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Abstract
Some architects struggle to choose the best form of how the building meets the ground and may benefit from a sugges-
tion based on precedents. This paper presents a novel proof of concept workflow that enables machine learning (ML) to
automatically classify three-dimensional (3D) prototypes with respect to formulating the most appropriate building/
ground relationship. Here, ML, a branch of artificial intelligence (AI), can ascertain the most appropriate relationship
from a set of examples provided by trained architects. Moreover, the system classifies 3D prototypes of architectural
precedent models based on a topological graph instead of 2D images. The system takes advantage of two primary tech-
nologies. The first is a software library that enhances the representation of 3D models through non-manifold topology
(Topologic). The second is an end-to-end deep graph convolutional neural network (DGCNN). The experimental work-
flow in this paper consists of two stages. First, a generative simulation system for a 3D prototype of architectural prece-
dents created a large synthetic database of building/ground relationships with numerous topological variations. This
geometrical model then underwent conversion into semantically rich topological dual graphs. Second, the prototype
architectural graphs were imported to the DGCNN model for graph classification. While using a unique data set pre-
vents direct comparison, our experiments have shown that the proposed workflow achieves highly accurate results that
align with DGCNN’s performance on benchmark graphs. This research demonstrates the potential of AI to help
designers identify the topology of architectural solutions and place them within the most relevant architectural canons.

Keywords
Machine learning, graphs classification, deep graph convolutional neural network, graph neural network, graph machine
learning, 3D topological models

1. Introduction

Numerous studies have assessed the classification of archi-

tectural forms, and the connection they share with the

ground.1,2 Evaluating the typology of the link between

buildings and the ground generates pertinent data that can

aid architects in making more informed design choices.

Morphological evidence indicates that quantitative

research techniques, fortified by the assistance of computa-

tional tools, help achieve a more efficient design process.

Although the effect of such an approach in established

architectural undertakings has its limitations, studies sug-

gest that employing machine learning (ML) technologies

can raise awareness of architectural forms and refine their

recognition and classification. However, numerous obsta-

cles impede the usage of such techniques. First, supervised

ML requires a significant amount of labelled data to aid

the learning process. Much of this needed labelling data is

difficult to infer from image-based representations of

buildings. Moreover, the limitation of vision-based

approaches is that much of the viable information is diffi-

cult to infer from image-based representations of build-

ings. Maximizing ML operations requires removing any

3D semantically rich data before converting such data into

images. However, this information is simple to infer from

graph-based representations of buildings because the graph

explicitly represents this information. The shortage of dis-

tributable 3D data sets can cause issues due to the scarcity

1Welsh School of Architecture, Cardiff University, UK
2School of Computer Science and Informatics, Cardiff University, UK

Corresponding author:

Abdulrahman Alymani, Welsh School of Architecture, Cardiff University,

Cardiff CF10 3AT, UK.

Email: alymaniaa@cardiff.ac.uk

https://doi.org/10.1177/00375497221105894
https://journals.sagepub.com/home/sim
http://crossmark.crossref.org/dialog/?doi=10.1177%2F00375497221105894&domain=pdf&date_stamp=2022-07-06


of open-source sets having varied formats, appropriate-

ness, usability, and license agreements.3

Even if 3D data sets are made available, there remain

challenges in recognizing and classifying them. Various

studies have focused on the capacity of 3D models4,5 to

recognize features, which involves capturing be manually

performed. Second, numerous ML processes depend on

two-dimensional (2D) pixel-based image recognition which

may not align with the typical representation and storage

of information in this domain. Architectural environments

typically comprise several elements, three dimensions, and

a topological connection, and thus, the reliance on plans

and drawings may result in significant restrictions. Despite

this, numerous ML approaches fail to comprehend the con-

tent of images because numerous 2D depictions of the

models before aligning them with an image-based query.

However, such an approach fails to capture the 3D topolo-

gical relationships embedded in the data. To counter these

shortcomings, a more thorough strategy involves pulling

data from 3D models and converting them into vectors to

facilitate inputting them into a neural network.6 This

method removes a fragment of information, which is then

transformed into standard input vectors while ignoring the

topological data that indicate the objects’ types.

This paper posits that a graph structure best represents

buildings and their relationship to their surrounding con-

text. This was deemed superior to using height maps since

they represent heights only, but fail to represent the often

complex relationships that buildings have with the sur-

rounding ground. Pilotis/columns and interlocked forms

are difficult to capture in a height map. Examples of these

difficulties can be seen in the well-known distorted repre-

sentations of buildings in street mapping software such as

Apple Maps and Google Maps. Having decided to use

graphs to represent building and ground, it follows natu-

rally that these graphs would be injected with semantic

information so that an ML system (or any graph-based

processing software) can make sense of the data and pro-

duce more useful information.

A promising approach involves the use of ML on

graphs (graph machine learning (GML)).7–9 However,

numerous strategies are impeded because they must

decompose the graphs into smaller substructures, typified

as paths and walks, and glean any similarities based on a

summary of the graphs’ traits. The Deep Graph

Convolutional Neural Network (DGCNN) bypasses such

restrictions by offering end-to-end deep learning that cate-

gorizes graph-based information.10

This network proves to be beneficial because it accepts

graphs without the need to first transform the data into a

vector representation. This study seeks to design a novel

proof-of-concept workflow that employs the network to

classify 3D models according to their topology instead of

their 2D image representation. To aid the research, the

study employed a morphology based on the connection

shared by buildings and the ground. First, the researchers

utilized a software library (Topologic)11 that refined the

presentation of 3D models by focusing on non-manifold

geometry and encoded semantic data. The next step saw

the software used to automatically generate a large syn-

thetic data set of building/ground precedents with several

topological categories. Next, the models were labeled and

transformed into topological dual graphs with comprehen-

sive semantic data. Second, the researchers utilized the

data as input to train DGCNN for graph classification.

The remainder of this paper is organized as follows.

Section 2 provides the paper’s motivation. Section 3 pro-

vides a summary of the existing building and ground rela-

tionship. Section 4 conducts a review of related work carried

out using graphs and ML in architecture. Section 4.1 dis-

cusses the related variations of graph convolutional neural

networks (GCNNs). Section 4.2 describes the DGCNN

employed in this research project. Section 5 provides a sum-

mary of graph theory. Section 6 describes the Topologic

software library. Section 7 details the experimental case

study. Section 8 reports on the findings of the experiments.

Finally, section 9 provides concluding remarks, the limita-

tions of this work, and lists plans for future work.

2. Motivation

To enable architects to make informed design decisions,

digital aids must help them first identify building perfor-

mance characteristics in the early design stages. Manually

performing this task can be costly, time-consuming, and

prone to errors. In the age of artificial intelligence (AI), and

especially GML, designers can predict the performance of

buildings and the ground during the design process because

of automatic classification. This framework has the poten-

tial to introduce into the design process similar precedents

such that the designer can quickly estimate the performance

consequences of their design decisions. However, to date,

AI techniques have focused on the use of 2D visual repre-

sentations of building features to classify buildings. Making

use of only pixel information reduces the ability of the sys-

tem to use 3D information. However, encoding a full 3D

model is challenging and too time-consuming for ML.

Therefore, because of topological graphs, building repre-

sentations are no longer constrained by the limitations of

2D pixels and do not necessitate the complexity of encod-

ing a full 3D model. Thus, the challenge shifts to having

the ability to derive topological graphs from a conceptual

model. This paper presents to the practitioner the impor-

tance of taking into consideration the building’s ground at

the earliest possible design stages before the complexity

and rigidity of a fully developed building information

model (BIM) take hold. Different technologies, such as AI,

can help designers achieve this goal and will play an ever-

increasing role in future design practice.
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3. Building and ground relationship

The building/ground relationship question cannot be avoided

when architects design a building. Historically, the building

and ground have long undergone deliberations in architec-

ture. The Roman military engineer Vitruvius stated that ‘‘a

very healthy site’’ constitutes the first principle of finding a

city location. He explained the traits of healthy sites by

declaring that they must be ‘‘high, neither misty nor frosty,

and in a climate neither hot nor cold, but temperate.’’12

In the Middle Ages, the ground was central to the design

and construction of buildings with a religious character.

The master masons’ architect would initially etch the plan

into the earth and use projection systems to construct the

building from the ground up.13 Moreover, the building and

ground engagement has remained constant even with the

revolution of technological advancement. In ‘‘The Four

Elements of Architecture,’’ Semper wrote that the mound

comprises one of the architectural elements that requires

engagement with the building and the surrounding context.

Modern architects, such as Ludwig Mies van der Rohe and

Le Corbusier, have been known to raise their projects above

the earth surface, while others construct a new ‘‘plinth’’

above the existing ground. Richard Neutra and Frank Lloyd

Wright sought to bridge the gap between architecture and

the surrounding natural environment by way of a more sig-

nificant effort than Le Corbusier and Ludwig Mies van der

Rohe. However, recent technological, philosophical, and

geopolitical changes have improved the notion of connec-

tions with the ground.14 Contemporary architects have

employed a similar approach to the ground but, at the same

time, more complex and conformist with the ground. Some

contemporary architects such as Renzo Piano in ‘‘Botin

Center’’ and Tom Wiscombe in ‘‘Guggenheim Helsinki’’

adopted the idea of ignoring the ground using separated

objects. In contrast, others, such as Weiss/Manfredi in

‘‘The Olympic Sculpture Park’’ and Peter Eisenman in

‘‘The City of Culture’’ have attempted to blur the division

between landscape and building with megastructures, field

conditions, landform building, and landscape urbanism

According to the Toma Berlanda, 2014 lexicon, the build-

ing touches the ground via different categories; grounded;

ungrounded; foundation; plinth; artificial ground; and

absence of level. In addition, the building’s relationship

with the terrain is defined through topography, landing and

grounding, strata and earthwork landforms 1 . Despite all

these approaches (Figure 1) , Toma has generalised the cur-

rent building/ground relationship taxonomy into three main

categories: Separation, Adherence and Interlock, which are

the categories adopted in this paper (Figure 2).14

4. Related work

Derix and Jagannath15 developed ways to construct spatial

typologies by associating spatial attributes with layouts. A

building floor plan underwent analysis using isovists, cen-

trality, and visual connectivity concepts.16 The model

facilitates an experience-based approach to architectural

and urban design by determining types and sequences of

user experiences across buildings instead of strict typolo-

gies. To develop a reconfigurable exhibition space plan,

Harding and Derix17 used a two-stage neural network and

spectral graph theory as a spatial pattern recognition tool.

Due to their ability to act as a spatial pattern recognition

tool, a two-stage neural network and spectral graph theory

were used by Harding and Derix to develop an exhibition

plan. The researchers utilized spatial adjacencies to con-

struct and classify plans and reduced the graph by finding

its ‘‘graph spectrum’’ to facilitate its representation as a

synaptic vector in feature space. The result of such an

approach is that comparing graphs becomes significantly

easier. A particularly noteworthy aspect of their research

is that they used this approach for automatically generat-

ing spatial layouts using a repulsion algorithm combined

with a diagram that distributes graphs evenly on a bound-

ary plan. To maintain node adjacency, topological connec-

tions were simulated as springs.17

Beetz18 has researched the use of graph databases for

harmonized distributed concept libraries to build informa-

tion models. He aims to create ‘‘flexible, granular, and cas-

cading concept libraries for the building industry.’’ The

purpose of this research is to standardize the input data for

graph neural networks. Tamke19 has investigated super-

vised and unsupervised ML approaches to deduce implicit

information in (BIM). His platform can extract literal val-

ues, aggregates, and derived values from IFC SPF files. In

addition, the system can perform geometrical and topologi-

cal analysis that can detect anomalies and divide floor

plans into two groups based upon their geometrical appear-

ance. Ferrando et al.20 aim to demonstrate how ML tech-

niques may be used to identify typological and functional

traits from building plans based on a data set of religious

buildings. Their analysis of this data set, via the use of ML

techniques, allows them to determine whether these build-

ings are mosques or monasteries and derive other such

insights into the connections between typology and spatial

connectivity within them. This proposed method for classi-

fying buildings based on their spatial structures has

achieved high levels of accuracy. Although this research

data set focuses on religious complexes, they are confident

that this approach can be applied to other buildings and

help answer other architectural questions.

4.1. GCNNs

In 2014, Bruna21 introduced graph neural networks,

demonstrating how to apply neural networks or deep

learning to graphs. In 2018, Xie and Grossman22 proposed

a crystal graph neural network (CGCNN) that can help

ascertain crystal atom properties. During studies, CGCNN

Alymani et al. 3



accurately predicted eight properties of crystals. A multi-

GCNN was proposed in 2018 by Chai et al.23 to predict

bike flow within bike-sharing stations. By reducing the

prediction error, their model has outperformed state-of-

the-art prediction models. Using a diffusion recurrent

neural network (DCRNN), Li et al.24 proposed a deep

learning framework for a traffic forecasting algorithm that

incorporates both spatial and temporal dependent variables

in traffic flow. Yu et al.25 proposed graph convolutional

networks that have consistently outperformed the state-of-

the-art baseline based on real-world traffic data sets. In

relation to various real-world traffic data sets, Kipf and

Welling26 presented a scalable approach to learning from

graph-structured data in 2019. Their model scales linearly

and can encode both local graph structures and features of

nodes. On data sets in the domain of citation networks,

they found that their approach significantly outperformed

related methods. GCNN has been successfully applied in

numerous different domains. However, their application in

the architecture domain remains comparatively recent.

4.2. DGCNNs

In 2018, Zhang et al. established an end-to-end DGCNN.

Such a network can accept arbitrary graphs with no require-

ment to convert them into fixed dimension vectors utilizing

feature engineering.10 DGCNN achieves this goal by send-

ing the input graph through numerous graph convolution

layers where node data propagates between neighbors. Next,

an additional layer positions the graph’s vertices in a compa-

tible sequence; the vertices then undergo input into a con-

ventional convolutional neural network (Figure 3). By

placing the vertices in order instead of summing them up,

DGCNN retains more data, which, in turn, allows it to

acquire information from global graph topology. In addition,

Zhang et al. offer theoretical proof that in DGCNN, should

a pair of graphs prove isomorphic with matching structures,

their graph representation, following an assortment of the

vertices, remains as it is. This situation bypasses the require-

ment to conduct further expensive algorithms to canonize

the graph. In comparison to kernel-based methods for

Figure 1. Timeline represents the development of physical building and ground designs over the last 100 years.

Figure 2. Main building and ground categories.
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learning on graphs, DGCNN achieves more notably accurate

results on benchmark graph classification data sets. In 2020,

Jabi and Alymani used a DGCNN to classify a 3D data set

of an urban block with different typological forms. Jabi and

Alymani’s model reached a high prediction accuracy result

(84.33%). We followed a similar approach in this paper but

used a different data set and significantly different classifica-

tion aim. The experiments in this paper used different label-

ing schemes and compare this novel workflow to other

approaches.27

5. Graphs

One of the best approaches to describe the connection

shared by the building and the ground is to make use of

graph theory. Graph theory uses mathematical structures

to model relations between objects. A simple graph G

comprises a set of points called vertices V(G), and lines

called edges E(G) that join pairs of vertices. The degree of

a vertex in a graph is the number of edges connected to it.

Vertices connected by an edge are known as adjacent ver-

tices. Similarly, the edges that share a common vertex are

known as adjacent edges. Two graphs which have identi-

cal structure with respect to which vertices are connected

by edges are known as isomorphic graphs.28 Graphs can

model numerous types of physical and biological relation-

ships and processes.29 Therefore, we used graphs in this

research to model the physical building and ground rela-

tionship (for more detailed information on graph theory,

please consult Voloshin30).

6. Topologic

Topologic31 is a modeling software library created to

improve space representations in 3D parametric and gen-

erative settings, as typified by Dynamo,32 Grasshopper,33

and Sverchok.34 The library follows the notion of non-

manifold topology,11,35 and its class list features Aperture,

Cell, CellComplex, Cluster, Content, Context, Edge, Face,

Graph, Shell, Topology, Wire and Vertex (Figure 4). A

Vertex represents an area in a 3D space with X, Y, and Z

values. Edges connect starting and ending Vertices, and

Wires join together several Edges. Faces consist of a col-

lection of closed Wires, while Shells gather Faces that

share Edges. Cells comprise closed Shells, while a

CellComplex gathers a series of Cells that share Faces.

Clusters group Topologies of all dimensionalities. A Graph

represents an information construction born of Topologies.

Meanwhile, Apertures constitute a specific kind of Face

anchored to a host Face. Topologies can often have other

Topologies added to their Contents; such Content

Topologies point back to their Context counterparts in a

way that shows similarities with the connection between

parents and their offspring. In addition, Topologies can

have Dictionaries in which there exist numerous arbitrary

key-attribute pairs.

This study will evaluate a pair of Topologic elements

that have proved integral to the suggested flow of work.

The first is the automated deduction of 3D topological dual

graphs utilizing the Cell, CellComplex, and Graph classifi-

cations, while the second involves implanting semantic

data via custom dictionaries.

Topologic can construct CellComplexes from enclosed

3D spatial units, namely, Cells that share Faces. The Cells

that share Faces are otherwise known as adjacent Cells.

Graph classifications and related techniques align with

graph theory. Graphs comprise Vertices and Edges that

join together Vertices. The Topologic library contains

methods that accept Topologies as input with additional

parameters and produces Graphs as output. At its most

fundamental level, a dual Graph associated with a

CellComplex constitutes a Graph connecting adjacent

Cells’ centroids with linear Edges (Figure 5).

A dictionary is a data structure made of key/value pairs.

Any identifying string (e.g., ‘‘ID,’’ ‘‘Type,’’ ‘‘Name’’) acts

as a key. A key’s value can be of any data type (e.g., float,

an integer, a string or a list). Topologic enables the embed-

ding of arbitrary dictionaries in any topology. When

Figure 3. The general structure of DGCNN (re-presented after Zhang et al.10 and Jabi and Alymani27).
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topologies undergo geometric operations (e.g., slicing a Cell

into several smaller Cells, thereby creating a CellComplex),

the dictionaries of operand topologies are transmitted to

resulting topologies. Furthermore, creating a dual graph

from a Topology sees the dictionaries of the constituent

topologies transferred to their corresponding vertices. We

use this capability to label the vertices in the dual graph.

7. Experimental case study

For the experimental case study, we created prototype rules

around the building and ground relationship based on built

architectural precedents. We then used Grasshopper and

Topologic to generate various 3D parametric models and

their associated topological dual graphs of the building

and ground relationship (Figure 6).

The ground plate was fixed in size. The plinth was then

dimensioned to be a percentage of the ground plate with

equal offsets on all sides. The building geometries were

then placed with appropriate offsets and spacing. The

height of the building was varied. Finally, the building

geometries were subdivided internally into a grid of cells.

It is important to note that the internal sub-division of the

building was designed to aid the neural network in distin-

guishing structures of different heights rather than to pro-

vide room-level detail.

The rules we created were based on the main building and

ground relationship, which is divided into three categories:

1. Separation (of ground, building, core, columns,

plinth).

2. Adherence (of ground, building, core, plinth), and

3. Interlock (of ground, building, core).

Three tasks were required to create a data set. The first

task was to label the overall graph. Separation is when the

building is elevated from the ground on columns or on a

plinth and columns. Adherence refers to the buildings that

are set directly on the ground or on a plinth which in turn

rests on the ground. Finally, interlock refers to buildings

that overlap with the surrounding topography. The second

task was to label the vertices. DGCNN required the label-

ing of both the overall graph and each vertex in it; for this

Figure 5. Left: an example CellComplex. Cell A and Cell B are
said to be adjacent because they share Face F. Right: an example
dual graph of the CellComplex. Each Cell is represented by a
Vertex and the Vertices of adjacent Cells are connected by an Edge.

Figure 4. Topologic core class hierarchy.
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data set, the vertices were labeled according to five cate-

gories: Ground (0), Plinth (1), Columns (2), Building (3),

and Core (4) (Figure 7). The generative algorithm is aware

of the category to which the generated model belongs to as

well as the node types being generated within the model.

Thus, it can assign the graph label as well as the node

labels correctly at the point of export to DGCNN.

The final task was to integrate the visual dataflow defini-

tion with a custom Python script to convert the 3D dual graph

created by Topologic into a text file to meet the DGCNN for-

mat requirements. The first line of the text file has the total

number of graphs (g). This is followed by g blocks of graphs

where each block starts with a line that contains the number

of vertices (n) followed by a number that indicates the classi-

fication (p) of that graph. This is then followed by a block of

n vertices where each line starts with the label of the vertex

(vl) followed by the indices of its adjacent vertices. The

index of a vertex is implied by its line position using a zero-

based numbering system (Figure 8).

Since the data set in synthetically produced through

iterative and nested loops, the resulting list contains

sequential numeric patterns and is not random in nature

(Figure 9). Thus, to avoid biased training, or the testing of

only a specific level of complexity, the final list of graphs

is reordered randomly.

The produced data set totaled 900 graphs as follows:

1. A total of 700 Separation graphs are as follows:

� Ninety building graphs separated from flat ground

on small, medium, and large columns.

� Ninety building graphs separated from flat ground

on small, medium, and large columns, set unto a

plinth.
� Two hundred sixty building graphs separated from

sloping ground on small, medium, and large

columns.
� Two hundred sixty building graphs separated from

flat ground on small, medium, and large columns,

set unto the plinth.

2. A total of 96 Adherence graphs as follows:

� Twelve building graphs set directly on flat ground.
� Twelve building graphs set on a plinth on flat

ground.
� Thirty-six building graphs set directly on sloping

ground.
� Thirty-six building graphs set on a plinth on sloping

ground.

3. A total of 104 Interlock graphs:

� Thirty-four building graphs interlocked with flat

ground.
� Seventy building graphs interlocked with sloping

ground.

4. Further data set details are as follows:

� The total number of vertices is 55,081.
� The average number of vertices per graph is 61.
� The minimum number of vertices per graph is 20.

Figure 6. Grasshopper definition of generated 3D parametric models and their associated topological dual graph.
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� The maximum number of vertices per graph is 197.
� The total number of ground vertices is 31,772.
� The total number of building vertices is 18,626.
� The total number of plinth vertices is 10,689.
� The total number of column vertices is 16,923.
� The total number of core vertices is 900.

All experiments were run on a laptop computer running

the MacOS Catalina 10.15 operating system with an Intel

Core i7 Quad-Core CPU running at 2.7 GHz with 16 GB

of memory. DGCNN was deployed using the PyTorch

Python environment.

DGCNN has the following default parameters, most of

which were maintained throughout the experiments.10 The

following is a summary of these unmodified parameters:

� Decay parameter: the largest power of 10 that is

smaller than the reciprocal of the squared maxi-

mum node degree.
� SortingPool k: set such that 60% of the graphs have

more than k nodes.
� Two one-dimensional (1D) convolutional layers.

The first layer has 16 output channels with a filter

size of 2 and a step size of 2. The second 1D con-

volutional layer has 32 output channels with a filter

size of 5 and a step size of 1.
� The dense layer has 128 hidden units followed by a

softmax output layer.
� A dropout layer is added at the end with a dropout

rate of 0.5.

Figure 7. Examples of auto-generated Building/Ground configurations with associated dual graph.
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� DGCNN uses a nonlinear hyperbolic function

(tanh) in the graph convolution layers and a recti-

fied linear unit (ReLU) in the other layers. DGCNN

does not use validation set labels for the training.
� The neural network parameters were optimized

using the Adam optimizer.
� DGCNN uses a Cross-Entropy to calculate the loss

function.

8. Experimental results

Initially, the whole data set was split into training, valida-

tion, and testing sets. The 900 graphs were divided into

35% training, 35% validation, and 30% testing. As detailed

below, the number of epochs, the learning rate, and the

batch size hyperparameters were varied to improve perfor-

mance. The training and validation data used for tuning the

hyperparameters were 630 graphs (70%).

8.1. Number of epochs

The number of epochs is the number of complete itera-

tions through the training data set. We experimented with

various numbers of epochs and found that the best classifi-

cation average accuracy result was at 200 epochs (96.3%)

with a 0.128 loss. Exceeding that value (i.e., 250 epochs

and more) resulted in no change in the classification accu-

racy, although the loss gradient was significantly (Figures

10 and 11), which indicates that the model became over-

fitted (Figure 10). The model started learning and

improved dramatically from the first few epochs, but the

accuracy level tapered after reaching approximately 200

epochs, meaning that the model stopped learning after that

point.

8.2. Learning rate

In convolutional neural networks, the learning rate is the

amount by which the model parameters are updated at

each optimization step. Varying the learning rate can dra-

matically affect the performance of the model. We experi-

mented with three learning rates (1e25, 1e24, 1e23) and

documented the results (Table 1). At first glance, all three

options showed high classification results; however, a

more in-depth consideration of the model performance

revealed a fluctuating learning performance at the 1e24

and 1e23 learning rates (Figures 12–15). The highest pre-

diction accuracy result with an acceptable model perfor-

mance (96.3%) was achieved through a learning rate of

1e25, with the lowest error loss at 0.128 (Figures 16 and

17). Therefore, in subsequent experiments, we used this

learning rate to continue improving the accuracy of the

results.

8.3. Batch size

The batch size of gradient descent in convolutional neural

networks controls the number of training samples to iterate

through before the model’s internal parameters are

updated. For this last experiment, we maintained a 1e25

learning rate for 200 epochs while experimenting with a

diverse range of batch sizes (1, 2, 5, 10, 20, and 50). The

best classification accuracy was reported for a batch size

of 1 (Table 2). However, a significant reduction in pro-

cessing time (approximately 76%) can be achieved by

increasing the batch size from 1 to 20 with a relatively

modest loss in accuracy (approximately 1.9%). The associ-

ated line graph indicates the effect of the batch size on

classification accuracy (Figure 18).

8.4. Testing the DGCNN architecture

After tuning the hyperparameters, the best performing model

was saved and tested on the test set. The parameters were as

follows: epochs: 200, learning rate: 12e5, and batch size: 1.

The final test accuracy model achieved 95.6%.

Finally, the data set that we created was unbalanced,

which is common for classification tasks. Moreover, our

synthetic data are actually very similar/homogeneous within

the same category. However, to prove the effect on the

Figure 8. The general data set format required for DGCNN.
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classification performance, we used an under-sampling tech-

nique to re-sample and test the final model. The new data

set in this final test consisted of 253 separation, 96 adher-

ence, and 108 interlock graphs. The final model achieved a

94.3% accuracy with 0.278 loss, which is less than the best

model accuracy by only 1.4% (Figures 19 and 20).

9. Conclusion

This paper aimed to classify architectural topology form

through a novel workflow that uses ML on 3D graphs

rather than 2D images. We leveraged a sophisticated

topology-based 3D modeling environment to derive dual

Figure 9. Sample of automatically generated building/ground typologies.

Figure 10. Average accuracy of 500 epochs model. Figure 11. Average loss of 500 epochs model.
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graphs from 3D models and label them automatically. We

then exported those graphs to a state-of-the-art deep learn-

ing GCNN. To discover the best accuracy rates, we experi-

mented with different learning rates, the number of epochs,

and the number of batches.

We found that the data set of 900 graphs with a testing

ratio of 20%, a learning rate of 1e25, using 200 epochs,

and a batch size of 1 gave us the best prediction accuracy

(95.6%). While we cannot use benchmark data sets with

Table 1. Accuracy results using various learning rates.

Learning rate Loss Accuracy (%)

1e− 5 0.128 96.3%
1e− 4 0.116 96.8%
1e− 3 1.031 97.4%

Figure 12. Average accuracy of 1e− 4 learning rate.

Figure 13. Average loss of 1e− 4 learning rate.

Figure 14. Average accuracy of 1e− 3 learning rate.

Figure 15. Average loss of 1e− 3 learning rate.

Figure 16. Average accuracy of 1e− 5 learning rate.

Alymani et al. 11



which we can compare our results, the results achieved in

this paper are consistent with accuracy results that DGCNN

achieves using benchmark data sets. This means that we

have been able to leverage DGCNN’s full potential.

Moreover, by improving our node labeling, these result

proved superior to our last experiment on an urban block

tower, which produced a prediction accuracy of 84.33%.27

Our approach shows strong promise for recognizing archi-

tectural forms using more semantically relevant and struc-

tured data. Planned future work will experiment with more

data sets and different building/ground topologies and com-

pare this novel workflow to other approaches.

Due to the lack of ‘‘real’’ data sets, we generated syn-

thetic data sets based on extracting building/ground rela-

tionship rules from 500 architectural precedents. We

recognize that real data sets may need intervention and

translation to make them amenable to dual graph extrac-

tion. Furthermore, this paper focused on the domain of an

architectural object’s relation to the ground; its applicabil-

ity to other typologies remains to be tested.

Figure 20. Average accuracy for under-sampling technique
model performance.

Figure 17. Average loss of 1e− 5 learning rate.

Table 2. Comparison of accuracy results and total processing
time using various batch sizes.

Batch size Accuracy Total processing time

1 96.3% 00:14:34
2 95.9% 00:07:55
5 95.7% 00:04:03
10 95.2% 00:02:51
20 94.4% 00:02:10
50 87.3% 00:02:04

Figure 18. The effect of increasing the batch size on the
classification accuracy.

Figure 19. Average loss for under-sampling technique model
performance.
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We have identified several new areas of research based

on our findings. First, we are planning to investigate node

classification rather than just overall graph classification.

Second, we are planning a system that can recognize the

topological relationships the designer is building in near

real-time and suggest precedents from a visual database.

Other future planned work includes the use of this tech-

nique as a fitness function within an evolutionary algo-

rithm to generate and evaluate design options.
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Appendix 1

A1. Run the DGCNN model

1. To run the DGCNN model, follow the installation

in the link: https://github.com/muhanzhang/pytorch_

DGCNN. To run the DGCNN, type ./run_DGCNN.sh

followed by the data name, folder number, and the

amount of testing graphs.

2. In order to tuning some of the hyperparameters, open

the python file run_DGCNN.sh and modify the

hyperparameters in the file such as: the training/test-

ing ratio, the learning rate, the number of epochs,

and the batch size.
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Code Snippet 1. Run the DGCNN Code.
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Code Snippet 2. Tuning the hyperparameters.
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