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A B S T R A C T

Social media data analysis in a smart city context can represent an efficacious instrument to inform decision
making. The manuscript strives to leverage the power of Natural Language Processing (NLP) techniques applied
to Twitter messages using supervised learning to achieve real-time automated event detection in smart cities. A
semantic-based taxonomy of risks is devised to discover and analyse associated events from data streams, with
a view to: (i) read and process, in real-time, published texts (ii) classify each text into one representative real-
world category (iii) assign a citizen satisfaction value to each event. To select the language processing models
striking the best balance between accuracy and processing speed, we conducted a pre-emptive evaluation,
comparing several baseline language models formerly employed by researchers for event classification. A
heuristic analysis of several smart cities and community initiatives was conducted, with a view to define
real-world scenarios as basis for determining correlations between two or more co-occurring event types and
their associated levels of citizen satisfaction, while further considering environmental factors. Based on Multiple
Regression Analysis (MRA), we established the relationships between scenario variables, obtaining a variance
of 60%–90% between the dependent and independent variables. The selected combination of supervised NLP
techniques leverages an accuracy of 88.5%. We found that all regression models had at least one variable
below the 0.05 threshold of the 𝑓 − 𝑡𝑒𝑠𝑡, therefore at least one statistically significant independent variable.
These findings ultimately illustrate how citizens, taking the role of active social sensors, can yield vital data
that authorities can use to make educated decisions and sustainably construct smarter cities.
1. Introduction

With social media adoption expanding exponentially and acceler-
ated by the widespread use of mobile devices, users increasingly react
in real-time to events occurring in their immediate surroundings and
beyond, providing time-critical and potentially actionable information
in a smart city context. With population growth and technological ad-
vancements, including the deployment of 5G, the potential has become
increasingly promising for citizens to act as ‘‘active’’ social sensors and
actuators. In 2021, social media was well established, with more than
75% of Americans using at least one platform, according to Faelens
et al. (2021). Numerous technical factors contribute to this trend,
such as the increasing prevalence of the global Internet availability.
According to Russo (2019), in 2018, approximately 99% of European
households had access to a 4G connection, compared to 20% in 2012.
Another contributing factor is the widespread usage of social media,
which governments across the world increasingly employed to commu-
nicate directly with citizens (Wirtz, Göttel, Langer, & Thomas, 2020).
These breakthroughs enable more and more ‘‘always-on’’ citizens to
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react in real-time to events, regardless of their location, while openly
reporting their internal thought processes to the public.

As social media applications such as Twitter and Facebook sur-
passed email as the primary communication channel for most users
(Lytras, Visvizi, & Jussila, 2020), they accumulated ever-increasing
insights of interest to data analysts. One of the leading social media
platforms for short-form messages, Twitter witnesses an average daily
usage rate of 500 million user posts (‘‘tweets’’) (Gao et al., 2022).
Large proportions of the population of developed countries live in
conglomerated urban areas. As described by Malche, Maheshwary, and
Kumar (2019), among other functions, smart cities attempt to monitor
various parameters such as energy, water quality, and transportation
flow while detecting and preventing crime and organising appropriate
responses proportionate to identified risks and events.

In an increasingly urbanised and digital world, cities are exploring
a wide range of governance models, informed by decision support
systems that leverage (near) real-time information, including social
media sources, to enhance their sustainability and resilience (Kim &
Kim, 2022). As such, the Smart City paradigm seeks to enhance the
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standard of living for its residents. In order to determine whether the
development of smart cities is consistent with sustainable development
goals, a new methodological approach has gained traction. Girardi
and Temporelli (2017) defined smartainability as an approach scoped
with evaluating, using both qualitative and quantitative measures,
how sustainable smart cities become as a result of deploying smart
technologies and infrastructure. The author implemented this strategy
on the Expo Milano 2015 site, demonstrating the capability to provide
decision-makers with valuable insight into the following advantages
generated by the deployment of smart solutions at a city level: (i)
benefits can be gauged (ii) indicators can be assessed prior to imple-
menting technologies or solutions (iii) benefits could be easily linked
with the associated deployed smart technologies for a more targeted
assessment. Our research devises a viable approach to achieving and
maintaining smartainability by enabling smart city managers, such as
takeholders and local authorities, to make more informed decisions
round the detected events, prioritised under the analysis of their
ssociated environmental factors and citizen satisfaction.

.1. Research motivation and context

Our manuscript proposes a methodology for detecting and inter-
reting real-time events occurring in a smart city context. A taxonomy
uilt upon a semantic-based risk model is presented in this section.
e also propose a method to conduct citizen satisfaction analysis,
hich would enable smart city managers to gauge better the well-
eing of residents and transients in their areas of interest while also
valuating the importance of particular detected events more objec-
ively. A citizen satisfaction metric is determined based on the positive

or negative valence of each message. In addition, we uncover and
validate relationships between co-occurring events, citizen satisfaction,
and environmental factors. Furthermore, we validate the relationships
using MRA statistical models.

1.1.1. Smart city event detection on a bespoke risk taxonomy
Each message features valuable meta-data, such as originating loca-

tion and other user-defined attributes and content (images and videos).
As a result, manually processing and decoding voluminous data streams
becomes increasingly difficult, if not impossible. Notwithstanding this
barrier, we can gear the Twitter limitations to our advantage: the highly
condensed and standardised format of the messages imposed by the
platform, limited to 280 characters each, facilitates the deployment of
automated models for aggregating, processing and decoding ‘‘events’’
of interest within the data, with relatively low computational costs.

From a technical perspective, an event represents a real-time oc-
currence identified within a message that, based on the determination
of machine learning NLP techniques, features a semantic similarity
above a certain threshold defined in the hyper-parameters. Conversely,
from an ontological perspective, an event acts as a stimulus and has
the consequence of disturbing the modus operandi of a city, taking
place either in a tangible form (thefts, car accidents, social gatherings)
r intangible form (positive or negative sentiments).

An efficient approach to undertaking the risk concerns in a smart
ity is to react promptly to emerging threats. Utilising the work of
oburn et al. (2014) as a starting point, we have derived a general
isk taxonomy illustrated in Fig. 1. Events warranting a deeper level of
nalysis, such as wars, nuclear, space and economic threats, although
entioned and modelled by the original author, have been omitted,

s they do not form part of the remit of this research. Although not
xhaustive, the taxonomy provides a strong starting point for event
etection in a smart city context. At this stage of our work, we con-
idered seven categories of events (highlighted within the blue circles)
s a starting point. In the taxonomy highlighted above, we have also
2

roposed appropriate responses to each type of event.
1.1.2. Citizen satisfaction and environmental factor analysis
As some decisions taken in a smart city context could directly and

significantly affect the livelihoods of the citizens, they should be subject
to a periodic review process. Using messages from a social media
channel such as Twitter affords us an insight into the publicly exposed
thought processes of the residents and transients of a particular area.
By analysing positive or negative inclinations, specific speech patterns
and words acquire a negative or positive value, aiding in the prediction.
Inspired by Lamba and Madhusudhan (2018), an extensive collection
of tweets was fetched and utilised to ensure a highly accurate category
prediction. The extensive vocabulary variations enabled us to account
for the subtleties of language and jargon expressing human sentiments.

To analyse environmental factors, we use daily median values for
temperature, humidity and precipitation fetched from Meteoblue. This
platform compiles data from various local weather stations and national
weather services and incorporates it into model simulations to provide
high precision data at high spatial resolution.

1.1.3. A case study for a Smart City
Amongst several strategic research initiatives, the smart city and

communities programmes funded by the European Commission are
of particular significance: Smarter Together (Morishita-Steffen et al.,
2021), Making city (Gabaldón Moreno, Vélez, Alpagut, Hernández, &
Sanz Montalvillo, 2021), CityxChange (Temeljotov Salaj & Loewen,
2020), ATELIER (Baculakova et al., 2020; Castillo-Calzadilla et al.,
2021; Olivadese et al., 2021), MAtchUP (Croci & Molteni, 2021;
Dimeski, Memeti, & Bogdanoska-Jovanoska, 2019).

A heuristic analysis of these projects, coupled with the recurring
event types and use cases modelled as part of our Taxonomy, shortlisted
several relationships and scenarios of particular significance to smart
cities:

• The interplay between traffic events and environmental factors
• The influence of faulty infrastructures, such as electricity charges, on

traffic events
• Relationships between thefts, social events and environmental factors
• Links between citizen satisfaction and gatherings, coupled with

queues and electricity charges
• Correlations between citizen satisfaction and weather elements

(temperature, precipitation, and humidity)

These scenarios resemble real-world use cases in a smart city con-
text, in line with recurrent focal topics highlighted within the European
Commission-funded projects mentioned above. We have associated
each scenario with a dependent variable and multiple independent vari-
ables, all derived from the risk types modelled in the Taxonomy. These
variables are fully quantified and evaluated statistically in Section 4.

Cardiff City Council has an ambitious agenda for the adoption
and implementation of smart city technologies through their released
‘‘Smart City Roadmap’’ (Cardiff City Council, 2020), which outlines
proposals for introducing smart street lighting, smart parking, smart
transportation, and a smart environment. Most of these initiatives aim
at addressing some of the challenges identified: increased demand
for public services and energy, uncertain economic conditions, and
increased pressure on the natural environment. Our tailored smart
city research can assist Cardiff Council and other local authorities in
developing an Open-Source Intelligence (OSINT) framework to make
evidence-based decisions considering historical and real-time events.
This approach enables Cardiff City to maintain a competitive edge in
the smart city revolution currently occurring in the UK and to remain
a secure and highly available hub for sustainable development.

In a real-world scenario, a smart city manager would monitor the
‘‘urban pulse’’ using an interactive dashboard assessing different types
of events at a city level. The events are detected from a continuous
stream of messages and classified into a risk category. The events are

geo-localised wherever possible and can be validated through manual
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Fig. 1. Smart City Taxonomy example and appropriate local authority responses: IM = Interactive Map, Re = Report, As = Assistance, An = Analyse, Po = Police, Fi = Firefighter,
Te = Technician. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
review through cross-checking with third-party data sources, such as
intelligence reports from local authorities and public service providers.
When significant correlations with citizen satisfaction or environmen-
tal factors in the areas of interest are detected, they are displayed
automatically alongside the detected events, with suggestions on the
significance of the associated event in terms of severity and urgency.
The city manager would then conduct a risk assessment and assign
proportionate resources, according to an appropriate intervention plan,
as per the information gathered in Table 1:

1.1.4. Body of knowledge contributions
As we can observe from the narrative illustrated above, our

manuscript covers the following areas of interest: (a) the impact of the
social factor on the resilience of cities (b) monitoring and analysing
actions and behaviours of citizens within urban communities (c) smart
city governance (d) smart city and societies management optimisation
through decision support systems for trade-off and uncertainty analysis
(e) case studies for Big Data, machine learning, and AI (Artificial Intel-
ligence). We are advancing the body of knowledge in the field of smart
cities and sustainable communities by giving context, corroborated by
primary sources of evidence, to a wide range of socio-technical and
environmental events taking place in an urban landscape through the
following contributions:

1. We empower citizens as active sensors in a smart city context,
scoped with reporting risks devised in a custom risk taxonomy.
3

2. We leverage NLP (Natural Language Processing) techniques to
make sense of the abundant stream of social media data and detect
incidents reported through eyewitness accounts.

3. We determine patterns and trends in risk events occurrences,
citizen satisfaction, and environmental factors, at a city level.

4. We analyse relationships between citizen satisfaction, environ-
mental factors and risk events and statistically validate these relation-
ships using Multiple Regression Analysis.

1.2. Research questions and objectives

Our hypothesis is that social media data mining, underpinned by
a semantic understanding of the context and conveyed through a
taxonomy, provides the means of making informed decisions while
promoting citizens to be ‘‘active’’ as opposed to ‘‘passive’’ agents in
a smart city landscape. This hypothesis translates into the following
research questions:

1. How can we leverage Natural Language Processing (NLP) tech-
niques to make sense of the abundant stream of social media data in a
smart city context?

2. What are the general patterns and trends in citizen satisfaction
occurring in a smart city context?

3. What are the emerging relationships between these trends and
patterns in citizen satisfaction and co-occurring environmental factors
and events?
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Table 1
Detected risk events and appropriate actions suggested on a dashboard to a Smart City
manager.

Event and
area

Suggested Action(s) Priority Background Information

Fire, Roath
park

Dispatch a fire
department unit to
neutralise the fire

HIGH • local residents indicated
negative emotional predilection
of high intensity
• environmental factors (high
temperature, low humidity, low
precipitation) indicated a high
risk

Bus queue,
Cardiff City
Centre

Re-route crowded
bus services to
increase traffic
fluidity

MEDIUM • local residents indicated
negative emotional predilection
of moderate intensity
• environmental factors (low
humidity and low precipitation)
indicated a below average risk
to road safety in the short
term
• no recent car accidents or
traffic jams detected in the
area

Flood risk,
Cardiff Bay

Actuate the barrage
movements to
release water into
the Celtic Sea

LOW • local residents indicated
negative emotional predilection
of low intensity
• environmental factors (high
temperature and low
precipitation) indicated low risk
in the short term

These research questions translate into the following key research
bjectives:

1. The primary objective of our research is to detect real-time
vents in a smart city context and determine relationships and de-
endencies between co-occurring events (such as thefts, car accidents,
aulty lights and electricity charges).

2. The second objective of our research is to understand the trend
n citizen satisfaction in a smart city context, measured as positive or
egative emotional predilection in the content of their messages.

3. Our third research objective is to understand the nature and
xtent of the impact of environmental factors and other potentially
o-occurring events on citizen satisfaction in a smart city context.

We aim to achieve these objectives through our work exposed in the
ollowing sections of our manuscript. Section 2 presents, in addition to
he most relevant works identified in the reviewed literature, the edges
hat our solution brings beyond the State-of-the-Art, outlined side-by-
ide with their practical and theoretical implications in the form of a
ummary table.

Section 3 presents the underpinning technical implementation for
ur experiments: (i) an optimised data pipeline, designed for fast collec-
ion and processing, employing parallel computing and fault tolerance;
ii) our choice of data sourcing and classification methods, based upon
he results of a pre-emptive evaluation of the accuracy of AWD-LSTM
ombined with ULMFiT in comparison with other NLP techniques;
iii) the selection of MRA steps undertaken to validate the models
tatistically. Section 4 presents the results of our dataset processing
nd a statistical significance evaluation conducted by applying MRA
o the number of occurrences of risk events in correlation with the
wo associated datasets: citizen satisfaction and environmental factors
etrics.

Section 5 highlights our achievements alongside the identified lim-
tations, each accompanied by a reflection on directions for improve-
ent, mitigation and direction for further research. Section 6 presents
4

ur conclusions and closing remarks.
2. Related works

When investigating the implications of social media on smart cities,
it is vital to understand the stages some pioneering cities have al-
ready passed in their deployment (Du et al., 2020). In a context
where mobile technology streamlines governments and local author-
ities, stakeholders have increasingly presented an interest in various
KPIs (Key Performance Indicators) at a city level, using social media
to facilitate interactions with citizens. According to the findings of
Rahimi-Golkhandan, Aslani, and Mohebbi (2021), various applications
could assist in understanding the general public emotional predilection,
a sensitive factor influencing decision-makers at multiple government
levels.

Social media platforms proved effective in identifying the granular
specifics of local communities, playing a pivotal role in promoting
accountability and transparency within society (Bellini et al., 2021).
A significant amount of evidence pointed out that UK government
officials utilised social media platforms for accountability in governing,
which also assisted stakeholders and policymakers in a more productive
and accurate analysis of a series of events that had previously seemed
unrelated (Yuan et al., 2020). As confirmed by Sharida, Hamdan, and
Mukhtar (2020), social media led to enhanced levels of engagement
and deeper trust with the public in the context of smart cities. Hodorog,
Petri, Rezgui, and Hippolyte (2021) demonstrated, through the use of
IDF and Metric-Cluster techniques, that multi-disciplinary collaboration
on social media platforms between white and blue-collar workers in the
construction industry sector led to the identification of training gaps.

In terms of the ideology and conceptualisation of smart cities, the
current generation of Internet users tended to focus on the positive
aspects of social media, establishing a well-functioning government
strategy that promotes cooperation and collaboration among citizens
and external organisations (Rehman et al., 2020). This approach de-
creased the number of government-sponsored projects whilst increasing
the level of responsibility held by residents at the same time. Kummitha
and Crutzen (2019) concluded that a city’s institutional framework
could be enhanced by encouraging citizen participation and encour-
aging involvement in the decision-making processes. Therefore, it is
vital to ensure that smart city citizens are adequately informed, and
mutual trust is established between citizens and government institu-
tions. Bellini et al. (2021) stated that innovative governance and digital
mass media stability should be achieved in all smart cities, especially
where political management represents a highly sensitive issue, as
the emerging social tensions could pose a significant threat to the
development and sustainability of a smart city (Colding, Colding, &
Barthel, 2020).

Salminen et al. (2020) recently developed an innovative solution
for detecting instances of weak trust in authorities and conflicts be-
tween citizens. The author experimented with several classification
models detecting hate speech on multiple social media platforms and
created a holistic model that outperforms the previous keyword-based
baseline classifiers. With the spread of COVID-19, Yang, Xiu, Sun,
Ying, and Muthu (2022) attempted to determine the intricacies of
misinformation spread through social media. Data from Sina Weibo,
one of China’s most popular social media networks, was used to test
theoretical models, revealing that seeking health advice and emotional
support intensifies the risk of spreading misinformation. Ancillary con-
tent posted on social media platforms, such as images and videos,
provides an invaluable insight into citizens’ emotional predilection and
behaviour in a smart city context. Zhao et al. (2019) attempted to
use multi-modal sentiment analysis by extracting and analysing the
visual features of ancillary content of social media posts, proposing an
additional semantic feature for sentiment classification.

Event detection has attracted extensive research when applied on
social media and in other smart city infrastructure contexts, such as
energy optimisation. Harnessing on the plethora of valuable insights

delivered by semantics, Li, Rezgui, and Kubicki (2020) devised an
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Table 2
Gaps identified in the reviewed literature vs. our progress beyond State-of-the-Art.

Reviewed
publication

Proposed method of the
related work

Gaps/Our progress beyond
State-of-the-Art

Salminen et al.
(2020)

Detecting instances of
weak trust in
authorities and conflicts
between citizens using
several holistic
classification models
identifying hate speech.

Our proposed AWD-LSTM
combination is more efficient
than keyword-based baseline
classifiers, as it can identify,
analyse and contextualise
events faster with more
accuracy.

Yang et al. (2022) Evaluating
misinformation spread
through social media.
The model uses
conventional computer
processing, which
cannot cope with
real-time analysis.

Conventional text processing
unsustainable for real-time
analysis. Our combination of
NLP techniques leverages
parallel computation methods,
which render them suitable
for real-time event detection.

Zhao et al. (2019) Analysing citizen
satisfaction through
analysis of multimedia
content posted by users
on their profiles
through image-text
classifiers using
machine learning
models.

Multimedia content involves
resource-intensive
computational tasks that are
not always available. Our
approach is not dependent on
the presence of images or
videos.

Li et al. (2020) Real-time response
management of a
thermal grid for energy
optimisation and CO2
emission reduction
using text-based event
detection.

Text analysis in the absence of
NLP or machine learning is a
static approach which is not
adaptive to new contexts. We
utilise supervised learning
techniques, which are highly
dynamic and tailored to the
particulars of the dataset
artefacts, while leveraging
semantics for the
contextualisation of events in
a smart city context.

approach for real-time response management of a thermal grid. An
intelligent semantic network provided holistic characterisation before
optimising the operational schedules of heat generation results. The
authors considered a wide range of factors at a building and district
level, continuously calibrating models that reflect real-world opera-
tional scenarios in a smart city context. The continuous collection and
integration of real-time data from heterogeneous sources, in conjunc-
tion with a comprehensive feedback loop based on semantics, led to a
36% reduction in operational costs and an alleviation of 43% in CO2
missions.

As we can observe, the literature on social media data monitoring
s abundant. Previous works focus on various use cases for event de-
ection, such as detecting citizen dissatisfaction with local authorities,
ighlighting hate speech, evaluating misinformation, and optimising
nergy efficiency. While some works utilise machine learning, the
aradigms adopted, particularly in the absence of parallel computa-
ional approaches, are not as sustainable for real-time event detection
s our combination of proposed NLP techniques. Moreover, few of
he existing related manuscripts focus on a city level, and even fewer
ake use of a bespoke risk taxonomy to categorise (nearly) real-time

vents. We devised a summary comparison in Table 2 to reflect on these
bservations:

As we can follow from Table 2, our manuscript proposes a novel
echnique for conducting monitoring, analysis and change within urban
ommunities, including analysis for improved management of cities us-
ng machine learning and NLP applied to the dataset and requirements
f a real-world smart city case study. The following section describes
5

his approach in detail. S
3. Methodological approach

With a clear delimitation of the scope of our analysis defined in
Section 1.1, we could then outline our approach to data sourcing, con-
structing the source dataset and pre-processing. This section presents
a high-level overview of our application architecture (Section 3.1),
together with our selected language classification models, based on a
comparative pre-emptive evaluation, and a baseline definition for event
detection (Section 3.2).

To meet the research objectives specified in Section 1.2, we adopt a
multi-stage methodology, as presented in Fig. 2. The process starts with
a data pipeline based on raw data. Tweets are fetched from the Cardiff
City area and filtered as closely as possible within the geographical
delimitation. The sentences of the messages retrieved are then pre-
processed and filtered by keywords and cosine similarity. The text is then
sanitised (curated) using regular expressions and assigning categories
with the aid of the Classifier. The labelled dataset, put in conjunc-
tion with the useful insight gathered by regular expressions, is now
modelled and ready to generate responses, formulating the historical
dataset and splitting it into areas (neighbourhoods) and time intervals.
Finally, the categorised dataset is modelled using MRA for correlations
between co-occurring events, citizen satisfaction (positive/negative texts)
and environmental factors (temperature, precipitation, and humidity).

.1. Data pipeline and application architecture

Fig. 3 presents a high-level architectural overview of our technical
etup. We designed a redundant data pipeline to expedite the retrieval
rocess, spreading the workload over multiple machines.

To abstract the underlying OS (Operating System) for uniformity
nd resource compartmentalisation, a virtual network of Docker con-

tainers (Cito et al., 2017) was deployed using Debian-based Linux
image environments. Users can query data through the API (Application
Programming Interface), specifying the date interval, area and other
parameters. This architectural implementation, coupled with a Message
Broker conducting parallel processing aided by the RabbitMQ library
(Ionescu, 2015), enabled us to afford the collection and classification
of tweets in (nearly) real-time.

We executed ten parallel classifier instances as part of a High-
Performance Computing (HPC) cluster of machines. The delegation
of processing tasks takes into account: (a) the length of the message
needing to be processed (b) the semantic complexity of the keywords
used as part of the tweet message (c) the presence of polluting factors,
such as stop words, punctuation, orthography, quotes from movies,
music lyrics, para-verbal written language (emoticons/smileys).

The Tweet Retriever Coordinator is a simple automated Python script
listening to the queue of published intervals while simultaneously con-
necting to Twitter and downloading tweets matching specific criteria
(most commonly, time intervals, keywords and geo-coordinates). This
process is scheduled to publish all intervals for the required historical
period to the Message Broker.

After retrieval, each tweet is published as an individual message
to the Message Broker to be processed. The Message Broker is the
entral point of the application, enabling swiftly synchronisation be-
ween processes and message buffering while also avoiding workload
uplication. Workers would request the processing of new messages at
heir own pace in a non-symmetrical usage model, redistributing their
oad into multiple segments running on different machines when their
/O (Input/Output) usage passes a certain threshold. Upon completing
n interval, the resulting tweets would be en-queued as individual
essages to be processed.

This language model is trained to predict the next word based
n the previous words taken as input. During this phase, the neural
etwork understands the English language and vocabulary. The category
odel is then trained on the dataset, as per the methods described in

ection 3.2. Once the language models are trained on the dataset, we
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Fig. 2. A high-level overview of the steps implemented as part of our proposed approach.

Fig. 3. Data pipeline within the three modules of our application (Middle-ware, Retrievers cluster, Classifiers cluster). The Tweet Retriever Coordinator splits the messaging interval
into smaller chunks and publishes them to the Message Broker.
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train the Classifiers, comprising linear layers placed at the end of the
ncoder of the language model. Each classifier instance loads the two
odels (category and emotional predilection), then requests messages to

be processed and determines, for each of them, the label and sentiment.
To store the models and pre-load them, we used the Pickle serial-

isation library (Fasnacht, 2018). Upon receiving a message, the text
is pre-processed, classified, and finally published back to the Message
Broker. To avoid encumbering the Classifier, we stored the curated
tweets in a separate database, along with the messages retrieved from
the Message Broker. The asynchronous modus operandi enabled the
Classifier to work at total capacity despite the I/O (Input/Output) load.

3.2. Dataset construction and processing

As Kalinin, Krundyshev, and Zegzhda (2021) mentioned, smart
cities are about preventing risks besides analysing the quality of ser-
vices and procedures that differ from one city to another. Therefore,
we carefully selected a classification with a spectrum of applicability
as broad as possible. This approach enables us to demonstrate the
viability of our technical solution beyond the confines of the case study
illustrated in Section 1.1.3. For data filtering and classification. Our
Classifier inherits the same seven event types modelled as part of this
Taxonomy.

3.2.1. Processing models and pre-emptive testing
Before embarking on the collection and processing of tweets, we

considered a baseline model for event detection. We preemptively
evaluated several language classification models identified in the lit-
erature review. For baselines, tweets are converted into a matrix of
token counts before considering the following three types of classifiers
(language models used for classifying texts):

• MNB (Multinomial Naive Bayes Classifier), computing the probabil-
ities of belonging to a class as a function of the occurrence of different
words (featuring high popularity because of its simplicity).

• CNB (Complement Naive Bayes Classifier), utilising the same prin-
ciple behind MNB while correcting its assumptions and rendering it
suitable for imbalanced data (better suited for conversational tweets
rather than informative tweets).

• RF (Random Forest Classifier), providing accurate baselines on
regression and classification tasks

We tested our Classifiers, using the Scikit Learn machine learning
library (Kramer, 2016), with the hyper-parameters defined as follows:
𝑎𝑙𝑝ℎ𝑎 = 0.5 for MNB; 𝑎𝑙𝑝ℎ𝑎 = 1.5 for CNB; 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 50 for RF. The
primary comparison metric is the accuracy, measured over five folds.
As expected, the CNB classifier outperforms the MNB. Models which
incorporate a pre-processing stage led to more accurate predictions
than their counterparts processing raw data. Some complex hashtags
are altered and favour the model with no pre-processing because it
can label tweets containing the same hashtag. However, we observed
this gap narrowed as we collected additional data, reducing the bias
induced by the classifier to the maximum extent possible.

As a classification model for the data mining and classification
stages we use UMLFiT (Universal Language Model Fine-Tuning), a
technique created by devised by Howard and Ruder (2018), which pre-
trains a LM (Language Model) on a sizeable general-domain corpus
and then uses novel techniques to fine-tune it for the target task. The
method is universal in the sense that it meets the following practical
requirements: (i) it applies to tasks with varying document sizes, num-
bers, and types of labels; (ii) it is built on a single architecture and
training process; (iii) no custom feature engineering or pre-processing
is required; and (iv) no additional in-domain documents or labels are
7

required. ULMFiT comprises the following steps:
Table 3
Accuracy of the previously utilised classification models vs. our combination
(AWD-LSTM and ULMFiT ).

Model type Without tweet pre-processing With tweet pre-processing

MNB 78.2% (± 3.4%) 76.6% (± 4.6%)
CNB 80.2% (± 2.7%) 79.6% (± 3.6%)
RF 85.0% (± 5.4%) 83.2% (± 6.6%)
AWD-LSTM & ULMFiT 88.5% (± 3.2%) 88.4% (± 2.0%)

Table 4
The filtering Cardiff City bounding box coordinates (TLP = Top-Left Point, BRP =
Bottom-Right Point).

TLP longitude TLP latitude BRP longitude BRP latitude

−3.325587 51.444454 −3.067674 51.554148

1. General-Domain LM Pretraining : the LM is pre-trained on a large
general-domain corpus to forecast the following word in a sequence
(with a particular degree of certainty). At this stage, the model ac-
quires knowledge of general linguistic characteristics, such as the typ-
ical sentence structure of ‘‘subject-verb-object’’ of an English language
sentence.

2. Target Task LM Fine-Tuning : the LM is fine-tuned on the data of
the target task, acquiring task-specific features of the language elements
(in our case, Twitter messages), such as the existence of handles, the
usage of slang, abbreviated words, and emojis.

3. Target Task Classifier : as a third step, the pre-trained LM is
expanded by two linear blocks so that the final output is a probability
distribution over the sentiment labels (i.e. positive or negative), and a
label from the risk taxonomy, respectively.

For the pre-training steps of ULMFiT, we propose the innovative
language model AWD-LSTM (Merity, Keskar, & Socher, 2017), which
encompasses a standard LSTM (Long Short-Term Memory language
model) with various tuned dropout hyper-parameters (which involve
no additional complexity layers, such as attention or shortcut connec-
tions). ULMFiT enables the adaptation of a pre-trained model, fine-
tuning the neural network layers to tailor it to our research objec-
tives. ULMFiT is integrated with our dataset through the Python-based
fast.ai library (Howard & Gugger, 2020), which facilitates the freez-
ing/unfreezing of layers, offering a fine-tuned approach to customising
the model.

As we can observe in Table 3, this combination of techniques has ex-
hibited a higher accuracy than its counterparts based on the measured
parameters. While acknowledging the susceptibility to over-fitting of
this approach, we have mitigated this by employing a stratified K-fold
cross-validation. More insight into the technical setup underpinning the
association of these two NLP techniques can be found in a recent article
by Briskilal and Subalalitha (2022).

3.2.2. Dataset scope, sourcing and filtering
Our target dataset consisted of messages broadcast by people resid-

ing in or transitioning through the City of Cardiff, United Kingdom.
For the purpose of our manuscript, we only analysed tweets written in
English.

A bounding box for geo-fencing (Table 4) was defined for filtering
live data stream, such that only tweets from Cardiff were collected.

The Twint Python library (Xavier & Souza, 2020) was used to
retrieve the tweets, enabling timely collection without utilising the
Twitter API (Application Programming Interface), which could have
been subject to call limitations. For data anonymisation purposes, once
a message is fetched, only a generic unique id of the tweet, date and text

as stored in our database to avoid any links that could be established
ith the identities of actual persons.

While a significant proportion of the collected tweets were not geo-
ocated (because of users not having the ‘‘location sharing’’ function



Sustainable Cities and Society 85 (2022) 104026A. Hodorog et al.
Fig. 4. The interactive map of events in the city of Cardiff derived from the initial results produced by our classifiers.
enabled on their devices), we determined the users’ location through
other means wherever possible. Another mini neural network was
trained to predict originating neighbourhoods or landmarks based on
the biography of the user and additional information shared within their
profile (connections, hashtags and other references to locations in their
tweets).

An initial test data subset generated the citizen-accessible interac-
tive map illustrated in Fig. 4. Following our initial promising results, we
proceeded to deploy our production environment for collecting tweets.
1.6 million tweets over a period of nine months in 2020.

3.2.3. Dataset pre-processing
Before feeding the contents of the tweets into our model, we pre-

processed them to make them ready to be parsed by the tokeniser.
This process represents an additional safeguard to ensure that as much
information is retained from the original content as possible, while also
avoiding classification bias occurring within the model (for instance,
associating an event to a specific date). The tweets were filtered using
keywords and hashtags, adjusting the generality of the filtering rules to
prevent inducing bias in the training process of the Classifier. Tweets are
saved within the data-store, alongside their semantic selection criteria
(the keywords and/or hashtags used for identification). To account for
lexical diversity, similar tweets were further filtered using the cosine
similarity approach (Xia, Zhang, & Li, 2015).

For the text of each tweet: (i) encoding errors are repaired (ii)
retweets, hyperlinks, emails, phone numbers, ‘‘hashtags’’, ‘‘cashtags’’,
signs, date, time, smileys and emojis are replaced by unique tokens
(iii) text written in ‘‘CamelCase’’ syntax is split, and unique tokens are
added at the start of the corresponding expressions (iv) unnecessary
white spaces are removed. To increase the quality of this process, we
use carefully crafted regular expressions, which minimise the number
of false positives. Before inputting the text in the model, the final step is
8

assigning tokens using the fast.ai tokeniser (which also provides access
to the ULMFiT language model).

3.3. Multiple regression analysis applied on the trends identified as part of
the scenarios

Being a supervised learning task by itself, we considered MRA a
highly suitable and accessible statistical instrument to validate the
preliminary correlations determined by our supervised learning NLP
techniques. Given the predominantly linear nature of the relationships
between the variables forming our scenarios, we considered MRA to
strike a favourable compromise between complexity and accuracy. The
results are easier to interpret in contrast with the output of other
algorithms. The stages of the MRA validation were tailored to our
research objectives defined in Section 1.2 and independently applied
to each scenario.

3.3.1. General regression statistics and ANOVA
The following general regression statistics are applied to all our sce-

narios: Multiple Determination Ratio R, R2, adjusted R2 = (
√

𝐸𝑆𝑆
𝑇𝑆𝑆 ), and

the Standard Error (SE). Multiple R indicates the intensity and nature
of the connection between the variables. The Adjusted R2 indicates the
percentage of the variation of the independent variable that can be
explained by the simultaneous variation of the independent variables.
Unlike the R2, the Adjusted R2 considers the degrees of freedom in
addition to the number of parameters included in the model.

Standard Error (SE) is the approximate standard deviation of a
statistical sample population, which measures the accuracy of a sample
distribution representation of a sample population. A ‘‘sample mean’’
deviates from the actual mean of a population sample, and this devia-
tion is the standard error of the mean. The SE can also be explained as
the difference between the expected value and the actual value of the
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variables. All our scenarios exhibited a relatively small SE, which is an
indication that the sample mean is an accurate reflection of the actual
population mean.

For each scenario, we analyse the significance of the model using
the Fisher test applied to the ANOVA (Analysis of Variance) table.
ANOVA is a statistical analysis tool used to test the degree of differences
between two or more groups forming part of an experiment. The results
of the ANOVA test are displayed in a tabular form known as an ANOVA
table, which displays the statistics used to test hypotheses about the
population means (testing it with intra-group and inter-group variants).
For each scenario, we are formulating the following two hypotheses: (i)
𝐻0 ∶ 𝛽0 = 𝛽1 = 𝛽2 = 0 (the model is not statistically significant) and
ii) 𝐻1 ∶ 𝛽0 ≠ 0 or 𝛽1 ≠ 0 or 𝛽2 ≠ 0 (the model significantly explains

the connection between the variables). Based on the value of the Fisher
test (f-test), we decide whether to reject the 𝐻0 hypothesis and what
is the risk that we apply. If we reject 𝐻0, we conclude that the model
is statistically significant (for 5% risk). We then broadly determine the
type of dependence between our variables.

3.3.2. Analysis of regression coefficients and variability for significant pa-
rameters

The second step for analysing each scenario is applying the Stu-
dent’s 𝑡 − 𝑡𝑒𝑠𝑡 on the regression coefficients, considering the estimators
obtained using the Least Squares method and their distribution law.
Firstly, we are writing the multiple linear regression model equation
using the following formulas: 𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 and 𝑌 =
0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3. In both formulas 𝑥1, 𝑥2 and 𝑥3 are the values of
he independent variables, 𝑌 is the value of the dependent variable. In the

first formula, 𝛽0, 𝛽1, 𝛽2, and 𝛽3 are the hypotheses variables associated
with the significance of each parameter. In the second formula, 𝑏0 is the
oefficient of the dependent variable and 𝑏1, 𝑏2 and 𝑏3 are the coefficients
f the independent variables.

For each 𝛽 parameter above, we follow the classical steps of MRA
tatistical evaluation:

1. formulating the two hypotheses (𝐻0 ∶ 𝛽 = 0 and 𝐻1 ∶ 𝛽 ≠ 0)
2. selecting a significance threshold 𝛼 = 0.05
3. choosing the statistical test 𝑡 and an associated theoretical value

f the statistic 𝑡 𝛼
2 ,𝑛−𝑘

4. calculating the test value for the associated coefficients: 𝑏1
𝑠𝛽1

5. for each parameter in the linear regression model equation, we
pply the following decision rule: if 𝜎 < 𝛼, we reject 𝐻0, and we
onclude that the parameter 𝛽 is statistically significant (for 5% risk)

6. for each parameter identified as ‘‘significant’’, we showcase the
orrelation between its variability and the variability of the dependent
ariable, quantifying the variations that occur, on average

.3.3. Residuals
To further determine the statistical significance of the regression

odels corresponding to each scenario and further verify their accu-
acy and relevance, we analyse the following metrics and plots where
ppropriate: (i) plots of residuals vs. fitted values, (ii) case order plots
f leverage (iii) normal probability plot of residuals (iv) histogram plot
f residuals (v) residuals vs. observation order.

. Results and statistical validation

This section presents the results obtained by our proposed data
arvesting and classification modules. The scenarios analysed within
his section use events previously detected following the data pipeline
efined in Section 3.1 and leverage the algorithms and methods defined
n Section 3.2. The motivation and reasoning behind the selection of
cenarios have been outlined in Section 1.1.1.

At the start of the analysis of each scenario, we outline the general
9

rends in the number of occurrences of risk-based events, on a daily
Table 5
Regression statistics for Scenario 1.1.

Multiple R 0.62
R2 0.39
Adjusted R2 0.38
Standard error 1.51

Table 6
ANOVA table for Scenario 1.1.

SS MS F Sig. F

Regression 371.79 123.93 54.05 4.92E−27
Residual 580.03 2.29
Total 951.82

time-frame, present within the evaluated period in year 2020. We firstly
infer a subjective correlation between the dependent and independent
variables based on these general trends. In the second part of each
scenario analysis, we statistically validate the previously inferred sub-
jective correlations by applying MRA statistical models on the classified
datasets.

As we can observe from the graphical trend representations out-
lining occurrences in the sections below, Scenarios 1–5 consistently
featured an intermittent reduction in activity between August and
September. This pattern could potentially be explained by COVID-
related uncertainties and restrictions, co-occurring with the start of a
season characterised by lower temperatures and higher precipitation
and humidity.

4.1. Scenario 1: Dependence of car accidents on congestion and environ-
mental factors

In the first part of the current scenario (Scenario 1.1), we considered
car accidents as a dependent variable and congestion, temperature and
humidity as independent variables. In the second part (Scenario 1.2),
we replaced humidity with precipitation as a dependent variable.

4.1.1. Preliminary results
From Fig. 5, we can infer a general positive correlation between

congestion, humidity and car accidents throughout the evaluated pe-
riod, with peaks in activity starting early July and ending early-mid
September.

This trend could be explained by the summer period, generally
accompanied by more activity on the road due to the summer holiday
season. In general, the days with peaks in congestion and humidity also
feature peaks in car accidents. This occurrence repeats for days with
dips in both metrics. We can infer a general positive correlation between
congestion, humidity and car accidents.

4.1.2. Regression statistics and ANOVA — Scenario 1.1
In Table 5, R2 = 0.39 suggests a connection of low, but positive

intensity between variables. Adjusted R2 = 0.38 shows that 38% of the
variation of the dependent variable (car accidents) can be explained
by the simultaneous variation of the independent variables (congestion,
temperature and humidity). In Table 6, the small value of the 𝑓 − 𝑡𝑒𝑠𝑡
= 4.92231𝐸−27 leads us to reject 𝐻0 for both 1% and 5% risk and state
that a linear statistical dependence of medium intensity exists between
the variables.

4.1.3. Regression coefficients and variability — Scenario 1.1
Table 7 dictates the multiple linear regression model equation: 𝑌 =

−2.192 + 0.146 ∗ 𝑥1 + 0.092 ∗ 𝑥2 + 0.23 ∗ 𝑥3, where 𝑥1 = congestion, 𝑥2 =
temperature, and 𝑥3 = humidity.

After computing the t-tests, we reject 𝐻0 due to 𝜎 < 𝛼. All pa-
rameters are statistically significant. For 𝛽0 (car accidents), 𝑏0 =
𝑠𝛽0
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Fig. 5. Preliminary results of social media data analysis for Scenario 1 — Smart City event occurrences.
Fig. 6. Plot of residuals vs. fitted values — Scenario 1.1.

−2.192∕0.86 = −2.5. For 𝛽1 (congestion), 𝑏1
𝑠𝛽1

= 0.146/0.017 = 8.6. For 𝛽2
(temperature), 𝑏2

𝑠𝛽2
= 0.092/0.024 = 3.83. For 𝛽3 (humidity), 𝑏3

𝑠𝛽3
=

0.023/0.0097 = 2.37.
For 𝛽0 (car accidents), the average is −2.192 when all other variables

are simultaneously equal to 0. For 𝛽1, it increases by 0.1466 when
congestion increases by 1 unit. For 𝛽2, it increases by 0.092 when
temperature increases by 1 degree. For 𝛽3, it increases by 0.023 when
humidity increases by 1 unit. The coefficients formula also confirms
that the congestion variable has the strongest positive effect on the
dependent variable (car accidents), while humidity has the least positive
effect.

4.1.4. Residual analysis — Scenario 1.1
The plot of residual distribution over the fitted values in Fig. 6

suggests a clear conical pattern emerging, which could be narrowed to
either missing variables in the model or dependencies present in the
independent variables (humidity could be a function of temperature).
However, a large proportion of the variation of the dependent vari-
ables can still be explained by the selected ‘‘independent’’ variables,
suggesting a relatively significant model that warrants improvements.
10
Table 7
Regression coefficients for Scenario 1.1.

Coefficients Standard error t Stat P-value

Intercept −2.192666185 0.8666880374 −2.52993706 0.01201601416
Congestion 0.1466703356 0.01793238305 8.179076658 1.39E−14
Temperature 0.09212658428 0.02417168049 3.811343789 0.000173632911
Humidity 0.02302590679 0.009790444796 2.351875453 0.019446223

Table 8
Regression statistics for Scenario 1.2.

Multiple R 0.68
R2 0.46
Adjusted R2 0.45
Standard error 1.41

Table 9
ANOVA table for Scenario 1.2.

SS MS F Sig. F

Regression 359.19 119.73 51.11 7.34E−26
Residual 592.63 2.34
Total 951.82

4.1.5. Regression statistics and ANOVA — Scenario 1.2
This Section commences the second part of our current scenario

analysis, with the independent variable interchanges, as described at
the start of Section 4.1.

In Table 8, R2 = 0.46 suggests a direct connection between the
four variables, of medium intensity. Adjusted R2 = 0.45 shows that
45% of the variation of car accidents variable can be explained by the
variations of faulty lights and electricity charges. The low value of 𝑓 -test
= 7.34212E−26 in Table 9 leads us to reject 𝐻0 for both 1% and 5% risk
and state that the model significantly explains the connection between
the variables, exhibiting a linear statistical dependence.

4.1.6. Regression coefficients and variability — Scenario 1.2
Table 10 dictates the multiple linear regression model equation:

𝑌 = −0.2623 + 0.1546 ∗ 𝑥1 + 0.0718 ∗ 𝑥2 + 0.0046 ∗ 𝑥3, where 𝑥1 =
congestion, 𝑥2 = temperature, and 𝑥3 = precipitation.

For 𝛽0 (car accidents), since 𝑏0
𝑠𝛽0

= 0.3277/0.1095 = 2.992 and 𝜎
> 𝛼, we do not reject 𝐻0 (𝛽0 is not statistically significant). All other
parameters are statistically significant, as we reject 𝐻 due to 𝜎 < 𝛼
0
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Fig. 7. Preliminary results of social media data analysis for Scenario 2 — Smart City event occurrences.
Table 10
Regression coefficients for Scenario 1.2.

Coefficients Standard error t Stat P-value

Intercept −0.2623316889 0.2746086367 −0.9552929289 0.3403414577
Congestion 0.1546656002 0.01779547431 8.691288442 4.57E−16
Temperature 0.07181207595 0.0229204853 3.133095788 0.001933427905
Precipitation 0.004672604321 0.0257001739 0.1818121674 0.8558757174

in the t-tests. For 𝛽1 (congestion), 𝑏1
𝑠𝛽1

= 0.3277/0.1095 = 2.992. For

𝛽2 (temperature), 𝑏2
𝑠𝛽2

= 0.3277/0.1095 = 2.992. For 𝛽3 (precipitation),
𝑏3
𝑠𝛽3

= 0.0046/0.025 = 0.18. For 𝛽0 (car accidents), the average is
−0.26233 when the other variables are simultaneously equal to 0. For
𝛽1, it increases by 0.154 when congestion increases by 1 unit. For 𝛽2,
it increases by 0.07 when temperature increases by 1 unit. For 𝛽3, it
increases by 0.0046 when precipitation increases by 1 unit.

As precipitation does not have a significant statistical value for the
model (based on the regression coefficients formula), we considered it
unfeasible to reliably plot residuals or conduct further analysis. Overall,
there is no significant difference in comparison with Scenario 1.1. The
model containing the humidity variable appears stronger than the one
containing the precipitation variable.

4.2. Scenario 2: Dependence of car accidents on faulty infrastructure

For this scenario, we have used car accidents as a dependent vari-
able, with faulty lights and electricity charges as independent variables.

4.2.1. Preliminary results
From Fig. 7, we can infer a general positive correlation between faulty

lights, electricity charges and car accidents throughout the evaluated
period, with peaks in activity starting early July and ending early-mid
September.

We could give the same explanation for this trend as in the previous
scenario. In general, days characterised by peaks of faulty lights and
electricity charges also feature peaks in car accidents. The same occurs
for the days exhibiting dips in both metrics. Overall, we can infer a
general positive correlation between faulty lights, electricity charges, and
car accidents.
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Table 11
Regression statistics for Scenario 2.

Multiple R 0.68
R2 0.462
Adjusted R2 0.458
Standard error 1.41

Table 12
ANOVA table for Scenario 2.

SS MS F Sig. F

Regression 440.46 220.23 109.39 5.39E−35
Residual 511.36 2.01
Total 951.82

Table 13
Regression coefficients for Scenario 2.

Coefficients Standard error t Stat P-value

Intercept 0.3275576729 0.109528596 2.990613271 0.003057774143
Faulty lights 0.2690306152 0.09128012226 2.947307788 0.003503706361
Electricity
charges

0.2979115757 0.02992479622 9.955341835 6.31E−20

4.2.2. Regression statistics and ANOVA
In Table 11, R2 = 0.462 suggests a direct and medium intensity

connection between the three variables. Adjusted R2 = 0.458 shows that
45.8% of the variation of the car accidents variable can be explained
by the variation of the faulty lights and the electricity charges variables.
The estimated value of the Multiple Correlation Ratio

√

𝐸𝑆𝑆
𝑇𝑆𝑆 = 0.6802

indicates a strong link between the model variables. From Table 12,
based on the small value of the 𝑓 -test = 5.39E−35, we reject the
𝐻0 hypothesis for both 1% and 5% risk. It can be stated that the
model significantly explains the connection between the variables, and
a linear statistical dependence exists between the variables.

4.2.3. Regression coefficients and variability
Table 13 dictates the multiple linear regression model equation:

𝑌 = 0.32755 + 0.26903 ∗ 𝑥1 + 0.2979 ∗ 𝑥2, where 𝑥1 = faulty lights,
and 𝑥2 = electricity charges. All parameters are statistically signifi-
cant since, after computing the t-tests, we reject 𝐻0 due to 𝜎 < 𝛼.
For 𝛽0 (car accidents), 𝑏0 = 0.3277/0.1095 = 2.992. For 𝛽1 (faulty
𝑠𝛽0
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Fig. 8. Case order plot of leverage — Scenario 2.

Fig. 9. Probability plot of residuals — Scenario 2.

lights), 𝑏1
𝑠𝛽1

= 0.3277/0.1095 = 2.992. For 𝛽2 (electricity charges), 𝑏2
𝑠𝛽2

=

0.3277/0.1095 = 2.992. For 𝛽0 (car accidents), the average is 0.3275
when the other variables are simultaneously equal to 0. For 𝛽1, it
increases by 0.269 when faulty lights increase by 1 unit. For 𝛽2, it
increases by 0.297 when the electricity charges increase by 1 unit.

4.2.4. Residual and outliers analysis
The analysis of residuals in Fig. 8 presents certain data portions

with higher leverage than the rest, suggesting the presence of outliers,
also confirmed by the standard distribution plot of the residuals in
Fig. 9. A closer examination suggests that the residuals do not feature
a normal distribution but rather a closer resemblance to a heavy-tail.
Although not a sufficient condition to invalidate the model, it presents
the possibility of uncertainty within it. Overall, the model exhibits
a reasonable degree of accuracy despite noticeable outliers present
in the data. The model suggests that variations in the independent
variable faulty lights have a higher impact than electricity charges on the
dependent variable car accidents.

4.3. Scenario 3: Dependence of thefts on gatherings and temperature

In this scenario, we used thefts as a dependent variable, with gath-
erings and temperature as independent variables.

4.3.1. Preliminary results
From Fig. 10, we can infer a general positive correlation between

gatherings and thefts throughout the evaluated period of 2020. We
12
Table 14
Regression statistics for Scenario 3.

Multiple R 0.80
R2 0.64
Adjusted R2 0.64
Standard error 2.21

Table 15
ANOVA table for Scenario 3.

SS MS F Sig. F

Regression 2290.21 1145.1 233.8 2.50E−5
Residual 1243.58 4.8
Total 3533.79

Table 16
Regression coefficients for Scenario 3.

Coefficients Standard error t Stat P-value

Intercept −1.038999876 0.3673023976 −2.828731539 0.005046172269
Gatherings 0.3868833403 0.02363598937 16.3684005 1.32E−41
Temperature 0.1479463585 0.03215363987 4.601232057 0.000006635872262

can observe a peak in activity starting from early July and spanning
through early-mid September, which could be explained by the summer
period, generally accompanied by more gatherings than the rest of
the year, as well as higher temperatures. In general, days with peaks
in gatherings also feature peaks in thefts. The same is true for days
exhibiting dips in both metrics within a period that also coincides with
higher temperatures. Overall, we can infer a general positive correlation
between gatherings, thefts, and temperature.

4.3.2. Regression statistics and ANOVA
In Table 14, R2 = 0.64 shows a direct link between the four variables

of strong intensity. However, Adjusted R2 0.64 means that 64% of the
number of thefts can be explained by the variations of the gatherings
and temperature variables.

The value of the Multiple Correlation Ratio
√

𝐸𝑆𝑆
𝑇𝑆𝑆 = 0.805 indicates

a strong link between the variables. The small value of the 𝑓 -test
= 2.4954E−58 in Table 15 leads us to reject the 𝐻0 hypothesis for
both 1% and 5% risk. We could state that the model significantly ex-
plains the connections between variables, exhibiting a linear statistical
dependence.

4.3.3. Regression coefficients and variability
Table 16 dictates the multiple linear regression model equation:

𝑌 = −1.038 + 0.3868 ∗ 𝑥1 + 0.147 ∗ 𝑥2, where 𝑥1 = gatherings and
𝑥2 = temperature. All parameters are statistically significant since, after
computing the t-tests, we reject 𝐻0 due to 𝜎 < 𝛼 in all 𝑡 − 𝑡𝑒𝑠𝑡 values.
For 𝛽0 (thefts), 𝑏0

𝑠𝛽0
= −1.038/0.36 = −2.82 For 𝛽1 (gatherings), 𝑏1

𝑠𝛽1
=

0.386/0.023 = 16.38. For 𝛽2 (temperature), 𝑏2
𝑠𝛽2

= 0.1479/0.032 = 4.60.
For 𝛽0 (thefts), the average is equal to −1.03 when all other variables are
simultaneously equal to 0. For 𝛽1, it increases by 0.38 when gatherings
increase by 1 unit. For 𝛽2, it increases by 0.14 when the temperature
increases by 1 unit.

4.3.4. Residual analysis
The distribution of the residuals in Fig. 11 exhibits a reasonable

spread. The higher values suggest outliers present in the data, also
observable in the standard probability plot (Fig. 12), where deviation
from the normal distribution is present at the lower and upper bands.
Overall, the model is accurate despite noticeable outliers in the data.
The coefficients formula confirms that both independent variables have
a positive effect on the dependent variable thefts, while gatherings has
a more pronounced influence than temperature.
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Fig. 10. Preliminary results of social media analysis for Scenario 3 — Smart City event occurrences.
Fig. 11. Residuals vs. fitted values — Scenario 3.

Fig. 12. Normal probability of residuals — Scenario 3.
13
4.4. Scenario 4: Dependence of citizen satisfaction on gatherings, queues
and electricity charges

In the first part of the current scenario analysis (Scenario 4.1), we
have used positive sentiments as a dependent variable and gatherings,
queues and electricity charges as independent variables. In the second
part (Scenario 4.2), we have replaced the dependent variable with
negative sentiments.

4.4.1. Preliminary results
When observing the preliminary results for Scenario 4 as a whole,

Fig. 13 indicates a general positive correlation between the emotional
predilection of citizens and gatherings, with peaks of positive sentiments
occurring in summer and in the proximity of periods characterised by
low occurrences of queues and electricity charges respectively. Fig. 14
shows a peak of positive sentiments in the second half of summer (July
25th to August 30th), followed by a dip in the first part of autumn
(September 1st–13th). This trend could be partially explained by the co-
occurrence of COVID restrictions with the start of the autumn season,
featuring higher levels of humidity and precipitation. We can also
observe small peaks of positive emotional predilection in April and
May 2020, periods with fewer queues and electricity charges. Marginal
exceptions are the days characterised by peaks in queues and dips in
gatherings, which are also characterised by dips in positive sentiments (the
days around the 1st of May and the days in late June).

Overall, we can infer a negative correlation between the independent
variables (queues and electricity charges) and the independent variable
(positive sentiments).

4.4.2. Regression statistics and ANOVA — Scenario 4.1
In Table 17, the first indicator of a valid and significant model is

R2 = 0.92, which shows a robust and direct link between variables.
A more detailed analysis may raise the issue of non-compliance with
the hypothesis regarding the modelling error, and the co-linearity
phenomenon might occur.

Adjusted R2 = 0.921 means that 92.1% of the variation of the
positive variable can be explained by the simultaneous variation of
the independent variables. The estimated value of the Multiple Corre-
lation Ratio

√

𝐸𝑆𝑆
𝑇𝑆𝑆 = 0.956 indicates a strong link between the model

variables.
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Fig. 13. Preliminary results of social media data analysis for Scenario 4 — Smart City event occurrences.
Fig. 14. Preliminary results of social media data analysis for Scenario 4 — Citizen satisfaction a Smart City.
Table 17
Regression statistics for Scenario 4.1.

Multiple R 0.96
R2 0.92
Adjusted R2 0.92
Standard error 1615.42

Table 18
ANOVA table for Scenario 4.1.

SS MS F Sig. F

Regression 7 825 425 722 2 608 475 241 999.57 6.31E−140
Residual 660 225 378.3 2 609 586.47
Total 8 485 651 100

In Table 18, the small 𝑓 -test = 6.306E−140 leads us to reject the
𝐻0 hypothesis for both a 1% and a 5% risk. It can be stated that the
model significantly explains the connection between the variables, and
a linear statistical dependence exists between the variables.
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Table 19
Regression coefficients for Scenario 4.1.

Coefficients Standard error t Stat P-value

Intercept −69.3800431 142.6485889 −0.4863703428 0.6271256406
Gatherings 339.1351667 29.05710087 11.67133529 1.82E−25
Queues 220.5609509 24.23102201 9.102420479 2.73E−17
Electricity
charges

465.1377969 48.73416334 9.54438868 1.23E−18

4.4.3. Regression coefficients and variability — Scenario 4.1
Table 19 dictates the multiple linear regression model equation:

𝑌 = −69.380 + 339.135 ∗ 𝑥1 + 220.5 ∗ 𝑥2 + 465.13 ∗ 𝑥3, where 𝑥1 =
gatherings, 𝑥2 = queues, and 𝑥3 = electricity charges. For the parameter
positive sentiments, we do not reject 𝐻0, and conclude that the parameter
𝛽0 is not statistically significant, since 𝑏0

𝑠𝛽0
= −69.38/142.6 = −0.48

and 𝜎 > 𝛼. All other parameters are statistically significant since, after
computing t-tests, we reject 𝐻0 due to 𝜎 < 𝛼.
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Fig. 15. Residuals vs. Observation Order Scenario 4.1.

Fig. 16. Histogram of residuals for Scenario 4.1.

For 𝛽1 (gatherings), 𝑏1
𝑠𝛽1

= 339.13/29.05 = 11.67. For 𝛽2 (queues), 𝑏2
𝑠𝛽2

= 220.56/24.23 = 9.10. For 𝛽3 (electricity charges), 𝑏3
𝑠𝛽3

= 465.13/48.73

= 9.54. For 𝛽0 (positive sentiments), the average is −69.38 when all
other variables are simultaneously equal to 0. For 𝛽1, it increases by
399.135 when the number of gatherings increases by 1 unit. For 𝛽2, it
increases by 220.5 when queues increase by 1 unit. For 𝛽3, it increases
by 465.137 when electricity charges increase by 1 unit. The coefficients
formula also confirms that gatherings, queues and electricity charges have
a positive effect on the dependent variable positive sentiments, with
electricity charges having a higher positive effect.

4.4.4. Residual analysis — Scenario 4.1
The plot in Fig. 15 illustrates the residual distribution against

the observation order. The primarily linear upper and lower bands
suggest a significant relationship between the independent and depen-
dent variables. Outliers can be observed in the residuals’ histogram
(Fig. 16), which also shows that most residuals follow the normal dis-
tribution. Despite their noticeable presence observed around the range
of 6000–8000, the model presents itself as accurate and representative.
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Table 20
Regression statistics for Scenario 4.2.

Multiple R 0.95
R2 0.91
Adjusted R2 0.91
Standard error 774.07

Table 21
ANOVA table for Scenario 4.2.

SS MS F Sig. F

Regression 1 621 137 835 540 379 278.2 901.84 9.76E−13
Residual 151 596 626.4 599 196.15
Total 1 772 734 461

Table 22
Regression coefficients — Scenario 4.2.

Coefficients Standard error t Stat P-value

Intercept −128.471671 68.35434741 −1.879495245 0.06132622005
Gatherings 148.6386076 13.92358089 10.67531469 3.31E−22
Queues 102.2776672 11.61102054 8.808671631 2.06E−16
Electricity
charges

217.6853553 23.35243521 9.321741109 5.90E−18

4.4.5. Regression statistics and ANOVA — Scenario 4.2
This Section commences the second part of our scenario, where we

considered negative sentiments as a dependent variable and gatherings,
queues and electricity charges as independent variables.

The model with the negative dependent variable is almost as strong
as the one with the positive dependent variables. From Table 20 we can
observe a strong and positive correlation, where the value of Adjusted
R2, 91.3% of the variation of the negative variable can be explained by
the variation of the independent variables in the model. The estimated
value of the Multiple Correlation Ratio

√

𝐸𝑆𝑆
𝑇𝑆𝑆 = 0.956 indicates a

strong link between the model variables. The low value of 𝑓 -test =
6.306E−140 in Table 21 leads us to reject 𝐻0 for both 1% and 5% risk
and state that the model significantly explains the connection between
the variables, exhibiting a linear statistical dependence.

4.4.6. Regression coefficients and variability — Scenario 4.2
Table 22 dictates the multiple linear regression model equation:

𝑌 = −128.47 + 148.63 ∗ 𝑥1 + 102.27 ∗ 𝑥2 + 217.68 ∗ 𝑥3, where 𝑥1 =
gatherings, 𝑥2 = queues, and 𝑥3 = electricity charges.

For 𝛽0 (negative sentiments), since 𝑏0
𝑠𝛽0

= −128.47/68.35 = −1.87 and

𝜎 > 𝛼, we do not reject 𝐻0, and conclude that the parameter 𝛽0 is not
statistically significant. All other parameters are statistically significant
since, after computing t-tests, we reject 𝐻0 due to 𝜎 < 𝛼. For 𝛽1 (faulty
lights), 𝑏1

𝑠𝛽1
= 148.63/13.92 = 10.6. For 𝛽2 (queues), 𝑏2

𝑠𝛽2
= 102.2/11.6 =

8.80. For 𝛽3 (electricity charges), 𝑏3
𝑠𝛽3

= 217.68/23.35 = 9.31.
For 𝛽0 (negative sentiments), the average is −128.47 when all other

variables are simultaneously equal to 0. For 𝛽1, it increases by 148.63
when the number of gatherings increases by 1 unit. For 𝛽2, it increases
by 102.27 when the number of queues increases by 1 unit. For 𝛽3, it
increases by 217.68 when the electricity charges increase by 1 unit. The
coefficients formula also confirms that gatherings, queues and electricity
charges have a positive effect on the dependent variable, with electricity
charges having a higher positive effect.

4.4.7. Residual analysis — Scenario 4.2
Fig. 17 illustrates the residual distribution against the observa-

tion order, with mostly linear upper and lower bands suggesting a
significant relationship between the independent dependent variables.
Despite outliers present in the histogram of residuals (Fig. 18), a nor-
mal distribution (−3000–3000) indicates an accurate and representative
model.
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Fig. 17. Residuals vs. observation order — Scenario 4.2.

Fig. 18. Histogram of residuals — Scenario 4.2.

4.5. Scenario 5: Dependence of citizen satisfaction on environmental factors

In the first part of this scenario analysis, we considered positive
sentiments as a dependent variable and temperature, precipitation and
humidity as independent variables. In the second part, we replaced the
dependent variable with negative sentiments.

4.5.1. Preliminary results
We can observe peaks of positive sentiments in the second half of

summer (July 25th to August 30th), coupled with a dip in the first
part of the autumn (September 1st–13th), which could be explained
by the lock-downs co-occurring with the start of the autumn, with high
precipitation and humidity (see Figs. 19 and 20).

As with other scenarios, we can observe small peaks of positive
emotional predilection in April and May 2020, months with higher
temperature and lower precipitation. Marginal exceptions are the days
with peaks in precipitation and dips in temperature, which are also
characterised by dips in positive sentiments (the days around the 1st of
May and the days in late June). A general positive correlation emerges
between the citizen satisfaction and weather, with peaks of positive
sentiments occurring in summer and close to periods featuring low
precipitation and humidity.

4.5.2. Regression statistics and ANOVA — Scenario 5.1
From Table 23, we can observe potential improvements for the

model, since R2 = 0.364 suggests a direct connection, but of low
intensity: only 35.7% of the variation of positive sentiments can be
explained by the variation of the three independent variables. Multiple
Correlation Ratio

√

𝐸𝑆𝑆 = 0.603 indicates an average link between
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Table 23
Regression statistics for Scenario 5.1.

Multiple R 0.60
R2 0.36
Adjusted R2 0.35
Standard error 4616.48

Table 24
ANOVA table for Scenario 5.1.

SS MS F Sig. F

Regression 3 093 729 675 1 031 243 225 48.38 9.45E−25
Residual 5 391 921 425 21 311 942.39
Total 8 485 651 100

Table 25
Regression coefficients and variability — Scenario 5.1.

Coefficients Standard error t Stat P-value

Intercept −12 262.06101 2713.834916 −4.518351847 0.000009571525336
Temperature 733.9261444 62.19320143 11.80074554 6.76E−26
Precipitation −201.8790636 86.32112974 −2.338698117 0.02013027635
Humidity 120.0656664 32.63285245 3.679288123 0.0002857606397

the model variables. Observing Table 24, the low value of 𝑓 -test =
9.4516𝐸−25 leads us to reject 𝐻0, for both 1% and 5% risk. Therefore,
the model significantly explains the connections between variables and
exhibits a linear statistical dependence.

4.5.3. Regression coefficients — Scenario 5.1
Table 25 dictates the multiple linear regression model equation:

𝑌 = −12262.061 + 733.92 ∗ 𝑥1 − 201.87 ∗ 𝑥2 + 120.06 ∗ 𝑥3, where 𝑥1
= temperature, 𝑥2 = precipitation, and 𝑥3 = humidity. All parameters are
statistically significant since, after computing the t-tests, we reject 𝐻0
due to 𝜎 < 𝛼.

For 𝛽0 (positive sentiments), 𝑏0
𝑠𝛽0

= −12262/2713 = −4.518. For

𝛽1 (temperature), 𝑏1
𝑠𝛽1

= 733/62 = 11.8. For 𝛽2 (precipitation), 𝑏2
𝑠𝛽2

=

−201/86 = −2.33. For 𝛽3 (humidity), 𝑏3
𝑠𝛽3

= 120/32 = 3.67.
For 𝛽0 (positive sentiments) the average is −12262.061 when all

other variables are simultaneously equal to 0. For 𝛽1, it increases by
733.92 when temperature increases by one degree. For 𝛽2, it decreases
by −201.87 when precipitation increases by 1 unit. For 𝛽3, it increases
by 120.06 when humidity increases by 1 unit. The coefficients formula
also confirms that both temperature and humidity have a positive effect
on the dependent variable, temperature having the highest. Conversely,
precipitation has a negative impact on positive sentiments.

4.5.4. Residual analysis — Scenario 5.1
The distribution of the residuals in Fig. 21 presents a clear pattern in

the data. The downwards-pointing line distribution plot suggests either
that a linear model is not the optimal representation of the data, or that
clear dependencies are present in the model data, potentially explained
by the physical interpretation of the variables: humidity could be a
function of temperature, precipitation, or both.

The standard probability plot in Fig. 22 suggests that although
noticeable outliers are present in the data, the overall distribution is
normal. However, as the distribution of the residuals over the fitted
values indicates, the independent variables are not, in fact, entirely
independent.

4.5.5. Regression statistics and ANOVA — Scenario 5.2
This section commences the second part of our scenario analysis,

where we considered negative sentiments as a dependent variable and
temperature, precipitation, and humidity as independent variables.

From Table 26, we can infer that the model could benefit from
improvements, as R2 = 0.37 suggests a direct connection, but of low
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Fig. 19. Preliminary results of social media analysis for Scenario 5 — Smart City event occurrences.
Fig. 20. Preliminary results of social media analysis for Scenario 5 — Citizen satisfaction in a Smart City context.
Table 26
Regression stat. — Scenario 5.2.

Multiple R 0.61
R2 0.37
Adjusted R2 0.37
Standard error 2086.85

Table 27
ANOVA table for Scenario 5.2.

SS MS F Sig. F

Regression 670 931 181.5 223 643 727.2 51.35 5.88E−26
Residual 1 101 803 280 4 354 953.674
Total 1 772 734 461

intensity, and only 37.1% of the variation of the dependent variable
can be explained by the variation of the three independent variables.
The value of the Multiple Correlation Ratio

√

𝐸𝑆𝑆
𝑇𝑆𝑆 = 0.615 indicates an

average intensity link between the model variables. The small value of
the 𝑓 -test = 5.879E−26 in Table 27 leads us to reject 𝐻0 for both a 1%
and 5% risk. It can be stated that the model significantly explains the
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Table 28
Regression coefficients for Scenario 5.2.

Coefficients Standard error t Stat P-value

Intercept −5871.495358 1226.771502 −4.786136087 0.000002893788971
Temperature 342.5242927 28.11403402 12.18339184 3.55E−27
Precipitation −89.12472999 39.02090778 −2.284025028 0.02319907252
Humidity 55.7241524 14.75146966 3.777532252 0.0001975163616

connection between the variables, and a linear statistical dependence
exists between the variables.

4.5.6. Regression coefficients and variability — Scenario 5.2
Table 28 dictates the multiple linear regression model equation:

𝑌 = −5871.49 + 342.52 ∗ 𝑥1 − 89.12 ∗ 𝑥2 + 55.72 ∗ 𝑥3, where 𝑥1 =
temperature, 𝑥2 = precipitation, and 𝑥3 = humidity.

Table 28 also suggests that all parameters are statistically signif-
icant, since computing the t-tests leads us to reject 𝐻0 due to 𝜎 <
𝛼.

For 𝛽0 (negative sentiments), 𝑏0
𝑠𝛽0

= −5871.4∕1226.7 = −4.78. For 𝛽1

(temperature), 𝑏1 = 342.52/28.11 = 12.18. For 𝛽2 (precipitation), 𝑏2 =
𝑠𝛽1 𝑠𝛽2
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Fig. 21. Residual vs. fitted values — Scenario 5.1.

Fig. 22. Normal probability of residuals — Scenario 5.1.

−89.12/39.02 = −2.2. For 𝛽3 (humidity), 𝑏3
𝑠𝛽3

= 55.72/14.75 = 3.77. For

𝛽0 (negative sentiments), the average is −5871.4 when all other variables
are simultaneously equal to 0. For 𝛽1, it increases by 342.52 when
temperature increases by one degree. For 𝛽2, it decreases by −89.12
when precipitation increases by one unit. For 𝛽3, it increases by 55.72
when humidity increases by 1 unit.

The coefficients formula also confirms that temperature and humidity
positively impact the dependent variable (negative sentiments), with
temperature having a higher positive impact. We could also note that
precipitation has a negative impact on the dependent variable (negative
sentiments).

4.5.7. Residual analysis — Scenario 5.2
Fig. 23 represents the distribution plot of residuals over the fitted

values. While appearing similar to Scenario 5.1, it also suggests the in-
dependent variables are not, in fact, entirely independent. Nevertheless,
both models are promising. The independent variables largely explain
the dependent variable’s variation. We could notice a higher accuracy
in the model featuring positive sentiments as a dependent variable than
its counterpart. Part of future work plans is to treat the co-linearity
problem while testing the hypothesis of errors.
18
Fig. 23. Plot of residuals vs. fitted values — Scenario 5.2.

5. Discussion

This manuscript demonstrates that social media data streams repre-
sent a significant source of meaningful insight for adequate detection
of events in a smart city context, helping achieve sustainability. Lever-
aging the power of our selected combination of Machine Learning
and Natural Language Processing techniques (AWD-LSTM and ULMFiT )
with an accuracy of 88.5% on our selected dataset (3% higher than the
NLP techniques used by other researchers), we met our objectives. We
addressed the positive research question by detecting real-time events
broadcast by citizens acting as active social sensors, and matching
the bespoke Taxonomy ’s risk categories. Notwithstanding that it was
derived from Coburn et al. (2014), the context-sensitive features are
retained, and as such, its scalability. As elaborated in the NeOn method-
ology (Suárez-Figueroa, Gómez-Pérez, & Fernández-López, 2012), the
taxonomy could be extended using competency questions to derive the
key concepts forming the basis of an ontology.

We fulfilled our second research objective by converting raw data
into a quantifiable format, facilitating manual and automatic detection
of patterns and trends. In Section 4 we presented preliminary trends
in positive and negative emotional predilection. Significant fluctuations
were observed to be associated with variations in weather and occur-
rence rates of certain event types, such as gatherings, thefts and electricity
charges. The data layout also enabled us to meet our third research
objective: to validate and quantify the strength of the relationships
between citizen satisfaction, environmental factors, and co-occurring
events. While some scenarios exhibited more substantial regression
statistics indicated by their Adjusted R2 values above 90% (Scenario
4), all models provided valuable insights, as highlighted by their R2

above 60% in all cases. As models were broken down into constituent
variables, we have identified that all regression models contained at
least one variable below the 0.05 significance threshold of the 𝑓 − 𝑡𝑒𝑠𝑡.

The two scenarios concerning car accidents highlighted the po-
tentially devastating effects that unfavourable environmental factors,
coupled with instances of congestion and faulty lights might have. The
congestion and faulty lights variables were assessed as highly significant
in determining the number of car accidents, followed by electricity
charges ranking second in correlation intensity. However, humidity was
determined to have the least positive effects. Therefore, the message
conveyed to authorities is that ensuring robust controls of faulty lights,
electricity charges, and queues (related to both cars and pedestrians)
could reduce car accidents, independently of weather conditions.

As for the scenario analysing the dependence of thefts on gatherings
and temperature, the high Adjusted R2 value of 64% indicated a direct
link between the three variables. While highlighting the increased
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crime rate at higher temperatures in the summer, the residual analysis
concluded that gatherings have the most substantial positive effect on
thefts. These results should encourage the authorities to deploy ade-
quate resources during periods of peak population density in public
settings, such as music festivals and cultural events during the summer.

The final two scenarios focused on analysing the citizen satisfac-
tion levels at times of co-occurring events (such as gatherings, queues
and electricity charges), while also considering environmental factors
(temperature, precipitation and humidity).This scenario exhibited the
strongest regression model out of all those in the Taxonomy, with an
Adjusted R square of 92.1%. We determined the positive emotional
predilection to be most negatively correlated with electricity charges.
Despite outliers identified by the histogram of residuals, the residual
distribution against the observation order indicates the model is still
statistically significant.

In relation to weather, the coefficients formula suggested that both
temperature and humidity positively impact the dependent variable
(negative sentiments). While temperature has the highest positive effect,
precipitation has a negative impact on positive sentiments. The model
employing the positive sentiments variable was less conclusive, suggest-
ing a steep curve in negative emotional predilection due to weather
fluctuations. The scenario emphasises the detrimental effects of the
less favourable weather conditions (i.e., days characterised by high
precipitation, high humidity, and low temperatures, coupled with reduced
opportunities for social gatherings) on citizens’ mental health. These
findings could motivate the authorities to invest more resources into
a sustainable strategy for socialising during times of adverse weather
conditions, as well as to increase traffic fluidity, both on pavements
and roads, in order to avoid queues adding to the negative emotional
predilection.

The difference between the timestamps of an exact moment of an
event occurring in the real world and the moment when our data
harvesting and classifying engines detect the event is another known
limitation of our research. The authors will address this limitation
as part of their planned future work by linking the detected data
with third-party data sources, such as IoT devices, sensors, and in-
telligence reports. Subject to building trust relationships with local
authorities and law enforcement agencies, we could also link our data
with third-party intelligence reports. In addition to enabling us to
assign a ‘‘confidence index’’ to each of our detected events, in cases
where third party intelligence emerges before an event is detected, we
could factor this piece of data into a bespoke classification algorithm
to improve accuracy and timely detection.

Another notable limitation relates to instances where the senti-
ment classifier is not entirely correct due to either logical fallacies
in processing the natural language or subjective interpretation. In the
present version of our implementation, in the absence of a manual
review, these instances are difficult to isolate or statistically eliminate
as outliers. In the future, we plan to implement additional features
to the detection engine, which would also consider other indicators
for emotional predilection, such as non-verbal language, sarcasm, and
quotes from movies, books or other third-party sources. As a result of
this inaccuracy, some of the risk assessments conducted at the post-
occurrence stage, which take citizen satisfaction into account, might
be rendered inaccurate and require further research into the optimum
mitigation approach.

Finally, certain parts of our research raise privacy-related ethical
concerns due to the potentially personally identifiable data collected.
Devising a schema matching event categories to anonymised met-
rics (e.g., standard consumer profiles) would divert from the origi-
nal intent of using social media as a primary data source. However,
increased transparency into data usage, complementing the existing
statutory wordings in privacy policies, would strengthen citizen trust
and improve compliance with data processing regulations such as GDPR
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(General Data Protection Regulations).
6. Conclusions

This manuscript presents a framework for detecting events and
analysis for smart cities with a subsequent citizen satisfaction overview
of the emotional predilection of residents and transients defined by
upstream research and initiates an appropriate response. The collected
sentiment analysis and event detection data provide a snapshot of
the events in a city at a given time. As such, it can be a valuable
tool informing decision-making. Although the captured data sample
analysed within this manuscript is partly stationary, the same research
methodology could be replicated on real-time data or pre-selected time
intervals of particular significance. The selected sample population
is also statistically significant, as confirmed by the applied Multiple
Regression Analysis statistical models. This research enabled us to com-
prehend the structure of a contemporary city and apply that knowledge
to developing our Taxonomy of scenarios and events. In fulfilling our
research objectives, we leveraged automated systems to aggregate and
process data from social media with outputs reporting preliminary
trends and Multiple Regression Analysis statistics.

Unlike a more general, all-encompassing approach, our results
present a unique set of relationships created by the very functional
core of any urban settlement: the citizens. Longitudinal satisfaction
analysis and event classification enabled us to compare independent
variables over time, while MRA produced quantitative results that
validated the previously identified relationships. Therefore, the findings
of our research, and any new findings produced by our proof-of-
concept application, could be confidently utilised by authorities to
make informed decisions about the development of smarter cities based
on historical events and their own citizens as active agents within the
urban environment, as opposed to being passive recipients of top-down
management regimes. As a result, the city can meet the needs of its
citizens through a bottom-up approach, which is highly relevant in the
current complex and uncertain context posed by the pandemic and the
climate agenda.

The rigour of our research is demonstrated by the multi-phase
methodology utilised to firstly identify and then validate meaningful
relationships between events, sentiments and weather. Our smart city
scenarios, selected based on their relevance empirically established
European Commission projects, were found to be statistically signif-
icant, featuring direct links of medium and strong intensity between
variables, featuring at least one variable below the 0.05 significance
threshold. The outliers in the residual plots could be explained through
comparisons with preliminary results for each event category, pointing
to fluctuations in COVID restrictions and environmental factors.

All in all, our research confirms that social media represents a
reliable source of information informing smart city decision-making.
However, in a real-world scenario, we acknowledge that a tight, mul-
tidisciplinary collaboration of specialists such as engineers, computer
scientists and industry leaders would be necessary to achieve the most
compelling results tailored to the specifics of each smart city ecosystem.
We consider our research to make a significant step forward in the
rapidly evolving field of applying information science techniques in the
context of smart city communities, where the potential of leveraging
citizens as social sensors and data broadcasters appears limitless.
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