection strength is a measure of the strength of 

amplitude- amplitude connectivity at each of the 90 AAL nodes, averaged across nodes per 

subject and was also visually explored.  

 

Non-Negative Matrix Factorization- Functional 

Consistent sub-network patterns were derived from resting-state data using a Non-Negative 

Matrix Factorization procedure (NNMF method and results as described in Chapter 5). Variance 

across connections, across subjects, is captured in a method like Principal Components Analysis 

(PCA), revealing independent connectivity patterns (components) at improved signal-to-noise 

ratio. As long-range alpha and beta connections are of interest in this thesis, focus was given to 

alpha and beta connectivity, thereby reducing the chance of revealing spurious relationships. 
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Alpha and beta MEG connectivity has been shown to be more robust over subjects than 

connectivity in other frequency bands (Colclough et al., 2017; Godfrey & Singh, 2021). 11 

components were derived in the alpha band and 9 in the beta band.  

 

Statistical analysis-NNMF 

NNMF generates spatial components which together comprise the observed functional 

connectivity (strength of connectivity) for the group of participants. Component weightings 

represent the contribution of that participant to a given network for that individual. Different 

components were generated for each frequency band. A regression model with schizotypy as the 

main predictor and age and gender covariates, was generated for each of the components. A 

Bonferroni adjustment was used to control for multiple comparisons in each regression model. 

The Cooks distance outlier rejection procedure, which rejects observations, in this case 

participants, from the regression model on the basis of residuals, was applied (set to 3*mean). 

 

7.3.4 Structural analysis  

Structural connectivity measures were derived by Dr Eirini Messaritaki (Messaritaki et al., 

2021a), details of which are summarised here. The same AAL labeling atlas (90 cortical and 

subcortical regions) was used to define structural regions. This allowed the structural network to 

also be represented as 90 × 90 symmetrical matrices, for each participant.  

 

MRI data acquisition and pre-processing  

All MRI data were acquired on a GE Signa HDx 3T scanner (GE Healthcare, Milwaukee, WI). 

T1 images were acquired with a three-dimensional fast spoiled gradient and downsampled to 1.5-

mm isotropic resolution. 

 

Diffusion weighted MRI data were acquired with a peripherally cardiac-gated sequence with b = 

1,200 s/mm2, TR = 20 s, TE = 90 ms, isotropic resolution of 2.4 mm, zero slice gap, FOV = 230 

mm. Diffusion data were co-registered to the T1. Corrections for head movement and eddy 

current distortions were made. Free-water correction was also conducted.   
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mcDESPOT data (which can provide myelin measures) were acquired using multicomponent-

driven equilibrium single pulse observation of T1 and T2 (Deoni, Rutt, Arun, Pierpaoli, & 

Jones, 2008). Images for each participant were linearly coregistered to a spoiled gradient recall 

(SPGR) image, to correct for subject motion. Nonbrain tissue was removed using a mask 

computed with the BET algorithm (Smith, 2002). Registration and brain masking were 

conducted with FSL (Jenkinson et al., 2012). 

 

Tractography analysis 

White matter tracts can be represented as connections, or edges, in a structural network. 

Tractography was performed on the DTI data, using the streamline algorithm in MRtrix 3.0 

(Dhollander et al., 2016). White matter tracts were localised using a WM mask generated from 

the T1-weighted images using FSL fast (Jenkinson et al., 2012). The minimum and maximum 

tract lengths were 30 and 250 mm, respectively.   

 

Streamline selection- Threshold Vs COMMIT methods 

Historically, the minimum number of streamlines that would allow us to assume that a tract has 

been reliably reconstructed has been selected arbitrarily, limiting the quantitative nature of 

streamline measures (Daducci et al., 2015). The COMMIT method (Daducci et al., 2015) is a 

data-driven alternative. Instead of rejecting tracts reconstructed with a number of streamlines 

lower than an arbitrary threshold, it rejects any streamlines that are not consistent with the 

overall diffusion signal in the diffusion-weighted images, as described in Chapter 5. For that 

reason, in addition to connectivity matrices derived using the COMMIT method, a standard 

thresholding approach was also followed. For that, any tracts reconstructed with fewer than 18 

streamlines were discarded. The threshold of 18 was chosen so that the thresholded matrices had 

the same sparsity as the COMMIT-derived matrices, to avoid the sparsity of the matrices being a 

confound in our analysis.  

 

mcDESPOT analysis 

A mcDESPOT algorithm was used to detect the fast (water constrained by myelin), and slow 

(free-moving water in intra- and extracellular space), elements of the T1 and T2 times, and a 

nonexchanging free-water component (Deoni et al., 2013). The fast volume fraction was taken as 

https://www.tandfonline.com/doi/full/10.1080/17470919.2016.1229215
javascript:;
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a map of the myelin water fraction. The ratio of myelin-bound water to total water was 

calculated, which is the myelin volume fraction (MVF). A MRtrix function (tcksample), was 

used to assign a proportion of the MVF to each streamline, in each tract. This measure was 

averaged over its streamlines, providing a myelin-weighted value (MM), for each tract.   

 

The matrices that resulted from these procedures were normalised by dividing by the largest 

value of each matrix, so that, within any given matrix, the values range from 0 to 1. Self-

connections (diagonals) were set to zero. 

 

As described in Chapter 6, the structural measures that resulted are: 

White matter tractography DTI measures 

 Number of streamlines (NST), is the number of reconstructed streamlines, subject to the 

threshold of 18. 

 Standardised number of streamlines (SST), is the number of reconstructed streamlines at 

threshold 18, divided by the length of the tract.  

 Number of streamlines (NSC), is number of streamlines in the tracts as selected by the 

COMMIT method described above.  

 Standardised number of streamlines (SSC), is number of streamlines within a tract 

divided by the length of the tract, selected by the COMMIT method.  

 Fractional Anisotropy (FA), is a measure of the anisotropy in the diffusivity of water 

molecules calculated from three eigenvectors. An isotropic tensor would have equal 

eigenvectors.  

 Radial Diffusivity (RD λ┴) is a measure of water diffusion perpendicular to the direction 

of the tracts. 

 Axial Diffusivity (AD λ║) is a measure of water diffusion parallel to the direction of the 

tracts.  

 

mcDESPOT measures 

 Myelin Water Fraction (MM), measures water diffusivity within the myelin giving an 

indirect measure of myelin density in the voxels including tracts.  
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Number of streamlines connectivity measures were available for the 100-Brains and MEG-

Partnership cohorts (N=161). Diffusivity and myelin measures were analysed in a sub-cohort of 

90 participants.  

 

Non-Negative matrix Factorization- Structural networks 

The same NNMF algorithm was applied to the structural connectivity matrices. As with the 

functional analysis, there were 4005 unique undirected connections carried forward for NNMF 

analysis. Identical thresholding parameters were applied to avoid overfitting. This resulted in 

between 10-18 components for each of the structural measures; NST, SST, NSC, SSC, FA, RD, 

AD & MM.  

 

7.3.5 Statistical analysis- Structural networks 

The structural components were analysed with regression analysis. Schizotypy was the main 

predictor, and age and gender were covariates. Bonferroni correction was applied in each 

regression model to adjust for the number of components.  
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7.4 Results 
7.4.1 Functional connectivity 

Valid edge connections were present in frontal areas in the delta band but did not survive any 

significance testing. Decreased posterior connectivity was found in the alpha band (occ-occ, par-

par, occ-parietal, p<0.01, uncorrected). More widespread decreased (R precuneus- par, par-occ, 

par-par) connectivity and few increased (R occ-par, R occ-temp) connections were found in the 

beta band (p<0.05, uncorrected).  

Figure 7.2. Connectivity analysis: 

Each row shows oscillatory amplitude 

correlations for the four frequency 

ranges where valid edges were found, 

and the combined map. The first 

column, valid connections, shows the 

connections at mean rank >0.8, per 

frequency band and across the 

combined frequencies. The second 

column shows connections 

significantly associated with 

schizotypy (p<0.05) at the uncorrected 

level (univariate regression). To 

consider the generalisability of 

associated connections, the third 

column shows univariate connections 

where the confidence interval (95%) 

on the regression slope did not include 

zero. In column 2 and 3, positive 

correlations, i.e., increased 

connectivity, are represented with red 

lines whereas negative correlations 

are represented with blue lines.
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The prominent observation is that schizotypy predicted reductions in alpha and beta connectivity 

in posterior areas of the brain at the uncorrected level.  

 

Figure 7.3. Alpha and beta connectivity (resampling confidence interval, 95%, 5000 iterations) 

depicted on a template brain. Blue lines represent robust decreases in connectivity for 

participants with high schizotypy scores, red lines represent increases. 

As shown in Figures 7.2 and 7.3, connections in the alpha band are predominantly between 

bilateral occipital areas, occipital-parietal and parietal-temporal areas. Connections in the beta 

band were more widespread between parietal, occipital and temporal areas.  

 

Alpha Beta Combined 
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 Figure 7.4. Scatter plots of mean strength of significant connections (p<0.05) versus schizotypy 

(raw scores) in the alpha, beta and combined frequency bands.  

 

Figure 7.4 shows a negative trend in mean connectivity in the alpha and combined bands.  

 

7.4.2 Non-Negative Matrix Factorization- Functional networks  

NNMF was applied to the functional connectivity matrices to reveal common functional sub-

networks across participants.  

 

Figure 7.5. Functional NNMF connectivity components in alpha and beta, across gender, age 

and schizotypy. The within box text shows the effect size (beta) and the p-value for that 

component. Red boxes represent positive relationships. Blue boxes represent negative 

relationships. Text in white shows relationships which meet multiple comparison adjustment 

(p<.05), whereas text in black shows relationships significant at the uncorrected level (p<.05). 

 

Schizotypy negatively predicted 5 alpha components after Bonferroni correction (p<.05), as 

shown in Figure 7.5, suggesting high schizotypy individuals have reduced alpha connectivity. 

The 5 significant networks are plotted on template brains in Figure 7.6 below.  
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Figure 7.6. The 5 Alpha network components significantly predicted by schizotypy. Blue lines 

represent a negative relationship with schizotypy.  

 

Alpha network reductions associated with schizotypy mostly spanned posterior areas of the 

brain. The predominant spatial distributions of the reduced networks were as follows:  

Network 3 – bilateral occipital-parietal network with some temporal connections 

Network 5- bilateral parietal and right occipital connections 
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Network 6- occipital and parietal network with dense left parietal connections 

Network 8- parietal and temporal connections with few frontal and occipital edges 

Network 11- bilateral occipital-parietal network with some left frontal connections 

 

Schizotypy was not associated with age or gender. Despite there being negative relationships 

with 3 beta components (shown in Figure 7.5), schizotypy did not significantly predict any beta 

components after multiple comparisons correction.  

 

7.4.3 Structural connectivity 

NNMF was also applied to structural matrices in order to explore any possible structural sub-

network relationships with schizotypy.  

Streamlines measures  

Schizotypy was negatively associated with 10 streamlines components, however, only 2 

components withstood multiple comparison adjustment. Differences in schizotypy relationships 

can be observed depending on the streamlines measures used.  
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Figure 7.7. Streamlines NNMF connectivity components across gender, age and schizotypy. The 

within component text shows the effect size (beta) and the p-value. Red boxes represent positive 

relationships. Blue boxes represent negative relationships. Text in white shows relationships 

which meet multiple comparison adjustment (p<.05), whereas text in black shows relationships 

significant at the uncorrected level (p<.05). 

 

Regarding the covariates, age was highly correlated with the streamlines components, however 

in no clear pattern. Gender was also related to different streamlines components, with significant 

differences comprising reductions in women.  
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The two network components that had significant relationships with schizotypy, after correction, 

are plotted in Figure 7.8 below.  

 

 
Figure 7.8. Streamlines networks predicted by schizotypy plotted on template brains. Left, is the 

number of streamlines (COMMIT) network predicted by schizotypy. Right, is standardised 

streamlines (thresholded) network predicted by schizotypy. Blue lines represent negative 

correlations.  

 

Two measures, number of streamlines (COMMIT) and standardised streamlines (thresholded), 

had significant components that were negatively predicted by schizotypy. Some overlap can be 

observed in these networks in Figure 7.8, suggesting that the method of streamline selection is 

less important that sparsity in capturing variance associated with schizotypy. Both networks 

comprise widespread lateral connections and few frontal and posterior bilateral connections.  

 

Structural measures 

Schizotypy was negatively associated with 6 Euclidean distance components and 1 myelin 

component, but none of these relationships met correction for multiple comparisons. Euclidean 

distance connectivity was explored considering a paper by Messaritaki and colleagues, who 

found that the strength of MEG functional resting-state connectivity depended on the Euclidean 

distance between brain regions (Messaritaki et al., 2021b); a finding previously shown elsewhere 

(Tewarie et al., 2019). This suggests that areas that structurally closer together, exhibit stronger 

functional connectivity.  
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Figure 7.9. Structural NNMF connectivity components across gender, age and schizotypy. The 

within component text shows the effect size (beta) and the p-value. Red boxes represent positive 

relationships. Blue boxes represent negative relationships. Text in white shows relationships 

which meet multiple comparison adjustment (p<.05), whereas text in black shows relationships 

significant at the uncorrected level (p<.05). 

 

Regarding age and gender, increased age was negatively associated with most structural 

components except Euclidean distance. Women generally had higher component weightings than 

men, apart from the Euclidean distance relationships where men had higher weightings than 

women. No other relationships were found.  
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7.5 Discussion 

This chapter has investigated schizotypy as a predictor of functional and structural connectivity. 

The findings are consistent with the disconnection hypothesis of schizophrenia (Friston et al., 

2016). From the functional imaging, a relationship between schizotypy and reduced oscillatory 

connectivity, across posterior regions in the alpha and beta bands, was suggested by examination 

of amplitude-amplitude connectivity across 90 AAL nodes, though not convincingly. However, 

by extracting networks using non-negative matrix factorization, thereby improving signal to 

noise, schizotypy was found to significantly predict connectivity in 5 alpha networks. Some 

negative relationships with 3 beta NNMF networks were also suggested, but these relationships 

were not robust to multiple comparison correction. These analyses support and go beyond the 

previous results showing reduced left precuneus -paracentral lobule alpha connectivity in high 

schizotypy individuals (Williams, 2018).  

 

Schizotypy was associated with reduced amplitude-amplitude oscillatory coupling in all of the 

associated networks. This is interesting in the context of previous work by Phalen and 

colleagues, who found a reduction in phase locking connectivity in 4 alpha networks, using 

NNMF, in first episode schizophrenia patients (Phalen et al., 2019). The networks comprised the 

bilateral anterior and posterior cingulate; left auditory, medial temporal, and cingulate cortex; 

right inferior frontal gyrus - widespread areas; and right posterior parietal cortex - widespread 

areas. Positive and Negative Syndrome Scale total and thought disorder factors were also 

correlated with the first three (reduced) networks in patients. The left posterior temporal network 

was associated with positive and negative factors, and the right inferior frontal network was 

associated with the positive factor suggesting networks revealed with NNMF could have 

symptom specificity.  

 

Alpha oscillations are important in several cognitive and perceptual tasks involving the sensory 

modalities (Uhlhaas & Singer, 2010a); particularly attention, many facets of which have shown 

to be disturbed in schizophrenia (Hoonakker, Doignon-Camus, & Bonnefond, 2017; 

Nuechterlein et al., 2015). More broadly, alpha oscillations seem to have a role in functional 

coupling across brain regions (Nunez et al., 1997; Palva & Palva, 2007), which comes from a 

thalamo-cortical drive (Roux et al., 2013; Vijayan et al., 2013).  
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While the mechanisms underpinning alpha oscillations are yet to be fully understood, due to the 

well-established effect of attention on alpha oscillations in the visual cortex, alpha oscillations 

have been thought to have a role in feedforward and feedback processes (Baillet, 2017;  Bastos et 

al., 2012; Bastos et al., 2015; Michalareas et al., 2016), and a modulatory effect on cortical 

excitability (Bonnefond & Jensen, 2015; Popov et al., 2017; Roux et al., 2013). Findings such as 

these complement Predictive Coding theory of schizophrenia, where positive symptoms such as 

hallucination and delusion result from a faulty ability to update prior beliefs with incoming 

sensory information (Friston et al., 2016; Sterzer et al., 2018). Theoretically, these processes are 

underpinned by alpha and gamma oscillatory dynamics.  

 

Considering the continuum view of schizophrenia (Claridge & Beech, 2010), the alpha 

dysconnectivity shown in this chapter may also relate to cognitive and perceptual experiences 

reported in high schizotypy individuals. However, this has not been directly shown. It is to be 

noted that, in the healthy population, a recent frequency tagging (V1) paper found simultaneous 

alpha oscillations to be sourced outside of V1, around the parieto-occipital sulcus (Zhigalov, 

Herring, Herpers, Bergmann, & Jensen, 2019), suggesting alpha is not a modulator of V1 

excitability, or at least not directly. Furthermore, an investigation by Humpston, Tuefel and 

colleagues did not find altered prediction error responses, on 3 different tasks, in >100 high 

schizotypy individuals (Humpston, Evans, Teufel, Ihssen, & Linden, 2017). Therefore, while like 

schizophrenia, alpha dysconnectivity is associated with schizotypy, further work is needed to 

unpick the underlying mechanisms in the schizotypy population.  

 

Of the 5 alpha networks that had significant relationships with schizotypy, 3 were heavily 

occipital and parietal and the other 2 comprised predominantly occipital/parietal to frontal 

connections. This is consistent with previous studies showing resting-state alpha occipital and 

frontal EEG connectivity related to schizotypy using a phase lag index measure (PLI) (Hu, Li, 

Lopour, & Martin, 2020). Interestingly, the paper by Hu et al., also found that individuals 

scoring highly on the positive schizotypy dimensions showed reduced occipital and frontal 

connectivity, compared to controls, while those scoring highly on the negative dimension 

showed increased alpha concentration in the occipital lobe, compared to controls. 
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On this note, the dimensionality of schizotypy appears to be important in regard to connectivity. 

For example, Wang and colleagues, found that schizotypy scores in the positive dimension were 

positively correlated with ventral striatum and frontal cortex fMRI connectivity and negatively 

associated with connections between the dorsal striatum and posterior cingulate, while no 

associations were found with the negative schizotypy dimension (Wang, Ettinger, Meindl, & 

Chan, 2018). Similarly, Waltman found fMRI differences between the ventral striatum and 

ventromedial prefrontal cortex, and dorsal striatum and temporo-occipital regions, in high (total) 

schizotypy individuals, but these all comprised hypo-connectivity (Waltmann et al., 2019). 

 

Moreover, the structural findings were not as predicted as no relationships were found between 

schizotypy and FA and RD. There was some evidence for a relationship between schizotypy and 

reduced widespread network integrity, based on the streamlines measures. However, these 

relationships differed considerably depending on the thresholding and standardisation approach 

taken in deriving the measures, suggesting these findings should be interpreted with caution.  

 

Schizotypy was associated with Euclidean Distance, however not after adjustment. Euclidean 

distance is fundamentally the straight-line distance between two points. However, interestingly, 

Messaritaki et al., (2021a), made a link between MEG and DTI measures of connectivity, by 

showing white matter Euclidean distance to be highly correlated with functional MEG 

connections. The interpretation of the negative relationship between schizotypy and Euclidean 

distance found here, however, would be that functional connectivity is increased between fronto-

occipital regions. While possible, this postulation does not coincide with the functional results in 

this chapter. 

 

This is not the first simultaneous structure-function investigation of schizotypy. Using a DTI 

measure of white matter structural connectivity, and static and dynamic fMRI (~200 subjects), 

Wang and colleagues found high schizotypy individuals (n=87) showed, 1) increased structural 

connectivity probability within a task control network (right insula and the right middle frontal 

gyrus) and within the default mode network (DMN), 2) increased variability and decreased 

stability of functional connectivity within DMN and between the auditory network and the 
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subcortical network, and, 3) decreased static mean functional connectivity strength in the 

sensorimotor network, the DMN and the task control network (Cai, Zhang, & Zhou, 2021). Thus, 

such an approach appears to be informative. This is, to the authors knowledge, the first 

simultaneous investigation of schizotypy with MEG and DTI.  

 

Finally, on a broader note, whether the disconnection hypotheses can be extended to traits 

distributed in the normal population is an ongoing question. While the continuum view of 

schizotypy iscontroversial, with some scholars now placing schizotypy in the context of affective 

and social functioning rather than schizophrenia per se (Cohen, Mohr, Ettinger, Chan, & Park, 

2015), there is also research to suggest considerable genetic, cognitive and neurobiological 

overlap with schizophrenia (Ettinger, Meyhöfer, Steffens, Wagner, & Koutsouleris, 2014). Our 

finding that individuals with high schizotypy have reduced alpha connectivity supports the 

dimensional approach to schizophrenia 

 

Tangentially, an interesting line of recent research involves the classification of individuals into 

high and low schizotypy groups, which can be completed successfully using neuroimaging data 

and machine learning (Madsen, Krohne, Cai, Wang, & Chan, 2018). Because individuals with 

high schizotypy traits are more likely to develop schizophrenia (Barrantes-Vidal et al., 2015) and 

the identification of pre-clinical tools is crucial to psychosis prevention, continued research on 

schizotypy is important. This will allow further elucidation of schizotypy on a construct level 

and alpha connectivity as an endotype for high schizotypy traits and schizophrenia.  

 

Limitations and future directions 

This chapter was subject to some limitations. The main limitation was that the raw schizotypy 

scores, which would have allowed values to be assigned to the different dimensions of 

schizotypy, were unavailable. Many of the papers discussed show different connectivity results 

based on, at least, positive and negative dimensions, suggesting both schizophrenia and 

schizotypy are heterogeneous. This should be considered in future. Furthermore, in the 

functional analysis, due to the scope of this thesis, only alpha and beta NNMF networks were 

inspected. Network relationships in other frequency bands may exist and should be investigated.  
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To conclude, there appears to be a robust relationship between increased schizotypy and reduced 

functional connectivity in the alpha band. These findings are noteworthy considering the alpha 

dysconnectivity shown in people with schizophrenia and adds to the growing body of 

neuroimaging literature showing functional continuity between health and diagnosis.  

 

Relationships between increased schizotypy and white matter connectivity were less clear. One 

explanation is that schizophrenia-traits result from the disruption of synaptic properties, via 

excitatory-inhibitory neurotransmitter systems, that specifically affect the efficacy of dynamic 

signals, such as those in the alpha band, and hence structural connectivity may only be minimally 

implicated.  

 

Undertaking a dimensional separation of schizotypy constructs in future analysis is also 

encouraged.  
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Chapter 8. Polygenic Risk Score for Schizophrenia and 

structural and functional connectivity 
 

8.1 Rationale 

Genetic variation is highly implicated in schizophrenia (Friston, Brown, Siemerkus, & Stephan, 

2016; Hall et al., 2015a; Kirov et al., 2012; Kong et al., 2012; Nakazawa et al., 2012; Walton et 

al., 2013). As the disorder significantly affects the quality of life of the individual (Bobes, 

Garcia-Portilla, Bascaran, Saiz, & Bousoño, 2007) and those around them (Ribé et al., 2018), 

considerable attention has been given to researching the genetic underpinnings. The combination 

of modern genetic analysis tools and MEG provides an opportunity to explore genetic-

electrophysiological correlates as well as genetic continuity between health and disease. 

Furthermore, as the assumption is that functional connectivity subject to the integrity of 

structural pathways, and genetics play a critical role in connectome development (Akarca, 

Vértes, Bullmore, & Astle, 2021; Domen et al., 2017; Greicius, Supekar, Menon, & Dougherty, 

2009), the genetic contribution to white matter pathology is also of considerable interest. 

 

8.2 Introduction 

A body of studies have shown that large-scale functional networks are impaired in schizophrenia 

(Bowyer, 2016; Hinkley et al., 2011; Houck et al., 2017; Kim et al., 2014; Sanfratello, Houck, & 

Calhoun, 2018; Uhlhaas & Singer, 2010a; Yang et al., 2014; Zhang et al., 2015) but the drivers of 

such network impairments at a mechanistic and genetic level are not fully clear. Large meta-

analytic studies, such as the ENIGMA project (~2000 patients), have also solidified the evidence 

of widespread white matter abnormalities, specifically reduced anisotropy, in these individuals, 

where consistent structural dysconnections had previously been difficult to identify (Kelly et al., 

2017a). Schizophrenia is a highly heritable disorder and while about 1 percent of the population 

are diagnosed with schizophrenia, risk to family members is increased by at least 10 percent 

(Hilker et al., 2018). Thus, increasing interest is being given to its genetic contributors. 

 

To differentiate subclinical and clinical connectivity differences from a genetic basis in vivo, 

studies have investigated connectivity differences in patients and close family members (Cho et 
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al., 2019; de Leeuw et al., 2016; Edmiston et al., 2020; Goghari, Sanford, Spilka, & Woodward, 

2017; Ou et al., 2016). For example, in a resting-state fMRI study, Edmiston and colleagues 

(2020), found both patients and unaffected family members to have reduced connectivity 

between the hippocampus and striatum, which was associated with poorer performance on the 

Wisconsin Card Sort Task (WCST), a measure of frontal lobe function, in both groups. As with 

patients, family members exhibit reduced Fractional Anisotropy (FA), suggesting white matter 

abnormalities extend to offspring and siblings (Cho et al., 2019; Domen et al., 2017; Ou et al., 

2016). 

 

In the functional literature, family members show dysconnectivity in the Default Mode Network 

and networks involved in emotion processing (Goghari, 2017). Individuals with schizophrenia 

show impaired emotion recognition and attribute negative affect to neutral faces (Bell, Bryson, & 

Lysaker, 1997; Pinkham, Brensinger, Kohler, Gur, & Gur, 2011). Hence, false attribution features 

as an endotype in prominent theories of schizophrenia, such as the Dysconnection hypothesis 

(Friston, 2016) and aberrant salience theory (Kapur, 2003). Interestingly, in the study by Goghari 

and colleagues, family members showed intermediate connectivity effects in the aforementioned 

networks but unlike patients, did not show disturbances of the visual areas, suggesting some 

networks are subject to genetic liability. 

 

Oscillatory disturbances in schizophrenia are seen across the frequency bands (Uhlhaas, 2013; 

Uhlhaas & Singer, 2010a). Connectivity in the alpha and beta bands appears to be robustly 

estimated and have a highly heritable basis (Colclough et al., 2017) and slower frequency 

oscillations are considered to have a fundamental role in long distance neural communication 

and integration of information, via widespread synchronisations (Siegel, Donner, & Engel, 2012; 

Traub, Whittington, Stanford, & Jefferys, 1996). Disturbances of such activity likely contribute 

to the persisting cognitive and negative symptoms seen in some patients (Uhlhaas & Singer, 

2010a) and therefore understanding the genetic contribution to dysconnectivity has connotations 

for the development of better treatments. 

 

Beyond familial studies, researchers have attempted to identify the building blocks of 

schizophrenia in the form of ‘risk genes’. Both common and rare differences in genetics 
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contribute to schizophrenia susceptibility (Rees, O’Donovan, & Owen, 2015). Studies of 

genomic copy number variation (CNVs) have established the role of rare variants in the 

aetiology of schizophrenia. CNVs can be either duplications or deletions of a stretch of DNA 

(Purcell et al., 2009). For example, the 22q 11 deletion variant is associated with schizophrenia 

proneness (Bassett et al., 2008) and has subsequently been associated with long-range and local 

connectivity (Dima et al., 2020; Doherty et al., 2021; Scariati et al., 2014)  as well as white 

matter deficits (Olszewski et al., 2017; Roalf et al., 2017). Consistent with the view that 

dysconnectivity is underpinned by faulty NMDAR function, many duplication and deletion 

CNVs on NMDA related genes have also been found to be highly associated with schizophrenia 

(Marshall et al., 2017). 

 

Some mutations are inherited while others arise de novo; because of a new mutational event. 

Patients have far more de novo mutations than their healthy counterparts (Rees, Kirov, 

O’donovan, & Owen, 2012). Such mutations have been strongly related to environmental factors 

such as paternal age at conception (Kong et al., 2012) and, to a lesser extent, maternal age also 

(Acuna-Hidalgo, Veltman, & Hoischen, 2016; Goldmann et al., 2016). The increased presence of 

these mutations can partly explain why the disorder persists in the population under the pressure 

of natural selection. 

 

Other genetic studies have investigated Single Nucleotide Polymorphisms (SNPs), which 

comprise small common variations in the genome, many of which have been associated with 

schizophrenia. Large genome wide association studies (GWAS) have made this possible, with 

over 100 loci being found (Working Group of the Psychiatric Genomics Consortium, 2014). It is 

now widely recognised that genetic susceptibility is not underpinned by large effects of 

individual variants, but by several SNPs which collectively contribute a great amount to genetic 

risk and heritability of schizophrenia and may relate to functional connectivity differences. For 

example, Walton (2013) found a positive relationship between a genetic risk score, generated by 

the cumulative effect of 41 SNPs from 34 putative schizophrenia risk genes, and left dorsal 

lateral prefrontal cortex (DLPFC) network inefficiency, during a fMRI working memory task. 
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While attempts to relate individual SNPs to functional connectivity are redundant, a wealth of 

information comes from studies relating genes to synaptic functioning. A key feature of the 

dysconnection hypothesis is that dysconnectivity is underpinned by faulty synaptic transmission, 

dysregulated synaptic gain of synchronous pyramidal cells and an imbalance of excitatory-

inhibitory processes. Genetic support for faulty glutamatergic NMDA receptors in schizophrenia 

comes from the 2014 GWAS study that found a number of genes associated with schizophrenia 

have a role in NMDAR function, plasticity or modulation; for example, the NMDAR/GRIN2A 

subunit and GRM3 receptor (Friston et al., 2016; Working Group of the Psychiatric Genomics 

Consortium, 2014). 

 

The aforementioned studies demonstrate the complexity of schizophrenia’s genetic forms. Over 

the last 10 years, attention has turned to studying the aggregate effect of associated genes. The 

Polygenic Risk Score for Schizophrenia (PRS-SZ) is calculated by summing the logged odds 

ratios of alleles (SNPs) associated with schizophrenia diagnosis (Purcell et al., 2009). PRS is a 

valuable measure of genetic risk in so far as it considered to predict at least 20% of heritability 

and ~10% of liability in schizophrenia (Pardiñas et al., 2018; Ripke et al., 2014). 

 

Subsequently, researchers have investigated PRS and its imaging correlates, particularly in large 

databases such as ENIGMA and BioBank (Alloza et al., 2020, 2018; Hall et al., 2015a; Lancaster 

et al., 2019; Stauffer et al., 2021). For example, polygenic risk has been associated with 

structural features, namely cortical thickness of the salience, default mode, and central-executive 

networks, in a large sample (UK BioBank, N= 3875) of healthy subjects (Alloza et al., 2020). 

Investigations of white matter connectivity specifically, however, in UK Biobank, have mostly 

yielded null results (Reus et al., 2017). Two other studies have also failed to find a relationship 

between PRS and whole brain FA (Bolhuis et al., 2019; Jansen et al., 2019). 

 

However, in the largest Biobank study to date (N = 69,369 cases and N = 236,642 healthy 

controls), Stauffer and colleagues found PRS to be negatively associated with FA in 63 regions 

and positively associated in 2 regions. The most strongly associated (FA) regions were all areas 

of temporal, cingulate, frontal, and insular cortex (Stauffer et al., 2021). An association with 

increased Mean Diffusivity (MD), i.e., an overall measure of diffusivity in the white matter 
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tracts, was also found in areas which overlapped with those showing a negative association 

between PRS and FA. Furthermore, a study of older adults (Alloza et al., 2018), found a 

relationship between PRS and age-linked decline in graph theory metrics calculated on FA 

network data. Those with higher PRS scores also showed longitudinal increases in mean 

diffusivity (MD), suggesting age, or PRS, could have a mediating effect on white matter 

dysconnectivity. 

 

Little work has been undertaken with PRS and oscillatory connectivity measures, particularly 

using MEG. In fact, to the best of the author’s knowledge no study has, thus far, investigated the 

relationship between PRS and global MEG oscillatory connectivity. However, several f/MRI 

studies have been conducted by a group at Cardiff University Brain Research Imaging Centre 

(CUBRIC), finding PRS to be associated with reward processing and reversal learning pathways, 

particularly in the ventral striatum, in adolescents and adults respectively (Lancaster et al., 2019; 

Lancaster, Ihssen, et al., 2016; Lancaster, Linden, et al., 2016). fMRI studies (n=12) conducted 

elsewhere, have been reviewed by Dezhina and Colleagues (2019). Most studies included were 

task-based and results differed considerably with both hyper- and hypo-connectivity across 

different cortical areas being found. Of the studies included, only one related PRS for 

schizophrenia to resting-state connectivity, finding increased connectivity between the bilateral 

insula and the left angular gyrus and reduced connectivity between the bilateral insula and the 

left DLPFC (Wang et al., 2017). 

 

Interestingly, Anderson and colleagues (2018), found evidence suggesting polygenic risk is 

enriched among interneuron genes involved in parvalbumin expression. Parvalbumin 

interneurons are inhibitory GABAergic cells involved in local excitation – inhibition circuitry. 

FMRI resting-state amplitude was negatively predicted by PRS in a pattern spatially congruent 

with parvalbumin interneuron density; namely posteriorly. This finding is consistent with the 

increasing body of evidence which suggests that glutamatergic NMDA receptors on interneurons 

are disturbed in schizophrenia (Balu, 2016; Belforte et al., 2010). 

 

Finally, electrophysiological PRS studies are largely missing, however with EEG, Narayanan and 

colleagues (2015) found multivariate genetic variants, associated with schizophrenia, were 
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related to alpha, delta and theta oscillations, when looking at activity derived with ICA. In 

adolescents, higher PRS scores have also been associated with elevated theta (3–7 Hz) and alpha 

(7–12 Hz) EEG connectivity (Meyers et al., 2021). 

 

Alpha and beta oscillations have been associated with numerous neurocognitive functions. 

Clayton and colleagues (Clayton, Yeung, & Kadosh, 2018) suggest alpha functions can be 

categorised as: inhibitory, perceptual, predictive, communicative and perceptually stabilising. 

With such widespread potential functionality, evidence for these oscillatory ‘characters’ is both 

complementary and conflicting and research to elucidate such theories is ongoing. Furthermore, 

in addition to communication in large scale networks (Buzsaki & Draguhn, 2004), beta 

oscillations appear to have a role in decision making (Siegel et al., 2012; Siegel, Engel, & 

Donner, 2011; Spitzer & Haegens, 2017), and are most frequently studied in the motor cortex 

(Jurkiewicz, Gaetz, Bostan, & Cheyne, 2006; Robson et al., 2016), though mechanisms 

underpinning beta oscillations remain unclear. Nonetheless, as schizophrenia patients show 

oscillatory disturbances across the frequency ranges (Uhlhaas & Singer, 2010b), and alpha and 

beta oscillatory connectivity has been shown to have a heritable basis through the study of twins 

(Colclough et al., 2017), potential relationships between band specific connectivity and PRS, 

ought to be explored. 

 

8.2.1 Aim and hypothesis 

Polygenic risk score provides a means to study schizophrenia risk in the healthy population. In 

this chapter I sought to investigate genetic liability (PRS 30%), for schizophrenia and structural 

and functional connectivity. Though the sample available is smaller than recent Biobank and 

ENIGMA studies (Alloza et al., 2020; Kelly et al., 2017a), functional correlates have previously 

been identified in the cohort with fMRI (Chandler et al., 2019; Lancaster, Ihssen, et al., 2016). 

Analyses investigating the relationship between polygenic risk and global oscillatory 

connectivity measures will be conducted using MEG for the first time to the authors knowledge. 

PRS as a predictor of structural white matter connectivity will also be investigated as functional 

connectivity might, at least partly, be assumed to rely on the integrity and length of white matter 

pathways (Amico & Goñi, 2018; Coronel-Oliveros, Castro, Cofré, & Orio, 2021; Messaritaki et 
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al., 2021). Age and gender will be controlled for, which is important considering the possible 

mediating effect of age on white matter abnormalities in schizophrenia (Alloza et al., 2018). 

 

Previous studies suggest schizophrenia and PRS are both associated with reduced FA and 

increased MD (Alloza et al., 2018; Canu, Agosta, & Filippi, 2015; Stauffer et al., 2021), thus is it 

is hypothesised that that PRS will predict reduced FA and increased MD. Other structural 

measures will be explored. Furthermore, though MEG studies have revealed both hyper and 

hypo-connectivity (Alamian et al., 2017) in patients, the majority of Blood Oxygen Level 

Dependent (BOLD) studies show reduced connectivity in schizophrenia (Pettersson-Yeo, Allen, 

Benetti, Mcguire, & Mechelli, 2010). As consistency has been shown between fMRI connectivity 

and alpha and beta connectivity (Brookes et al., 2011), a reduction in alpha and beta MEG 

connectivity associated with genetic load for schizophrenia is also expected. 
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8.3 Method 
8.3.1 Participants 

Participants were recruited as part of the 100-Brains and MEG-Partnership studies (N=183), at 

Cardiff University. Participants were screened and excluded based on psychiatric illness history 

and use of psychoactive drugs. Participants were all right-handed and university students. There 

were a higher proportion of females (67%) than males (33%), in this cohort. Of the 183 subjects 

some failures to generate polygenic risk score occurred, leaving 158 values. 

 

8.3.2 Genotyping and extraction of DNA 

DNA was collected using Oragene saliva kits. Genotyping was completed using genotyping 

arrays which contain approximately 500,000 common genetic variants (Illumina). Participants 

were subjected to the following quality control exclusions 1) ambiguous sex, 2) cryptic 

relatedness up to third-degree relatives, 3) less than 98% genotyping completeness, 4) non-

European ethnicity admixture, and 5) autosomal heterozygosity outliers. SNPs were excluded 

where major allele frequencies were dominant (minor alleles less than 1%), if the call rate was 

less than 98%, or if the χ2 test for Hardy-Weinberg equilibrium (population evolution) had a p 

value less than 1e-6. Principal component analysis was used for population stratification. A total 

of 233054 SNPs remained after quality control. Autosomal chromosomes were imputed using the 

reference panel HRCv1.1 (hrc. r1.1.2016) using a mixed population panel. A total of 7545595 

SNPs were imputed. Imputed data was converted to best-guess genotypes. The SNPs with multi-

allelic sites, a minor allele frequency <0.01, or significant departure from Hardy-Weinberg 

Equilibrium (P<0.0001) were removed. 

 

8.3.3 Creation of polygenic scores 

Calculations were performed according to the procedure described by the International 

Schizophrenia Consortium (2009). Training data were from the most recent schizophrenia 

GWAS using results from the Psychiatric Genomics Consortium (PGC) schizophrenia genome-

wide association studies (GWAS). SNPs were removed from all analyses if they had a low minor 

allele frequency (P < 0.01). Subsequently, the data were pruned for linkage disequilibrium using 

the clumping function (–clump), removing SNPs within 500 kilobase (–clump-kb) and R2 > 0.1 

(–clump-r2) with a more significantly associated SNP. The ‘–score’ command in PLINK (version 
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1.07) software was used to calculate polygenic score. Individual scores were created by summing 

the number of risk alleles present for each SNP (0, 1, or 2) weighted by the logarithm of each 

SNP’s odd ratio for schizophrenia from the PGC summary statistics. SNPs associated with SZ 

that surpassed three GWAS thresholds (PT 0.5, 0.1 & 0.05), were considered. These thresholds 

represent the approximate percentage of associated SNPs in the training dataset. For example, a 

P ≤.05 threshold, approximately includes 5% of all imputed SNPs. 

 

 

Figure 8.1. Frequency distribution of Z-scored PRS scores at threshold .05 (n=158) 

 

8.3.4 Functional resting-state analysis 

Amplitude-amplitude coupling connectivity parameters were estimated, using the methods 

described in Chapter 4. For each participant, a 5-minute resting-state scan was collected on a 

CTF275 MEG system at 1200Hz. Synthetic third-order noise cancellation was applied. 

Participants fixated on a red fixation point and were oriented upright. MRI, T1-weighted 

anatomical images were collected on a 3T GE scanner and used for co-registration. 

 

Pre-processing steps were completed in DataEditor. After down sampling to 600Hz datasets were 

epoched into two second trials and then visually inspected eye and muscle artefacts. Any trials 

containing artefacts were discarded. Co-registration was performed manually, marking the 

fiducial points in CTF space using photographs of participants nasion and pre-auricular areas. 
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Whole-brain connectivity analysis was performed in Fieldtrip, using LCMV beamforming source 

localisation and amplitude and amplitude coupling pipelines (Koelewijn et al., 2017; Routley, 

Singh, Hamandi, & Muthukumaraswamy, 2017). This generated connectivity measures across 

six frequency bands (delta 1-4Hz, theta 3-8Hz, alpha 8-13Hz, beta 13-30Hz, low gamma 40-60 

Hz and high gamma 60-90Hz). Data were projected onto a 90 node Automatic Labelling Atlas 

(AAL) (Tzourio-Mazoyer et al., 2002). Beamforming was completed using a 6mm grid and 

single shell forward model (Nolte, 2003). A vector norm normalisation was applied to weights in 

each frequency band separately (Hillebrand, Barnes, Bosboom, Berendse, & Stam, 2012), and a 

MNI inverse-warping procedure was adopted to ensure source grid consistency across 

participants. Selection of the 90 AAL nodes was based on the computation of virtual sensor time-

courses, where the beamformer voxel with the greatest temporal variance was chosen as the 

representative time-course for each of the 90 AAL regions. 

 

The resulting 90 time-series were orthogonalized to adjust for potential spurious correlations 

between virtual sensor data (Colclough et al., 2015). Amplitude envelopes were calculated using 

a Hilbert transform (the Hilbert function in MATLAB). The amplitude envelopes were also 

downsampled to a temporal resolution of 1s to study connectivity mediated by slow amplitude 

envelope changes (Colclough et al., 2015). Correlations between the amplitude envelopes (across 

the 90 AAL regions) in each frequency band were calculated and a Fisher z-transform applied. 

This resulted in 4005 connectivity correlations that were adjusted for differences in the length of 

time series between participants. An across-frequency band connectivity matrix was also created 

by taking the square root of the summed, squared connectivity matrices in each frequency band. 

 

8.3.5 Functional statistical analysis 

The value of each connection is, therefore, a strength of connectivity (z-scored correlation). 

Connections were selected as ‘valid connections’ by ranking each of the connections by strength, 

for each participant, and discarding the poorest 80% of consistently ranked connections across 

the whole group. Valid connections were carried forward for further statistical analysis.  

 

Consistent with the schizophrenia literature, risk scores at the 0.05 threshold level were used in 

the subsequent regression analyses, the results of which are reported here. At this level, there is 
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enough SNPs included for sufficient statistical power while strength of associations between 

SNPS and schizophrenia diagnosis is maintained (Purcell et al., 2009). PRS scores were Z- 

scored to account for any group differences across participants.  A linear regression (p<0.05, 

uncorrected) was performed on the valid connections in each frequency band and the combined 

map, with the main predictor of PRS, and age and gender as covariates, at the three PRS 

thresholds (0.05, 0.1, 0.5). To adjust for multiple comparisons a 10,000-iteration randomisation 

test with omnibus thresholding was also performed (p<0.05). To assess generalisability, a 5000-

iteration resampling procedure (sign test) was performed to construct a 95% confidence interval 

for connections per frequency band. 

 

Non-Negative Matrix Factorization 

A Non-Negative Matrix Factorization procedure (NNMF as described in Chapter 5) was applied 

to the resting-state data to summarise connections across the 90 AAL regions into a limited set of 

consistent network patterns across participants. As resting-state patterns of MEG connectivity in 

the alpha and beta bands are most consistent with fMRI resting-state networks (Houck et al., 

2016), focus was given to alpha and beta connectivity; 11 components were derived in the alpha 

band and 9 in the beta band. A regression model was built including the main predictor PRS, at 

the .05 threshold (z-scores), and age and gender covariates. The outcome variables were the 

component weightings, which represent the contribution from each participant to the component 

network (univariate testing). A Bonferroni adjustment was used to control for multiple 

comparisons within each regression model. To exclude outliers, the Cook’s distance method was 

used and set to 3*mean weighting value. 

 

8.3.6 Structural analysis 

Structural connectivity measures were initially derived by Dr Eirini Messaritaki (Messaritaki et 

al., 2021) and are summarised here. The same AAL labeling atlas that was used for the MEG 

functional connectivity analysis (90 cortical and subcortical regions) was used to summarise 

structural measures. This allowed the structural network to also be represented as 90 × 90 

symmetrical matrices, for each participant. 
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MRI data acquisition and pre-processing 

All MRI data were acquired on a GE Signa HDx 3T scanner (GE Healthcare, Milwaukee, WI). 

T1 images were acquired with a three-dimensional fast spoiled gradient and downsampled to 1.5-

mm isotropic resolution. 

 

A standard diffusion weighted MRI sequence (isotropic resolution of 2.4 mm) was used. 

Diffusion MRI data were co-registered to the T1 and corrections for head movement and eddy 

current distortions were made. Free-water correction was also conducted. A mcDESPOT 

sequence (which can provide myelin measures), was also implemented (Deoni, Rutt, Arun, 

Pierpaoli, & Jones, 2008). Images for each participant were linearly coregistered to a spoiled 

gradient recall (SPGR) image, to correct for subject motion. Non-brain tissue was removed using 

a mask computed with the BET algorithm (Smith, 2002). 

 

Tractography analysis 

Tractography was performed on the DTI data, using the streamline algorithm in MRtrix 3.0 

(Dhollander, Raffelt, & Connelly, 2016). White matter tracts were localised using a WM mask 

generated from the T1-weighted images using FSL fast (Jenkinson et al., 2012). The minimum 

and maximum tract lengths were 30 and 250 mm, respectively. Structural networks (connectivity 

matrices) were generated with connections or edges representing white matter tracts. 

 

Streamline selection- Threshold Vs COMMIT methods 

Previously, the minimum number of streamlines taken to suggest that a tract has been reliably 

reconstructed has been selected arbitrarily, limiting the quantitative nature of streamline 

measures (Daducci, Palù, Lemkaddem, & Thiran, 2015). The COMMIT method (Daducci et al., 

2015) is a data driven alternative and rejects any streamlines that are not consistent with the 

overall diffusion signal in the diffusion-weighted images. This is done by fitting a linear 

combination of restricted and/or hindered contributions of candidate tracts and selecting those 

which result in the best global fit of the signal in each voxel. This research provides an 

opportunity to compare the traditional and COMMIT methods. The number of streamlines was 

also generated in the conventional approach with a threshold of 18 streamlines which was found 

https://www.tandfonline.com/doi/full/10.1080/17470919.2016.1229215
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to give the same sparsity of connections produced by the COMMIT method. That is, that tracts 

with fewer than 18 streamlines were discarded. 

 

mcDESPOT analysis 

A mcDESPOT algorithm was used to detect the fast (water constrained by myelin), and slow 

(free-moving water in intra- and extracellular space), elements of the T1 and T2 times, and a 

non-exchanging free-water component (Deoni, Matthews, & Kolind, 2013). The fast volume 

fraction was taken as a map of the myelin water fraction. The ratio of myelin-bound water to 

total water was calculated, which is the myelin volume fraction (MVF). A MRtrix function 

(tcksample), was used to assign a proportion of the MVF to each streamline, in each tract.  This 

measure was averaged over its streamlines, providing a myelin-weighted value (MM), for each 

tract.  

 

The matrices that resulted from these procedures were normalised by dividing by the largest 

value of each matrix, so that, within any given matrix, the values range from 0 to 1. Self-

connections (diagonals) were set to zero so that 4005 unique connections were carried forward 

for further analysis. 

 

As described in Chapters 6 and 7 of this thesis, the structural measures that resulted are: 

White matter tractography DTI measures 

 Number of streamlines (NST) is the number of reconstructed streamlines, subject to the 

threshold of 18. 

 Standardised number of streamlines (SST) is the number of reconstructed streamlines at 

threshold 18, divided by the length of the tract. 

 Number of streamlines (NSC) is number of streamlines in the tracts as selected by the 

COMMIT method described above. 

 Standardised number of streamlines (SSC) is number of streamlines within a tract divided 

by the length of the tract, selected by the COMMIT method. 

 Fractional Anisotropy (FA) is a measure of the anisotropy in the diffusivity of water 

molecules calculated from three eigenvectors. An isotropic tensor would have equal 

eigenvectors. 
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 Radial Diffusivity (RD λ┴) is a measure of water diffusion perpendicular to the direction 

of the tracts. 

 Axial Diffusivity (AD λ║) is a measure of water diffusion parallel to the direction of the 

tracts. 

 Mean Diffusivity (overall diffusivity) is the mean of the three eigenvalues ((λ1+ λ2+ 

λ3)/3) of the diffusion tensor. 

 

mcDESPOT measures 

 Myelin Water Fraction (MM), measures water diffusivity within the myelin giving an 

indirect measure of myelin density in the voxels including tracts. 

 

As stated in earlier chapters, the number of streamlines connectivity measures were available for 

the 100-Brains and MEG-Partnership cohorts (N=161). The other structural connectivity metrics 

were only available for the 100-Brains cohort (n=90).  

 

Non-Negative Matrix Factorization- Structural 

The NNMF algorithm was also applied to the structural connectivity matrices. The same 

thresholding parameters, used in the functional NNMF procedure, were applied to avoid 

overfitting. This resulted in between 10-18 components for each of the structural measures; NST, 

SST, NSC, SSC, FA, RD, AD, MD & MM. 

 

8.3.7 Structural statistical analysis 

The structural components were analysed with regression analysis. PRS was the main predictor, 

and age and gender were covariates. Bonferroni correction was applied to adjust for the number 

of components. 
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8.4 Results 
8.4.1 Functional Connectivity - Edge level 

Associated edge level connectivity is shown in Figure 8.2. Reduced frontal connectivity in the 

delta band (two edge connections) was found (P<0.05, uncorrected). Few connections were 

found in the alpha band (p<0.05, uncorrected). Increased connectivity was found between the 

occipital lobes whereas decreased connectivity was found in the left occipital and left parietal 

areas. Changes in connectivity associated with PRS in the beta band were more widespread with 

reduced connectivity across occipital, parietal, temporal areas (p<0.05, uncorrected). Two 

increased edge connections were also found (occipital, parietal). Valid connections were found in 

the high gamma range but did not survive significance testing. No connections withstood testing 

for multiple comparisons with a 1000 iteration permutation testing. 

 

When the frequency bands were combined left occipital-temporal connectivity was reduced (see 

Figure 8.2, where strength of associated edge connections is represented by the colour intensity 

of red or blue lines). A decreased connection edge was also found between occipital areas in the 

combined map (p<0.05, uncorrected). No valid connections were found in the theta and low 

gamma bands. Analysis at the 95% confidence interval found reduced and increase posterior 

alpha connectivity and more widespread reduced beta connectivity (into temporal and frontal 

areas- see Figure 8.3).   
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Figure 8.2. Connectivity analysis, circle plots: Each row shows across subjects’ oscillatory 

amplitude correlations for the four frequency ranges where valid edges were found and the 

combined map. The first column, valid connections, shows the connections at mean rank >0.8, 

per frequency band and across the combined frequencies. The second column shows connections 

significantly associated with PRS 0.05 at the uncorrected level (univariate regression, p<0.05). 
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To consider the generalisability of associated connections, the third column shows univariate 

connections where the confidence interval (95%) on the regression slope did not include zero. In 

column 2 and 3, positive correlations, i.e., increased connectivity, are represented with red lines 

whereas negative correlations, i.e., decreased connectivity are represented with blue lines. 

 

 

Figure 8.3. Alpha and beta connectivity (resampling confidence interval, 95%, 5000 iterations) 

across the three risk score thresholds, from left to right: 0.05, 0.1, 0.5.  Blue lines represent 

decreases in connectivity, whereas red lines represent increases. 

 

8.4.2 Non-Negative Matrix Factorization- Functional 

PRS was not significantly associated with any functional NNMF components, even at the 

uncorrected level, nor any covariates. 

 

8.4.3 Non-Negative Matrix Factorization-  Structural 
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NNMF was applied to the structural matrices, across participants, to explore whether PRS is 

associated with any structural sub-networks. 

 

Figure 8.4. Streamlines NNMF connectivity components across gender, age, and PRS score 

across the three thresholds. The text shows the effect size (beta) and the p-value for each 

component. Red boxes represent positive relationships. Blue boxes represent negative 

relationships. Text in white shows relationships which meet multiple comparison adjustment 

(p<.05), whereas text in black shows relationships significant at the uncorrected level (p<.05). 
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PRS was overall negatively associated with the streamlines components, as can be seen in Figure 

8.4. Two components, derived from standardised streamlines measures, survived adjustment 

across the different PRS thresholds, which is good evidence towards an effect. These 

components can be seen in Figure 8.5. 

 

 

Figure 8.5. Standardised streamline components consistently predicted by PRS across the three 

PRS thresholds. Left: SS component 4 (Thresh18). Right: SS component 4 (COMMIT). The blue 

line shows that PRS predicted reductions in these networks.  

 

Some overlap can be seen in the significant streamlines component networks suggesting PRS is 

correlated with reductions in these networks, suggesting that the methods is less important that 

sparsity in streamline selection and capturing variance associated with PRS. The network on the 

left comprised caudate-frontal connections whereas the network on the right comprises primarily 

caudate connections. 

 

Structural measures 

The correlations between PRS and the structural measures can be seen in Figure 8.6. 
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Figure 8.6. Structural NNMF connectivity components across gender, age, and PRS score across 

the three thresholds. The within component text shows the effect size (beta) and the p-value. Red 

boxes represent positive relationships. Blue boxes represent negative relationships. Text in white 

shows relationships which meet multiple comparison adjustment (p<.05), whereas text in black 

shows relationships significant at the uncorrected level (p<.05). 
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Consistent with findings by Stauffer and colleagues (2021), PRS positively predicted all the MD 

components, with 10 surviving adjustment for multiple comparisons (shown in Figure 8.7). 
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Figure 8.7.  The 10 MD network components significantly predicted by PRS. The red lines show 

that PRS was positively correlated with these networks.  

 

There were also 6 axial diffusivity components predicted by PRS which survived multiple 

comparisons adjustment. Another six components were positively correlated but did not survive 

multiple comparison adjustment. These findings suggest that higher PRS scores are associated 

with increased Axial Diffusivity (AD) components. Significant AD component networks are 

plotted below in Figure 8.8. 
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Figure 8.8. The six AD networks significantly predicted by PRS. Networks span widespread 

areas. The red lines show that PRS was positively correlated with these networks 

 

Contra-prediction, no significant relationships were found with FA components. A significant 

positive relationship between PRS score and one Euclidean distance component was found at the 

PRS.01 threshold only. No other significant relationships were found with the structural 

measures after adjustment. 

 

Additional analyses 

To further explore whether any global effects could be responsible for the relationship between 

PRS and AD and PRS and MD, the global mean of non-zero connection across each participant’s 

90x90 connectivity matrices was calculated. Two regression models were built with global AD 

and MD as the outcome variables and PRS, age and gender as predictors. The results are shown 

in Tables 8.1 and 8.2.  

 

Table 8.1. Regression output for a global AD outcome 

 beta estimate SE T stat P value 

Intercept 0.001 1.766 66.303 0.000 

Prs_05 0.000 0.000 -1.020 0.311 

Age 0.000 0.000 2.549 0.013 

Gender 0.000 0.000 -3.793 0.000 

 

Table 8.2. Regression output for a global MD outcome 

 beta estimate SE T stat P value 

Intercept 0.001 0.000 45.531 0.000 

Prs_05 0.000 0.000 -0.174 0.862 

Age 0.000 0.000 1.610 0.111 

Gender 0.000 0.000 -1.744 0.085 

 

Interestingly, both age (p<.05) and gender (p<.01) were significantly associated with global AD, 

however PRS was not (p>.05), suggesting the relationship between PRS and AD is not driven by 

a global effect. PRS was also not associated with global MD suggesting the PRS–MD 

relationships found in this chapter were also not the result of a global effect.  
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The covariate relationships support previous research showing a relationship between age and 

AD (Kumar, Chavez, Macey, Woo, & Harper, 2013b; Kumar, Nguyen, Macey, Woo, & Harper, 

2012). Gender differences in AD have also been shown in putamen, thalamic, hypothalamic, 

cerebellar, limbic, temporal, and other cortical sites (Kumar et al., 2013a, 2012), highlighting the 

importance of including these factors as covariates.  
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8.5 Discussion 

In this chapter, polygenic risk score for schizophrenia, as a predictor of global MEG resting-state 

connectivity, was explored for the first time to the author’s knowledge. Regarding functional 

oscillatory connectivity, at the edge level, while no connections withstood multiple comparisons, 

some posterior alpha and beta connections were suggested at the uncorrected level and 95% 

confidence interval. However, further exploration of networks derived by Non-Negative 

Factorization across subjects, did not reveal any significant functional relationships, despite the 

reduced number of outcomes. While previously some large-scale studies have failed to reveal a 

relationship between PRS and white matter connectivity (Bolhuis et al., 2019; Jansen et al., 

2019), a robust relationship was found between PRS and structural connectivity measures, 

namely increases in axial diffusivity (AD) and mean diffusivity (MD) NNMF measures. 

Reductions in NNMF networks generated from standardised streamline measures were also 

predicted by PRS. 

 

AD describes the mean diffusion value (mm^2/s) of water molecules diffusing parallel to the 

tract within a voxel of interest (Winklewski et al., 2018). AD values have been taken as an index 

of axonal injury on account of animal findings by Song, Sun and colleagues (Song et al., 2003; 

Sun et al., 2006). MD refers to the average value of diffusivity in 3 tangential directions and is 

therefore considered a measure of overall diffusivity in white matter tracts. Both are unspecific, 

like other measures taken at the voxel level (FA, RD & MD), and may also reflect axonal calibre, 

or coherence in the orientation of axons within a given voxel, so interpretations of findings are 

made with caution. 

 

The widespread positive AD effect suggests that individuals with high genetic load for 

schizophrenia have stronger axial diffusivity network components. Increased AD would suggest 

that water is less constrained in the direction of the white matter tracts. The opposite effect has 

been suggested in previous research showing patients (Kelly et al., 2017b), 22.q.11 carriers 

(Kikinis et al., 2012), and those with increased PRS scores (Stauffer et al., 2021), have 

widespread reduced FA. Although, broadly, AD and FA measure water movement parallel to 

white matter tracts, the different effects in AD and FA correlates suggest these measures could be 

capturing distinct aspects of diffusivity along the direction of the tract. 
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Regardless of the physiological mechanisms, the finding adds to the body of research showing 

white matter alterations in schizophrenia genetic risk, where AD findings have been mixed. For 

example, a recent study (2359 controls & 1963 patients), did not find any AD differences 

between patients and controls (Kelly et al., 2017b), whereas the largest recent Biobank study to 

date (Stauffer et al., 2021), found patients to have significantly higher AD in the fornix in 

comparison with controls. Although in healthy participants, the present investigation supports the 

work Stauffer and colleagues and suggests AD could be a marker of pathogenetic continuity 

between the healthy and patient populations. 

 

PRS was also positively associated with half of the MD components. This result is also 

consistent with the Biobank study by Stauffer and colleagues (2021), who found PRS associated 

with increased MD, within callosal fibers, projection fibers, association fibers, limbic system 

fibers, and brainstem tracts. These findings are interesting for two reasons, 1) that PRS might be 

associated with some overall diffusivity effect in the brain and 2) that applying NNMF to 

structural data might generate structural subnetworks that are sensitive to changes associated 

with PRS. Unlike AD and RD, MD has not been associated with specific physiological 

properties, limiting the interpretation of the results. However, if future research establishes a 

consistent relationship between PRS and increased MD, MD will provide an important target for 

future genetic and clinical studies. Importantly, neither the AD nor MD relationships were driven 

by a global mean effect. 

 

Regarding the other structural measures, PRS was associated with reduction in standardised 

streamline components. Interestingly, the associated components derived from streamlines at 

threshold 18 and with the COMMIT method, were highly similar. This is reassuring as it 

suggests that the method of thresholding might be of less importance than sparsity, in capturing 

network variance associated with PRS.  

 

Together therefore, structural results suggest PRS is associated with a reduction in the integrity 

of the white matter tracts based on the streamlines reconstruction, and an increase in diffusivity 

within white matter tracts. 
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While there is no significant evidence for an association between oscillatory connectivity and 

PRS given in this chapter, there are some reasons why these findings might not extend to the 

clinical population. Numerous studies have now shown patients with schizophrenia to have 

oscillatory dysconnectivity in networks involving occipital, parietal, frontal and temporal areas 

(Bowyer, 2016; Goghari et al., 2017; Hinkley et al., 2011; Houck et al., 2017; Kim et al., 2014; 

Sanfratello et al., 2018; Uhlhaas & Singer, 2010a; Yang et al., 2014; Zhang et al., 2015). Alpha 

and beta oscillations appear to be fundamental to cortical networks (Bastos et al., 2015; Bowyer 

et al., 2015; Brovelli et al., 2004; Buzsaki & Draguhn, 2004) and have been shown to have a 

heritable basis (Colclough et al., 2017).  

 

On one hand, the reduced alpha and beta occipital- parietal connections found at the edge level 

are consistent with the aforementioned findings and could be further explored. On the other 

hand, however, findings in this chapter may well show that an increased genetic profile of SNPs 

associated with schizophrenia is correlated with structural but not functional dysconnectivity. It 

is possible that structural differences exist in those with high PRS and that functional changes 

develop later or are associated with a different facet of schizophrenia, for example the 

presentation of schizophrenia symptomology, as shown in the previous chapter. Support comes 

from studies which have shown that functional dysconnectivity is more widespread in chronic 

schizophrenia than in at-risk and first-episode groups (Grent-’t-Jong et al., 2018; T. Li et al., 

2017; Pettersson-Yeo et al., 2011; Satterthwaite & Baker, 2015).  

 

Limitations and future directions 

Recent research associating PRS with fMRI/MRI phenotypes have utilised particularly large 

samples because of the availability of resources such as UK Biobank. By comparison, the sample 

size here was small/moderate, however at present, an equivalent MEG database has not been 

established. The largest electrophysiological PRS study to date was conducted by Hall and 

colleagues (2015), which investigated relationships with several event-related potentials (ERP), 

including P3, sensory gating (P50), and gamma oscillations (n=271 patients). The comparatively 

small sample size combined with the limited variability in PRS score, could mean the functional 
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analyses are underpowered, despite the published fMRI findings in the same group. Conducting 

PRS analysis in clinical populations, where scores are more likely to vary, is also important. 

 

In general, PRS, as compared to family status, might be a more sensitive measure of disease 

proneness (Goghari et al., 2017). Specifically, PRS score incorporates a large number of variants, 

even at small effect, that contribute to manifestation; variants which family members may lack. 

Current thinking among researchers and clinicians is that PRS has the potential for use in clinical 

differentiation (Lewis & Vassos, 2020), however this would require standardisation of the 

methods and procedures used to generate the PRS scores. 

 

Moreover, there is still much to be understood about genetic-electrophysiological mechanisms. 

Anderson and colleagues (2018) found resting-state fMRI amplitude to be associated with PRS 

in posterior areas congruous with increased inhibitory parvalbumin interneuron density, which is 

suggestive of a relationship between PRS and E-I balance. As MEG signal reflects the magnetic 

fields generated by thousands of synchronous pyramidal cells and is thus considered a direct 

measure of excitatory- inhibitory balance (Vrba & Robinson, 2001), MEG continues to be a 

valuable tool for considering PRS network relationships. 

 

One of the aims of this research was to investigate global sub-networks from structural and 

functional data, however, in future, it would be interesting to investigate the relationship between 

PRS and AD/MD in specific white matter tracts. For example, as schizophrenia is associated 

with abnormalities of the anterior cingulate (Adam & David, 2007; Bowyer et al., 2015), and that 

PRS is associated with MD in the cingulate gyrus association fibres (Stauffer, 2021), these tracts 

might be a good target for investigation. Furthermore, as mentioned the participants in this 

cohort were healthy, so the effects found may be different in the patient population and could be 

explored further.  

 

In conclusion, this chapter has shown a robust relationship between PRS and AD and MD 

diffusivity components derived using Non-Negative Matrix Factorization. However, no 

significant relationships were found between PRS and functional alpha and beta networks. The 

modest variability in PRS and factors discussed imply further larger studies are warranted. Such 
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research will facilitate our understanding of genetic contributions to structural and oscillatory 

disturbances in schizophrenia. 
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Chapter 9. Schizophrenia risk factors and local visual 

gamma 
 

9.1 Rationale 

Relationships between genetic and clinical risk and long-range connectivity have been shown in 

Chapters 7 and 9. However, to what extent these risk factors are correlated with local circuitry is 

still to be established. High frequency oscillations are thought to reflect local circuitry in the 

visual cortex (VC) and gamma abnormalities have consistently been shown in people with 

schizophrenia (Moran & Hong, 2011; Rutter et al., 2009; Shaw et al., 2020; Tsuchimoto et al., 

2011; Williams & Boksa, 2010), to the extent that gamma reductions have been considered an 

endophenotype for schizophrenia disorders. Gamma reductions in the VC have also been 

associated with visual disturbance, perceptual abnormalities and delusional thought (Grent-‘t-

Jong et al., 2016; Robson et al., 2016). This chapter explores risk factors for schizophrenia and 

their relationship to properties of the sustained visual gamma response, as a proxy for local 

circuitry in the VC.  

 

9.2 Background 
Schizophrenia has been proposed as a disorder of dysconnectivity, both within and between brain 

regions, with an abundance of research in support (Friston & Frith, 1995; Friston, Brown, 

Siemerkus, & Stephan, 2016). Individuals with schizophrenia have difficulties with clear 

perceptual thought, otherwise underpinned by coordinated cortical activity, making neural 

circuits prime candidates for investigation. The synaptic mechanisms involved in 

dysconnectivity remain under discussion. Theories include 1) impaired GABAergic modulation 

2) NMDA receptor (Glu) hypofunction onto GABAergic interneurons and 3) dopamine 

dysregulation downstream from D2 receptors. Theories 1 & 2 implicate a disturbance of the 

aforementioned excitation- inhibition balance (see introductory section on gamma oscillations), 

where interactions between glutamatergic pyramidal cells and GABAergic interneurons are 

dysregulated.  

 

Data from animal studies, post-mortem studies and genetic studies indicate altered GABAergic 

functioning in schizophrenia (Guidotti et al., 2005; Hashimoto et al., 2003; Pocklington et al., 
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2015). GABA dysfunction is thought to lead to the disinhibition of glutamatergic pyramidal 

neurons and a loss of synchronous cortical activity (Lewis, Curley, Glausier, & Volk, 2012; 

Lisman et al., 2008). Certainly, in post-mortem brains there is a reduction in the GABA-

synthesizing enzyme, GAD67 mRNA and protein which is responsible for the majority of 

GABA production (Hashimoto et al., 2003; Volk, Austin, Pierri, Sampson, & Lewis, 2000). 

Recent large scale genetic studies have also provided support for direct involvement of both 

common and rare genetic variations in primary GABAergic dysfunction (Pardiñas et al., 2018; 

Pocklington et al., 2015).  

 

Studies in vivo however have provided mixed results. In a review of 16 Positron Emission 

Spectroscopy (GABA H-MRS) and 7 GABAA Positron Emission Tomography (PET) and Single 

Photon Emission Computed Tomography (SPECT) neuroimaging studies in the prefrontal cortex 

and striatum, Egerton and colleagues did not find significant differences, though studies were 

observed to have considerable heterogeneity (Egerton, Modinos, Ferrera, & McGuire, 2017).  

 

The association between gamma-eliciting visual orientation tasks and GABA concentrations 

makes these tasks a useful probe of GABA inhibitory processes (Edden, Muthukumaraswamy, 

Freeman, & Singh, 2009; Muthukumaraswamy et al., 2009). Gamma oscillations are generally 

reduced in schizophrenia, in both early onset and chronic groups, independent of antipsychotic 

medication treatment (Tillman et al., 2008; Spencer, Niznikiewicz, Shenton, & McCarley, 2008; 

Uhlhaas & Singer, 2010). The primary action of antipsychotics is targeting dopaminergic 

systems by D2 receptor antagonism. Thus, considering the PING model, gamma alterations 

appear at least in part due to impaired GABAergic functioning.  

 

In support, a recent paper (Shaw et al., 2020) investigated occipital gamma oscillations and 

GABA in schizophrenia using a PING informed Dynamic Causal Modelling approach. Induced 

gamma oscillations, performance on the visual-orientation task and GABA levels were reduced 

in the clinical group.  Interestingly, coupling strength between inhibitory neurons and layer 2/3 

superficial pyramidal cells predicted performance on the visual orientation task, supporting the 

finding that gamma oscillations reflect local inhibitory processes (Muthukumaraswamy et al., 

2015b). Furthermore, interneuron-interneuron effective connectivity was significantly reduced in 
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the schizophrenia group and was associated with reduced gamma frequency and severity of 

negative symptoms (Shaw, Knight, et al., 2020). Superficial pyramidal connections and deep 

pyramidal -interneuron projections (layers 4, 5/6) were also reduced at trend. No relationship 

was found between MRS measures and behavioural performance.  

 

The extent to which characteristics of gamma oscillations elicited in this way relate to 

connections between the cortical laminae in VC has been established through Dynamic Causal 

Modelling (DCM). DCM has shown that the amplitude of the gamma signal is under the control 

of interneurons and pyramidal cells in the superficial layers (Shaw et al., 2017). Furthermore, if 

amplitude is relative to the strength of the postsynaptic current (synaptic gain) layer 4 stellate 

cells - superficial pyramidal (L4S->SP) connections could also be important, but multiple 

connections are feasible (Shaw, Muthukumaraswamy, et al., 2020a). Pharmacological studies 

should be informative. For example, it has been shown the tiagabine (GABA reuptake inhibitor) 

led to reduced amplitude and increased frequency of the visual gamma response (Shaw et al., 

2017).  

 

In theory, the frequency of the oscillation is under the control of the interneurons and recorded 

from superficial pyramidal cells (signal reflected in M/EEG). Thus, connections between 

superficial interneurons (SI) and superficial pyramidal cells (SP), in directions SI->SP, SI->SI 

and SP->SI, are implicated (Sumner et al., 2021). The superficial pyramidal to superficial 

pyramidal (SP->SP) connection is also inhibitory and may also contribute. In general, finding the 

same or similar connections predicting both gamma frequency and gamma amplitude is likely.  

 

In schizophrenia, the failure of studies to find consistent effects for MRS GABA and behavioural 

measures lends support to the synaptic theory 2) that glutamatergic NMDA receptor 

hypofunction leads to aberrant GABAergic interneuron inhibition which then causes pyramidal 

cell dysfunction (Cohen, Tsien, Goff, & Halassa, 2015). Valuable insight comes from 

pharmacology studies with NMDAR agonists such as ketamine and phencyclidine (PCP), which 

have long been shown to produce an array of schizophrenia -like symptoms in healthy 

individuals (Cohen et al., 2015; Li & Vlisides, 2016; Luby, Cohen, Rosenbaum, Gottlieb, & 

Kelley, 1959). Notably, while dopamine agonists also produce a subset of psychotic symptoms, 
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sub-anaesthetic doses of ketamine produce the full syndrome, including by withdrawal, blunted 

affect, psychomotor retardation, delusions, and cognitive impairment (Krystal et al., 1994). 

 

A number of putative risk genes for schizophrenia have also been found to be involved in 

NMDA regulation. For example, the expression of neuregulin 1 and ErbB4 genes is increased in 

the disorder (Harrison & Weinberger, 2005); an increase that has been associated with 

suppressed NMDAR regulation (Pitcher et al., 2011). Moreover, genetic ablation of NMDARs 

reduces the expression of cortical and hippocampal glutamic acid decarboxylase 67 (GAD67) 

and parvalbumin, in mouse, and leads to schizophrenia-like behaviours such as novelty-induced 

hyperlocomotion and impaired prepulse inhibition (Belforte et al., 2010). In humans, similar 

impairments result from dysfunction of NMDARs rather than a reduction in number (Kantrowitz 

& Javitt, 2010).  

 

As with GABA, researchers have sought to explore dysregulation of the excitatory side of the E-I 

balance in schizophrenia using MRS. Establishing in vivo evidence for altered glutamate levels 

would provide additional, though indirect, support for the NMDAR hypothesis. At present, 

review studies show increased glutamate-related metabolites (basal ganglia, thalamus & medial 

temporal lobe) (Merritt, Egerton, Kempton, Taylor, & McGuire, 2016), increased cortical Glx 

(glutamate & glutamine combined) (Salavati et al., 2015) and no changes (Iwata et al., 2018). 

Unlike GABA, glutamate binds with other receptors such as AMPAR and kainite receptors, is 

involved in several processes outside of neurotransmission and is tightly coupled with glutamine 

(Tani et al., 2014) and glutathione (Sedlak et al., 2019) challenging the acquisition of reliable 

estimates. Separation of glutamate metabolites, e.g., glutamate and glutathione, via 3 Tesla MRS 

has also been controversial and generally considered to be difficult, due to in-sufficient peak 

resolution in the frequency domain. With the increasing availability of ultra-high field (e.g., 7T) 

MR scanners, allowing a clearer separation of metabolite peaks, the status of glutamate in 

schizophrenia will likely be elucidated in future. 

 

The nature of gamma alterations in schizophrenia may also contribute some information about 

the mechanisms at play. A reduction of amplitude has been found consistently in patients 
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(Williams & Boksa, 2010). Reductions in frequency have also been found (Shaw et al., 2020; 

Spencer et al., 2004) but the directionality of the alteration has been more variable.  

 

Alterations in gamma in schizophrenia have been associated with several cognitive, behaviour 

and symptom factors. For example, reduced task induced gamma amplitude found in the VC is 

accompanied by poorer visual task performance (Shaw et al., 2020; Uhlhaas & Singer, 2010). 

Oscillations are also associated with both positive (Spencer et al., 2008) and negative symptoms 

(Shaw et al., 2020) with one of the prominent positive symptoms in schizophrenia being visual 

disturbance and hallucinations. As regulated gamma oscillations are fundamental in perceptual 

binding (Tallon-Baudry et al., 1996), visual gamma oscillations seem to comprise an important 

local disease marker.  

 

The association with negative symptoms is also interesting as negative symptoms often persist 

after the offset of acute psychosis and in medicated patients (Buchanan, Breier, Kirkpatrick, Ball, 

& Carpenter, 1998; Javitt, 2001; Tamminga, Buchanan, & Gold, 1998). As mentioned, 

antipsychotics operate by antagonising D2 receptors. This is in line with evidence suggesting 

schizophrenia manifests from downstream hyperdopaminergia through faulty striatal D2 

receptors and hypodopaminergia through altered fronto-cortical D1 receptors (Howes & Kapur, 

2009). However, the persistence of symptoms suggests that dopaminergic pathways may be 

secondary to a primary neurotransmitter imbalance, with impaired glutamatergic-GABAergic 

mechanisms being the supported candidates (Stone, Raffin, Morrison, & McGuire, 2010). 

 

Abnormal task-related gamma oscillations have also been observed in certain at-risk groups, 

both in the visual (Kornmayer, Leicht, & Mulert, 2014; Koychev, Deakin, Haenschel, & El-

Deredy, 2011) and auditory (Hall et al., 2009; Tada et al., 2014; Vernon, Haenschel, Dwivedi, & 

Gruzelier, 2005) cortices, suggesting local excitation-inhibition dysfunction could comprise a 

spectrum. Risk groups broadly fall into two categories, clinical risk and genetic risk, although 

these are not mutually exclusive. Individuals in clinical high-risk groups tend to have undergone 

clinical assessment for psychosis proneness, for example, the Comprehensive Assessment of At-

Risk Mental States (CAARMS) Interview (Yung et al., 2005), or otherwise score highly on 

measures of schizophrenia traits such as the Schizotypy Scale (Raine & Raine, 1991).  
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A prominent idea is that schizotypy indexes a continuum between the normal population and 

schizophrenia onset (Barrantes-Vidal et al., 2015; Claridge & Beech, 2010; Grant et al., 2018). 

Altered gamma oscillations have also been shown to be associated with schizotypy (Reilly et al., 

2018). In a review Reilly found 8 studies that had investigated schizotypy in relation to gamma. 

The findings were heterogeneous. For example, Kornmayer reported a positive correlation 

between visual gamma amplitude and the positive schizotypy dimension (Kornmayer, Leicht, & 

Mulert, 2014a), whereas other studies reported reductions in phase locking factor and spectral 

power in visual and auditory cortices respectively (Koychev et al., 2011a; Vernon, Haenschel, 

Dwivedi, & Gruzelier, 2005).  

 

Schizophrenia is also a highly heritable polygenic condition (Larsen et al., 2018; review Mistry, 

Harrison, Smith, Escott-Price, & Zammit, 2018). Genetic risk evidence comes from familial 

studies and genetic association studies. For example, variation on chromosome 22 (22q11.2DS), 

is used as a homogeneous genetic liability model for schizophrenia and has been associated with 

reduced gamma in a 40Hz auditory steady state stimulus task (ASSR) (Larsen et al., 2018); a 

response also underpinned by excitatory-inhibitory regulation. Polygenic risk score for 

schizophrenia (PRS), an association score of multiple variants at low effect expressed in the 

healthy population, has also been associated with reduced ASSR in the gamma band (Hall et al., 

2015). Furthermore, relatives of patients who had schizophrenic spectrum personality symptoms 

showed reduced fronto-cortical gamma ASSAR power at 40 Hz (Hong et al., 2004).  

 

Rather than a single risk gene for schizophrenia, the known polygenic contribution of many 

genes distributed across the population, supports the continuous nature of schizotypy. A number 

of SNPs considered important in schizophrenia have been associated with schizotypy (e.g., 

rs4680, see Barrantes-Vidal, Grant, & Kwapil, 2015), suggesting some cross over of genetic 

underpinnings. However, a relationship between PRS and schizotypy does not appear to exist 

(Nenadić et al., 2020). It is well known that the prerequisite to psychosis onset is multifaceted 

and factors which lead to a high score on a schizotypy scale (e.g., developmental/ life factors), 

may have an environmental contribution which are not reflected in scores of genetic liability.  
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9.2.1 Aim and hypotheses  

The aim of this chapter is to explore the relationship between clinical and genetic risk factors and 

visual gamma metrics, as probes of local connectivity in the VC. It is expected that 1) schizotypy 

and polygenic risk score for schizophrenia (PRS), will be associated with reduced visual gamma 

amplitude, considering findings in schizophrenia, 2) schizotypy and PRS will be associated with 

reduced visual gamma frequency, 3) schizotypy and PRS will not be correlated, as they may 

reflect different facets of schizophrenia risk.  
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9.3 Method 

9.3.1 Participants  

Participants were from the 100-Brains and MEG-Partnership cohorts. The participants were 

mostly undergraduate students at Cardiff University (mean age 25 years). Participants had no 

self-reported history of psychiatric or neurological conditions and reported no use of 

psychoactive drugs. Participants were homogenous in age and right-handed. Of the 185 recruited 

in total, 124 were female and 61 were male. Informed consent was obtained in line with 

university procedures. Local ethical approval was obtained through Cardiff University’s School 

of Psychology Ethics Committee.  

 

9.3.2 Measures 

The Schizotypal Personality Questionnaire (SPQ) is a self-report measure of schizotypy traits 

measure, administered at the time of scanning (Raine & Raine, 1991). The questionnaire has 74 

items (with a total score ranging from 0 to 74) that fall under nine subscales; ideas of reference, 

social anxiety, odd beliefs/magical thinking, unusual perceptual experiences, eccentric/odd 

behaviour and appearance, no close friends, odd speech, constricted affect and 

suspiciousness/paranoid ideation. Here, the total score will be used as the indicative measure of 

schizotypal trait in each participant. 

 

Polygenic risk scores were created according to the procedure described by the International 

Schizophrenia Consortium (2009). Training data were from the most recent schizophrenia 

GWAS using results from the Psychiatric Genomics Consortium (PGC) schizophrenia genome-

wide association studies (GWAS). SNPs were removed from all analyses if they had a low minor 

allele frequency (P < 0.01). Data were pruned for linkage disequilibrium using the clumping 

function (–clump), removing SNPs within 500 kilobase (–clump-kb) and R2 > 0.1 (–clump-r2) 

with a more significantly associated SNP. PLINK software was used to calculate polygenic 

score. For the creation of the PRS for schizophrenia, SNPs associated with SZ that surpassed 

three GWAS thresholds (PT<0.5, 0.1 & 0.05) were considered. Descriptives for PRS 0.05 

threshold are: range 6.2538e-04, mean -0.0013, std 1.1842e-04. PRS at threshold .05 were used 

for analyses in this chapter, as it is the threshold for SNP inclusion which captures optimal 

variance for schizophrenia.  
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9.3.3 Visual gamma tasks and data acquisition 

Participants in both cohorts completed a battery of MEG tasks in the scanner. The visuomotor 

task involving a visual grating has been previously shown to induced gamma oscillations in 

visual cortex (Muthukumaraswamy et al., 2010). The visuomotor tasks differed slightly between 

the cohorts as described below.  

 

100-Brains 

The paradigm involved 100 trials and lasted ~ 10 minutes. The visual grating stimulus was 

presented centrally. It comprised a vertical, stationary, maximum contrast square-wave grating 

with a spatial frequency of 3 cycles per degree (8° x 8° visual angle). The background was of 

mean luminescence. Stimuli were jittered between 1.5-2 seconds and followed by an inter-

stimulus interval (ITI) of 2 seconds.  Participants were required to push a button with their right 

hand every time the grating disappeared. Participants were notified if no response was detected 

after 750ms.  

 

MEG-Partnership 

The MEG-Partnership visuomotor task also had 100 trials in total, which lasted ~ 13 minutes. 

The visual stimulus presented in the lower left visual field was a stationary, vertical, maximum 

contrast, three cycles per minute, square-wave grating, subtended vertically and horizontally at a 

4° angle. The stimulus was presented for 1.5-2 seconds, jittered, on a mean luminance 

background. The ITIs were either 4 seconds or 8 seconds and allocated to half of the trials, 

presented in random order. Participants were also required to perform a finger abduction with the 

index finger on the right hand whenever the grating disappeared. The tasks may be referred to as 

visuomotor task and visual gamma task interchangeably, though the motor component was not 

analysed and not of primary interest to the research questions addressed in this thesis. 

 

Both paradigms were programmed in Matlab (2015) and presented at a refresh rate of 100Hz.  

 

All data were acquired on the axial gradiometer (CTF-275 channel) system at CUBRIC which is 

placed inside a magnetically shielded room. Data were sampled at 1200Hz. Three fiducial coils 
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(nasion, left pre-auricular and right pre-auricular) were used for head localisation before and 

after the scan. For noise cancellation, data were acquired with 29 references channels and were 

analysed in third-order gradiometer mode as recommended by Vrba and Robinson (2001).  

 

9.3.4 Pre-processing  

Both 100-Brains and MEG- Partnership data were pre-processed manually in DataEditor. Third-

order gradient mode was applied, transforming the primary sensors for environmental noise 

reduction. Data were epoched into 4 second trials (-2, 2), around the stimulus onset. Trials which 

contained large blink, motion and muscle artefacts were excluded.  

 

MRIs and co-registration 

MRIs (1mm- isotropic, T1 weighted), were acquired on the 3 Tesla General Electric system at 

CUBRIC. Manual co-registration was completed on the MR image using photographs 

referencing the fiducial marks made on the participants during the MEG recording.   

 

9.3.5 Visual gamma analysis  

The MEG visual gamma analysis is described in full in Chapter 3, however, a summary is 

provided here. Beamforming was completed on 6 bilateral visual areas: Calcarine, Cuneus, 

Lingual, Superior Occipital, Mid Occipital and Inferior Occipital. The leadfield was constructed 

using a 1mm MNI sampling grid. The beamformer weights were based on the global data 

covariance between 30-80 Hz. Source power was projected separately for baseline and stimulus 

periods. A virtual sensor was inserted at the point of the peak source amplitude. The sustained 

period of the response was of interest and selected at 0.3s- 1.2s after stimulus onset.  

 

9.3.6 Statistical analyses 

Results were analysed in IBM SPSS (25) and JASP (0.14.1). Multiple regression models were 

generated with the enter method. Main predictors were schizotypy and PRS. The null models 

included age and gender covariates. Where the 100-Brains and MEG-Partnership data was 

combined, task paradigm was also coded and included as a covariate, to account for the 

discrepancy in tasks. Bayesian regression was implemented, post hoc, for relationships with non-

significant p-values, to evaluate evidence for either the null or alternative hypotheses.  
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9.4 Results 
The gamma amplitude and frequency descriptives, broken down by cohort, are shown in Table 

9.1. 

 

Table 9.1. Descriptive Statistics -Visual Gamma Metrics 

  Amplitude  Frequency 

   Brains  MP  Brains  MP  

Valid  96 84 96 84 

Mean  297 202 50 51 

SD  242 157 8 8 

 

The relationship between schizotypy scores and polygenic risk scores was investigated using 

correlation analysis and is shown in Figure 9.1.  

 

Figure 9.1. Shows the relationship between PRS and schizotypy. The left shows PRS plotted 

against schizotypy. The right shows normalised PRS plotted against logged schizotypy scores.  

 

As expected, no significant relationship was found between PRS and schizotypy scores (r=0.013, 

p=0.8). 
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9.4.1 Schizotypy  

A negative relationship between schizotypy and gamma amplitude can be seen in Figure 9.2. No 

evidence for a relationship with gamma frequency was observed.   

 

 

Figure 9.2. The left shows the marginal relationship between schizotypy and gamma amplitude, 

when age, gender and paradigm covariates were held constant. Right, shows the marginal 

relationship between schizotypy and gamma frequency. The grey area represents a 95% 

confidence interval around the line of fit.  

 

The results of the regression model in which schizotypy was a predictor of gamma amplitude 

across both cohorts are shown in Table 9.2.  

 

Table 9.2. Gamma amplitude in the combined analysis 

 95% CI    

Model H1  Adjusted R²  Standardised beta p  Lower  Upper  BF 

Schizotypy 0.095      
Age   0.176 0.026 0.839 12.682  
Gender   0.094 0.22 -26.129 112.385  
Paradigm   -0.274 < .001*  -184.06 -51.686  
Schizotypy   -0.14 0.07 -68.212 2.679 1.3 

*. The effect is significant at the .05 level 

 



 

205 

 

Schizotypy predicted gamma amplitude at the p= .07 level. Bayesian regression was employed to 

quantify evidence for the alternative as opposed to the null i.e., that there is a relationship 

between schizotypy and peak gamma amplitude. A Bayes Factor (BF) value of ~1 is 

inconclusive i.e., provides no evidence either for or against the null hypothesis.  

 

The results of the analysis in which schizotypy was a predictor of visual gamma frequency are 

shown in Table 9.3.  

 

Table 9.3. Gamma frequency in the combined analysis 

 95% CI  

Model H1  
Adjusted 

R²  

Standardised 

beta 
p  Lower  Upper  

Schizotypy 0.002     
Age   -0.148 0.074 -0.427 0.02 

Gender   -0.045 0.58 -3.344 1.878 

Paradigm   0.104 0.208 -0.897 4.094 

Schizotypy    0.018 0.821 -1.183 1.49 

 

Schizotypy was not associated with gamma frequency (p>.05). The Brains and MEG-Partnership 

cohorts were also analysed separately considering the difference in visual gamma task. Splitting 

the regression models did not reveal a significant relationship between schizotpy and the visual 

gamma metrics in either cohort. However, the negative relationship between schizotypy and 

gamma amplitude was larger in the 100-Brains cohort (B=-0.184, p=0.098) than in the MEG-

Partnership cohort (B-0.124, p=0.29).  
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Covariates in the schizotypy model 

Age and gamma task were both significantly associated with gamma amplitude, p<.05.  

  
Figure 9.3. Shows the marginal effect of paradigm (top left), age (top right) and gender (bottom 

left) on gamma amplitude when controlling for the other variables in the regression model. The 

grey area represents a 95% confidence interval around the regression line. 

 

The covariate relationships (shown in Figure 9.3) suggest that those who were older had higher 

gamma amplitude values. Those in the 100-Brains cohort also had higher amplitude values than 

those in the MEG-Partnership cohort. Females also had higher amplitude values than males, but 

not significantly so. None of the covariates significantly predicted gamma frequency.  
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9.4.2 Polygenic Risk Score 

Polygenic risk score was first investigated as a predictor of gamma amplitude across both 

cohorts, the results of which can be seen in Table 9.4. Figure 9.4 shows a weak negative 

relationship between PRS and gamma amplitude, when holding age, gender and paradigm 

variables constant. No relationship was observed between PRS and gamma frequency in Figure 

9.4.  

 

Figure 9.4.  The left shows the marginal relationship between PRS and gamma amplitude, when 

age, gender and paradigm covariates were held constant. Right, shows the marginal relationship 

between PRS and gamma frequency. The grey area represents a 95% confidence interval around 

the regression line. 

 

Table 9.4. Gamma amplitude in the combined analysis 

 95% CI  

Model H1  
Adjusted 

R²  

Standardised 

beta 
p  Lower  Upper  

PRS 0.097   
 

 
Age   0.195 0.015* 1.619 14.481 

Gender   0.176 0.024* 11.141 153.831 

Paradigm   -0.289 < .001* -197.69 -58.996 

PRS.05    -0.07 0.368 -48.6 18.093 

*. The effect is significant at the .05 level 
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PRS did not significantly predict gamma amplitude in the combined model, p>.05. The Brains 

and MEG-Partnership cohorts were also analysed separately considering the difference in visual 

gamma task, results of which can be seen in Tables 9.5 and 9.6, respectively.  Interestingly, 

splitting the regression models revealed a significant negative relationship between polygenic 

risk score and visual gamma amplitude, p=.020, in the 100-Brains cohort, where higher PRS 

were associated with lower peak gamma amplitude values. However, this was not found in the 

MEG-Partnership cohort (p>.05), where a positive relationship can be seen (Figure 9.5).  

 

 

Figure 9.5. The left shows the marginal relationship between PRS and gamma amplitude in the 

100-Brains cohort, when age, gender and paradigm covariates are held constant. Right, shows 

the marginal relationship between PRS and amplitude in the MEG-Partnership cohort. The grey 

area represents a 95% confidence interval around the regression line. 

 

 

 

 

 

 

 

 

100-Brains MEG-Partnership 
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Table 9.5. Gamma amplitude in the 100-Brains Cohort 

 95% CI    

Model H1  
Adjusted 

R²  

Standardised 

beta 
p  Lower  Upper  BF 

PRS 0.127   
 

 
 

Age   0.232 0.025* 2.397 35.643  
Gender   0.258 0.014* 27.732 238.859  
PRS.05    -0.245 0.02* -132.33 -11.836 4.415 

 *. The effect is significant at the .05 level 

 

 

Table 9.6. Gamma amplitude in the MEG-Partnership Cohort 

 95% CI    

Model H1  
Adjusted 

R²  

Standardised 

beta 
p  Lower  Upper  BF 

PRS 0.028      

Age   0.23 0.06 -0.242 10.958  

Gender   0.082 0.498 -56.557 115.091  

PRS.05    0.121 0.315 -16.42 50.266 0.385 

 

Bayesian analyses 

To further explore these results in relation to the null, i.e., that no relationship exists between 

PRS and gamma amplitude, or the alternative, that there is a relationship between these 

variables, Bayesian regression was employed. A BF above 3 is considered as support for the 

alternative, while a value of below 0.3 is considered support for the null (Kass & Raftery, 1995). 

The merit of Bayes is the provision of evidence against the null in light of a null finding. The BF 

for PRS in the MEG- Partnership data was .385 (.4 1dp), which is inconclusive but provides 

anecdotal evidence for the null (Lee & Wagenmakers, 2012). In contrast, the BF for the 100-

Brains cohort was 4.415 which gives support to the alternative hypothesis, suggesting there may 

be a relationship between PRS and reduced gamma amplitude in the population. 

 

Lastly, PRS was investigated as a predictor of visual gamma frequency, the results of which can 

be seen in Table 9.7.  
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Table 9.7. Gamma frequency combined analysis 

      95% CI  

Model H1  
Adjusted 

R²  

Standardised 

beta 
p  Lower  Upper  

PRS 0.001     
Age   -0.159 0.057 -0.479 0.007 

Gender   -0.012 0.886 -2.89 2.498 

Paradigm   0.086 0.301 -1.243 3.994 

PRS.05    0.013 0.869 -1.154 1.364 

 

PRS did not significantly predict gamma frequency in the combined or separated cohorts, p>.05. 

 

Covariates in the PRS models 

In the combined model, age, gender and gamma task were significantly associated with gamma 

amplitude (p<.05), in the same direction shown in Figure 9.3. None of the covariates 

significantly predicted gamma frequency.  
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9.5 Discussion 
In summary, a negative relationship, approaching significance, was found between schizotypy 

and gamma amplitude, suggesting individuals with higher schizotypy scores had reduced gamma 

amplitude. However, Bayesian analysis suggested this was inconclusive, probably due to an 

underpowered design through the use of two different visual gamma tasks . No evidence was 

found for a relationship between schizotypy and gamma frequency. While PRS did not predict 

gamma amplitude overall, there was some evidence to suggest a relationship in the 100-Brains 

cohort. That is, that higher polygenic risk load was associated with reduced gamma amplitude. 

However, no evidence for this relationship was found in the MEG-Partnership data. No evidence 

for a relationship between PRS and gamma frequency was found either. In line with prediction, 

no evidence of a relationship between PRS and schizotypy was found.  

 

The weak schizotypy relationships add to a body of mixed findings between schizotypy and 

gamma (Reilly et al., 2018). This might at least in part be due to the dimensionality of 

schizotypy. Schizotypy traits, like schizophrenia symptoms, can be classified into at least 

positive, negative and cognitive categories (Vollema & van den Bosch, 1995). Similarly, 

Principal Components Analysis (PCA) suggests schizotypy traits load onto three factors (social-

interpersonal, cognitive-perceptual, and disorganization) with considerable cross over with 

schizophrenia (Calkins, Curtis, Grove, & Iacono, 2004). In the study by Kornmayer, for 

example, a positive relationship was found between evoked visual gamma and the positive 

schizotypy dimension, but no other dimensions (Kornmayer, Leicht, & Mulert, 2014b). Only a 

total schizotypy score was available at the time of this thesis meaning any sub-construct 

relationships with gamma were not elucidated.  

 

Despite this, the negative direction of the relationship between schizotypy and visual gamma 

amplitude was consistent with the only other study, to the authors knowledge, that has 

investigated induced gamma (Vernon et al., 2005). Vernon and colleagues (2005) found high 

schizotypy individuals exhibited reduced sustained gamma power in the auditory cortex, using 

an auditory habituation task. The heterogamous nature of the existing schizotypy and gamma 

literature, where few findings are in VC, could suggest further research is warranted.  
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Though the schizotypy- gamma literature is heterogeneous the study of schizotypy is important 

for a number of reasons (Barrantes-Vidal et al., 2015). Firstly, schizotypy provides a platform for 

understanding shared aetiology of clinical presentations. For example, high positive schizotypy 

traits are present in individuals with schizophrenia and mood disorders with psychotic symptoms 

(Varghese et al., 2011), linking mood and non-mood experiences. Secondly, reports of 

schizotypy experiences, particularly ideas of reference and lack of close interpersonal 

relationships, are associated with transition to psychosis (Salokangas et al., 2013). These studies 

aid understanding of both risk and resilience factors in high schizotypy individuals. Moreover, 

the continuous nature of schizotypy compliments current National Institute of Mental Health 

(NIMH) initiatives. The Research Domain Criteria (RdoC), is a bottom-up approach to 

identifying maladaptive phenotypes in the population and is being increasingly advocated. On 

this basis, the continued investigation of schizotypy relationships is worthwhile. A narrative on 

the contextualisation of schizotypy is also superfluous to this chapter but may provide some 

perspective to the mixed schizotypy findings that exist.  

 

Moreover, over the last decade, genome wide association (GWAS) studies have established 

schizophrenia as a polygenic condition (Ripke et al., 2014). The analyses of PRS and visual 

gamma was more exploratory considering the power that is required for PRS studies. For 

example, the UK biobank studies show associations between PRS and f/MRI measures in ~ 1000 

subjects. However, a relationship between PRS and gamma amplitude, as suggested in the 100-

Brains data, would be interesting considering findings of reduced gamma amplitude in 

schizophrenia (Gonzalez-Burgos, Fish, & Lewis, 2011; Shaw, Knight, et al., 2020; Uhlhaas & 

Singer, 2013). The implication being that PRS captures genetic architecture involved in the 

gamma reductions seen in patients and could facilitate insight into the genetic contribution to 

local circuitry and E-I balance in the VC.  

 

Recently, Dimitiridis and colleagues also failed to find significant differences in narrow-band 

induced gamma and PRS in a genetic recall sample of ~200 participants (low and high 

schizoptypy) (Dimitriadis et al., 2021). While amplitude in the high schizotypy group was 

reduced, the effect did not meet significance. This result again suggests that with improved 

power a relationship between PRS and visual gamma might be established. Interestingly, there 
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was also evidence of beta and broadband power changes with PRS in this study suggesting that it 

is important to look at a wider set of signals in future research.  

 

Not all studies have found visual gamma reductions in schizophrenia disorders. For example, 

Brealy found increased MEG visual gamma amplitude in subjects with Schizoaffective Bipolar 

Disorder, using the same visual grating paradigm as in the 100-Brains cohort (Brealy et al., 

2015), which is interesting considering significant genetic overlap has been shown between 

schizophrenia, bipolar and schizoaffective disorders (Cardno & Owen, 2014). This point may not 

be critically relevant to Brealy’s findings, as the bipolar subtype of schizoaffective disorder may 

have a distinct genetic contribution (Cardno & Owen, 2014). However, simultaneous 

investigations of PRS as a predictor of gamma in at risk groups and patients may help further 

untangle these findings in regard to shared polygenic factors versus environmental or 

developmental factors.  

 

Heritability of schizotypy traits has been shown at 50 percent (Linney et al., 2003). Evidence for 

genetic cross over with schizophrenia comes indirectly from familial studies showing family 

member of schizophrenia patients to score highly on schizotypy traits. Large GWAS studies have 

also shown correlations in linkage signals from genome-wide scans of schizophrenia and 

schizotypy (Fanous et al., 2007). However, this was not reflected in this chapter as no convincing 

relationship was found between PRS and schizotypy. 

 

One reason is that several psycho-social and developmental factors contribute to both schizotypy 

and schizophrenia, for example pre- and peri-natal conditions and cannabis use have associated 

with psychosis risk (Compton, Chien, & Bollini, 2009; Machón et al., 2002). That being said, 

genetic and environmental factors are not necessarily mutually exclusive with epigenetic studies 

increasingly suggesting events like trauma can lead to a rapid adaption of the genome (Van 

Winkel, Van Nierop, Myin-Germeys, & Van Os, 2013). Findings such as these add to the 

multifaceted conceptualisation of schizophrenia.  
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Limitations and future directions 

The absence of convincing relationships with amplitude and frequency prevents any meaningful 

conclusions or postulations being made about local neuro-circuitry and its underlying 

mechanisms. The main limitation of this chapter is that the power of the analysis was 

compromised by relatively moderate participant numbers and the inclusion of data with two 

different task paradigms. This is something to be addressed with larger MEG studies. However, 

the chapter’s merit lays in the simultaneous use of different measures of risk for schizophrenia, 

which have been administered in the un-medicated, normal population. It was also, to the authors 

knowledge, the largest analysis of its kind.   

 

Dynamic Causal Modelling is a valuable tool for probing specific connections in the micro-

circuitry of the brain. DCM findings from the Cardiff MEG groups suggest that excitatory-

inhibitory connections in the superficial layers of the visual cortex can be probed with visual 

gamma amplitude (Shaw et al., 2017). A potentially fruitful future direction would be 

investigating the relationship between the connections in superficial layers of visual cortex and 

PRS with DCM. This would provide evidence towards a specific local genotype-endotype 

interaction within the canonical microcircuit. This work is ongoing. Similarly, correlations with 

schizotypy might elucidate the relationship between clinical risk and functional visual micro-

circuitry. Additionally, more recently developed measures of schizotypy exist, such as the O-

LIFE (Mason & Claridge, 2006) and could be explored.  

 

In conclusion, relationship trends between both schizotypy and polygenic risk score and reduced 

visual gamma amplitude were found, however these did not meet statistical significance. In line 

with schizophrenia findings, a significant negative relationship was found between PRS and 

reduced gamma amplitude in a sub-cohort, however further analyses would be needed to ratify 

such results. Conceptual and contextual elements of schizotypy and polygenic risk are discussed.  
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Chapter 10. The effect of excitatory-inhibitory (E-I) CNV 

status on global oscillatory connectivity and visual 

gamma in psychosis 
 

10.1 Rationale 

Individuals with schizophrenia have been shown to have an imbalance of excitatory and 

inhibitory (E-I) neural systems resulting in both local and global dysconnectivity (Committee, 

2019; Friston, Brown, Siemerkus, & Stephan, 2016; Shaw, Knight, et al., 2020). GABA is the 

major inhibitory neurotransmitter in the brain while glutamate is the main excitatory 

neurotransmitter. Copy number variants (CNVs) are small genetic variants which have been 

strongly implicated in the etiology of schizophrenia (Bassett, Marshall, Lionel, Chow, & 

Scherer, 2017). MEG oscillations are sensitive to E-I processes. The aim of this research was to 

investigate local and long-range imaging markers, in individuals with schizophrenia with and 

without CNVs which impact the GABA and glutamate pathways.  

 

10.2 Introduction 

CNVs are multiplications, deletions or translocations of segments of DNA (from 1000 up to 

several million base pairs in length). In comparison to Single Nucleotide Polymorphisms (SNPs), 

where the 108 known loci/common variations contribute a very small amount to schizophrenia 

risk (Ripke et al., 2014), CNVs are rare and larger in terms of both size (> 500 kb) and 

pathological effect (odd-ratio2-60) (Rees, O’Donovan, & Owen, 2015). Around 1500 regions of 

copy variation exist, constituting around 10-12% of the human genome (Redon et al., 

2006). Many CNVs are specific to clinical disorders, for example, the HTT/IT15 gene in 

Huntington’s Disease (Imarisio et al., 2008), the 7q11.23 region in Williams-Beuren syndrome 

(Merla, Brunetti-Pierri, Micale, & Fusco, 2010), and region 15q11–q13 in Angelman/Prader-

Willi syndrome (Kalsner & Chamberlain, 2015). CNVs are mostly inherited (~99%) but can also 

exist denovo, i.e., due to mutation in meiosis (Van Ommen, 2005).  

 

In schizophrenia no binary relationship between single-CNV carrier status and presentation has 

been found. Instead, CNVs are considered genetic risk factors (Kirov, Grozeva, et al., 2009; 
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Levinson et al., 2011; Marshall et al., 2017; Rees, Moskvina, Owen, O’Donovan, & Kirov, 2011; 

Rees et al., 2014). The last 15 years of research has focused on case-control association studies, 

implicating several CNVs within large samples (>21,000 cases & 20,000 controls; Marshall, 

2017). Some of these are particularly rare, even in those with established schizophrenia 

prompting a review of findings by Rees (2014b), who found 11 loci robustly associated with 

schizophrenia. These include deletions at 1q21.1, NRXN1, 15q11.2 and 22q11.2 and duplications 

at 16p11.2 and the Angelman/Prader–Willi Syndrome region, with approximately 2.5% of 

patients and .09% of controls carrying these variants. Many of these regions are also implicated 

in disorders such as autism, epilepsy and intellectual disability (Girirajan et al., 2012; Hu et al., 

2020; Olson et al., 2014; Velinov, 2019), which may provide some information on comorbidity 

in schizophrenia. Furthermore, denovo CNVs are more frequent in patients (5.1%) compared 

with controls (2.2%). Mutations arising denovo could contribute to the continuation of 

schizophrenia pathogenesis in the population despite the reduced fecundity in patients (Kirov et 

al., 2012).  

 

Schizophrenia is known as a disorder of neural dysconnectivity (Friston, Brown, Siemerkus, & 

Stephan, 2016) and several studies have shown a relationship between risk-CNVs and brain 

structure and function. This has been made possible by the exponential growth of large genomic-

imaging databases such as ENIGMA (Enhancing Neuro Imaging Genetics through Meta-

Analysis: ENIGMA) and UKBioBank, where data has been collected over several MRI sites. 

Structural impairments associated with 22q11.2 and 16p11.2 span the insula, calcarine 

cortex, transverse temporal gyrus, superior and middle temporal gyri, caudate and hippocampus 

morphometry (Martin-Brevet et al., 2018). Reduced regional caudate, pallidum and putamen 

volumes have also been found (Sønderby et al., 2020).  

 

Interestingly, in a review of CNV imaging studies, Moreau suggests pathogenic CNVs show an 

effect on brain related alterations that is 2-5 times larger than diagnostic studies (i.e., symptom 

defined) (Moreau, Ching, Kumar, Jacquemont, & Bearden, 2021). Presence of the 22q11.2 

deletion, for example, increases risk for schizophrenia 20-fold and has been associated with 

numerous neural alterations (Sun et al., 2020), which has encouraged its use as a proxy model of 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/imaging-genetics
https://www.sciencedirect.com/topics/medicine-and-dentistry/insula
https://www.sciencedirect.com/topics/neuroscience/transverse-temporal-gyrus
https://www.sciencedirect.com/topics/medicine-and-dentistry/superior-temporal-gyrus
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schizophrenia (Cleynen et al., 2020) and its consideration as a genetic subtype (Karayiorgou & 

Gogos, 2004). 

 

Despite the abundance of functional neuroimaging schizophrenia studies that exist, functional 

CNV association studies are relatively sparse and have investigated large effect variants such as 

22q11 and 16p11. For example, Blood Oxygen Level Dependent (BOLD) studies have shown 

16p11.2 variant effects on global, thalamic-sensorimotor, frontal and temporoparietal, posterior 

insula, pre-supplementary motor cortex, amygdala-hippocampus complex, cerebellum, and basal 

ganglia connectivity (Bertero et al., 2018; Moreau et al., 2020). Additionally, 22q11 deletion 

carriers have consistently shown network level impairments in the Default Mode Network 

(DMN) and frontoparietal networks (Mattiaccio et al., 2016; Moreau et al., 2020; Schreiner et al., 

2017) as well as hyper- and hypo connectivity of the thalamocortical somatomotor regions and 

frontoparietal associative networks (Moreau et al., 2020; Schleifer et al., 2019).  

 

Schizophrenia is a heterogeneous disorder, where within-group variability can weaken diagnostic 

group effects. Therefore, CNV-control studies may have improved sensitivity to detect 

endophenotypes due to the homogeneity in the CNV manipulation. Variants at the same locus, 

i.e., deletions versus duplication, also have specificity, known as a ‘gene dosing’ effect, where 

opposing variants show a graded or even flipped direction of effect on connectivity in many 

areas (Moreau et al., 2021).  

 

Notably, the reviewed CNV-imaging literature has utilised MRI techniques which provide high 

spatial but poor temporal resolution, due to metabolic dependencies, and fail to provide much 

information on underlying functional mechanisms. Electrophysiological papers are less 

abundant; however, evidence suggests that beta band oscillations are altered with 15q11.2-q13.1 

duplications (Frohlich et al., 2019, 2016) and 16p11.2 deletions (Hinkley et al., 2019).  

 

In the MEG resting-state, children with 22q11.2 deletion syndrome have been shown to have 

reduced oscillatory delta band activity in the medial temporal lobe and gamma activity in the 

occipital lobes, alongside increased gamma activity in frontal lobes, compared to controls 

(Doherty et al., 2021). Moreover, during the presence of a visual grating those with 22q11 
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deletions (7-30 years) show gamma and theta spectral power reductions in visual cortex 

(Mancini et al., 2022). Additionally, adults showed increased alpha/beta synchronisations in the 

same study.   

 

Furthermore, another recent MEG study investigated differences in resting-state connectivity 

between individuals with neurodevelopmental CNVs, including deletions or duplications at 

22q11.2, 15q11.2, 15q13.3, 16p11.2, 17q12, 1q21.1, 3q29, and 2p16.3, and controls (Dima et al., 

2020). Decreased amplitude-amplitude connectivity between occipital, temporal, and parietal 

areas in the CNV group was found which was not solely driven by the 22q variant.  

 

With the exception of 22q.11, the study of single variants has become increasingly unrewarding 

(Pocklington et al., 2015). Smaller CNVs are also likely to be important to function and 

behaviour in light of what has become known about combined genetic influences, e.g., the 

polygenic nature of SNPs. However, investigations have been made difficult by the rarity of 

many CNVs. In this respect, the approach taken by Dima and colleagues is desirable as grouping 

CNVs could improve sensitivity to imaging endophenotypes and presentation effects, 

particularly in view of the mentioned non-specificity of loci across different disorders. 

 

In schizophrenia, functional dysconnectivity is underpinned by an imbalance of inhibitory and 

excitatory processes (Committee, 2019; Friston et al., 2016; Shaw, Knight, et al., 2020). GABA 

and glutamate, respectively, are the major inhibitory and excitatory neurotransmitters in the 

brain. Whilst the exact synaptic mechanisms involved in E-I imbalance are unknown, prominent 

theories include impaired GABAergic modulation and/or NMDA receptor (Glu) hypofunction 

onto GABAergic interneurons. Thus, it would seem not only important to consider CNVs 

associated with pathology but also those, even at small effect, involved in these neurotransmitter 

pathways.  

 

In this vein, Pocklington investigated >11,000 schizophrenia cases and controls, finding both 

genetic evidence for disturbed glutamatergic signalling and novel causal evidence for disturbed 

GABAergic signalling in cases (Pocklington et al., 2015). The enrichment of NMDAR complex 

duplications, PSD-95 protein (post synaptic scaffold protein on excitatory neurons) and ARC 
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protein complex deletions found in cases in this study (Pocklington et al., 2015), in addition to 

denovo findings (Rees et al., 2011), polygenic (Ripke et al., 2014), animal studies (Lisman et al., 

2008) and pharmacological studies (Muthukumaraswamy et al., 2015), provide very strong 

evidence for impaired glutamatergic function in aetiology of schizophrenia.  

 

Regarding GABAergic neurotransmission, evidence for disturbance has been largely 

observational, i.e., from post-mortem and Magnetic Resonance Spectroscopy studies (Guidotti et 

al., 2005; Vierling-Claassen et al., 2008), where independence from glutamatergic influences has 

been unclear. However, Pocklington and colleagues found enrichment of GABAA receptor 

complexes, independent of NMDAR complex genes in schizophrenia cases. Furthermore, the 

NRXN1 gene encodes the synthesis of presynaptic cell adhesion protein neurexin 1 in both 

GABAergic and glutamatergic synapses, and a robust association between NRXN1 deletions and 

schizophrenia risk has been established (Kirov, Rujescu, et al., 2009). 

 

Box 10.1. Implicated E-I complexes in schizophrenia (Sz) 

 
NMDA- N-Methyl-D-aspartate (NMDA) is an amino acid derivative that acts as a specific agonist at 

the NMDA receptor, copying the action of glutamate. Postsynaptic NMDA receptor hypofunction in Sz. 

PSD-95- Postsynaptic density protein 95 (PSD-95) is an essential postsynaptic scaffolding protein in 

glutamatergic excitatory neurons. Disruption associated with cognitive deficits in Sz.  

ARC- Activity-Regulated Cytoskeletal-associated (Arc) gene- postsynaptic signalling complex- related to 

NMDA. Differential Arc protein expression alters glutamate-mediated processes. ARC CNVs associated 

with Sz.  

NRXN1- NRXNs are found presynaptically and are believed to interact with postsynaptic neuroligins 

(NLGNs) in excitatory (glutamatergic) and inhibitory (GABAergic) synapses in the brain. Evidence 

towards disturbed NRXN1 in Sz. 

mGluR5- Metabotropic glutamate receptor 5 is an excitatory postsynaptic receptor, encoded by GRM5 

gene. Receptor hypofunction is associated with Sz. 

GABAA – Pre and post synaptic receptors- involved in the activity activated release of inhibitory 

neurotransmitter GABA. Postsynaptic dysfunction associated with Sz.  
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As discussed elsewhere in this thesis, existing MEG analysis techniques allow local E-I circuitry 

in visual cortex, as well as long-range connectivity, to be probed. Using Dynamic Causal 

Modelling (DCM) of the canonical microcircuit in visual cortex, it has been shown that the 

amplitude of gamma oscillations induced with a visual grating task, is closely coupled with 

connectivity between excitatory superficial pyramidal cells and inhibitory interneurons (Shaw et 

al., 2017). This fits with the PING model (pyramidal interneuron network gamma) where gamma 

phenomena reflect feedback inhibition from fast-spiking cells, notably parvalbumin-positive 

interneurons, to pyramidal cells, and less so with the ING model (interneuron network gamma) 

which suggests gamma oscillations are the result of some self-inhibition processes (Gonzalez-

Burgos & Lewis, 2012; Kopell, Gritton, Whittington, & Kramer, 2014).  

 

A recent addition of a thalamo-cortical connection in the DCM model has also resulted in an 

alpha peak which resembles that observed in experimental data (Shaw, Muthukumaraswamy, et 

al., 2020; Sumner et al., 2021), supporting the idea that alpha oscillations have a thalamo-cortical 

drive.  

 

Long-range connectivity measured with M/EEG also reflects E-I balance in so far as connections 

represent the coupled excitatory and inhibitory oscillatory fluctuations (in amplitude-amplitude 

correlations or phase coherence measures) between different brain areas (Siegel et al., 2012). 

Long-range connectivity is usually measured in the resting-state where the extraction of distance 

connections reveals functional networks, such as the Default Mode Network, in the alpha and 

beta frequency bands (Brookes, Woolrich, et al., 2011; Colclough et al., 2016; Houck et al., 

2016). 

 

10.2.1 Aim and hypotheses 

Costain et al. (2013), estimate that clinically significant, large, rare structural variants occur in 1 

in 13 patients. The aim of this study was to investigate the effect of GABA and glutamate CNV 

carrier status on temporally resolved functional imaging outcomes in schizophrenia patients. 

Long-range oscillatory networks were studied in the resting-state, whereas local visual circuitry 

was probed by a visual grating paradigm. Cases, or carriers, were defined as patients who carry 

GABA and glutamate CNVs, while non-cases, or non-carrier were patients without these 
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variants. The hypotheses were that 1) cases will show reduced visual gamma amplitude 

compared with non-cases and 2) cases will show increased functional dysconnectivity compared 

with non-cases.  
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10.3 Method  

10.3.1 Participants  

Data were collected as part of the Genetic Variants in Psychosis (GVIP) study at CUBRIC. 

Subjects with a diagnosis of schizophrenia Disorder, who had consented to be contacted, were 

recalled from the COGs and ClozUK databases at Cardiff University (Schizophrenia Working 

Group of the Psychiatric Genomics Consortium, 2014), which when combined comprise ~1000 

schizophrenia datasets. COGs patients were originally recruited from community mental health 

teams in Wales and England. Diagnosis was confirmed by a SCAN interview (Wing et al., 1990) 

and review of case notes. DNA samples were genotyped at the Broad Institute (Cambridge, 

Massachusetts, United States) and at deCODE genetics (Reykjavík, Iceland). 

 

Subjects from the ClozUk database were, at the time of recruitment, taking the antipsychotic 

clozapine and had received a clinical diagnosis of treatment-resistant schizophrenia. Blood 

samples were acquired through collaboration with Novartis (the manufacturer of a proprietary 

form of clozapine, Clozaril). Both studies were approved by the UK Multicentre Research Ethics 

Committee (MREC). Recall was approved in house, at Cardiff University, by the School of 

Medicine Ethics Board 16/31.  

 

GVIP was funded by the National Alliance for Research on schizophrenia & Depression 

(NARSAD) and the Wellcome Trust. Participants were recalled based on having rare (<1%), 

relatively large (>100kb) CNVs that target GABA and glutamate pathways, specified in Table 

10.1, or their matched control status. In total 22 participants were recruited, 12 carriers and 15 

non-carriers. However, one of the controls was excluded as they were not properly matched, 

leaving 12 carriers and 14 non-carriers; 16 males: 10 females. 

 

10.3.2 CNV calling and quality control (QC) 

Raw intensity data from each dataset was processed separately in consideration of potential batch 

effects. SNPs were clustered and Log-R ratios and B-allele frequencies were generated using 

Illumina Genome Studio software (v2011.1). CNVs were then called using PennCNV, using the 

Hadyn Ellis MRC Centre for Neuropsychiatric Genetics and Genomics standard protocol, with 

GC adjustments. CNVs were called using the 666,868 probes common to all case and control 
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arrays. Sample outliers were excluded based on the PennCNV QC measures: LRR standard 

deviation, BAF drift, wave factor and total number of CNVs called per person. Duplications 

were removed. If the distance separating CNVs in one individual was less than 50% of their 

combined length, the CNVs were joined. Finally, samples were excluded if they comprised of: 

coverage by less than 10 probes; less than 10kb in length; overlap with low copy repeats by more 

than 50% of their length; probe density less than 1 probe/20kb (calculated by dividing the size of 

the CNV by the number of probes covering it). All CNV loci with a frequency of >1% of the 

total discovery sample were also excluded using PLINK10. 

 

Selection of CNVs 

The GABA and glutamate gene sets were those implicated in genetic (CNV and SNV) studies of 

schizophrenia (Fromer et al., 2014; Kirov et al., 2012b) and include the following gene sets: 

ARC, GABAA, mGluR5, NMDAR network (a full table of variants is included in Appendix B).  

 

10.3.3 Blinding and study procedure  

Researchers were blinded to the status of participants. Controls (3 or 4) were matched to carriers 

using a Cardiff ID, case or control status, age (within 3 years) and gender only. Patients were 

then contacted using details from a randomised database of carriers and non-carriers.  

 

Patients were screened and contact with their clinical team was made to ensure suitability. 

Participants attended for 1 day unless individuals were unable to tolerate all scans, in which case 

a second day was offered. Subjects completed the Positive and Negative Syndrome Scale 

(PANSS) interview (Kay, Fiszbein, & Opler, 1987), MEG and 2 x MRI sessions (3 Tesla 

Spectroscopy and Connectom- Microstructural scans). A blood sample was also obtained.  

 

10.3.4 Tasks and data acquisition  

As both the visual gamma signal and oscillatory connectivity in the resting-state is related to E-I 

balance (Alamian et al., 2017; Donner & Siegel, 2011; Gonzalez-Burgos & Lewis, 2012; Shaw 

et al., 2017; Siegel et al., 2012), participants completed an eyes-open resting-state and a visual-

motor task. The resting-state paradigm comprised a 10-minute presentation of a central fixation 

dot on a grey background. Participants were instructed to focus on the dot with eyes open for the 
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duration of the recording. The grey screen and fixation dot were projected using the same CTF 

Sanyo system.  

 

The visual-motor task comprised 2 runs of 50 trials per run. Each trial consisted of presenting a 

square black-and-white square-wave grating (approximately 15 degrees of visual angle, 3 cycles 

per degree) on a mean-luminance grey background. The stimuli were stationary, subtended 

vertically and horizontally at a 4° angle, in the lower left visual field in relation to a central 

fixation dot.  The stimulus was present for a jittered interval (between 1.5 s and 2 s), followed by 

an 8-8.5 s rest phase where the central fixation dot remained. The stimuli had been programmed 

in MATLAB using the Psychophysics Toolbox extensions (Brainard, 1997, Pelli, 1997, Kleiner 

et al., 2007), as part of the SPRING study (Gascoyne et al., 2021). The task was projected onto 

CTF Sanyo projector screen (framerate 60Hz), 40 cm from the participant’s face. Participants 

were instructed to make a swift finger abduction with their right index finger when the grating 

disappeared. The index finger response was recorded using electromyography electrodes placed 

on the skin above the first dorsal interosseous muscle. 

 

Data were acquired on the CTF-275 axial gradiometer system at CUBRIC. Participants were sat 

upright in the scanner in a magnetically shielded room. Electromagnetic coils were placed on the 

fiducial areas (nasion, right & left auricular) for head localisation. Electrodes (EMG & ECG) 

were also attached to the face and wrists and hands. References were placed on the elbows. Data 

were sampled at 1200Hz. For noise cancellation, data were acquired with 29 references channels 

and were analysed in third-order gradiometer mode as recommended by Vrba and Robinson 

(2001).  

 

10.3.5 Pre-processing  

Visual gamma data were processed manually in DataEditor. Third-order gradient mode was 

applied, transforming the primary sensors for environmental noise reduction. Data were epoched 

into 4 second trials (-2, 2), around the stimulus onset and visually inspected. Trials which 

contained large blink, motion and muscle artefacts were excluded. Datasets which did not have a 

matched MRI were also discarded.  

 

https://www.sciencedirect.com/science/article/pii/S2213158220303612#b0015
https://www.sciencedirect.com/science/article/pii/S2213158220303612#b0125
https://www.sciencedirect.com/science/article/pii/S2213158220303612#b0080
https://www.sciencedirect.com/science/article/pii/S2213158220303612#b0080
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The continuous resting-state recordings were pre-processed using a semi-automated ICA 

method, using fieldtrip functions. This involved ensuring 0 padding at the beginning and end of 

the recording and resampling at 300Hz before removing muscle artefacts using a Z threshold 

(default 10; manually reduced if required in an iterative process). Noisy channels were also 

manually extracted from the data. A 64 component ICA was then run on the original data 

sampled at 150Hz. Components which appeared to comprise noise were extracted from the 

artefact cleaned data.  

 

The analyses were performed in Matlab (Version 2017), using in-house custom scripts implanted 

in Fieldtrip (2019). 

 

Co-registration  

MRIs (1mm- isotropic, T1 weighted), were acquired on the 3 Tesla General Electric system at 

CUBRIC. MRIs were co-registered in CTF co-ordinate space using Fieldtrip.  

 

10.3.6 Visual gamma analysis 

The visual gamma analysis was conducted using a 1mm sampling grid in the method described 

fully in Chapter 3, but for completeness will be summarised here. The MRIs were segmented and 

the outer segment (skull) was extracted. A description of the outer brain surface was generated 

using the semi-realistic single-shell head model method developed by Nolte (2003). The source 

model was generated with a 1mm sampling grid and analysis performed on a volume comprising 

the 6 bilateral AAL visual areas: Calcarine, Cuneus, Lingual, Superior Occipital, Mid Occipital, 

Inferior Occipital. A LCMV beamformer was used to solve the inverse problem. Beamformer 

weights were calculated based on the global covariance of the MEG data in a 30–80 Hz 

bandwidth. The covariance time window was set to -1.5 - 1.5 s. A regularisation procedure 

(lambda 5%) was applied (Treder & Nolte, 2018). 

 

Source power was projected separately for the baseline and stimulus periods. Due to the 

previously established relationship between induced gamma and PING informed DCM 

parameters (Shaw et al., 2017), the sustained stimulus period (0.3s- 1.5s) was of interest. The 

coordinates of the source with the maximal percentage change in gamma power were extracted 
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and a virtual electrode timecourse was estimated at this location. Multi-taper and Hilbert 

transforms were applied to extract frequency and time-frequency metrics.  

 

10.3.7 Resting-state Analysis  

The in-house amplitude-amplitude functional connectivity pipeline (kAAL_ConnectKL) was 

applied to the resting-state data. In summary, the continuous data was split into 2 second trials 

and filtered into the canonical frequency band (delta, theta, alpha, beta, low gamma and high 

gamma). LCMV beamformer weights were generated using an AAL atlas which comprises 90 

nodes and normalized using a vector norm (length of vector) (Hillebrand et al., 2012). Virtual 

sensor data for each trial was created and concatenated per voxel. A bandpass filter and Hilbert 

envelope was applied. A representative timecourse for each AAL region, i.e., the virtual sensor 

with the largest temporal variance was then selected and orthogonalisation applied (Colclough et 

al., 2015) to prevent source leakage. The signal was then downsampled and the Hilbert envelope 

conditioned to the representative timecourses. Finally, correlation matrices were generated, and a 

z-transform applied resulting in a 90x90 connectivity matrix for each subject.  

 

Non-Negative Matrix Factorization (NNMF) 

To reveal functional sub-networks in the data, Non-negative Matrix Factorization (NNMF) was 

applied to participant’s MEG resting-state matrices. The method has been previously used to 

reveal alpha network effects in people with schizophrenia (Phalen et al., 2019). It is a 

mathematical approach (Lee & Seung, 1999) whereby matrices can be reduced into fundamental 

networks. Therefore, components reflect consistency of networks across participants, with the 

first component being most present. Components were selected for further analysis until certain 

stopping criteria were met that prevent the data from being over-fitted. The number of 

components for investigation are selected apriori meaning this requires caution, as components 

which are variable in only a few participants could be included. Conversely, a cut off that is too 

stringent could lead to information being missed. The stopping criteria employed here were: a 

maximum 20 components, every component must have a non-zero value in at least 50% of 

participants and, averaging across all components, the mean number of non-zero weightings 

should be greater than 70% of participants. NNMF components were derived separately per 

frequency band. Alpha (4) and beta (5) components are considered here.  
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10.3.8 Statistical analysis 

After inspection of the available data and the described analysis steps, 25 resting datasets (11 

carriers, 14 non-carrier) were brought forward for statistical analysis. 

 

Visual gamma 

There were 25 first-run visual gamma datasets (11 carriers, 14 non-carriers) and 23 second-run 

visual gamma datasets (10 carriers, 13 non-carriers). Carrier and non-carrier groups were 

compared visually for the 2 runs of the visual gamma paradigm. To utilise the power of all data a 

repeated measures ANOVA was employed, with run time as the within-groups variable.  

 

Resting-state 

Statistics were based on differences in Z-scored connections between carrier and non-carrier 

groups. Valid connections in each frequency band were selected across the cohort by selecting 

connections that were of mean rank >.8. This was done separately for the carrier and non-carrier 

groups to capture group effects. Connections that survived in either group were carried forward 

in the analysis. An unpaired (Welch's) t-test was performed at each "valid" connection and 

connections surviving an uncorrected alpha = 0.05 were maintained.  

 

To correct for multiple comparison, connections were also assessed with an omnibus method. 

This comprised 10,000 sign-shuffled iterations where the t-statistic is recomputed at each 

connection and the maximal t-statistic at each iteration was selected for the null distribution. The 

corresponding p-values were then calculated by comparing the original t-statistic per connection 

against this omnibus distribution.  

 

A confidence interval for associated connections was generated using 10,000 iteration sign tests. 

This involved randomly comparing half of one group to half of the other group in every iteration. 

Connections that were consistent over 95% of the iterations were maintained. This technique 

shows direction of effect, i.e., reduced or increased, but not strength.  

 

Non-Negative Matrix Factorization 
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Statistical analyses were based on the General Linear Model (GLM), implemented in Fieldtrip 

(2019). Separate GLMs were constructed for components in each frequency band. Cooks 

distance was set to 3, meaning individuals with values 3*mean were considered outliers and 

rejected from the analysis. Subjects were also rejected if they had a Cook’s Distance of >0.5, 

which is considered large. Cooks distance is the scaled changed in the coefficients due to the 

deletion of an observation (subject in this case) and evaluates whether a dataset (person) has a 

strong effect on the residuals after regression. Group comparison was also run without outlier 

rejection with no meaningful changes to the results. 

 

Variants included in the visual gamma and resting-state analyses are listed in Tables 10.1 and 

10.2.  

 

Table 10.1. Visual gamma CNVs (n= 10) 

Chr Copy 

number 

Probes Size Genes Pathways Batch Exonic Type 

11 1 17 192414 DLG2 ARC, NMDAR 

(network), PSD-

95   

ClozUK1 Exonic Deletion 

15 1 88 475949 CYFIP1 ARC ClozUK1 Exonic Deletion 

15 3 227 1782296 CYFIP1 ARC ClozUK1 Exonic Duplication 

2 1 18 56752 NRXN1 GABA receptor 

complex, PSD-

95   

ClozUK2 Exonic Deletion 

2 1 24 64387 NRXN1 GABA receptor 

complex, PSD-

95   

ClozUK2 Exonic Deletion 

2 1 12 42838 NRXN1 GABA receptor 

complex, PSD-

95   

FinalCOGs Intronic Deletion 

2 1 27 55694 NRXN1 GABA receptor 

complex, PSD-

95   

FinalCOGs Intronic Deletion 

9 1 143 86265 GRIN1 ARC, NMDAR 

(network), PSD-

95   

FinalCOGs Exonic Deletion 

15 3 161 475949 CYFIP1 ARC FinalCOGs Exonic Duplication 

15 3 460 1899299 CYFIP1 ARC FinalCOGs/ 

ClozUK1 

Exonic Duplication 
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Table 10.2. Resting-state CNVs (n=11) 
Chr Copy 

number 

Probes Size Genes Pathways Batch Exonic Type 

15 1 88 475949 CYFIP1 ARC ClozUK1 Exonic Deletion 

15 3 227 1782296 CYFIP1 ARC ClozUK1 Exonic Duplication 

12 3 45 280870 ENO2, 

GNB3, 

PHB2, TPI1, 

USP5 

PSD-95 

(core) 

ClozUK1 Exonic Duplication 

2 1 18 56752 NRXN1 GABA 

receptor 

complex, 

PSD-95   

ClozUK2 Exonic Deletion 

2 1 24 64387 NRXN1 GABA 

receptor 

complex, 

PSD-95   

ClozUK2 Exonic Deletion 

2 1 33 76012 NRXN1 GABA 

receptor 

complex, 

PSD-95   

ClozUK2 Exonic Deletion 

2 1 12 42838 NRXN1 GABA 

receptor 

complex, 

PSD-95   

FinalCOGs Intronic Deletion 

2 1 27 55694 NRXN1 GABA 

receptor 

complex, 

PSD-95   

FinalCOGs Intronic Deletion 

9 1 143 86265 GRIN1 ARC, 

NMDAR 

(network),  

PSD-95   

FinalCOGs Exonic Deletion 

15 3 161 475949 CYFIP1 ARC FinalCOGs Exonic Duplication 

15 3 460 1899299 CYFIP1 ARC FinalCOGs/ 

ClozUK1 

Exonic Duplication 
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10.4 Results  

10.4.1 Visual Gamma 

The trends in amplitude and frequency in CNV carriers and non-carriers, across both runs of the 

visual gamma paradigm, can be seen in Figure 10.1.  

 

Figure 10.1. Shows peak amplitude plotted against peak frequency measures in both runs of the 

visual gamma task. 

 

The mean values of amplitude and frequency in carriers and non-carriers can be seen in Figure 

10.2 From the analysis of variance, no main effect of carrier status on peak amplitude was found, 

F(1, 21)= 1.54, p=0.228. Weak evidence towards an interaction between run time and carrier 

status was suggested F(1, 21)=3.238, p=0.086. 
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Figure 10.2. Shows the mean peak amplitude (left) and mean peak frequency values (right) 

values in carriers and non-carriers. Error bars are 95% confidence intervals.  

 

No significant carrier status effect on peak frequency was found, F(1, 21)=3.211, p=0.088; nor a 

within participants effect of run on peak frequency F(1,21)=3.262, p=0.085.  

 

The results suggest possible increased amplitude and reduced frequency of visual gamma 

response in carriers compared to non- carriers, however, differences did not meet statistical 

significance. 

 

10.4.2 Resting-state Analysis- edge level connectivity  

Results of the amplitude-amplitude correlation analysis in the alpha band are shown in Figure 

10.3. At the uncorrected level, there was some evidence for reduced connectivity between the 

occipital and parietal lobes. Increased connectivity was also observed between frontal-parietal ad 

temporal occipital areas.  
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Figure 10.3. Alpha connectivity in carriers as compared to non-carriers. The first column shows 

the valid connections selected across the cohort (connections surviving the 80% rank threshold 

in either of the groups). The top left figure displays the valid connections in a circular plot with 

frontal regions at the top and posterior regions at the bottom. The lower left plot shows the z-

score, averaged across all participants, for each connection in the carrier group plotted against 

the mean z-score for non-carriers. Red dots indicate the ‘valid’ connections exceeding the 80% 

rank threshold. That the connection values are evenly dispersed around the central line suggests 

that connections were not noticeably dissimilar in carriers and non-carriers.  

 

The second column shows the connections surviving an uncorrected threshold of alpha = 0.05 

after running an unpaired t-test at each of the valid connections. Connections that are decreased 

in carriers are shown in blue, while connections that are increased in carriers are shown in red. 

The bottom plot shows connections plotted on a template brain.  

 

The third column gives a 95% confidence interval on each connection and is calculated in a 

slightly different way to previous chapters. Across 10,000 iterations, half of one group is 
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subsampled randomly and compared to a random half of the second group. Increases and 

decreases in connectivity are generated and connections showing a consistent effect direction 

across 95% of iterations are considered robust and plotted (blue for decreases, red for 

increases). This test does not consider the magnitude of the effect, only its direction and how 

consistent this is across resampling. 

 

An omnibus–corrected t-test was also run to account for multiple comparisons. After running 

10,000 sign-shuffling iterations to recompute the t-statistic at each connection, the maximal t-

statistic across connections is chosen from the null distribution at each iteration, and p-values are 

recomputed by comparing the observed t-statistics with this maximal statistic distribution. No 

alpha connections survived multiple comparison correction. 

 

Results of the edge level analysis in the beta band can be seen in Figure 10.4. Some evidence for 

reduced connectivity in carriers between parietal and occipital lobes is shown. Some increased 

connections between occipital, parietal, temporal and frontal areas were also observed.  

 
Figure 10.4. Beta connectivity in carriers as compared to non-carriers. Plots as detailed above.  
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No beta connections survived multiple comparison correction at the edge level.  

 

10.4.3 Sub network analysis using Non- Negative Matrix Factorization 

Functional subnetworks revealed with NNMF are shown in Figures 10.5 and 10.6. Anatomically, 

alpha component 1 comprises occipital and left parietal connections, alpha component 2 

comprises mainly parietal temporal connections, component 3 comprises occipital and left 

parietal connections and component 4 comprises frontal, temporal and occipital connections.  

 

 

Figure 10.5. Left show the four alpha components plotted on a template brain. Right shows the 

effect sizes for each alpha component in relation being a carrier of E-I CNVs. 

 

Alpha networks 1 and 3 were reduced in carriers and networks 2 and 4 were increased. However, 

the none of the networks were significantly different between groups as shown in Table 10.3.  
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Table 10.3. Regression coefficients for each alpha component 

 
Alpha 

Component 

Standard 

Effect 

P value Cohensf2 

1 -0.23664 0.249351 0.252263 

2 0.29583 0.153945 0.322777 

3 -0.14998 0.461648 0.163637 

4 0.248409 0.227913 0.271037 

n.b. Standard effect size is standardised beta. Categorical predictor of interest is case status. 

Cohen’s f2   is a scaled change in R2 (variance explained) when the model is compared with and 

without the covariate of interest, as shown in equation 10.1. 

10.1. (Selya, Rose, Dierker, Hedeker, & Mermelstein, 2012) 

 
 

 

 

 

 

 

 

 

 

Figure 10.6. Left, beta components plotted on a template brain. Right shows effect sizes for each 

beta component in relation to being a carrier of E-I CNVs.  
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Being a carrier was negatively associated with all the beta components, suggesting carriers had 

reduced beta connectivity. However, none of these relationships were significant, as shown in 

Table 10.4.  

 

Table 10.4. Regression coefficients for each beta component 

Beta 

Component 

Standard 

Effect 

P value Cohensf2 

1 -0.15271 0.454036 0.17074 

2 -0.11801 0.56177 0.131938 

3 -0.04584 0.820839 0.048863 

4 -0.23906 0.244694 0.25484 

5 -0.08925 0.659997 0.097376 
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10.5 Discussion 

In summary, the findings presented here cannot provide convincing evidence for a relationship 

between GABA and glutamate CNV carrier status and local and global MEG connectivity. 

However, considering the limited sample, the trends toward reduced frequency and increased 

amplitude of the sustained gamma response in the visual cortex, along with long-distance 

connectivity reductions, in the alpha and beta frequency bands, significant at uncorrected p-value 

thresholds, implies this is an area that needs to be further explored. This is the first study of its 

kind to investigate the effect of CNVs implicated in neural excitation-inhibition (E-I) on MEG 

electrophysiological connectivity in schizophrenia.  

 

E-I imbalance constitutes a key element of the dysconnection theory of schizophrenia (Friston et 

al., 2016). Functionally, dysconnectivity appears to result in prediction errors between incoming 

sensory information and prior belief, which are unattenuated along the cortical hierarchy. This 

loss of precise inference about the world is reflected in many symptoms of schizophrenia, e.g., 

hallucinations and delusions. Physiologically, dysconnectivity is underpinned by faulty gain 

control, that is, synaptic excitability and neuromodulation, with many lines of evidence in 

support. For example, glutamatergic NMDA receptor hypofunction on GABAergic interneurons, 

as a physiological theory of schizophrenia, is well supported by pharmacological and animal 

studies (Anticevic et al., 2012; Ehrlichman et al., 2009; Gonzalez-Burgos & Lewis, 2012). 

Numerous genetic, magnetospectroscopy and post-mortem studies, in support, also exist (Cohen, 

Tsien, Goff, & Halassa, 2015; Kirov et al., 2012a; Rowland et al., 2016).  

 

Importantly, there is considerable support for an interaction between gain control and neuronal 

oscillations. Synaptic modulation of GABAergic interneurons dictates the action of synchronous 

pyramidal cells, the local field potential (LFP) signal from which is measured by our 

electrophysiological imaging modalities. Gamma oscillations, in particular, have been linked to 

E-I balance at the theoretical (Gonzalez-Burgos & Lewis, 2012), cellular (Kopell, Ermentrout, 

Whittington, & Traub, 2000), neurotransmitter concentration (Muthukumaraswamy et al., 2009) 

and computational micro-circuitry levels (Shaw, Knight, et al., 2020). As frequency of gamma 

oscillations has been found to be associated with connections between pyramidal cells and 

interneurons, in the superficial layers of the cortical microcircuit in the visual cortex (Shaw, 
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Knight, et al., 2020), the tentative finding of reduced visual gamma frequency in GAB/Glu CNV 

carriers could be interesting. However, more work is needed to establish this relationship.  

 

Moreover, the finding of increased amplitude of the visual gamma response in carriers was 

opposite to what was hypothesised. One plausible reason for this is by investigating the effect of 

carrier status, both glutamatergic and GABAergic CNVs were included, with potentially 

opposing effects. These glutamatergic CNVs, may have caused a disproportional enhancement of 

cortical excitability in some carriers which is reflected in the, overall, increased amplitude of the 

visual gamma signal. Considering patients generally show reduced stimulus induced amplitude, 

compared with controls (Whitlow, 2015; Kantrowitz & Javitt, 2010; Krishnan et al., 2005), this 

again warrants further investigation.  

 

In neuroscience, an observable tension exists between viewing schizophrenia as a disorder of 

local dysfunction e.g., in the frontal cortex or visual cortex etc., and global dysfunction, e.g., 

connectivity across the whole brain (Alan Anticevic & Lisman, 2017). This is reflected in the 

different approaches to analysing patient imaging data. In Chapter 6 we see that measures used in 

this thesis appear relatively uncorrelated, apart from the negative relationship between gamma 

amplitude and alpha connectivity in the occipital cortex. Interestingly, in this chapter carrier 

status appears to be associated with reduced connectivity in the visual-parietal cortices in alpha 

and beta, while visual gamma amplitude is increased in carriers. The trends here were not 

significant and therefore further explored in terms of local and global relationships in carriers 

and non-carriers. However, if the trends found here are true, then the study of GABA/Glu CNV 

carriers and non-carriers could elucidate the effect of E-I imbalance on global functional 

connectivity.  

 

The nature of the interaction between local E-I imbalance and global connectivity, as measured 

with current imaging modalities, is not fully clear, though contending theories include Coupled 

synchrony (Florin & Baillet, 2015), Communication Through Coherence (Fries, 2015) and 

Perceptual Binding (Tallon-Baudry & Bertrand, 1999). Similarly, the extent to which 

interactions across different frequency bands modulate connectivity between local and global 

systems is continued topic of debate. For example, considerable previous work has suggested 



 

239 

 

that alpha oscillatory connectivity has a cyclic modulatory effect on cortical excitability (Florin 

& Baillet, 2015; Lozano-Soldevilla et al., 2014a; Roux et al., 2013; Spaak, Bonnefond, Maier, 

Leopold, & Jensen, 2012). However, contrasting evidence has also been shown (Zhigalov & 

Jensen, 2020). A synonymous beta effect, to the authors knowledge, has not been found (Baillet, 

2017). Future research with E-I CNV carriers might benefit from simultaneous use of local and 

global metrics to better address questions related to long-range connectivity and E-I balance.  

 

Limitations and future directions 

There were several limitations in conducting this study. Many subjects on the Cogs and Cloz UK 

databases were originally genotyped and screened more than 5 years ago, making recall and 

suitability assessments challenging, particularly considering presentation and readmission 

factors. Additionally, in consideration of the limited sample size, we did not control for length of 

illness and medication status, which have been associated with brain alterations in patient groups 

(Fusar-Poli et al., 2013; Zhao et al., 2018). These factors should be considered in future studies.  

 

As previously mentioned, individuals with CNVs were grouped together under carrier status, 

where CNVs target both GABAergic and glutamatergic pathways. Unfortunately, the sample 

numbers prohibited a meaningful separation of these groups, i.e., by presence of excitatory or 

inhibitory CNVs. However, this is an imperative factor to consider in future, as associated 

synaptic actions may constitute opposing influences on cortical excitability, which could at best 

diminish significance. In fact, that there were more glutamatergic than GABAergic CNV carriers 

in the visual gamma and RSN analyses, albeit by 1 and 2 subjects respectively, suggests the 

group level analysis was subject to more excitatory factors and could explain the finding of 

increased gamma amplitude in the visual cortex in carriers.  

 

The acquisition of larger genetic-MEG datasets will make studies, such as this, less challenging. 

However, open access MEG datasets, such as OMEGA (“The Open MEG Archive (OMEGA) | 

McConnell Brain Imaging Centre - McGill University,” n.d.), only have around 300 healthy 

resting-state datasets. Such a schizophrenia cohort does not exist. Thus, it would be more 

conceivable to investigate the role of E-I CNVs on MEG functional connectivity in the healthy 

population. This would be the recommended future direction.  
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In conclusion, these analyses suggest there might be disturbance in local visual connectivity and 

global lower frequency connectivity in carriers of CNVs which hit GABA and glutamate 

pathways. This study adds to a growing body of genetic imaging studies which will facilitate our 

understanding of how genetics influence the excitability of the brain in schizophrenia. While 

grouping the CNVs was suitable in this study, future research might consider investigating the 

contribution of glutamatergic and GABAergic CNVs to connectivity, separately. Implementing 

this methodology in the healthy population, where achieving the desired sample size would be 

more feasible, would be recommended at present.  
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10.6 Appendix B 

1. GABA and glutamate CNVs in cases.  
Ch  Start End Copy 

number 

Pro

bes 

Size Genes Pathways Batch Exonic Type 

11  82996986 83189400 1 17 192414 DLG2 ARC, NMDAR 

(network), PSD-95 

(core) 

ClozUK1_

B3 

Exonic Deletion 

15  22750305 23226254 1 88 475949 CYFIP1 ARC ClozUK1_

B3 

Exonic Deletion 

15  22750305 24532601 3 227 1782296 CYFIP1 ARC ClozUK1_

B3 

Exonic Duplication 

12  6884243 7165113 3 45 280870 ENO2, GNB3, 

PHB2, TPI1,  

USP5 

PSD-95 (core) ClozUK1_

B4 

Exonic Duplication 

2  50902931 50959683 1 18 56752 NRXN1 GABA receptor 

complex, PSD-95 

(core) 

ClozUK2_

B1 

Exonic Deletion 

2  50882657 50947044 1 24 64387 NRXN1 GABA receptor 

complex, PSD-95 

(core)  

ClozUK2_

B1 

Exonic Deletion 

2  50869459 50945471 1 33 76012 NRXN1 GABA receptor 

complex, PSD-95 

(core) 

ClozUK2_

B1 

Exonic Deletion 

2  51058745 51101583 1 12 42838 NRXN1 GABA receptor 

complex, PSD-95 

(core)  

Final 

COGs 

Intronic Deletion 

2  50863273 50918967 1 27 55694 NRXN1 GABA receptor 

complex, PSD-95 

(core)  

Final 

COGs 

Intronic Deletion 

9  140054136 140140401 1 143 86265 GRIN1 ARC, NMDAR 

(network), PSD-95 

(core) 

Final 

COGs 

Exonic Deletion 

15  22750305 23226254 3 161 475949 CYFIP1 ARC Final 

COGs 

Exonic Duplication 

15  22750305 24649604 3 460 1899299 CYFIP1 ARC Final 

COGs/ 

ClozUK1_

B3 

Exonic Duplication 
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Chapter 11. General Discussion 
 

11.1 Summary of findings 

This thesis has investigated local and global functional and structural connectivity measures in 

relation to schizophrenia-risk, schizophrenia and the healthy population. Previously, it has been 

shown that local and long-range functional circuitry can be probed with high frequency and low 

frequency oscillations, respectively. Probing visual micro-circuitry with gamma oscillations 

requires that the best possible gamma estimates are obtained. Prior to this thesis, no formal 

systematic comparison of sampling resolutions for beamforming in MEG visual gamma analysis 

had been conducted.  

 

In Chapter 3 different sampling grid resolutions for source localisation of the gamma signal in 

visual cortex during the presence of a grating stimuli, were investigated. Estimates of gamma 

amplitude were highest at the 1mm sampling resolution as compared with 2mm, 4mm and 6mm, 

suggesting the beamformer was able to reconstruct the gamma signal most precisely at 1mm 

resolution. In the subsequent chapters of this thesis gamma analysis was, therefore, conducted 

using a 1mm sampling grid with which gamma estimates are optimised.  

 

Additionally, it is known that head-motion and participant discomfort factors have severe 

implications for our ability to extract robust long-range oscillatory networks with MEG. For both 

the participant and data quality discarding a resting-state scan, for example, would be 

advantageous. However, the extent to which long-range networks can be extracted from task data 

was previously unknown.  

 

The key finding in Chapter 4 was that both long-range network information along with the visual 

gamma signal, can be extracted from data recorded during a visual paradigm. A comparison of 

static amplitude –amplitude networks derived from resting-state and gamma data found a high 

degree of similarity in the alpha, beta and to some extent theta bands also. A gamma peak in V1 

was also identified in the amplitude connectivity analysis of the visual gamma data. Reducing 
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the number of tasks in future MEG protocols could be particularly useful in clinical studies of 

challenging populations, where obtaining quality data is non-trivial.  

 

Previous studies show that individuals with schizophrenia have both local and widespread 

functional and structural dysconnectivity (Alamian et al., 2017; Cabral et al., 2013; Fornito, 

Zalesky, Pantelis, & Bullmore, 2012; Gonzalez-Burgos & Lewis, 2012; Pettersson-Yeo, Allen, 

Benetti, McGuire, & Mechelli, 2011; Shaw et al., 2020; Stauffer et al., 2021; Uhlhaas & Singer, 

2013). However, the extent to which local abnormalities are related to global abnormalities in 

both schizophrenia and at-risk populations, has been largely unknown. In fact, the relationship 

between visual micro-circuitry and long-range connectivity in the healthy population has been 

thus far unclear.  

 

In Chapter 6 a relationship between the amplitude of local gamma oscillations and reduced long-

range alpha was observed with MEG, which was discussed in the context of local and global 

circuitry in the normative population. A relationship between gamma frequency in the visual 

cortex (VC) and integrity of white matter tracts in VC and across the brain was also found, which 

could reflect an associated increase in myelination (Winklewski et al., 2018). 

  

Based on previous literature, the picture of functional and structural abnormalities associated 

with genetic and clinical risk also required further clarification. To this end, Chapters 7 and 8 

investigated risk factors for schizophrenia and their relationship to global functional and 

structural connectivity. Robust relationships between schizotypy and reduced functional alpha 

connectivity and between polygenic risk score and increased diffusivity within white matter 

tracts, in a healthy sample, were found. 

 

Chapter 9 investigated relationships between the aforementioned risk factors and local circuitry, 

as probed by visual gamma oscillations, but no significant relationships were found across the 

whole cohort. That being said, in line with prediction, polygenic risk score for schizophrenia 

predicted reduced gamma amplitude in one half of the sample. 
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Lastly, the effect of increased excitatory-inhibitory CNV burden on functional connectivity in the 

schizophrenia population was investigated in Chapter 10, where trends towards both local and 

global differences were shown and should be further explored. 

 

11.2 Implications  

11.2.1 A relationship between visual gamma oscillations and long-range alpha connectivity in 

the healthy population. 

The results in this thesis are among the first to show a relationship between induced local visual 

gamma amplitude (V1) and reduced at-rest alpha oscillations beyond primary visual areas 

(Hirschmann et al., 2020; Zhigalov & Jensen, 2020); namely in the occipital and precuneal areas. 

The hippocampus was also implicated; however, this is acknowledged tentatively due to poor 

source imaging of deeper neural areas with MEG.  

 

The relationship is interesting in the context of predictive error coding theory and hierarchical 

models of the brain (Bastos et al., 2012; Bastos et al., 2015; Friston & Kiebel, 2009). Growing 

evidence suggests that neural oscillations are the means by which top-down and bottom-up 

representations are updated, and in turn allow an accurate view of the world (Bastos et al., 2012; 

Friston, Brown, Siemerkus, & Stephan, 2016; Friston & Kiebel, 2009; Pinotsis et al., 2017). In 

this perspective, gamma oscillations are involved in feedforward processing and alpha involved 

in feedback processing (Kerkoerle et al., 2014).  

 

Modelling work has shown that the generation of gamma oscillators results in low frequency 

inter-areal network patterns which closely correlate with BOLD resting-state networks (Cabral, 

Hugues, Sporns, & Deco, 2011). On this basis, and that both local and global functional 

measures are reduced in clinical populations (Alamian et al., 2017; Friston, Brown, Siemerkus, 

& Stephan, 2016; Gonzalez-Burgos & Lewis, 2012; Pettersson-Yeo, Allen, Benetti, Mcguire, & 

Mechelli, 2010; Shaw et al., 2020), we predicted that the amplitude of local gamma might be 

positively correlated with the amplitude of long-range alpha and beta connectivity.  

 

Predictive theory suggests that a trait-like relationship exists within individuals such that 

feedforward and feedback processes would be related. However, the direction of these 
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relationships was undefined. That gamma was associated with reduced long-range alpha 

connectivity in Chapter 6 required some consideration. 

 

At the local level, in healthy volunteers, fluctuations in frequency band activity are related in that 

an increase in high frequency gamma power (non-phase-locked Event Related Synchronisation), 

due to presentation of a stimulus (auditory or visual), usually results in a concurrent suppression 

of low frequency power (alpha non-phase-locked Event Related Desynchronisation) (Brookes et 

al., 2005; Lorenz, Müller, Schlee, Hartmann, & Weisz, 2009; Strube, Rose, Fazeli, & Büchel, 

2021). It might not, therefore, be too much of a leap to suggest that similar mechanisms are 

present over longer distances.  

 

In support, in a recent investigation of the relationship between induced visual gamma and 

dynamic activity across the cortex, Hirschman and colleagues (2020) also found a within-subject 

association between increased gamma amplitude, using a visual gamma paradigm, and the state 

probability of a resting-state characterised by low alpha and beta power in several areas. 

Reduced gamma amplitude, in contrast, was correlated with the probability of another state 

characterised by high alpha and beta power in central areas. 

 

That those who exhibit high gamma are more frequently in states of low alpha and beta 

oscillations in the resting-state, suggests exploring dynamical state experiences will be important 

in future research. Such research would also allow questions around whether a coincidence of 

high gamma and low alpha results from attentional factors or some other mechanism, to be 

addressed.  

 

Regardless, the finding forms an excellent basis for exploring the local and long-range functional 

relationship in different clinical groups. In schizophrenia, after 25 years of research under the 

disconnection hypothesis (Friston & Frith, 1995), research is going beyond the singular 

connected-ness of brain regions and beginning to unpick the complex neural interactions that 

exist both within and between brain regions and may be disrupted in pathology. Establishing 

whether the gamma-alpha relationship differs in clinical groups would provide further insight 

into this potential hierarchical mechanism.  
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The study of effective connectivity, i.e., directed connectivity, provides an additional means for 

this. For example, Rolls and colleagues have recently shown that feedforward connectivity is 

weaker and feedback connectivity is stronger in schizophrenia patients versus controls, using 

effective modelling of the fMRI signal (Rolls et al., 2020). This is in contrast with unidirectional 

fMRI research which has predominantly shown reductions in long-range connectivity fMRI 

(Pettersson-Yeo et al., 2011), but supports MEG research which has found both increased and 

decreased connectivity in patients (Alamian et al., 2017b). Areas which had high effective 

connectivity in patients were from the precuneus and posterior cingulate cortex (PCC) to areas 

such as the parahippocampal, hippocampal, temporal, fusiform, and occipital cortices. 

Interestingly, backwards connectivity was associated with positive symptoms whereas negative 

and cognitive symptoms were associated with weaker connectivity. Further elucidating these 

relationships, therefore, has implications for better understanding symptomology.   

 

11.2.2 The relationship between schizotypy and functional resting alpha connectivity 

This thesis adds to a body of research on the clinical continuum of schizophrenia, supporting a 

more integrative approach to understanding neuropathology and psychological disorder 

(Dalgleish, Black, Johnston, & Bevan, 2020; Insel, 2014; Stein, 2014). The main consistency 

with previous clinical literature is finding that reduced long-range alpha connectivity is robustly 

associated with schizotypy (Alamia & VanRullen, 2019; Alamian et al., 2017b; Phalen, Coffman, 

Ghuman, Sejdić, & Salisbury, 2019; Sterzer et al., 2018; Williams, 2018). Faulty representation 

is a key feature of schizophrenia symptomology (e.g., hallucinations, delusions, magical 

thinking, ideas of grandeur), and dysregulated alpha connectivity found in high schizotypy 

individuals might be one contributing factor to the presence of schizophrenia-like experiences in 

the normal population. Further exploring the positive sub-dimension of schizotypy will be 

important for establishing this.  

 

If, at its core, schizophrenia symptomology is underpinned by disturbances in excitatory-

inhibitory neurotransmitter systems (GABA, NMDA) as has been suggested (Friston et al., 2016; 

Gonzalez-Burgos, Cho, & Lewis, 2015; Gonzalez-Burgos & Lewis, 2012), these disturbances 

may well be reflected in reduced oscillatory alpha connectivity, as alpha oscillations have been 
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shown to be associated with E-I balance, although not directly (Popov et al., 2017; Zhigalov et 

al., 2019; Zhigalov & Jensen, 2020). That being said, alpha connectivity is thought to reflect 

feedback processes, which, as mentioned, have been shown to be increased in patients with 

effective analysis of the fMRI signal (Rolls et al., 2020). Clearly, further differentiation of 

effective connectivity using both fMRI and MEG methods is required.  

 

No structural measures were associated with schizotypy. It is feasible that functional 

dysconnectivity in the at-risk population occurs prior to the structural dysconnectivity shown in 

patients. In support, with fMRI and DTI, Li and colleagues found schizophrenia had decreased 

functional connectivity in the ventral loop and dorsal loop, accompanied by decreased structural 

connectivity, whereas relatives had reduced functional connectivity in the ventral loop and the 

dorsal loop but no significant differences in structural connectivity (Li et al., 2020).  

 

Notably, schizotypy has been used synonymously with clinical risk in this thesis on the basis that 

high schizotypy individuals are more likely to develop psychosis (Barrantes-Vidal, Grant, & 

Kwapil, 2015). Whether the amalgamation of these terms in relation to the underlying ‘trait’ and 

‘state’ constructs is reasonable however is debatable. In support, recent factor analysis work, by 

Fluckiger and colleagues (2019), found schizotypy features were significantly associated with 

positive, negative and disorganized symptoms through cognitive disturbances using the 

Wisconsin Schizotypy Scales, 14 predictive basic symptoms (BS) of the schizophrenia Proneness 

Instrument (Schultze-Lutter, 2009), and positive, negative, and disorganized symptoms from the 

Structured Interview for Psychosis-Risk Syndrome (McGlashan, Walsh, & Woods, 2010). Still, 

that schizotypy continues to be defined across personality, quasi-clinical and clinical 

phenomenology is reiterated and deserves awareness in ongoing research (Grant, Green, & 

Mason, 2018; Mason, 2015). 

 

11.2.3 Unclear evidence for a relationship between genetic risk and functional connectivity 

Genetic research is largely free of the construct level arguments associated with the clinical 

literature and evidence for genetic continuity between health and disease is now well established 

(Hilker et al., 2018; Legge et al., 2021; Marshall et al., 2017; Purcell et al., 2009; Zhao et al., 

2018). However, against prediction, relationships between polygenic risk score and both local 
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and long-range functional connectivity, and between CNV carrier status and connectivity in 

visual areas and across the cortex, did not meet significance. 

 

Recently, the first published investigation of PRS for schizophrenia and induced gamma 

oscillations was circulated (Dimitriadis et al., 2021). As with the results presented here, 

significant differences in gamma (peak amplitude and frequency) between individuals with high 

(N=104) and low (N=99) polygenic load were not found. However, in an exploratory analysis, 

when the gamma spike (transient period) and induced signal were expressed as group averaged 

percentage change relative to baseline, both revealed lower gamma values in the high PRS 

group, suggesting gamma differences may not have been captured by the peak amplitude and 

frequency measures. 

 

In this thesis, some evidence for a relationship between reduced gamma amplitude and PRS was 

found in one half of the cohort (100-Brains) but was diminished when grouping across both 100-

Brains and MEG-Partnership samples. Employing a circular grating stimulus has been shown to 

induce larger gamma responses compared to the static grating stimuli used here and the work by 

Dimitriadis (Shaw et al., 2020). Unfortunately, the planned collection of ~200 visual gamma 

datasets using a circular grating was paused during this work due to uncontrollable factors. 

However, there is enough evidence to suggest that additional validation of the effect of PRS on 

induced gamma, is worth pursuing. 

 

Beyond common polygenic variants, genetic advancements over the last 15 years have also 

identified both excitatory and inhibitory (E-I) CNVs as targets for exploring genotype-endotype 

relationships. However, a significant relationship between E-I CNV status and functional 

connectivity was not found, which may at least in part have been due to the nature of the recall 

study and availability of datasets. Only in the last 5 years, has the accumulation of data given the 

appropriate power for robust identification on CNVs in psychosis (Marshall et al., 2017), 

meaning at present the investigation of CNV–endotype relationships is in its infancy. 

Furthermore, that some CNVs have been implicated in both excitatory and inhibitory systems 

(e.g., NRXN gene, NRXN1 deletion) adds an additional level of difficulty to teasing apart their 

neurobiological correlates. 
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More broadly, the genetic picture of schizophrenia is complex, making it challenge to capture 

associated dynamical imaging markers. To the author’s knowledge no previous relationships 

have been found between PRS and long-range M/EEG networks in the adult population. 

However, a positive relationship between PRS score and theta and alpha connectivity in a large 

sample of 1,425 adolescents has been found (Meyers et al., 2021). Interestingly, the most robust 

associations were observed between PRS and parietal-occipital, central-parietal, and frontal-

parietal alpha connectivity among males between ages 15–19 (p < 10–4), suggesting PRS 

relationships exist early in life, when the onset of symptomology often occurs (Ochoa, Usall, 

Cobo, Labad, & Kulkarni, 2012). 

 

That schizotypy and polygenic risk score are unrelated suggests these measures capture different 

risk variance despite evidence suggesting that the heritability of schizotypy is moderated by 

latent factors shared with schizophrenia (Grant et al., 2018). While there is no clear clinical or 

genetic profile for those at-risk for schizophrenia disorders at present, improved understanding of 

associated risk factors will be paramount for prevention in future. 

 

On this note, elucidating the genetic trajectories of diseases is accompanied by various ethical 

issues going beyond individuals to the consent of the family (Knoppers & Chadwick, 2005). 

Clear understanding of the genetic contribution to disease also opens the door to techniques like 

Gene Therapy (changing the genetic architecture of DNA) which, though not yet formally 

implemented in humans, has its own evolutionary and social controversies. The availability and 

the extent to which the advantages of these procedures outweigh the risks will be addressed the 

coming years. However, at present, due to the complexity of schizophrenia’s genetic and clinical 

forms, the arguments do not warrant further consideration here.  

 

11.2.4 A relationship between PRS and structural connectivity 

Findings in Chapter 8 suggest that individuals with increased polygenic load for schizophrenia 

have increased axial diffusivity amongst white matter tracts, which could be the result of a 

reduction in axonal integrity (Winklewski et al., 2018). This is consistent with a large study 

suggesting a link between common variants and the micro-environment in the brain (Stauffer et 
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al., 2021); namely, that increased diffusivity can also be pathological as it coincides with 

increased genetic load for schizophrenia.  

 

In general, it has been shown that for PRS to have sufficient predictive power ~2000 subjects are 

required (Dudbridge & Wray, 2013). This might partly explain the lack of functional correlations 

already discussed; however, it also suggests that the structural finding is unlikely to be the 

product of type 1 error. That the relationship is shown in recent biobank research (Nmax = 29,878) 

also provides considerable support (Stauffer et al., 2021).  

 

It is known that the plasticity of the brain changes from early infancy through adulthood (Guyer, 

Pérez-Edgar, & Crone, 2018). As PRS is associated with increased long-range functional EEG 

connectivity in adolescence (Meyers et al., 2021), and structural changes in adulthood (Stauffer 

et al., 2021), it might be postulated that PRS captures some of the variance in functional changes 

prior to structural changes in individuals with high polygenic load. This is not what was shown 

in this thesis, however, as consequently, we would expect PRS to have been correlated with both 

structural and functional measures in adults. In future, the implementation of non-correlational 

and longitudinal studies of functional and structural imaging will be fundamental to our 

understanding of clinical and genetic risk.  

 

At present, establishing genetic-neurobiology-presentation relationships is challenging on 

account of the difficulties in imaging population samples through development. Increasing 

advancements in neuroimaging technologies such as Optically Pumped Magnetometers (OPMs), 

which allow MEG to be performed on the scalp surface, in addition to improved noise reduction 

techniques (Tierney et al., 2019), will soon provide the means for monitoring these 

neurodevelopmental factors.  

 

11.2.6 The relationship between visual gamma frequency and structural connectivity 

Finding a relationship between visual gamma frequency and structural connectivity, namely 

radial diffusivity and mean diffusivity, is novel and could imply gamma frequency is associated 

with increased myelin (Winklewski et al., 2018). Due to the correlational analyses, again, no 

directional assertions can be made. However, intuitively, as the primary role of myelin sheath is 
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to increase the conduction velocity of electrical impulses (Dean et al., 2016) and oscillatory 

frequency is loosely proportional to rate at which populations of neurons fire (Hämäläinen, Hari, 

Ilmoniemi, Knuutila, & Lounasmaa, 1993), it might be expected that the characteristics of the 

visual gamma signal are dependent on the integrity of structural pathways. That being said, the 

structural connectome appears to be necessary but not sufficient for functional connectivity 

(Messaritaki et al., 2021). To further explore this structure-function relationship the inverse of 

the radial diffusivity values (1/RD) might be employed in future. In retrospect this would have 

provided a clearer index of myelin integrity. 

 

White matter structure facilitates the propagation of functional chemical messages, via 

neurotransmitters. Neurotransmitters are, therefore, an essential link between structure and 

function, which underpin neural plasticity and communication both within and between brain 

areas. Correspondingly, there has been a recent effort to unite structure and function perspectives 

through an investigation of the spatial distribution of chemical messengers (Hansen et al., 2021). 

Using a combination of Positron Emission Tomography imaging (estimation of in vivo 

neurotransmitter concentrations across the brain), structural MRI, fMRI and MEG resting-state 

recordings, Hansen and colleagues were able to curate an 18-neurotransmitter 3D atlas of the 

brain; neurotransmitters closely mapped onto both the structure of the neocortex and its mediated 

functions. This is a feat of multi-modal analysis which highlights the importance of imaging 

research in our understanding of the brain and a fundamental reference for on-going research. 

 

11.2.7 Finding gamma source estimates are improved when beamforming with a finer sampling 

grid and alpha and beta networks can be extracted from resting-state data 

The methods chapters in this thesis make a significant contribution to the MEG literature on 

account of the potential real-world utility of the findings therein. One of the most difficult 

aspects of experimental MEG design is deciding on the analysis methods due to the abundance 

of possible routes. It has been shown that the analysis of visual gamma data can be optimised by 

performing source localisation on a finer sampling grid. It is recognised, however, that because 

temporal and computational demands increase in a linear fashion with increased resolution, the 

use of a fine sampling grid is at the researcher’s discretion and should align with the aims of any 

given study. 
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Additionally, visual gamma task-data can be used to extract static amplitude-amplitude coupling 

measures in alpha and beta networks, making a resting-state paradigm superfluous to 

requirement in some experiments. Static oscillatory connectivity measures have been shown to 

be useful markers of individual variability, disease risk, disease state and pharmacological 

manipulation (Dima et al., 2020; Doherty et al., 2021; Godfrey & Singh, 2020; Routley et al., 

2017). This work suggests that a separate resting-state run is not needed to extract these markers. 

Changes made in light of these findings have the potential to improve participant comfort, 

increase the likelihood of identifying biomarkers and further improved data quality due the 

shortening of scanning sessions. If, as discussed, alpha connectivity estimates are affected by 

attentional factors during the resting-state, extracting long-range networks during the presence of 

task could also be beneficial. 

 

11.2.8 Additional comments 

Against hypotheses, no MEG predictors or schizophrenia-risk predictors were significantly 

associated with long-range beta connectivity. In comparison to alpha and gamma oscillations, the 

mechanisms driving beta oscillations are much less clear. Recent research suggests that the long-

range beta oscillations measured with M/EEG are actually the result of beta bursting activity 

across the cortex (Barone & Rossiter, 2021). The verification of such findings could suggest that 

amplitude-amplitude connectivity is an inappropriate measure of beta connectivity; and 

subsequently contribute to the null findings in this thesis. 

 

On a technical level, increasing interest is being given to the full Power Density Spectrum (PDS) 

in electrophysiological brain research. The PDS comprises the rhythmic oscillatory part of the 

signal, discussed at length in this thesis, as well as a continuous aperiodic part, the so called 1/f 

spectra, which has been suggested to reflect underlying synaptic currents (Buzsáki et al., 2012). 

During band pass filtering of MEG data these components are merged, which has recently been 

considered a problem if the aperiodic components differ between experimental conditions. 

Recent investigations using toolboxes like FOOOF (fitting-oscillations-and-one-over-f) suggest 

some spectra are more difficult to spate than others (Donoghue et al., 2020). It is expected more 

data will be acquired before this method is more widely implemented. However, methods like 
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FOOOF should give better estimates of peak amplitude and frequency as well as properties of 

the underlying 1/f aperiodic spectral shape. This, in turn, could facilitate the detection of better, 

more sensitive biomarkers.  

 

11.3 Broader considerations  

11.3.1 Genetics versus environment  

Our ability to treat or prevent psychosis is largely dependent on understanding its causal 

mechanisms. It is known that small polygenic variants and large CNVs contribute to 

schizophrenia susceptibility, as discussed at length in this thesis. It is also known that numerous 

environmental factors are involved. For example, inflammatory factors (cytokines and c-reactive 

protein, Dickerson et al., 2016), bleeding, preeclampsia and asphyxia during pregnancy, as well 

as emergency caesarean (Canon et al., 2002) have all been associated with increased psychosis 

risk. Psychosocial stress, childhood adversity and cannabis use are also highly implicated (Rokita 

et al., 2021; Marconi et al., 2016) and may result in symptoms measured in both the clinical and 

healthy populations. 

 

In the literature, heritability of schizophrenia is often treated as separate to environmental 

factors, however some heritability estimates could be overestimated (Zwicker et al.,  2018). Twin 

genetic studies, for example, cannot fully account for developmental differences in utero. 

Similarly, because children of parents with psychosis are more likely to observe a traumatic 

event, untangling whether the psychosis is the results of inheritance or environment is 

challenging.  In fact, interactions between gene and environmental factors are likely to underpin 

the complexity of schizophrenia and are being increasingly explored. For example, one recent 

but seemingly consistent finding is that the presence of the AKT1 gene increases the likelihood 

of developing psychosis with frequent cannabis use (Morgan et al., 2016). These results have 

implications for the prevention and treatment of psychosis, particularly in certain groups.  

 

Recent research suggest that the disorganised feature of schizophrenia might be a good target for 

gene-environment investigations. As compared with positive and negative symptoms 

disorganisation is a newer concept. It refers to disorganisation of thought and behaviour and is 

shared in both schizophrenia and schizotypy (Kemp et al., 2021; Liddle, 2019). A number of 
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environmental and genetic factors have also been associated, including: history of psychosis in 

family, low level of insight and compliance, attention (distraction errors), lengthened P300 

latency of evoked cognitive auditory potentials, low-functional alleles of  

genes MTHFR and DNMT3b, high level of urbanicity and psychotraumatic events at early age 

(Nestsiarovich et al., 2020). Continuing to target specific constructs such as disorganisation and 

their associated gene-environment factors, while challenging, would undoubtedly facilitate 

understanding of schizophrenia and schizophrenia risk in future.  

 

11.3.2 Predictive coding and comorbidity of disorders 

More broadly, increasing evidence supports the application of predictive coding theory (Friston 

& Kiebel, 2009) to a range of neuropathological disorders, including schizophrenia disorders, 

autism spectrum disorders and major depression (Kube, Schwarting, Rozenkrantz, Glombiewski, 

& Rief, 2020; Smith, Badcock, & Friston, 2021; Tarasi et al., 2022). One explanation for the 

different sensory sensitivities characteristic of autism spectrum disorders is that they result from 

the allocation of excessive weight to incoming sensory information, whereas the over-attribution 

to prior belief and internal representations might result in reality distortion symptoms in 

schizophrenia patients. Furthermore, negative affect in depressed individuals could also be due to 

an over-reliance on negative internal representations. 

 

At present, however, these mechanistic distinctions are not clear cut as the direction of 

attribution i.e., excessive or diminished, has yet to be fully established in psychosis patients 

(Corlett et al., 2019; Sterzer et al., 2018). Moreover, the application to major depression has been 

criticised as broad, unspecific (Rief & Joormann, 2019) and unable to explain individual 

presentations, making more research necessary. 

 

The lack of clear evidence for differences in predictive models of pathology might, at least in 

part, be explained in the context of co-morbidity and coexisting psychiatric conditions. For 

example, individuals with schizophrenia have a high prevalence of depression (~50%), substance 

abuse (50-70%), anxiety disorders: (18%), social anxiety disorder (10%) and obsessive-

compulsive disorder (9%) (Buckley, Miller, Lehrer, & Castle, 2009; Kiran & Chaudhury, 2018; 

Tsai & Rosenheck, 2013; Winklbaur, Ebner, Sachs, Thau, & Fischer, 2006). Furthermore, in a 
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study of 3,400 individuals with autism disorders and 38,000 controls, Chien and colleagues 

found the incidence of schizophrenia spectrum (10%), bipolar disorder (7%), and major 

depressive disorder (3%) were significantly higher than for controls (Chien, Wu, & Tsai, 2021). 

 

That there is overlap in the prescribed treatments for the aforementioned disorders, such as 

lithium, antidepressants, antipsychotics, and benzodiazepines, also suggests there is significant 

neurobiological cross-over. In turn, the grouping of individuals across diagnostic categories for 

the purpose of research, in contrast to traditional perspectives (American Psychiatric Association, 

2013; WHO, 2018), might be the key to better understanding these conditions. The continued 

discovery of imaging markers that index neurobiological processes in both the healthy 

population and clinical groups is critical to this end. 

 

11.4 General limitations and future directions 

This thesis is subject to some general limitations. Data included was largely observational due to 

the completion of the work in the Covid-19 pandemic. The opportunity to collect experimental 

data was therefore severely restricted making it unfeasible to investigate the relationship between 

local and global connectivity in different clinical groups, as was an initial aim. However, this 

remains an ongoing interest. In view of the Positive and Negative Valence domains of the RDoc 

approach, a breakdown of positive and negative constructs within the clinical risk chapters would 

also have been beneficial. 

 

The 100-Brains and MEG-Partnership datasets used in Chapters 3-9 had a higher number of 

females than males and was comprised of a population of university students meaning findings 

might be more reflective of females in young adulthood. The difference in visual gamma task 

used between the two cohorts, despite being included as a covariate, would have also led to 

reduced statistical power. Statistically, the use of a Bonferroni correction throughout this thesis 

may have been conservative on account of the assumption of independence of observations. 

However, considering the novel nature of some of the relationships found, a stringent multiple 

comparison adjustment mean results are less likely to be the product of type 1 error. 
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This is the first time Non-Negative Matrix Factorization (Lee & Seung, 1999) has been applied 

to structural connectivity matrices. This was interesting regarding the streamline components, 

where networks comprised a few dominant tracts at the 5% scaling threshold. In contrast, 

networks weighted by the DTI measures were less clear making it difficult to comment on the 

physiology or typology of the structural findings. In future, projecting the functional components 

onto the structural AAL matrices to investigate the crossover of structural and functional 

networks, would be beneficial. 

  

The MEG analyses described in this thesis show an averaged static snapshot of MEG functional 

connectivity. Researchers are increasingly interested in dynamical methods of analysis which 

maximise information gained from fluctuations in the electrophysiological data over time (e.g., 

Hidden Markov Modelling & K-means analysis; Hirschmann et al., 2020b; Spadone, de 

Pasquale, Mantini, & Della Penna, 2012). Such research is likely to facilitate our understanding 

of schizophrenia as a disorder of dysconnectivity (Pettersson-Yeo et al., 2011). 

 

In this vein, Sanfratello employed spatial ICA to investigate dynamic MEG and fMRI 

connectivity over small time windows in consideration of the temporal fluctuations of 

connectivity correlations (Sanfratello, Houck, & Calhoun, 2018). FMRI and MEG reveal 

between-group functional connectivity differences in distinct ways. FMRI revealed periods of 

overall dysconnectivity in schizophrenia whereas MEG analysis showed aberrant connectivity in 

fronto-fronto and fronto-parietal regions. Significantly more within-groups variability in 

connectivity in the schizophrenia group was shown, in line with previous findings (Alamian et 

al., 2017; Friston & Frith, 1995). One reason for the heterogeneity in schizophrenia literature is 

the aberrant connectivity profiles of individuals, features of which might be better revealed with 

dynamical connectivity analyses. 

 

Furthermore, in relation to the extraction of functional networks from task data, a planned 

analysis was to explore whether the relationship between schizotypy and alpha connectivity 

exists with networks derived from visual gamma data. This was beyond the timeframe for this 

thesis but would add strong support to the obsolete nature of a resting-state run for the 

investigation of alpha and beta networks.  
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A foundation of this thesis was DCM work showing coupling between the gamma response and 

superficial pyramidal and interneuron connections in the visual cortex (Friston, Harrison, & 

Penny, 2003; Shaw et al., 2017; Shaw et al., 2020). DCM therefore provides an opportunity to 

explicitly investigate the relationship between the local connections in visual cortex and 

oscillatory connectivity across the brain. It also provides a means through which risk factors for 

schizophrenia can be investigated in relation to specific connections. It is hoped that by utilising 

DCM in future work our neurobiological understanding of these factors will be improved.  

 

Finally, microstructural imaging makes an excellent complement to MEG imaging. This thesis 

suggests that functional and structural dysconnectivity could be associated with schizophrenia 

symptomology and genetic load, respectively, in the normal population. The further longitudinal 

exploration of these correlates could be highly informative. Furthermore, how function explicitly 

maps on to structure, also, remains an important route for future research. 

 

11.5 Conclusion 

The RDoC approach to defining pathology and psychological disorders has now been in 

circulation for 12 years. With increasing research, it is expected that translational markers of 

health and disease could be integrated into diagnostic manuals, which continue to be primary 

point of reference for clinicians. In line with the RDoC initiative, which seeks to provide a 

biologically-based framework for disorder, the aim of this thesis was to investigate structural and 

functional neural markers associated with health, schizophrenia risk, and schizophrenia.  

 

Importantly, in the healthy population, schizophrenia symptomology was associated with 

functional dysconnectivity, whereas in the same population, increased genetic burden for 

schizophrenia was associated with structural dysconnectivity. Together, these findings suggest 

that clinical risk and polygenic risk factors capture different aspect of schizophrenia-proneness 

and would benefit from longitudinal exploration. The novel exploration of connectivity related to 

excitatory and inhibitory CNV burden in schizophrenia also provided a foundation for our future 

understanding of genetic-neurobiological processes involved in E-I balance.  
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Finding that the amplitude and frequency of the visual gamma response are correlated with 

reduced long-range functional connectivity and increased structural connectivity, respectively, 

has also provided important insight into relationships between the (local) visual cortex and the 

(global) rest of the brain in the healthy population. Exploring these interactions in schizophrenia 

groups could identify additional biomarkers and critically inform our hierarchical understanding 

of the brain.  

 

Finally, enhanced methods for extracting measures of local and global connectivity with MEG 

have been provided which have the potential to aid the identification of biomarkers and improve 

the comfort of participants in future clinical studies. Overall, these findings support a new wave 

of schizophrenia research beyond diagnosis criteria with MEG and DTI methods.   
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