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Our SR Result / Low Resolution Bicubic Real-ESRGAN+ [44] SwinIR-GAN [27] FeMaSR (Ours)

Figure 1: Comparison between our FeMaSR and two latest works, Real-ESRGAN+ [44] and SwinIR-GAN [27] on a low resolution
image with complex blind degradations. Our method can recover realistic hairs for the squirrel thanks to the implicit high-
resolution priors. Please zoom in for the best view.

ABSTRACT
A key challenge of real-world image super-resolution (SR) is to re-
cover the missing details in low-resolution (LR) images with com-
plex unknown degradations (e.g., downsampling, noise and com-
pression). Most previous works restore such missing details in the
image space. To cope with the high diversity of natural images, they
either rely on the unstable GANs that are difficult to train and prone
to artifacts, or resort to explicit references from high-resolution (HR)
images that are usually unavailable. In this work, we propose Fea-
ture Matching SR (FeMaSR), which restores realistic HR images in
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a much more compact feature space. Unlike image-space methods,
our FeMaSR restores HR images by matching distorted LR image
features to their distortion-free HR counterparts in our pretrained
HR priors, and decoding the matched features to obtain realistic HR
images. Specifically, our HR priors contain a discrete feature code-
book and its associated decoder, which are pretrained on HR im-
ages with a Vector Quantized Generative Adversarial Network (VQ-
GAN). Notably, we incorporate a novel semantic regularization in
VQGAN to improve the quality of reconstructed images. For the fea-
ture matching, we first extract LR features with an LR encoder con-
sisting of several Swin Transformer blocks and then follow a simple
nearest neighbour strategy to match them with the pretrained code-
book. In particular, we equip the LR encoder with residual shortcut
connections to the decoder, which is critical to the optimization of
feature matching loss and also helps to complement the possible
feature matching errors. Experimental results show that our ap-
proach produces more realistic HR images than previous methods.
Codes are released at https://github.com/chaofengc/FeMaSR.
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1 INTRODUCTION
Single image super-resolution (SISR) is a fundamental task in low-
level vision, aiming to restore high-resolution (HR) images from
their low-resolution (LR) counterparts. Due to the incorporation
of deep neural networks, previous works [6, 7, 27, 28, 34, 57] have
made significant progress on non-blind SR, which assumes a known
degradation process, e.g., bicubic downsampling. However, these
methods usually fail in real-world SR tasks where the degradations
are unknown, i.e., blind SR.

Blind SR is intrinsically an ill-posed problem because the com-
plex and unknown distortions in the LR inputs have disrupted many
details. Some works [12, 40, 53, 62] exploited assumptions of the
classical degradation model to explicitly estimate the blur kernel
and noise. As a result, most of them can only handle several sim-
plified cases of the classical degradation model, and are a far cry
from real-world SR solutions. Other works [44, 47, 52, 56] resort to
the synthesis power of Generative Adversarial Networks (GANs) to
generate the missing textures. Although effective, these approaches
are prone to artifacts due to the notorious unstable GAN train-
ing. Instead of “guessing” the missing textures, another line of re-
search [19, 48, 60, 61] takes advantages of reference images. Their
performance is therefore determined by the reference HR images,
which are not always available. Addressing this issue, recent works
[36, 43] turned to implicit high-resolution priors implemented by
pretrained GANs. Although bypassing the needs of explicit HR ref-
erences, these methods are limited to the domain of the pretrained
GANs (e.g., face images [3, 49]) and cannot generalize to natural
images with diverse contents1.

In this paper, we propose a novel SR framework based on feature
matching, namely FeMaSR, for blind SR of real-world images. The
distinct advantage of our framework is that it addresses the afore-
mentioned limitations of previous works by matching LR features
to a set of HR features in the pretrained implicit HR priors (HRP).
Inspired by the recent VQ-VAE [35, 39] and VQGAN [9], we define
our HRP as the combination of a discrete codebook consisting of a
pre-defined number of feature vectors and the corresponding pre-
trained decoder. The feature vectors contain the information of real-
istic textures that can be decoded into the target HR images. In this
way, we break blind SR into two sub-tasks: i) learning a high-quality
HRP; ii) mapping the features of LR inputs to the codebook in HRP
for distortion removal and detail recovery. For the first sub-task, we
pre-train our HRP with a VQGAN that aims to reconstruct the input
HR patches. However, instead of using the vanilla VQGAN, we in-
corporate semantic information into HRP via L2 regularization with

1To our knowledge, all state-of-the-art GANs that can synthesize high-quality
and high-resolution images are dedicated to a specific domain (e.g., StyleGAN [21]).

perceptual features from VGG19, thereby enhancing the correla-
tion between semantics and codebook features. For the second sub-
task, we follow SwinIR [27] and utilize several swin transformer
blocks to encode the LR inputs. The LR encoder is then trained with
losses between LR features and ground truth HR features selected
from the pretrained codebook. Especially, we found that the feature
matching loss is difficult to optimize with fixed HRP. To solve this
problem, we introduce multi-scale residual shortcut connections
from LR feature space to decoder features. These residual connec-
tions enable direct gradient flow from pretrained decoder to the LR
encoder, thus making it easier to optimize the LR encoder. Besides,
it also helps to complement the possible feature matching errors.
Since HRP contains rich semantic-aware HR information of natural
images, the proposed FeMaSR is able to recover higher quality tex-
tures, see Fig. 1. Our contributions can be summarized as follows:

• We propose a novel framework FeMaSR for blind SR using
HRP encoded by a pretrained VQGAN network. Compared
with previous works, the FeMaSR formulates SR as a feature
matching problem between LR features and distortion-free
HR priors, and therefore enables the generation of more
realistic images with less artifacts for real-world SR.

• We introduce semantic regularization for the pretrain of
semantic-aware HRP. Such a regularization enhances the
correlation between semantics and HRP, thereby facilitating
the generation of more realistic textures.

• We design a LR encoder with residual shortcut connections
to the HRP for feature matching. The proposed framework
can better match the LR features with distortion free HR
features, and also complement the matching errors.

2 RELATEDWORK
Single Image Super-Resolution (SISR) Starting from the pioneer
SRCNN [8], deep neural networks have dominated the design of
modern SR algorithms. Since then, various network architectures
have been proposed to improve the performance of SISR. For exam-
ple, Kim et al. [22] proposed a deep version of SRCNN, named VDSR.
Thanks to the residual [15] and residual dense blocks [16] that en-
able training deeper and wider networks, EDSR [28] and RDN [59]
were proposed and boosted the performance of SISR. After that, the
attention mechanism is also introduced to SISR, such as channel
attention [57], spatial attention [4, 34], non-local attention [58], etc.
Latest works [6, 27] achieve state-of-the-art performance by em-
ploying vision image transformers [29]. These models are trained
and evaluated in a non-blind manner, e.g., bicubic downsampling
and blurring with known parameters, thereby making it difficult to
generalize to SISR with the same degradation type but unseen pa-
rameters, let alone those with other degradation types. Addressing
this issue, Zhang et al. developed a series of methods [51, 53, 54]
for conditional image restoration, where users can control the out-
puts by changing the conditioned degradation parameters.
Blind SISR Upon the performance saturation of non-blind SISR, re-
cent works turned to the more challenging real-world SISR with un-
known degradation (a.k.a. blind SISR). In general, they model com-
plex real-world degradations in either an implicit or an explicit way.
Between them, implicit methods [10, 31, 41, 42, 47] aim to learn a
degradation network from real-world LR images. In the absence of

https://doi.org/XXXXXXX.XXXXXXX
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Figure 2: Framework of the proposed FeMaSR. It contains two stages: pretrain of high-resolution prior, and super-resolution via
feature matching. We first pretrain a VQGAN to learn an implicit representation of high-resolution patches, i.e., the codebook
Z and decoder 𝐺 . Then the LR encoder 𝐸𝑙 is optimized to find the best matching features of the LR inputs 𝒙 in the codebook Z.
SinceZ and𝐺 are pretrained to reconstruct high resolution patches, FeMaSR is able to generate clearer results with less artifacts.

corresponding ground truth HR images, most of them employed
unsupervised image-to-image translation (e.g., Cycle-GAN [64])
while some recent works [50] resort to contrastive learning. On the
contrary, explicit methods aim to synthesize “real” LR images by a
manually designed degradation process. Specifically, BSRGAN[52]
and Real-ESRGAN[44] describe different ways to improve the com-
mon image degradation pipeline. Both of them demonstrate much
better visual quality than implicit methods in blind SISR. Never-
theless, both implicit and explicit methods rely on the generative
power of GANs to generate textures. However, GANs are known
to have difficulties in distinguishing some real-world textures from
similar degradation patterns, which usually lead to unrealistic tex-
tures or over-smoothed regions in the resulting HR images.
Prior-based SISR Since SISR is intrinsically an ill-posed problem,
prior-based SISR methods take advantages of extra image priors
either explicitly or implicitly. Methods based on explicit prior (a.k.a.
RefSR) rely on one or multiple reference HR images which share the
same or similar content with the input LR image. To locate the best
reference images, various approaches were proposed, including
cross-scale correspondences [61], texture transfer [60], transformer
network [48], teacher-student [19], internal graph [63], etc. Li et al.
[24–26] narrow the image space to faces and achieve impressive
performance. Although effective, explicit priors (i.e., HR reference
images) are not always available for a given real-world LR image.
Therefore, prior-based SISR is more promisingly achieved with a
prior distribution (i.e., implicit prior) learnt from a large amount of
HR images through GANs or VAEs. Menon et al. [32] first proposed
to upscale LR faces by searching the latent space of a pretrained
StyleGAN generator [21]. Gu et al. [13] improved it by introducing
more latent codes. Pan et al. [37] exploited a BigGAN generator [2]
as a prior for versatile image restoration. Although these methods

can generate realistic images, they all contain a time-consuming
optimization process. Addressing this issue, [3, 43, 49] propose to
learn a posterior distribution with a pretrained StyleGAN generator.
Specifically, they learn an encoder to project LR images to a latent
space shared with the pretrained generator that outputs HR images.
Although this approach demonstrates exciting performance for face
SR, it hardly works for natural images because learning a GAN for
natural images remains a challenging task. In this work, we address
the above-mentioned challenge following VQGAN [9] that shows
outstanding performance in natural image synthesis and can be
regarded as high-quality priors for image synthesis.

3 METHODOLOGY
3.1 Framework Overview
Given an input LR image 𝒙 with unknown degradations, we aim
to restore the corresponding high-resolution image with realistic
textures. As shown in Fig. 2, we employ a two-stage framework
to pretrain the High-Resolution Priors (HRP) and conduct feature
matching sequentially:

• Stage I, Pretraining of High-Resolution Priors. We use
HR patches to pretrain a VQGAN [9] consisting of an en-
coder 𝐸, a discrete codebookZ, and a decoder 𝐺 . Inspired
by [45], we train the VQGAN with semantic guidance that
enhances the correlation of textures and semantics. We call
the codebook Z and decoder 𝐺 HRP. After pretraining, our
HRP approximately encodes the complete information of
HR images and allows the reconstruction of them by feeding
their corresponding feature codes 𝑧 ∈ Z to 𝐺 .

• Stage II, Super-Resolution via Feature Matching. Given
the HRP (i.e., Z and 𝐺) obtained in Stage I, we argue that
blind SR is equivalent to a feature matching problem that
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aims to match the feature codes of LR inputs 𝑧𝑙 to those of
their HR counterparts 𝑧 ∈ Z. By feeding𝐺 with the correctly
matched HR feature codes 𝑧, we can obtain the clean and
realistic HR images required in blind SR. To address the
optimization challenges posed by the quantization process of
VQGAN, we further propose the incorporation of a residual
shortcut module to the LR encoder. This not only facilitates
training but also complements the feature matching errors,
which further boosts the quality of the resulting HR images.

Details are described in the following sections.

3.2 Pretraining of High-Resolution Priors
We first make a brief review of VQGAN. As illustrated in Fig. 2, the
input HR image 𝒚 ∈ R𝐻×𝑊 ×3 is first passed through the encoder
𝐸 to produce its output feature 𝑧 = 𝐸 (𝒚) ∈ Rℎ×𝑤×𝑛𝑧 , where 𝑛𝑧
is the feature dimension. Then the discrete representation of 𝑧
is calculated by finding the nearest neighbours of each element
𝑧𝑖 ∈ R𝑛𝑧 , in the codebookZ ∈ R𝐾×𝑛𝑧 as follows:

𝑧𝑖 = Z𝑘 , 𝑘 = argmin
𝑗

∥𝑧𝑖 −Z𝑗 ∥2, (1)

where 𝑧 ∈ Rℎ×𝑤×𝑛𝑧 , 𝐾 is the codebook size, 𝑖 ∈ {1, 2, . . . , ℎ ×𝑤},
and 𝑗 ∈ {1, 2, . . . , 𝐾}. After that, 𝒚 is reconstructed by 𝑧 with the
decoder 𝐺 :

𝒚′ = 𝐺 (𝑧) ≈ 𝒚, (2)

Since the feature quantization operation of Eq. (1) is non-differentiable,
we follow [9, 35] and simply copy the gradients from 𝐺 to 𝐸 for
backpropagation. Therefore, the model and codebook can be trained
end-to-end with the following objective function:

L𝑉𝑄 (𝐸,𝐺,Z) = ∥𝒚′ −𝒚∥1 + ∥sg[𝑧] − 𝑧∥22
+ 𝛽 ∥sg[𝑧] − 𝑧∥22, (3)

where sg[·] is the stop-gradient operation, and 𝛽 = 0.25 according
to [9, 35]. With the pretrained VQGAN, any high resolution images
𝒚 from the training set can be reconstructed with their correspond-
ing feature vectors inZ and the decoder𝐺 . We therefore call them
HRP in this work.
Semantic Guidance As indicated by the vanilla setting in Eq. (3),
the codebookZ is learned purely by gradient descent where sim-
ilar patterns are clustered independent of their semantics. Mean-
while, Wang et al. [45] pointed out that semantic guidance leads
to better texture restoration. This motivates us to incorporate se-
mantic information in the pretraining of VQGAN. To be specific,
we regularize the training of codebook Z with perceptual features
from a pretrained VGG19 network by adding a regularization term
L𝑟 to L𝑉𝑄 and have

L′
𝑉𝑄 = L𝑉𝑄 + L𝑟 = L𝑉𝑄 + 𝛾 ∥CONV(𝑧) − 𝜙 (𝒚)∥22 (4)

where CONV denotes a simple convolution layer to match the
dimension of 𝑧 and 𝜙 (𝒚), 𝜙 denotes the pretrained VGG19, and 𝛾 is
a weighting factor empirically set to 0.1. Note that we follow [9]
and also use perceptual loss and adversarial loss in the pretraining.

In summary, our semantic-guided HRP pretraining encourages
the texture restoration to be conditioned on semantics, thereby
enabling the restoration of more realistic and natural textures.

3.3 Super-Resolution via Feature Matching
With the pretrained HRP, i.e.,Z and𝐺 , the SR task is turned into a
feature matching problem between LR inputs 𝒙 and Z. Denote the
LR encoder as 𝐸𝑙 , the problem can be formulated as

argmin
𝜃

L(𝐺 (q[𝐸𝑙 (𝒙, 𝜃 ),Z]),𝒚), (5)

where 𝜃 is the learnable parameter of 𝐸𝑙 , q[·] denotes the feature
matching process same as Eq. (1), and L denotes the loss functions
(which will be described in the following section). We first make a
brief discussion about why we want to transform the SR task to a
feature matching process and how can it help:

As we know, image degradation is inherently a one-to-many
mapping subject to different types and levels of degradation. From
a mathematical point of view, these degradations can be regarded as
offsets of high-quality local features in some feature space, where
the type and level of degradation correspond to the direction and
distance of the offset respectively. Such offsets overlap with each
other, thereby making it difficult to find the correct high-quality
correspondence of a degraded feature in the feature space. Heuris-
tically, we address this challenge by mapping a degraded feature to
its Euclidean nearest neighbhour in a given set of pre-defined high-
quality features (i.e., the pretrained codebookZ). Intuitively, the
codebook with discrete features partitions the feature space into
non-overlapping cells that form a degradation-based Voronoi dia-
gram. As demonstrated in Fig. 2, we define the 𝐾 feature vectors
𝑧𝑘 inZ as the centers of 𝐾 Voronoi cells. Given an LR feature 𝑧𝑙

𝑖
,

we compute the Euclidean distance between 𝑧𝑙
𝑖
and all centers 𝑧𝑘

to determine which cell 𝑧𝑙
𝑖
belongs to2, i.e., which 𝑧𝑘 it maps to. In

this way, realistic and rich textures can be generated as the decoder
inputs are mapped to expressive HR features 𝑧𝑘 instead of the raw
LR features 𝑧𝑙

𝑖
.

Despite the advantages of feature matching, the optimization of
Eq. (5) is quite challenging because of the complex LR inputs. For
this purpose, we introduce a powerful LR encoder 𝐸𝑙 consisting of
two parts: feature extraction module and residual shortcut module.
Feature Extraction As shown in Fig. 2, the design of the feature
extraction module basically follows SwinIR [27]. It is composed
of a shallow feature extraction head and a deep feature extraction
block. The deep feature extraction block applies the same stack
of residual swin transformer layers as SwinIR, while the shallow
feature extraction block is slightly different. Since the HRP is fixed,
the final upscaling factor 𝑆𝑢𝑝 of the input LR image is controlled by
the downscaling factor 𝑆𝑑𝑜𝑤𝑛 of the shallow feature encoder block.
In this work, we have 𝑆𝑢𝑝 = 𝑆𝑑𝑜𝑤𝑛×8 as the decoder𝐺 upscales 𝑧 ∈
Rℎ×𝑤 by ×8. Denote the feature extraction module as 𝐻𝐹 , we have:

𝑧𝑙 = 𝐻𝐹 (𝒙), (6)

where 𝑧𝑙 ∈ Rℎ×𝑤×𝑛𝑧 are the LR features used for feature matching.

2In some rare cases (of zero probability), 𝑧𝑙
𝑖
has the same nearest distances to

multiple 𝑧𝑘 , i.e., on the boundary of the Voronoi cells. In these cases, we randomly
map 𝑧𝑙

𝑖
to one of the centers.
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Residual Shortcut Module To better utilize the HRP, we further
introduce multi-scale residual connections between 𝑧𝑙 and the de-
coder 𝐺 , as shown in Fig. 2. To be specific, we use several upsam-
pling blocks 𝐻𝑢𝑝 to upscale LR features 𝑧𝑙 and add them as residu-
als to the decoder 𝐺 , i.e.,

𝑓0 = 𝑧, 𝑓0 = 𝑧
𝑙 (7)

𝑓𝑖 = 𝐺
𝑖
𝑢𝑝 (𝑓𝑖−1) + 𝐻 𝑖𝑢𝑝 (𝑓𝑖−1), 𝑖 ∈ {1, 2, 3, ...} (8)

where 𝐺𝑖𝑢𝑝 and 𝐻 𝑖𝑢𝑝 are the 𝑖-th upsampling blocks in 𝐺 and 𝐻𝐹
respectively, 𝑓𝑖−1 and 𝑓𝑖−1 are the input features to them.

Our residual shortcut module has two main benefits. First, it
sidesteps the non-differentiable quantization process in VQGAN,
thus allowing gradients to be backpropagated directly from 𝐺 to
𝐸𝑙 , which greatly eases the optimization difficulty. Second, we ob-
served that these extra residual connections have also learned to
complement the potential errors in feature matching and can fur-
ther boost the performance of blind SR.

3.4 Training Objectives
The gradients to update 𝐸𝑙 come from three parts: feature matching
losses, image reconstruction losses, and adversarial loss.
Feature Matching Loss This loss is dedicated to the training of
𝐸𝑙 . We first obtain the ground truth latent representation of 𝒚, i.e.,
𝑧𝑔𝑡 = q[𝐸 (𝒚),Z], and then calculate the L2 loss and the Gram
matrix loss for LR features

L𝑓 𝑒𝑚𝑎 = 𝛽 ∥𝑧𝑙 − 𝑧𝑔𝑡 ∥22 + 𝛼 ∥𝜓 (𝑧
𝑙 −𝜓 (𝑧𝑔𝑡 ))∥22, (9)

where𝜓 calculates the Gram matrix of features, and 𝛼 is its weight.
The Gram matrix loss, also called style loss, has been shown to be
helpful to restore textures [11].
Reconstruction Loss We follow [9, 43] and employ L1 and per-
ceptual losses as our reconstruction loss, formulated as

L𝑟𝑒𝑐 = 𝜆𝐿1∥�̂� −𝒚∥1 + 𝜆𝑝𝑒𝑟 ∥𝜙 (�̂�) − 𝜙 (𝒚)∥22 (10)

where 𝜙 is a pretrained VGG-16 network, 𝜆𝐿1 and 𝜆𝑝𝑒𝑟 are weights
of the L1 and perceptual losses respectively.
Adversarial Loss Although our HRP already contains rich texture
information, we still need an adversarial loss to help us find better-
matching features in the feature matching process. We follow [44]
and adopt a U-Net discriminator𝐷 with spectral normalization [33].
Similar to [5], we use a hinge loss and define the generator loss as

L𝑎𝑑𝑣 = 𝜆𝑎𝑑𝑣
∑︁
𝑖

−E[𝐷 (𝒚𝑖 )] (11)

For simplicity, the discriminator loss is omitted here.
Overall Loss The overall loss is defined as

L𝑡𝑜𝑡𝑎𝑙 = L𝑓 𝑒𝑚𝑎 + L𝑟𝑒𝑐 + L𝑎𝑑𝑣 (12)

where the weights for each loss are set as: 𝛼 = 𝜆𝐿1 = 𝜆𝑝𝑒𝑟 = 1, 𝛽 =

0.25, 𝜆𝑎𝑑𝑣 = 0.1.

4 IMPLEMENTATION DETAILS
4.1 Datasets and Evaluation Metrics
Training DatasetWe follow BSRGAN [52] and build a training set
that includes DIV2K [1], Flickr2K [28], DIV8K [14] and 10,000 face
images from FFHQ [20]. We use the following ways to generate the

training patches: (1) crop non-overlapping 512 × 512 patches; (2)
filter patches with few textures; (3) for well-aligned faces in FFHQ,
we perform random resize with scale factors between [0.5, 1.0]
before cropping to avoid content bias. More details are provided
in the supplementary material. The final training dataset contains
136,205 HR patches of size 512 × 512. We use the same degradation
model as BSRGAN3 to generate corresponding LR images.
Synthetic Testing Dataset To ensure a fair comparison, we use a
mixed degradation model of two recent works BSRGAN and Real-
ESRGAN, denoted as bsrgan_plus3, to generate LR testsets for
DIV2K validation set and 5 classical benchmarks, i.e., Set5, Set14,
BSD100, Urban100 and Manga109. The diversity of test images
guarantees a comprehensive evaluation of model performance.
Real-world Testing DatasetWe test our model on three recent
real-world benchmarks, including RealSR [43], DRealSR [46] and
DPED-iphone [17]. We test models with an upscale factor of 4
for these real-world datasets. Images from RealSR and DRealSR
are captured by DSLR cameras, and contain 100 and 93 images
respectively. DPED-iphone includes 100 LR images captured by
smartphone cameras. The LR images in DPED-iphone are usually
more corrupted than those from RealSR and DRealSR.
Evaluation Metrics For synthetic test datasets with ground truth
images, we employ the well-known perceptual metric, LPIPS [55]
score, to evaluate the perceptual quality of generated images. We
also report the results of the widely used PSNR, SSIM scores for
references. For real-world benchmarks, there are usually no ground
truth images, therefore we adopt the well-known no reference
metric NIQE score for quantitative comparison.

4.2 Training Details
In both the HRP pretraining and SR training, we use an Adam [23]
optimizer with 𝛽1 = 0.9, 𝛽2 = 0.99. The learning rates for both
the generator and discriminator are fixed as 0.0001 throughout
the training. During feature matching stage, the codebookZ and
decoder 𝐺 are fixed. Both our HRP and SR networks are trained
with a batch size of 16, and the HR image size is fixed as 256 × 256
for both ×2 and ×4 upscale factors. We implemented our model
with PyTorch [38]. The model pretraining stage takes about 3 days
on 2 GeForce RTX 3090 GPUs and the SR stage takes about 4 days
on the same device.

5 EXPERIMENTS
5.1 Visualization of HRP
In this experiment, we visualize the features in the codebookZ with
pretrained 𝐺 , which facilitates the understanding of the proposed
framework by answering two questions: i) what priors are encoded
in HRP ii) how are they correlated to the semantics?

As shown in Fig. 3, we visualize the priors encoded in Z by
projecting features to RGB pixel space with pretrained decoder𝐺 .
In other words, we obtain the RGB patches of each vector 𝑧 𝑗 ∈ Z
with 𝐺 (𝑧 𝑗 ), where the size of RGB patches is 8 × 8. Specifically, we
explore how textures are encoded by single codes and combinations
of different codes:

3https://github.com/cszn/BSRGAN

https://github.com/cszn/BSRGAN
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Table 1: Quantitative comparison with state-of-the-art methods on synthetic benchmarks. LR images are generated with a
mixed degradation model of BSRGAN [52] and Real-ESRGAN [44]. PSNR/SSIM ↑: the higher, the better; LPIPS ↓: the lower, the
better. LPIPS scores can better reflect texture quality, and the best and second performance are marked in red and blue.

Method Scale
DIV2K Valid Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
CDC ×2 24.93 0.6293 0.6588 25.35 0.6747 0.5153 22.74 0.5347 0.6229 23.64 0.5282 0.7073 20.94 0.5118 0.7001 21.60 0.6345 0.5723
DAN ×2 24.69 0.5729 0.6219 25.27 0.6278 0.4658 22.79 0.5083 0.5639 23.46 0.4923 0.6384 20.93 0.4793 0.6603 21.78 0.5832 0.5639

DASR(W) ×2 24.74 0.5767 0.6304 25.31 0.6312 0.4735 22.81 0.5110 0.5720 23.49 0.4958 0.6508 20.94 0.4819 0.6696 21.80 0.5878 0.5587
BSRGAN ×2 26.60 0.7073 0.3182 27.65 0.7799 0.2027 24.59 0.6475 0.3013 24.88 0.5967 0.3769 22.76 0.6391 0.3199 24.64 0.7678 0.2285

Real-ESRGAN+ ×2 25.50 0.6963 0.2993 26.73 0.7771 0.2157 23.65 0.6299 0.3023 24.11 0.5860 0.3433 21.66 0.6148 0.2876 23.88 0.7698 0.2135
SwinIR-GAN ×2 25.33 0.6886 0.3313 27.07 0.7793 0.2093 23.76 0.6364 0.3128 23.83 0.5717 0.3707 21.54 0.6195 0.3003 23.56 0.7705 0.2283

Ours ×2 25.26 0.6680 0.2753 26.46 0.7470 0.1964 23.38 0.5982 0.2852 23.83 0.5599 0.3264 21.90 0.5956 0.2777 23.64 0.7407 0.2192

CDC ×4 23.11 0.5850 0.7132 19.99 0.5077 0.7168 20.38 0.4551 0.7377 21.75 0.4800 0.7707 19.42 0.4568 0.7345 19.92 0.5834 0.6102
DAN ×4 24.22 0.5929 0.6881 20.85 0.5319 0.6771 21.44 0.4937 0.6758 22.52 0.4818 0.7438 20.20 0.4757 0.7228 21.02 0.5963 0.6198

DASR(W) ×4 24.19 0.5920 0.7021 20.87 0.5336 0.6972 21.43 0.4953 0.6950 22.49 0.4818 0.7576 20.18 0.4752 0.7400 21.03 0.5975 0.6319
BSRGAN ×4 24.91 0.6500 0.3596 21.63 0.5573 0.4683 22.17 0.5165 0.4173 22.95 0.5042 0.4405 20.91 0.5386 0.3874 22.45 0.6968 0.3039

Real-ESRGAN+ ×4 23.80 0.6414 0.3696 21.31 0.5449 0.5068 21.54 0.5288 0.4271 22.43 0.5035 0.4693 19.90 0.5282 0.3838 21.97 0.6989 0.3073
SwinIR-GAN ×4 24.13 0.6479 0.3543 20.91 0.5128 0.5115 21.58 0.5041 0.4487 22.23 0.4925 0.4447 20.01 0.5300 0.3592 22.21 0.7007 0.3044

Ours ×4 23.77 0.6203 0.3298 20.45 0.4863 0.4942 21.24 0.4809 0.3801 22.11 0.4830 0.4143 20.25 0.5243 0.3566 21.98 0.6816 0.2846

Table 2: Quantitative comparison with state-of-the-art methods on real-world benchmarks. NIQE ↓: the lower, the better. The
best and second performance are marked in red and blue. Some numbers of competitive methods are taken from [44].

Datasets Bicubic DAN RealSR CDC DASR(W) BSRGAN Real-ESRGAN+ SwinIR-GAN Ours
RealSR [43] 6.2438 6.5673 6.8041 6.2376 8.1918 5.7355 4.7832 4.7644 4.7434
DRealSR [46] 6.5766 7.0720 7.7213 6.6359 9.1446 6.1362 4.8458 4.7053 4.1987

DPED-iphone [17] 6.0121 6.1414 5.5855 6.2738 6.9887 5.9906 5.2631 4.9468 5.1066
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(b) Textures generated with ran-
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Figure 3: Visualization of texture priors encoded with pre-
trained codebookZ. Semantic textures emerge when differ-
ent codes are combined, such as 1○ grass, 2○ plant and 3○
water.

• Fig. 3(a) shows that individual codes alone can represent
some basic texture elements. However, when the same code
is tiled onto a bigger feature map, e.g., 4 × 4, the decoder
tends to preserve the color while producing a smooth image.
This implies that a single code is not enough to represent
complex textures.

• Fig. 3(b) shows that complex and realistic textures can be gen-
erated by combining several different code samples, which
indicates that the pretrained Z indeed learns to encode rich
texture priors. In addition, it can be observed that different
combinations of code samples correspond to different seman-
tics, such as, 1○ grass, 2○ plant and 3○ water. Please see the
supplementary materials for more examples.

Based on the above discussion, we conjecture that the individual
codes in Z represent simple texture elements, while the diverse
semantics are encoded in the combinations of multiple codes.

5.2 Comparison with Existing Methods
We compare the proposed QuanTexSR with several state-of-the-art
methods for blind SR, including CDC [46], DAN [30], DASR(W) [42],
RealSR [18], BSRGAN [52], Real-ESRGAN+ [44] and SwinIR-GAN
[27]. Specifically, CDC proposed a divide-and-conquer architecture;
DAN, DASR(W) and RealSR learned degradation models from LR
inputs; BSRGAN, Real-ESRGAN+ and SwinIR-GAN used synthetic
training data generated by handcrafted degradation models. We
use the original codes and weights from the official public github
repositories for all competing methods. Quantitative and qualitative
results on both synthetic and real-world benchmarks are reported
as follows.
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Figure 4: Visual comparisons on two examples from synthesize benchmarks with upscale factor of 2 (first column) and 4 (second
column).Thanks to the HRP, our model is able to restore realistic and faithful textures even when the inputs are severely
corrupted. As for the competitive works, some have difficulties to remove degradation, i.e., DAN and DASR(W), and the others
generate artifacts or tend to be oversmooth, i.e., BSRGAN, Real-ESRGAN+, SwinIRGAN. Please zoom in for best view.

Figure 5: Visual comparisons on two real-world example with upscale factor 4. Our model can remove degradations and generate
feasible details at the same time, while other GAN based methods tend to be either over-textured (first row) or over-smooth
(second row). Please zoom in for best view.

Comparision on Synthetic Benchmarks As Tab. 1 shows, our
QuanTexSR outperforms competing methods in LPIPS scores on
most benchmarks (5 out of 6). Note that we focus on the LPIPS
scores as it better captures the perceptual quality than other met-
rics (e.g., PSNR/SSIM) [43, 44, 49, 52, 55]. In addition, it can be ob-
served that: in general, methods that learn the degradations, such
as DAN and DASR(W), perform much worse than those using man-
ually designed degradation models, which indicates the difficulties
in learning complex real-world degradations. Furthermore, we com-
pare the SR results qualitatively through visual inspection in Fig. 4.
It can be observed that in the first column, BSRGAN, Real-ESRGAN
and SwinIR-GANmistake the feather textures as noises and remove
them. And in the second column, although the distortions are re-
moved successfully, they all fail to generate feasible textures for the
trees. In contrast, thanks to the semantic-aware HRP, our method
does not have such problems and generates higher quality results.
Comparison on Real-world Benchmarks To make a fair com-
parison, we compare our method against state-of-the-art ones on
three large real-world benchmarks and evaluate the results using

a standard no-reference IQA metric NIQE. As Tab. 2 shows, our
method outperforms competing methods in 2 out of 3 real-world
benchmarks, which clearly demonstrates the effectiveness of our
framework. In Fig. 5, it can be observed that our FeMaSR produces
sharp and clear textures without generating artifacts, while the
other methods either fail to remove degradations or tend to be over-
textured and over-smooth. Please see the supplementary materials
for more results.

5.3 Ablation Study
We conduct ablation experiments on four variations of our frame-
work as shown in Tab. 3 to validate our design: Model-A, a baseline
network by discarding Stage I, feature matching and residual short-
cuts. It has a similar architecture with SwinIR, and is trained with
GAN from scratch; Model-B, Model-A with pretrained decoder;
Model-C, Model-B with pretrained codebook and feature match-
ing; FeMaSR, full model with HRP and residual shortcuts; Model-D,
FeMaSR based on HRP without semantic guidance.
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L𝑓 𝑒𝑚𝑎 L𝑟𝑒𝑐

(a) Stage II training loss curve w/ and w/o residual shortcut.

LR input Full results Disable residual Intensity difference
(b) Results of disabling residual shortcut in test stage.

Figure 6: Effectiveness of residual shortcut.

Table 3: Ablation study on synthetic benchmark DIV2K Valid
with upscale factor of 2.

Model ID Model Variations LPIPS↓
A w/o HRP 0.3025
B + pretrained decoder 0.2944

C + pretrained codebook
(with feature matching) 0.3358

FeMaSR + residual 0.2753
D FeMaSR w/o semantic 0.2887

LR input Bicubic (×2) Model-A Model-B

Model-C Model-D FeMaSR GT

Figure 7: Visual examples of different model variations.
Please zoom in for best view.

Effectiveness of Residual Shortcut As claimed in Sec. 3, resid-
ual shortcut helps optimization of feature matching process and
complements possible matching errors. We verify them by remov-
ing the residual shortcut in training (Model-C) and testing stage
respectively. As we can see in Fig. 6(a), the feature matching loss

VQGAN Reconstruction LPIPS↓
w/o semantic 0.2032
w/ semantic 0.1893

(a) Stage I reconstruction loss curve (b) Reconstruction quality on Div2k Valid

Figure 8: Effectiveness of semantic guidance.

L𝑓 𝑒𝑚𝑎 decreases much faster with residual shortcut. This indicates
that residual shortcut is essential for the optimization of L𝑓 𝑒𝑚𝑎 .
We can also observe a clear performance drop of model C without
residual shortcut in Tab. 3 and Fig. 7. We further demonstrate how
residual shortcut helps to complement feature matching errors in
Fig. 6(b). We can notice that model with disabled residual shortcut
can already remove the distortions to a large extent. The residual
shortcut mainly complements the color and edges.
Effectiveness of HRP Model-[A, B and FeMaSR] validate the ne-
cessities of Z and 𝐺 in HRP. As discussed above, the performance
drop of Model-C is mainly due to the optimization difficulty brought
by feature matching. Therefore, we do not use it to validate HRP.
It can be observed that Model-B is better than Model-A since the
pretrained decoder helps to stablize GAN training. However, both
Model-A and Model-B cannot handle complex distortions without
feature matching and tend to generate artifacts, see Fig. 7. Mean-
while, the full model, FeMaSR, can make full use of HRP in both𝐺
andZ, and thereby has the best performance.
Effectiveness of Semantic Guidance We provide reconstruction
training loss curve and LPIPS score in Stage I to show the benefits
of semantic guidance. It can be seen that VQGAN with semantic
guidance converges faster and performs better, resulting in a better
HRP. This finally helps to improve the restoration performance, see
Tab. 3 and Fig. 7.

6 CONCLUSION
In this paper, we have investigated the usage of implicit high-
resolution priors (HRP) encoded in the codebook and associated
decoder of a pretrained VQGAN for real-world blind SR. In par-
ticular, we formulate the SR task to a feature matching problem
between the LR features and distortion free HR feature codebook.
Because HRP is distortion free and fixed during SR stage, our Fe-
MaSR is able to generate more realistic results with less artifacts
than previous GAN based approaches. To train a better HRP, we in-
tegrate semantic information to HRP with features from pretrained
VGG19 network. To facilitate optimization of feature matching loss,
we introduce multi-scale residual shortcut connections to the pre-
trained decoder. Quantitative and qualitative experiments on both
synthetic and real-world benchmarks demonstrate the superiority
of the proposed FeMaSR for real-world LR images.
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