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Data-driven Coordinated Voltage Control Method ¢
Distribution Networks with High DG Penetration

Yanda Huo, Peng LEenior MembenEEE, Haoran Ji* Member IEEE, Hao Yy Member IEEE,
Jinyue Yan, Jianzhong WiMember IEEE, Chengshan Wangenior MembenEEE

Abstract2 The highly penetrated distributed generators
(DGs) aggravate the voltage violations in active
distribution networks (ADNSs). The coordination of various
regulation devices such as on-load tap changers (OLTCs)
and DG inverters can effectively address the voltage issues.
Considering the problems of inaccurate network
parameters and rapid DG fluctuation in practical
operation, multi-source data can be utilized to establish the
data-driven control model. In this paper, a data-driven
voltage control method with the coordination of OLTC
and DG inverters on multiple time-scales is proposed
without relying on the accurate physical model. First,
based on the multi-source data, a data-driven voltage
control model is established. Multiple regulation devices
such as OLTC and DG are coordinated on multiple time-
scales to maintain voltages within the desired range. Then,
a critical measurement selection method is proposed to
guarantee the voltage control performance under the
partial measurements in practical ADNs. Finally, the
proposed method is validated on the modified IEEE 33-
node and IEEE 123-node test cases. Case studies illustrate
the effectiveness of the proposed method, as well as the
adaptability to DG uncertainties.

Index Terms? active distribution network (ADN), dis-
tributed generator (DG), data-driven, coordinated voltage
control, critical measurements.
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Indices of typical scenarios
Row and column indices of the sirr
larity matrix related to nodé&

Measurement of nodal voltagarpli-
tude at instanf

Estimation of nodl voltageamplitude
at instantP

Tap step of OLTC at instarfand P F
¢ 6

Prediction information during instarR
to PE ¢ 6

Information of DGs and loads at ir
stantP

Estimation of Pseudo-Jacobi matrix
OLTC at instantP

Estimation of Pseudo-Jacobi matrix
the prediction information at instaft
Power production/capacity of D(
cluster Jin areal at instantP
Estimation/measurement of nod
voltage amplitude at instarfin area
I

Vector of the reactive power output
DG clusterJat instantHn areal
Estimation of Pseudo-Jacobi matrix
DG cluster Jat instantHn areal
Variation of active/reactive poweat
node Cin scenariob

Voltage-power sensitivity betwee
node Eand nodeCin scenariob
Variation of voltage amplitude mea
urement at noddin scenariob
Eigenvectors of nodegand C

Average values of eigenvectors
nodeskand C

Sensitivity matrix of nodeE

Similarity matrix of category?,
Similarity index of nodeE

Voltage deviation indices of the dat
driven approach/ centralized methc
original state of ADN

Number of nodes oADN/area |
Number of DG clusters in arela
Number of typical scenarios
Number of nodes in the catego®y
Threshold of similarity

Slow time-scale



¢ P Fast time-scale based on the concept of control zone. These hierarchical con-
6 Control time horizon trol methods can effectively solve the voltage deviation when
5 6 the accurate model parameters of ADNs can be obtained.

ds, [%l &, S a, . . . .

R, 4 R & 6 S Weight factors However, the main obstacle to the application of model-
,ka\\,/ I’(gl’ ’ , o based optimization approaches is lacking accurate network
- Maximum/minimum  tap  steps ¢ parameters due to the complex operational environments of
G I(\)ALT,C h ¢ ADNSs. In addition, integrated with variou3Gs and flexible

OE‘XI'I(anum change of tap steps loads, the operation state and topology information of ADNs
. . change frequently [17]. Thus, the traditional model-based op-
0 Small positive constant 2 .
timization approaches are challenged by inaccurate parameters
o pcd Voltage reference of ADN

and frequently changed states of ADNSs.
With the digitalization of distribution networks, massive re-
l. INTRODUCTION al-time operatioal data is available to the distribution network
With the highly penetrated distributed generators (DG$perators [18]. Important information can be revealed, includ-
[1], issues of voltage violations in active distributioning the feature of user behaviors and the variation of system
networks (ADNSs) are exacerbated by the rapid fluctuation &tates [19]. Information utilization is of vital importance to
DGs [2]. Various types of voltage control devices have be&@nhance operatiahperformances. Hence, data-driven optimi-
utilized to optimize the operation performance of ADNs [3]zation methods obtain widespread attention to cope with the
However, because of the discrete and slow regulation speRtRblem of lacking accurate parameters [20]. It only utilizes
conventional regulators such as the on-load tap Chang&ﬂg operatioal or historical data instead of the detailed physi-
(OLTCs) are incapable of suppressing frequent voltage fluctg@dl models with accurate parameters. In addition, auxiliary
ations caused by DGs [4]. assistance provided by data-driven methoalsimprove the
The regulation of reactive power generated from DG inver€ffectiveness of model-based operation strategies.
ers is also a promising approach to rea"zing real-time V0|tagepre|iminary studies of data-driven-based Optimization have
control [5]. Since DG inverters provide the rated power anlyPeen conducted in ADNs. Data-based iteratively adaptive con-
fraction of the time, the surplus capacity is able to continuouéol and deep reinforcement learning-based approaches are the
ly regulate voltages [6]. Limited by the capacity of the D@&wo main forms of data-driven methods. To simulate the com-
inverter, it is necessary to involve both continuous and diglex nonlinear characteristics of ADNsmassive amount of
crete adjustments, such as DG inverters and OLTC to eféiffine data is utilized by deep reinforcement learning-based
ciently regulate voltages. Therefore, a coordinated contr@lethods. Then neural networks are trained and implemented
approach involving multiple time-scales is required. to achieve optimal operation. Ref. [21] established an infor-
Generally, the model-based voltage control methods withation-theoretic reinforcement learning framework for phase
accurate network parameters are adopted to regulate volté@gntification in power distribution systems. A deep rein-
profiles in ADNs [7]. Ref. [8] proposed a novel analytical exforcement learning method was proposed in Ref. [22] to regu-
pression to curtail the renewable energy for voltage contrdite nodal voltage without physical models. However, the
which effectively maximized the technical benefits @& training process of reinforcement learningime-consuming
units in distribution systems. In Ref. [9], the voltage contrénd may be ineffective in adapting to state changes of ADNs.
was formulated as a convex quadratic problem with linear Iteratively adaptive control isn alternative data-driven
constraints for efficient solving. method. It models the features of ADN on the basis of opera-
To coordinate various devices with different response timé®nal data and can realize real-time control through the itera-
and control characteristics, hierarchical voltage control mettive interaction withADN [23]. Model-free adaptive control
ods are widely utilized. In Ref. [10], a two-stage contrdfMFAC) representsi classic iteratively adaptive control algo-
frameworkwas proposed to address the problem of opiynmal fithm [24]. Ref. [25] proposed a basic framework of MFAC,
coordinated control. Ref. [11] proposed a two-stage Vo|tag@f. which convergence and stability could be guaranteed under
load sensitivity matrix-based demand response algorithm fé®me practical assumptions. Ref. [26] focused on the data-
regulating the voltages. In Ref. [12], a multi-stage voltagériven operation strategy of soft open point (SOP) based on
support optimization method was proposed for safeguardiMf-AC, which could improve the operational performance of
the ADN operation and providing flexible power delivery caADN without accurate parameters. However, data-driven volt-
pacity. A three-layer hierarchical voltage control strategy wage control with various devices on multiple time-scales can
proposed in Ref. [13], considering the customized chargir§ further considered.
navigation of electric vehicles. Ref. [14] proposed a coordina- In addition, from the perspective of economy and engineer-
tion algorithm for OLTC-based voltage control and reactivig feasibility, full coverage installation of real-time meas-
power compensation to mitigate the overvoltage. In Ref, [18]rement devices is still difficult for large-scale ADNs [27]
a two-stage approach was introduced to coordinate the avaltpw to use critical measurements to regulate voltage has be-
ble reactive power of DG and OLTC considering the multipleome a challenge for data-driven control of ADNs. Thiuis
optimal objectives. Ref. [16] proposed a coordination contréssential to take incomplete measurements into account in
techniqueto utilize DG and minimize the interaction of OLTC practical voltage control.



To effectively reduce the voltage violation with variougnay decrease the control accuracy, it is necessary to
voltage control devices, a data-driven coordinated voltageordinate those regulation devices with fast control devices
control method on multiple time-scales is proposed in th&ich as DG inverters. Thus, discrete and continuous regulation
paper. Thanaincontributions are outlined as follows: devices are coordinated on multiple time-scales to maintain

1) Based on the multi-source data, a data-driven voltageltages within the desired range.
contr_ol model is establi.shed.for the coordinatiqn of OLTC and 1) Modelling of data-driven voltage control problem
DG inverters on multiple time-scales to maintain voltages on the basis of measurement information, the relationship

within the desired range. Considering the change rate |gétween the nodal voltage and strategies of voltage control
OLTC, the data-driven control on the slow time-scale is conlevicess established in Eq. (1).

ducted mainly based on the prediction information. By utiliz- YLB:2: (La)
ing the real-time measurements, the reactive power of DG
inverters is adjusted rapidly on the fast time-scale, to suppragsere B : ®enotes the unknown functioadenotes operation
voltage fluctuation. strategies of voltage control devices including discrete and
2) A critical measurement selection method is proposed tontinuous regulation device¥.denotes measurements of
guarantee the voltage control performance under the incoADN such as the voltage amplitude of each node.
plete measurements in practical ADNs. Based on the criticalAssumption (1): The controlled system satisfies the Lip-
measurements, the data-driven control model is simplifi@thitz condition. FoiE (& Sthe Lipschitz condition of Eq.
while obtaining an approximate optimal solution. (1.a) is shown as follows.is a constant.
The organization of this paper is stated as follows. In Sec- + P EGPFYPEG F?g
tion II, the data-driven coordinated voltage control method on 4 5 EG F s PF 2P EGF ;¢ P + (1.b)
multiple time-scales is elaborated. Section Il descritbes t . . o 6 .
selection method of critical measurements in ADNs. In Sec- Assu_mptlovn (2): The partial derivative & ®is continuous
tion IV, the case studies are conducted to verify the effectivf(f,\)—r the input2>F?

ness of the proposed data-driven control method. Finally, con!" Ed- (1.8), ADN is equivalent to a black-box system, of
clusions are drawn in Section V. which the inputs are the strategies of voltage control devices,

and outputs are the measurements of nodal voltage. Thus, the

Il.  DATA-DRIVEN COORDINATED VOLTAGE CONTROL relationship between the nodal voltage and strategies of volt-

The incorporation of multiple voltage control devices magge control devices is established based on a non-linear un-

create operational conflicts, which brings challenges to voknown functionB : ® ;

age control [28]. Taking the coordination of discrete and con-In the voltage control problem of ADN, the physical es-
tinuous regulation devices into account, a framework of datg@ance of VX >be VX >be €+

driven coordinated voltage control is formulated on multiple +2HP 25 2% HP ?5¢ ¢+

time-scales. sensitivity during> P E &P a PgE F5According to the defi-

) ) nition of voltageto-power sensitivity, it is easy to obtain the
A. Framework of Data-driven Coordinated Voltage Control following equation

Mitigate voltage deviation Suppress voltage fluctuation Effect +Yx>bs & Y >bg (?4: Q (1 C)

+2X>P. 25,6 2 2¢ b ?5¢ @+

is the voltagde-power

I‘ Slow time-scale T Slow time-scale T Application

I Eqg. (1.c) can be satisfied by the practical ADNs according
i P ! ! e | L] Coordnaten | to the operational constraints of ADNs. Thus, Assumption (1)
- — can be satisfied. In addition, Assumption (2) is generally con-

Time Scales

sidered valid in practical ADNSs.

Devices Theorem Al: If Assumptions (1) and (2) are satisfied in the
non-linear control systems, >P?D 2H2 exists. Then Eq.
(1.a) can be linearized to the form of Eq. (2) on different time

Fig. 1. Framework of data-driven coordinated voltage control. scales. The pl’OOf of Theorem ALl is shown in Appendix.

Fig. 1 shows the framework of the proposed coordinated g g (B eSWE P2 {>P? F{>PF ¢ (2a)

control method. It includes multipléme-scales: slow time- . i

scale ¢, Gand fast time-scalg PThe role of OLTC is to adjust €P E PB «PE "\ ,>P?F ,>PF ¢ (2b)

the tap step to prevent severe voltage deviation on the slgere €5p E ;nd €5P E Jfenote the nodal voltage es-

time-scale ¢ 6 Considering the change frequency of OLTCymation at instantP E ¢ahd P E ¢ P>P?s the nodal voltage

the data-driven control on the slow time-scale is mainkeasurement at instar® {>Patd {>P F ¢ 6ehote the

conducted based on the prediction information. Whereas ®gategies of discrete voltage regulation devices at ingtant

reactive power of DG inverters is adjusted rapidly on the faghq p F 4 6>mAd,>P F Re?the strategies of continu-

time-scale ¢ PBy utilizing the real-time measurements, the, g regulation devices at instafand P F ¢ P ¢>?and

data-driven control on the fast time-scale can adaptively\ SPare the Pseudo-Jacobi Matrix (PJM) at instBmthich

suppress rapid voltage fluctuation. Since the diove-scale onresents the relationship between voltage measurements and

x Continuous-
control
X DG Inverter

X Discrete-control a
electroni
XOLTC evices




operation strategies of multiple voltage control devices. Taking OLTC as an example, the data-driven model on the
Eqg. (2.a) represents the data-driven model of discrete devétew time-scale;, Gs established. To determine the strategy of

es, whichis established on a slow time-scale6 The strate- OLTC during each optimization horizop 6 the influence of

gies of discrete devices remain unchanged dugrp avoid prediction information of DGs and loads is considered. Then

frequent operations. Eg. (2.b) denotes the data-driven modeEaf. (2.a) can be transformed to a prediction model at gath

continuous regulation.devices, Whigh is established to respond é>p g (B e SPPE T P SPF [P F ¢, 3

to the voltage fluctuation on a fast time-sca|® XEPB 4> P E ¢ 6 9FP@ ; @)

2) Coordination on multiple time-scales where €5P E ¢%lenotes the estimation of nodal voltage

The discrete and continuous regulation devices can be COQfplitude at instantP E ¢ 6 ¢>P?denotes the PIM which
dinated on multiple time-scales. Taking OLTC and DG inverfanresents the relationship between the tap steps of OLTC and
ers as an example, OLTC adjusts the tap step to prevent SeYR{gy| yoltages. , > Rszhe PJIM at instarPwhich represents
voltage deviation on a slow time-scaleé Whereas the reac- yhq relationship between prediction information and nodal
tive power of DG inverters is adjusted rapidly on a fast t'm‘?/'oltage.{ SPand { 5P F ¢ Bre tap steps of OLTC at instaRt
gcaleg, Pwhich can adaptively_ suppress rapid_voltage fluctu%—nd PF¢®&>P E gértes prediction information during
tion caused by DGs. Thus, discrete and continuous regulatiq@iantso P E ¢ Bcluding prediction information of DGs
devices are coordinated on multiple time-scales to maintajp 4 loads.q™> Rienotes information of DGs and loads at

vogag%s W'tht'nlt.he ddES'QEdﬁrangi' it irol. th ; iJ%stant P. S represents the influence of the voltage
or decentraized and €efficient voltage control, the NeWOIK o 1o\ rement from the prediction information of DGs and

of AD_N Is _partitioned_ into multiple_ _sub-areas based on tr]8ads. Scan be adjusted according to the practical experiences
electrical distance. Since the partition of ADN can be d%-f the distribution system operator

scribed as a clustering problem, the clustering algorithm CaNrare exists two unknown PIMs in Eq. (3), which need to

be utilized to determine the range and number of sub-aregs. .qiimated namely <> Rafd * |, >P? Based on measure-
The proposed data-driven method models the features of SHE- ’ ST

areas in ADN based amal-time operational data and can re-.
alize the real-time control through the iterative interaction
with ADN without training process. Based on the dynami@s>P? L f"%oece :.8> Pg?EFés- As>P?d>P F (;5;’(4)
Ilnea_nzatlon, the proposed method creates a data model o%la> P2 L f %ecs :.é>PG?EFa-. 4 >poESPF 633’ )
nonlinear complex system without accurate parameters. 6

The coordination among regulation devices in the same aréarhen based on the gradient descent algorithm, the iterative

is also taken into consideration. Taking DG inverters in ar@é?(Pressions for solvindls > RAd 4, > Rfe formulated.

| as an example, adjacent DGs can be divided into severg L AP F

clusters. As the voltage control effect of DG clusters in the S™° ,Sk_ ,bé"' 757 A P02 s o 2P ©)
sane area is coupling, the relationship of DG clusters in the AL KE.G{Z"ZG’A?; BT

same area is mainly considered in this paper. Since the data;, . A . i
driven control mode% of continuous regulztign devices is line- Qs P7L a5>‘P?'f. s H??Q 0 ) ‘;{P F B ar
arized dynamically at each 23], the voltage control effect sign( @5 > Prign( @5 > 7

of each DG cluster satisfies linear superposition principles at , 3 Ank o 07 BAE% P2 4T o B T2 s
each ¢ fin the same area. 4 5L 4 P F PR IA cfxrebed X7et (g)

ent information, the estimation functions 0fs> Pahd
| >PTan be represented as follows.

()

___________________________________________ A>le P2
AT 4L A >Pif 3 57Q 67 (WP F PR or ©)

U N iae - b A sign('4, > Peign( @, >/}

— U o H—> where ¢ «>P2denotess SP?F P F ¢2P¢, {P F ¢Blenotes
L e Al {PF B {PFteBedP F PBenotesq™ F 2P
e - - : q™P F t (?Pag>and 4, > Paare the initial valugof ag> P ?
beomemen ST and 4, > P 25> Pis assigned based on the sensitivities of

Fig. 2. The parallel relationship between DG clusierthie same area. nodal voltage and tap steps of O|_'|'@'r > Pls assigned on

Therefore, it is reasonable to assume that the DG clusterghe basis of sensitivities of nodal voltage and information of
each area are paralleled. Taking an area with two DG clustBX&s and loads at instaf. Egs. (7) and (9) are introduced to
as an example, the parallel relationship between two DG clsiable Egs. (6) and (8 with a stronger parameter tracking
ters is shown in Fig. 2+ ; denotes the measurements of nodadbility [24].
voltageanplitude in areal . nmyand nmyare the voltage control  Note that both the gradient descent method and Newton
effect of DG clusters 1 and 2, represents the voltage con-method are typical iterative methods for finding the minimum
trol effect of DG clusters in areh. of an objective function [29]. The Newton method is an effi-

: . cient algorithm for solving the day-ahead optimization prob-
B. Data-driven Coordinated Voltage Control Model lems ongDNs [30]. Fromgthe pers>;/)ective ofzpplicability? the
1) Modelling of data-driven control on the sloméscale  gradient descent method is suitable for the iterative calculation



in the proposed data-driven meth(_)d. _The reasons are elaborat- A pP?2L [ % g>PoE>P%.
ed as follows. a) If the second derivative of the objective func- . A (15)
WLRQ LV XQGHILQHG LQ WKH REMHFWLYH IXQFWLRQPP FRKWF UZU?DGLHQW GH

scent methods can still be applied. b) The time complexity of considering the influence of other DG clusters in area
the gradient descent method is J(The Hessian matrix and -4__ 5 pan be calculated at each instant. The iterative expres-

its inverse matrix are unnecessary to be calculated in the A& for estimating’é\ > Bsshown as follows
dient descent method, which is time-saving. c) In addition, the aas = '

gradient descent method is not sensitive to its initial values. Qaasf?L Q2P F B 1 ¢ 4 PPF

In the proposed data-driven method, it puts forward higher ~ zc8¢ - % aadP F &7 ¢rpaB?e? (16)
requirements for the calculation speed in each iteration for the = U@5 380 "¢ »aa TS amat
real-time control, which requires a sample and time-saving A, Pl A, SR 7if A, SP?Q Gor
method. Thus, the gradient descent method is utilized to itera- B For i A e a7)
tively solve equations such as Egs. (4) and (5). ¢naadP F R @rsign(Faa2 PNBION(Ra a2 F7

Considering the minimum voltage deviation and the changehere ¢ +, >P?representse s SP?F o, 5P F (2P ¢ ,.45P F
rate of the tap steps of OLTC, the objective function of OLTG prepresents, ss5P F (2P ,545P F t (2P 4, > Pde-

is expressed as: . notes the initial value of, 4 > Pwhich can be initialized by
V{2 L ece 1 REFEP E (;'156 (10) sensitivities between nodal voltages and reactive power of DG
SHAPF (>PF (2! clusters.
The iterative formulation for calculating >Pbased on the Considering the minimum vqltage deylanon and the c_:hange
gradient descent algorithm is expressed as Eq. (11). rate of DG outputs, the objective function @G cluster Jin
ek N o g2 802 i areal is expressed as:
Ke 7 77 7% >Sc>4 10 L,
{P?L {P F ;ESE ATCAELT (11) Kaa@P?0 L ecpehé,>PE P2

K>ZaKx™Z
' L adBP 2 el P F R
In the data-driven voltage control of DG, the control strate-
are constrained by the following equations. JLHV Ithlh T \: UHDFW It_ YtH h SRZ It-l U ‘ DtUthh RE\
) . ) process. e reactive power output changes too fast at the
{PL{PF B GE{F{PF PG (129 adjacent control instants, it may lead to rapid voltage fluctua-
{PL {PF ;B Gif {PF {3P F (8B FG (12.b) tion to impact on the secure operation of ADN. Thus, the

(18)
where 45 >P2and 4, >Pxan be solved by Eq. (4) and Eq. (5).
Considering the variation range limits of the tap stdps?

{SPPL {*-Vif { PP {k-V (13.a) Shange rate of DG outputs is included in the objective func-
ion.
{>PPL {kolif {50 {*d! (13.b)  considering the control strategies of other DG clusters in

Egs. (12.a) and (12.b) limit the maximum variation of th@€a! , . aa#F7 the control strategy of DG clustdat instant
tap steps during the considered time horizon. Eqgs. (13.a) afi@ areal , is iteratively calculated as follows.
(13.b) represent the variation range of the discrete tap steps. naasT?L LaasP F PB @°¢F o, SPPF

2) Modell|ng of data-driven con.trol on the fast time scale Nggcs'géaaﬁk,,aaip?lz P F & T’azé@?l (19)

Taking paralleled DG clusters in aréaas an example, the " ? @54 > 285 4% Z
data-based model of DG clustéis established during a fast '
time-scale ¢, PInfluence from other DG clusters in the samé&’
area is taken into consideration, as shown in Eq. (14).

here 4, , sPTanbe solved by Eq. (16).
To further consider the limitation of D& Q Y H dapadiy V
ties, operational constraints of DGs are shown as follows.

Z ~ C

&, >PE cP2ALP AL X, o P2aue P? Ea P F ¢ (14)
LT e caa2 P 2SKAES F KIS P20
where €, 5P E J¥@presents the estimation of nodal voltage

amplitude in area at instantP E ¢ P, >P2denotes nodal if a0 P28k EE0 F ks P20

voltage measurement in ar¢aat instantP Q' Xrepresents the (20)
number of DG clusters in arda. ~ ;; sP1s the PIM oDG caaeP? IBRELO F klik> P20

cluster Jin areal at instantR which denotes the relationship . 5 c

between nodal voltage measurement and the reactive power i, aa0P? BEEEO F k2P0

output of DG cluster Jin areal . , 5 4 > Rs2he reactive pow-  Constraint (20) represents the variation range of reactive
er output vector of DG clustetat instantHn areal . power outputs of DG clusteet each instant. Limited by the

In Eq. (14), the PIM , 4 #P%an be estimated as Eq. (15).capacity of DG inverter, it is necessary to involve both contin-
Different from the Jacobi Matrix of ADN, the PJM utilized inuous and discrete adjustments, such as DG inverters and
this paper is calculated based on the multi-source data. It réj=TC to efficiently regulate voltages. Thus, whe invert-
resents the relationship between voltage measurements ergdachieve their maximum allowable reactive power, the pro-
operation strategies of multiple voltage control devices. posed coordinated control approach method will dispatch volt-



age regulation devices involving multiple time-scales to miti- |, L
gate the voltage violation. ST
Remark 1In practical ADNSs, there are mainly two forms of

the system structure updating. &) The integration of new dgnere ... * « kg goindicates the cosine similarity of nodand
vices, such as DGs, switches on the original structure r%deC reand ryare eigenvectors of noddgnd G which
U U

ADNSs. b) The expanded planning of ADNs. P . . Y
The integration of new devices does not change the obse‘rj\?—nOte the voltage variation in typical scenaribgand g

ability of ADN. However, as the controlled resources hav;__epre;ent the average values of thAe elgenvec&mst_he di-
been integrated, the communication links with these new d@€nsion of the eigenvectary and € L Q. H Q; Oqis the
vices need to be supplemented. With the application of g@mb_er of typical scenarios, which are clustered based on the
technology, local communication will be convenient to realizdlistorical data [32]. L

Then, the proposed method can be compatible with new de-The €igenvector yis transformed by the vectorization from
vice integration by properly extending the data-driven modet. sensitivity matrlxt gof r)ode Ewhich contains sensitivities

As for the expanded planning of ADNSs, the observability dif node Bn typical scenarios.

ADNSs will be influenced. Thus, new measurements should be SVt ® abq;

added to incorporate the observability of expanded ADNs. The L N - Dal - OBaC pa b (22
proposed method is still scalable after the supplement of 50 4c-S: ® % 46 Oq;

measurements devices. o -
Remark 2 The proposed data-driven method mainly int here &« indicates the voltage-power sensitivity [33]

cludes two kinds of parameters: time-varying parametef§tWeen nodegand Cin scenariok which can be obtained

(' S>P?dnd 4 \ >F7 and fixed parametersé(;, BSv 557 éSv élv based on the h[StOflC&' dz}ta. ) A )

R, &, R, &, &, 9. As for the influence of parameters, thedy s L =0 P 0 2P EUGQ BP0 (B P 23)

time-varying parameters in the proposed method represent the EACPAe D &

internal structure and parameters of ADNs. Note that the number of clusters is not a predefined parame-
Parameter tuning is important for the control performanagr. In the clustering step, categories are formed in the cluster-

of the data-driven method. To adapt to the variation of systeAy process based on node similarities. As the similarities be-

states, the time-varying parameter$s {>?and ~ |\ >} are tween nodes are quantified, nodes with larger cosine similarity

estimated by Egs. (4)-(8) and Eq. (15), according to the muljialue than thresholdfcan be classified into a category denot-

ple-source data. As for the fixed parameters, it is proved &g by 2, 2D %as shown in Eq. (24). Then the number of

[23] that stability can be guaranteed when the fixed parametelgsters can be determined.

are within the predefined range, namdlyd (4 3D :ras? . C s

3. A4 AP I, &4 AP rand 64 ¢D ras? Ea Cp?.."~dargo P B (24)

ApgirgP: ¥pkro P ¥po

— 0 ——_ . . . Eac 21
§Ang it P Yy 8Aggkro: b ¥po P (21)

2) Selection of critical measurements
[ll.  SELECTION OFCRITICAL MEASUREMENTS Then a similarity matrixEs ggn be formed based on cate-

The coordinated voltage control approach described in S&@gry %y 3P %which contains a group of similar nodes includ-
tion Il mainly relies on the system's whole voltage measur#g nodeE

ments. Considering the incomplete measurements in practical LA L ® L fekAyo
ADNSs, it is indispensable to reduge .the requireme.nt of tota! £osh N - o - OEA&Fg (25)
measurement amounts while obtaining an approximate opti- ‘ekd o ® ‘ol
: e .. 'vlago
mal solution.Thus, critical measurements should be selected . )
beforehand. where element.. ‘ « & yoin the matrix £5 genotes the co-

sine similarity between nodeand nodel
To select representative nodes as critical measurements, the
To reduce the requirements of measurement amount, nodggilarity index is defined as follows.

with similar voltage variatiorto the fluctuation of DGs and ~Ci46

A. Critical Measurement Selection

loads are clustered into a category. Then critical measurements b AJ@ sfoagA D E By (26)
of nodes can be selected from each category. where >;denotes the similarity index of nodg Ogis the
1) Clustering of measurement nodes number of nodes in a catego®y £¢ ;504 Bis the element in

To quantify the similarities between nodes, the modified" =and columniy . o
. . T The nodes in a category are sorted according to the similari-
cosine similarity is utilized, which is widely used to measu

ro . . .
the difference between two vectors [31]. Taking néthearea tY index .""’?'”e.s- T hen .the most representative nodes with the
. o ) L highest similarity index in a category are recommended as the
| as an example, by using the modified cosine similarity, the?. "
oo ) : critical measurement nodes. Based on the critical measure-
similarity between nodé&with other nodes in areh can be ; .
o ments, the data-driven coordinated voltage control model de-
quantified as follows. : : ) S .
scribed in Section Il can be simplified, and the requirement of

total measurement amounts is reduced.



There are mainly two application conditions for thephase data-driven control method can be further extended.
selection of the critical measurements, namely the existi@prrespondingly, the data-driven model and variables will be
ADN, and the expanded planning of ADN.la the existing expanded from the single-phase to three-phase. Considering
ADN, if the historical operation data can be obtained, ththe asymmetric integration of DGs in unbalanced ADNs [34],
critical measurement selection can be carried out with thieis assumed that three-phase data-driven voltage control is
proposed method. If the historical data is insufficient, theonducted separately. First, nodal voltage measurements are
critical measurement selection can also be expanded basedbiained to establish the data-driven voltage control model in
the state estimation and physical model of ADN. The voltageach phase. Then, operational strategies of the regulation
to-power sensitivities can be calculated by the differential afevices can be calculated and implemented in each phase.
nodal voltage variation and injection power variation based drnus, voltage control problem of unbalanced ADNs can be
multiple state estimation results. With the voltaggower solved by conducting data-driven control in each phase.
sensitivities of all nodes, critical measurements can be

obtained. Note that, the model-based state estimation is only
utilized in the critical measurement selection, instead of the Inputo}h/thﬁfoalggytggmtglrﬁeorgggm data‘
data-driven control process. b) As for the extended planning of ~ -
ADN, operation data can be simulated through the physical S Coaing ety and ooty |
model of ADN. The network structure can be provided from . , _

Initialize the slow time-scale (T, fast t|me—scale‘

the planning information of ADN. The photovoltaic (RV) 4, sett=0, sets=0
wind turbine (WT) and load curves can be obtained by ‘

forecasting information. Based on the physical model, the No
violation

voltageto-power sensitivities of the extended ADN are Yes
calculated. Then the critical measurement selection can b ) Establish the data-diven voltage Control modey
carried out Slow time-scale of discrete regulation devices with Egs. (3)-(10
Through critical measurement selection based on historica S o o
data, a data-driven control model can be established withot Egs. (11)-(13)
the requirement of the measurements in the whole network. . _
Fast time-scale Setd=0
helps to reduce the measurement demand as well as the e i
. . . . .. Stablish ana solve the coordinated voltage
mension of the data-driven control model, which is beneficia | control model of continuous adiusting devices
ith Egs. (14)-(18
to the convergence speed and the control performance. ot 245 1 25)
Calculate and implement the voltage control
B. Implementation of the Coordinated Voltage Control strategies of Con o ey 2 2 Viees Wi
Fig. 3 shows the flowchart of data-driven coordinated volt-
age control on multiple time-scales. d=til
1) The similarities of nodes are quantified based on thé Yes
modified cosine similarity. Nodes with high similarity values

are classified as one category. In each category, the most re ¥

resentative nodes are recommended as critical measurement
2) Concerning the critical measurements at insRanid the ] Vo

prediction information during;, 6 a data-driven model of dis- Jrs<T1?

crete regulation devices on the slow time scale is established. No

The operation strategies of discrete regulation devices are

solved and implemented to mitigate the voltage deviation %}; 3. Flowchart of data-driven coordinated voltage control.

the slow time-scale 6 _ Thus, by establishing the data-driven model of coordinated
3) Based on the critical measurements in each area, the ¢tage control on multiple time-scales, the nodal voltage can

terdriven models of continuous regulation devices are respggs maintained within the desired range. In addition, by select-
tively established on each fast control perigffThe operation i, the critical measurements, the requirement of total meas-

strategies of continuous regulation devices are calculated ) ment amounts is reduced in the data-driven model.
implemented on each Pwhich can adaptively suppress fre-

quent voltage fluctuations. IV. CASE STUDIESAND ANALYSIS
4) The operation strategies of continuous regulation devices

are adjusted continuously untilds reached. Then Steps 2) To verify the advantages of the proposed data-driven coor-

and 3) are repeated, until the total control horisasmreached. d'nagedd\’?g?nge control approach (;m mglthrIﬁ tlme—scalez,- two
Remark 3 The proposed data-driven voltage controptandar test cases are adopted. The case studies are

method is mainly oriented for medium-voltage distributio€formedin MATLAB R2016b, which is installed on a com-
networks, which are three-phase balanced and can er with an Intel(R) Core(TM) i7-6700HQ CPU@2.60GHz

generally equivalent to a single phase. To address the voltggrﬂgj 16 GB of RAM.
control problem in unbalanced three-phase ADN, a three-



A. Modified IEEE 33-node System 360

The topology of the tested 33-node distribution system is il- 5.
lustrated in Fig. 4, including a substation and 33 nodes. A ten:—ui,

0.300

240
0.250

tap step OLTC with 1% voltage adjustment per tap is connect-g , ,, 0200
ed to node 1. And the rated voltage level and total power de- 0.150
mands of the tested system can refer to Ref. [35]. 0 0.100
3

‘7777@7 H 777777 777777 \ Node 5720 0.050

| area1 ¢ “1»—0—0—@2—@—2—’—’ Area 2 \ % 0
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Fig. 4. Topology of the tested 33-node system. (‘},CJ 025 0400
Accounting for the high penetration bDfGs, 13 units of PV 0300
are installed at nodes 11, 12, 17, 18, 20, 21, 23, 24, 25, 31, 32, . 0200
and 33, of which capacities are 100 k\&4gch 3 units of WT 3 0100
are installed at nodes 13, 15, and 16, of which capacities arélode %, 0
. . 24
500 kVA each 3 units of WT are installed at nodes 22, 29, o 6 12 18 24 30 36 42 48
and 30, of which capacities are 100 k'¥ach Cases
. . (c) Sensitivity matrix of node 19
B. Selection of Critical Measurements 075
Typical scenarios are clustered based on the annual histori- 0600
i i 2 050
cal <1jata of ADN, as shown in Fig. 5. s 0500
+ = L 2
o8| ° =m W ‘e m . g mtan & o025 0400
;.: 0.6 ] u.l- < - 0..,. 0.300
é 04 % =n 0 0.200
: :
~ 0.2 3 0.100
Node % 0
0 %
0 6 12 18 24 30 36 42 48 0 6 2 18 24 30 36 42 48
Scenarios Cases
i . i mWT Load (c) Sensitivity matrix of node 20
Fig. 5. 48 typical scenarios of ADN. Fig. 6. Graphs of the sensitivity mati

Then the voltagée-power sensitivities of nodes in each On the basis of the sensitivity matrix mentioned in Section

typical scenario can be obta!ngd based on the historical dq ﬁA, the modified cosine similarity is calculated to quantify
Subsequently, the characteristic graph of each node can,

. . i . similarity between nodes. Table | shows the results of the
obtained under typical scenarios. Taking nodes 5, 6, 19, dified cosine similarity calculation
20 in area 1 as examples, the sensitivity characteristhgra ¢ iq jjystrated from Fig. 6 and Table | that the similari

are shown in Fig. 6. between nodes 5 and 6 is higher than the similarity between

220 nodes 5 and 19, or nodes 5 and 20. Assuming the thre¥hold
- iggg is 0.99, nodes 5 and 6 can be clustered into one category,
s 1600 while nodes 19 and 20 belong to different categories due t
% 10 iggg lower similarities. Then in a category, the most representative
@ 1000 nodes are recommended as the critical measurements. The

o 000 result of critical measurements selection is shown in Fig. 7.
% 0.400 TABLE |
Node 5%4 00-200 SIMILARITY RESULTSBETWEENNODES
o 6 12 18 24 30 3% 42 48 Nodes 5-6 5-19 5-20 6-19 6-20 1920

Cases

; Similarity 0.9989 0.9509 0.7064 0.9487 0.7059 0.8488
(a) Sensitivity matrix of node 5
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Fig. 7. Results of critical measurements selection. Fig. 9. Voltage control performfance at 10'09 am. .
The proposed data-driven coordinated voltage control with
C. Analysis of Voltage Control Results critical measurements is adopted for mitigating the voltage
1) Data-driven coordinated voltage control violation of ADN. The operation state of ADN from 10:00 am
~ 12 ; . to 10:05 am is taken as an example. Fig. 9 illustrates the volt-
g 0.9 age control performance in which the grey areas indicate the
2 0 voltage adjustment process of Scenario Il.
E [| R - i L L L o DV P —
0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)
=PV —WT LOAD

Fig. 8. Daily curves of power loads abés.

Fig. 8 shows the typical daily curves of power loads and
DGs, which are used to analyse the voltage control results.
The time resolution of the fast time-scale is set as 0.5-minut
[0.95, 1'_05] P-u. 1S S_et as the limited operational range of volt- (a) Dynamic process ¢fVs'reactive power outputs at nodes 18 and 33
age profiles. The weight factors are all set as 1.0. Based on the
operational data, the data-driven control method needs to se-
lect an identical optimal reference for both upper and lower
violation of nodal voltage. Thus, the voltage refereméé fs
set asU

Considering that frequent switching actions of OLTC
increase security risks to ADN, set the duration of slow time-
scale ¢, Gas 4 hours. The prediction information of the hourly
operation curves is obtained based on Fig. 8. To obtain (b) Voltage adjustment process of nodes 18 and 33
prediction information with higher accuracy, a graph neural™: 10 Dynamic ajustment process from 10:00 am to 10:05 am.

' The dynamic process of reactive power outputs of BVs

network can be utilized in future work [36]. Considering th%hown in Fig. 10(a). Theoltage adjustment proces$ nodes

freque-nt f!uctuatlon of DGs, set the fast time scglan-d the 18 and 33 is shown in Fig. 10(b). DGs are utilized to regulate
sampling interval of voltage measurements as 0.5-minute. ; . o
; . nodal voltage by generating reactive power to mitigate the
Then three scenarios are utilized to demonstrate the ad- . : -
: . voltage deviation. As for the computation efficiency, the
vantages of the proposed data-driven coordinated voltage con- : . . "
. " - . proposed data-driven coordinated voltage control with critical
trol with critical measurements. The description of the studi . ; :
Mmeasurements relieves the computation burden as it only

scenarioss shown in Table . requires a simple algebraic operation. Also, convergence can
TABLE I be ensured within limited iterations [25].
DESCRIPTION OF THETHREE SCENARIOS
Scenario Description 2) Analysis of yoltage control performance
To test the daily voltage control performance, the proposed

The initial state of ADN is obtained without the regulation . . . ..
nodal voltage. data-driven coordinated voltage control with critical meas-

The proposed data-driven coordinated operation strategie urements is carried out on the whole day.
DGs and OLTC are adopted. The daily voltage control performances of the three scenari-
i The uncoordinated voltage control strategies are adopted. os are illustrated in Fig. 11.

In Scenario lll, the discrete and continuous regulation de-
vices are not coordinated on multiple time-scales. OLTC is
regulated only based on real-time information without the pre-
diction information of DGs. In addition, the cooperation be-
tween multiple DG clusters is not taken into consideration.

(a) Comparison of voltage control performances of Scenarios | and Il



1C

exacerbation of voltage profiles. At each operation time of
OLTC, the voltage fluctuation appears and DGs are coordinat-
ed to suppress the voltage fluctuation.

To quantify the voltage control effect, the voltage deviation
index (8 &)+of the three scenarigs stated in Table 11, which
can be defined in Eq27).

TABLE Il

(b) Comparison of voltage control performances of Scenarios Il and Ill VOLTAGE CONTROL PERFORMANCESOF THE THREE SCENARIOS

Fig. 11. Comparison of voltage control performances of three scenarios

Min. voltage Max. voltage Number of ta}

Fig. 11(a) compares the voltage control performarafes  Scenario (b.u.) (o.u.) 8&+ L vement
S e i Soenaro | lhe ghly penetated o osmz s oors 0
. rious voftage violation. HOWEVe, | YT Il 0.9615 1.0454 0.0087 5
implementing the proposed coordinated voltage control ap-
Il 0.9374 1.0540 0.0152 4

proach, the OLTC regulates voltage on a slow time scale-
While DGs are coordinated on a fast time scale to suppress thdable Il illustrates that the improvement of voltage profiles
voltage fluctuation. Consequently, the abuoltage of ADN is much more obvious in Scenario Il compared to Scenarios |
is regulated and maintained within a reasonable operatiand Ill. In Scenario Il, theB & is diminished by 51.40% com-
range. However, the multiple regulation devices are operatpdred with Scenario |, while decreased by 4%7Ban the
uncoordinatedly in Scenario lll, which fails to mitigate theuncoordinated voltage control in Scenario Ill.
voltage violation, as illustrated in Fig. 11(b). 88+ fés.%sﬂsa’-’@+ 27
1®C
To evaluate the suppression of voltage fluctuations, the
daily voltage flicker index 8 (}can be calculated according
to Ref. [37]. The definition of thé (4s shown in Eq. (28
8(+ L foi ¢aF 7,0 cH;6 ® (E D & (28)
Fig. 12. Daily adjustment strategies of OLTC. In Scenarioll, the 8 (+#s decreased by 30.32% compared
with Scenario |, namely from 1.88e-3 to 1.31e-3.
The computational efficiency of the proposed data-driven
voltage control with critical measurements in Scenario Il is
0.029 second for each iteration, which is demonstrated to be
suitable for real-time voltage control.

3) Comparison with existing approaches
Fig. 13. Daily voltage control performance of node 18. To demonstrate the effectiveness and advantage of the
proposed method, another two existing voltage control
methods are studied and compared. The former one is the
model-based centralized optimization approach, which
requires accurate physical models and parameters of ADNS.
The latter one is a deep reinforcement learning-based
approach, which may need the retraining process under
ci 14, Dail fom strateqies of BEnode 16 topology changes of ADNSs.
9. 4. bary operation stategies of Lunode . _ a) Ref. [35] proposed a mixed-integer second-order cone
The daily adjustmenf[ str_ateg|es of OI.‘TC n Scenar_los g ogjrammi%g]mpodgl for voltage controglJ in ADNs with accu-
and Il are represented in Fig. 12. The daily voltage profiles te network parameters. Based on Ref. [35], the model-based

noded18lage shovr\]/n n Elgl.:.l3.1D4a|:y operbauon str?teg|e; of Dc ntralized control approach is adopted in Scenario 1V, which
at node 18 are shown in Fig. 14. It can be seen from Figs. {gq ihe optimal voltage control performance.

13, and 14 that the adjustment strategies of OLTC and DGSD) Deep deterministic policy gradient network (DDPG) is a

are coordinated to maintain the voltagethwi the intended typical deep reinforcement learning-based algorithm with two-

limitation. From 0:00 am to 6:00 am, the power generatquer actor-critic networks, that is suitable for large-scale-

from DGsis beyond the power demands. The OLTC adeStt?ol problems with deterministic and continuous actions.[38]

the tap step, while DGs coordinately absorb the reactive POYELsed on the training process, the operational strategies can be
to regulate the voltages. Conversely, from 6:00 am to 12:

; . termined by DDPG without the interaction with ADNs. To
am, DGs cannot satisfy the high power demand. The OL ﬁ% y

. . mpare the control performance of the proposed data-driven
adjusts the tap step to increase nodal voltages. Meanwh

DG ) llevi I deviat Bordinated voltage control, a DDPG-based voltage control
S generate reactive power to alleviate voltage deviation. agproach is further adopted in Scenario V.
T

In addition, on the slow .“”?e spale, thg OLTC changes th he comparisons of voltage control performance in Scenar-
tap step based on the prediction information, to prevent furtqgg Il, IV, and V are illustrated in Fig. 15 and Table IV
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randomly generated by Monte Carlo method to conduct the
proposed data-driven control.

(a) Comparison of voltage control performances of Scenarios Il and IV

(a) Random disturbance of loads and DGs

(b) Comparison of voltage control performances of Scenarios Il and V
Fig. 15. Comparison of voltage control performances of three scenarios

TABLE IV
VOLTAGE CONTROL PERFORMANCES OF THETHREE SCENARIOS

Min. voltage Max. voltage Number of taj

Scenario (p.u.) (p.u.) o8 movement Scenario | Scenario Il
I 0.9615 1.0454 0.0087 5 (b) Voltage control performances of node 18 of Scenarios | and |I
v 0.9611 1.0254 0.0076 4 Fig. 16. The dynamic process with DG fluctuation.
\% 0.9503 1.0446 0.0130 4 TABLE V

As shown in Table IV, it is illustrated that the proposed ___YO-TAGE CONTROLPERFORMANCES WITHDG UNCERTAINTY

data-driven method has similar control performance to the

Expected min. Expected max.

i +
model-based centralized control approach and the DDPG Seenano  voliage (p.u) _ voltage (p.u.) ot
based voltage control approach. All three methods can ! 0.9647 1.0466 0.0103
effectively mitigate the voltage deviation and maintain I 0.987 1.0276 0.0087
voltages within the desired ranges. Considering the influence v 0.9725 1.0462 0.0088
of hyperparameters, the results of DDPG approach can beThe random disturbance of loads and DGs is shown in Fig.
further improved in the future work. 16(a). The voltage profiles of node 18 in Scenarios | and Il are

To assess the optimization effect of the data-driven methglown in Fig. 16(b). The voltage control performance of the
in Scenario II, the average optimization ratel(4 is defined whole ADN is illustrated in Table V. It can be seen from Fig.
as follows [39]. 16 and Table V that the proposed data-driven method can re-

#14 L:sF o0y, :UFW; ; Usrr- (29) spond to the random fluctuations of DG and loads and miti-
where ( denotes the voltage deviation index of the proposéte the voltage deviation. However, the control performance
data-driven voltage control approach is the voltage of model-based approach is deteriorated under DG uncertainty.
deviation index of the model-based centralized control !N @ddition, 10 test the adaptability of the proposed data-
approach. While(l denotes the voltage deviation index of th&lfiven method to the topology change of ADN, an economic
initial operational state of ADN. The 1 4of the proposed network reconf_|gurat.|on is further considered. _The economic
data-driven method is 89.32%. It means the proposed da@g_twork reconfiguration is presumed to be carried out at 10:30

driven voltage control method reaches 89.32% of the optin@l’: The tie switches beltween nodes 12 ;lnd 22h as well as
solution without relying on accurate physical models. nodes 25 and 29, are closed, and branch switches between

N . nodes 10 and 11, as well as nodes 27 and 28, are disconnected.
4) Adaptability to the uncertainty of ADN Fig. 17 illustrates the voltage control performances during
The uncertainties of ADN generally include rapid fluctuathe network reconfiguration process. It can be seen from Fig.
tions of DGs and loads, as well as the topology changes. Whet(a) that the proposed data-driven method can dynamically
the DG outputs fluctuate, the measurements of ADN willdjust voltage profiles to adapt to the new topology.
change. Based on the real-time measurements, the proposed.o3 —

data-driven control model is updated correspondingly. Theri; Lot

the data-driven control model can rapidly adjust the operatiory; \.‘“ ,.----—----_-_:;::’ "*"-'"'*":-\..‘,"

al strategies of controlled devices to adapt to the uncertainty 8f **° R— S \:;;:;,,,—,_-\.

DGs and loads. The rapid fluctuations of loads and DGs from T NETIETETRTRTR I ‘2'; =,
11:30 am to 12:00 am are considered to test the adaptability of Node

the proposed data_driven Voltage Control method_ Considering Before reconfiguration —-After reconfiguration — Process of adaptive optimization
. . a) Voltage control performances of Scenario Il
10% random disturbance of loads and DGs, 100 scenarios are @ g P
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0'97 L L L L L L L > |
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ |
Node 2070 4 6 s 10 12 14 16 18 20 22 24
= Before reconfiguration =-After reconfiguration Time (h)
(b) Voltage control performances of Scenario IV
Fig. 17. The adaptive process to the topology changes. “PhaseA oo Phase B Phase €~
(b) Voltage control performances of node 78 in Scerlario
D. Modified IEEE 123-node System Fig. 19. Voltage profiles of the unbalanced three-phase ADN.
The modified IEEE 123-node distribution system is adopted TABLE VII
to verify the scalability of the proposed data-driven method on __VOLTAGE CONTROL PERFORMANCES OF THETHREEPHASECASE
ADNs with three-phase unbalanced conditions. Fig. 18 shows Min. voltage (p.u.)  Max. voltage (p.u.) 8&+

the topology of the test systed.ten-tap step OLTC with 1% Phase™scenaric Scenario Scenario Scenario Scenario Scenario
voltage adjustment per tap is connected to node 1. To fully I I I I I I
consider the impact of asymmetric access of DGs, six PMfgse/ 0.9385 0.9503  1.0573 1.0375 0.0270  0.0084
with a capacity of 1000 kWp and three WTs with a capacitymfaset 0.9719 09526 1.0850 1.0484 0.0146  0.0068
1000 kVA are integrated into the distribution networks. Thgase ¢ 0.9301 0.9504 1.0724 1.0463 0.0226  0.0085
locations of DGs are listed in Table VI. The same Scenarios 1 . .

It can be seen from Table VII, in Scenario Il, tB& of

and Il in Section IV.C are also carried out in the test case. S
0, 0, 0
The voltage control performance of node 78 is taken as ee p;hasl,es are d'm'S'Sh_fﬁ gy 68'89 /|° _?EAZ {Oh and 62.39(1/0
example to illustrate the control effects on the three—phareestpe; Ve, campare ':NII ctﬁnzrlo ' ﬁusé_ Ie pr(_)tposte
ADNSs. The daily voltage control performance is demonstrat a-driven voftage control method can efiectively mitigate
voltage deviation from the nominal value in each phase, as

in Table VII. shown in Fig. 19. The scalability of the proposed data-driven
TABLE VI voltage control method is verified.
INSTALLATION PARAMETERS OFDGS Thus, the proposed data-driven coordinated voltage control
Parameter PV WT approach with critical measurements can effectively alleviate
Locaton 33 42 59 77 8 91 28 51 76 the impact of DG integration and suppress the serious voltage
Phase A B B C C A A C B violation in ADNs. In addition, the proposed voltage control

approacthis also capable of responding to the frequent topolo-
gy and state variations of ADNSs.

33 30 31121

3 32 2 49 48 50 52 123 117 112 111 113114 115
1
(), 00 ex ‘o8- I S V. CONCLUSIONS
44 g 8
? 2“ j P z o iz To:ioms A data-driven coordinated voltage control method is
2 2 ) » presented for the coordination of OLTC and DG inverters on
.. 132 . y° ol SR100 108 = 116 multiple time-scales to maintain voltages within the desired
Lo co 5058 oil 118 sl 69 70 7L 7 range. By utilizing the redime measurement data, a data-
o ? 12 14110 53 @ o 57 6] driven coordinated voltage control model is established, in
ABIESN "o o 0 (i) which discrete and continuous regulation devices are
D Oks . Ox » g 2 considered and coordinated on multiple time-scales. In
5 17 1618 % o0 o of a B addition, a method of critical measurement selection method is
81 8307 &) proposed to guarantee the voltage control performance under
B Nodes vith Critcal Measurement the partial measurements in practical ADNs. Comprehensive
Fig. 18 Topology of the tested 123-node system. case studies with different scenarios are conducted to verify
1.04 the effectiveness of the proposed data-driven method. The
= r results demonstrate that the proposed method can effectively
& suppress the voltage fluctuation on multiple time-scales and
& [ N rapidly adapts to the frequent variations in ADNSs.
§ L i I Several research directions are worth to be investigated in

the future. A combination of data-driven model and physical
0 2 4 6 8 10 12 14 16 18 20 22 24
model can be researched for better control performance. Then,
Time (h) . .
________ Phasc A ——Phase B Phase C the time series features of the energy storage system should be
. . further taken into account. In addition, a graph neural network
(a) Voltage control performances of nodei&cenario | . o
can be further considered for a better prediction accuracy.
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APPENDIX By defining ~ >?as Eqg. (A.8), Eq. (A.2) can be obtained.
Proof of Theorem A1: Thus, theorem Al is proved.
Based on the general expression of nonlinear systems
. . . REFERENCES
Ref. [24],abrief proof of TheorenAl is provided as follows: . v v
The discrete data model of ADN can be transformed frofd PR - /L DQG % X $3ULQFLSOH DQEGIIABEOHP

HQWLDO SURWHFWLRQ LQ GLVWULEXWLRQ QHWZ

Eqg. (1), which is formulated as Eq. (A.1). IEEE Trans. Power Deliyvol. 32, no. 1, pp. 565-574, 2017.
a4 4\ . - [2] K. Mahmoud, M. AbdeliDVVHU DQG 0 /H-EowR@ter@al 3/RZ
Y>P E 2P BFY>P?a ®, avY ¢ PC’FPJ‘PE% (A.1a) voltage-assessment approach considering fine-resolution simulations for
®az>GgpP? GLVWULEXWLRQ V\VWH FEFE B3tV Kvdh KR WoRAY phOWD L F \
) s Lo X " a 5321-5331, 2021.
B®L :B:® ® A:B" D A, 456 (A.1b) [3] X.Chen, M. B. Mcelroy, Q. Wu, Y. Shuand Y. Xud7 UDQVLWLRQ WRZ

. . higher penetration of renewables: an overview of interlinked technical,
where Rdenotes the indices of instanté. B 2, denotes the environmental and socittFRQRPLF F KD MadH Qaludrv Syst.

; Clean Energyvol.7, no. 1, pp.1-8, 2019.
measurements vector of ADN such as the voltage amp“tUde[lﬂf Erdiwansyah, Mahidin, H. Husin, Nasaruddin, M. Zaki and Muhibbuddin,

eachnodez B “. J; and Js are two unknown constants. 3$ F U LMviewDDthe integration of renewable energy sources with
RV ; . 2 > various technologies$,Prot. Control Mod. Power Systvol. 6, no. 1, pp.
C¥PE 2R >P? B2 (A.2a) gen 2opt 0 ¥ PP
. P P 5] ) 'LQJ DQG % ODWKHU 32Q GLVWULEXRGQIG 39 K
(¥P E ZB YP E PP YA? (A.2b) VHQVLWLYLW\ VW XG\EEEQ@n4. BEAR. ERePOaD 8
5 5 3 no. 3, pp. 1010-1020, 2017.
oL Z2P?F 2P F 2P (A.2c) [6] M. M. Salem, N. I. Elkalashy, Y. Atia and T. A. Kawad§ORGLILHG

. o inverter control of distributed generation for enhanced relaying coordina-
Then Eqg. (A.3) can be obtained by Combining Eq. (A.1) WLRQ LQ GLVW U LIEBEWtaRsQPaVEVDERWWIN 32, No. 1,

and Eq. (A.2). pp. 78-87, 2017. _
[7] H. Zhang, J. Chen, J. Yan, X. Song, R. Shibasak QG - <DQ 38UETL
CYP E ZB YSP E QP Yo power load profiles under ageing transition integrated with future EVs
LBk¥PAaA®AaYce PPHEE® &G F J¢ P F K D U JAd@ahces in Applied Energyol. 1, pp. 100007, 2021.

X J ; i 8] . ODKPRXG DQG 0 /HKWRQHQ 32&RPSUHKHQVLYF

FB k% ® ? \..(C PPERE RP F RO &G F J R (A 3) for assessing and maximizing technical benefits of photovoltaicistid d

EBk¥a®aYCPPIREF P F ROGFJ R VT bution systems,TEEE Trans. Smart Gridvol. 12, no. 6, pp. 4938-4949,

FB |5_6>P F &®® avYcPiPI ¢ P>@é:2¢?% 2021.

@®aB FJPF 2P 9] = 7DQJ ' - +LOO DQG 7 /LX 3)DWW BREYWURD)

IRU YROWDJH UHJXODW LR QEERTTGrsVROWEELEYXIW LR Q Q
vol. 34, no. 1, pp. 802-805. 2019.
Based on the Cauchy mean value theorem, Eq. (A.4) caniig; 1ang b. 3. Hill, T. Liu and H. Ma? + LHUDUFKLFDO YROWD JH
further obtained. weak subtransmission networks with high penetration of wind pdwer,
BKk¥PAa®aYCPRPHRE® &G F Jo P IEEE Trans. Power Systol. 33, no. 1, pp. 187-197, 2018.
et o £ T s . ) [11]X. Zhu, J. Wang, N. Lu, N. Samaan, R. Huang and X. K& KLHUDUFKLFI
FB gﬂ ®aYCPUPYRE @P F "?% VLSM-based demand response strategy for coordinative voltage control

®adLF P EHWZHHQ WUDQVPLVVLRQ [EGETEIsSMAL GEXWLRQ V
L :0B® 02 ¢ 27 (A.4) vol. 10, no. 5, pp. 4838-4847, 2019.
. . X [12] X. Liu et al, "Multi-stage voltage support optimization for microgrids
K¥Wa®aYCPPYRE P F RO IEF Jo PO with multiple distributed generation unitdEEE Trans.Smart Grid vol.
QOB® 02PQ k¥PA ® 4 Y c PP i ® &G F Jo R 12, no. 1, pp. 141-156, 2021.

[13] X. Sun and J. Qiu, "Hierarchical voltage control strategy in Higion
networks considering customized charging navigation of electric vehi-

where 0 B® 0 2Pis the partlal derivative value d:®with cles,"|IEEE Trans.Smart Grid vol. 12, no. 6, pp. 4752-4764, 2021.

respect toz>F? [14]6 6DOLK DQG 3 &KHQ 32Q FRRUGLQDWHG FRQ
Define a time-varying variable > R£follows: power compensation for voltage regulation in distribution systems with
. . ZLQG S REBEUTans. Power Systvol. 31, no. 5, pp. 4026-4035,
nL BP_{*’?&@aYch,HD\gﬁZ: P Fc',?% 2016.

®AL F I P [15]* .U\RQLGLV & 'HPRXOLDV DQ Gtage SousoDtbLD Q QL V
p;,:&s,@éyCmFPJde,aé:m% (A.5) the B-REMHFWLYH RSWLPDO YR OWHEJHans.F8l% O D W LR
FB ®AB FJ.PF 2P tain. Energy vol. 11, no. 2, pp. 928-937, 2020.
a de * [16] K. M. Muttaqi, A. D. T. Le, M. Negnevitsky and G. Ledwich3$ FRRUGL

; ; nated voltage control approach for coordination of OLTC, voltage regula-
Introducing Eq. (A.3) and Eq. (A.5) into Eq. (A.2), Eq. WRU DOG '* WR UHJXODWH YR OB Jidnd @dD GLVW

(A.6) can be obtained. Appl, vol. 51, no. 2, pp. 1239-1248, 2015.
L ) U@ | o [17]Y. Li, P. Zhang, M. Althoff and M. Yue Bistributed formal analysis for
¥p P 2%
¢ EC-E!m?c ’En>P? (A.6) SRZHU QHWZRUNV ZLWK GHHS LQWHJUDWLRQ RI

. . . . . IEEE Trans. Power Systvol. 34, no. 6, pp. 5147-5156, 2019.
Introducing a variabldJ > Pift each control instan® the [18]Y. Gao, B. Foggo, and N. X 3$ SK\VLFD OO \divervrSodél HG G DV

functional relationship between > Rl ¢, ZP¥ields: IRU HOHFWULFLW\ WKHIW GHMWEEEWao®k @dZ-WK VP D
j form,, vol. 15, no. 9, pp. 5076-5088, 2019.
nN>P? LU>P?¢7Z (A.7) [9]L. Baietal. 3$ GddirDnetwork optimization approach to coordinat-
3 ed control of distributed photovoltaic systems and smart buildings in dis-
When ¢, Z2P?M 1 there is a unique solution &f > Pstich WULEXWLRIGT Ehetyy By IntegrEarly Access, 2021.
that Eq. (A.7) holds. [20]J. Zhang, Z. Chen, C. He, Z. Jiang and L. GuahD WiriYen-based

N optimization for power system vaY-ROWDJH VHTXHIGBELDO FR
U:® E U (A 8) Trans. Ind. Inform.vol. 15, no. 4, pp. 2136-2145, 2019.
%? ’

4

" Pl




14

[21]% )RJJIJR DQG 1 <X 3 ,PSURYLQJ VXSHUYLVHG SKDVH LRehyQWSearicr Mewib& QEBEX téeekdKthe B.S. and
WKH WKHRU\ RI LQ IBBEHR2W. ISRt GrivdlVIH \o. 3,
pp. 2337-2346, 2020.

[22]W. Wang, N. Yu, Y. Gao and J. SHi6 D | Hp®lity deep reinforcement

Ph.D. degrees in electrical engineering from Tianjin Uni-
versity, Tianjin, China, in 2004 and 2010, respectively.
He is currently a Professor with the School of Electrical

learning algorithm for Volt9 $5 FRQWURO LQ SRZHU GLVWULEXWLRG Wometid® \Engineering, Tianjin University. His
IEEE Trans. Smart Gridvol. 11, no. 4, pp. 3008-3018, 2020. current research interests include operation and planning

[23]Z. Hou, S. Jin,Data-driven model-free adaptive control for a class of of active distribution networks, modelling and transient
MIMO nonlinear discrete-time system|EEE Trans. Neural Networks simulation of power systems. Prof. Li is an associate
vol. 22, no. 12, pp. 2173-2188, 2011. Editor of IEEETRANSACTION ON SUSTAINABLE ENERGY,

[24]Z. Hou, S. Jin,*A novel data-driven control approach for a class of disCSEE Journal of Power and Energy Systems, Sustainable Energy Technolo-
crete-time nonlinear systenislEEE Trans. Control Syst. Technokol.  gies and Assessments, and IET Renewable Power Generation.

19, no. 6, pp. 1549-1558, 2011.

[25]Z. Hou, Y. Zhu, *ontroller-dynamic-linearization-based model free
adaptive control for discrete-time nonlinear systenl&EE Trans. Ind.
Inform., vol. 9, no. 4, pp. 2301-2309, 2013.

[26] Y. Huo et al, 3'D WiriYen adaptive operation of soft open points in
DFWLYH GLVWULEERNI&Q @ HNOIMRUWINDY; no. 12,
pp. 8230-8242, 2021.

[27]1H. Lu, et al Network simplification-based cluster coordinated optimiza-
tion method for distributed PVs with inadequate measurem&EE Ac-
cessvol. 8, pp. 65283-65293, 2020.

[28] K. Alzaareer, M. Saad, H. Mehrjerdi, D. Asber and Sebefe 3'HYHO
opment of new identification method for global group of controls for
online coordinated voltage control in active ¥ WULEXW LREEEQHWZRUNYV ~ Hao Yu (Member, IEEE) received the B.S. and Ph.D.
Trans. Smart Gridvol. 11, no. 5, pp. 3921-3931, 2020. degree in electrical engineering from Tianjin University,

[29] T. Xu, W. Wu, W. Zheng, H. Sun and L. Wang®) XOO\ GLVW-ULEXWHG T XDNahjin, China, in 2010 and 2015, respectively. He is
Newton multi-area dynamic economic dispatch method for activa-distr currently an Associate Professor with the School of Elec-
EXWLRQ QHBEZRand \Power Systvol. 33, no. 4, pp. 4253- trical and Information Engineering, Tianjin University.

4263, 2018. His current research interests include the operation

[30]J. E. Sarmiento, C. A. Alvez, B. de Nadai N., A. C. Zambde Souza, analysis and optimization of active distribution networks
E. M. Carreno and P. F. Ribeiro, "A complex-valued three-phase load and integrated energy systems. He is the assistant editor
flow for radial networks: high-performance and low-voltage solution ca- IET Energy Systems Integration.
pability,” IEEE Trans. Power Systwol. 34, no. 4, pp. 3241-3249, 2019.

[B1]$ 6LULVKD DQG $ 3UDGKDQ 3&RVLQRHP SDPLODULW)\ E DityHeGY&h Lréckiew thR @IDOD degree from the Royal
VRQ VFKHPH IRU VXEF\FOH WUEEE/TRdnY. WP&vR Q OLQH S U R Mskti&V af RT@chinology KTH, Stockholm, Sweden, in
er Deliv, vol. 35, no. 5, pp. 2159-2167, 2020. 1991.

[32] A. Rodriguez, A Laio, 3& OXVWHULQJ E\ IDVW VHDUFK DQG ¢ QGH®RI$ cridr@lye @air Professor of Energy Engineering
peaks, Sciencevol. 344, pp. 1492-1496, 2014. at Mélardalen University, Sweden. Prof. Yan is an Acade-

[33]H. Su,et al. 31RYHO -t6-RovéY Behsltivity estimation for phasor mician of European Academy of Sciences and Arts, and
measurement unit-unobservable distribution networks based on network serves as the advisory expert to the UN, EU, & ADB. His
HT XLY DApgH natgy vol. 250, pp. 302-312, 2019. research interests include advanced energy systems, re-

[34]B. Wang, C. Zhang, C. Li, P. Li, Z. Y. Dong and J. BH\EU L G Lk Q WiéwWdbleDeDergy, advanced power generation, climate change mitigatien te
robust adaptive battery energy storage system dispatch with SoC lintermalogies and related environment and policy etc. Prof. Yan published about
management for unbalanced microgvidl[EEE Trans. Sustain. Energy 400 papers including papers in Science, Nature Energy, Nature Clinate
vol. 13, no. 1, pp. 44-55, 2022. Nature Communications and hold 10+ patents with about 15000+ citations

[35] P. Li, et al, oordinated control method of voltage and reactive poweand H-index 62.

IRU DFWLYH GLVWULEXWLRQ QHWIEEUNavs.E D \PrbG YRQs & EtltoiR SHitQof ABviaiz#8 in Applied Energy & Editor-
Sustain. Energyvol. 8, no. 4, pp. 1430-1442, 2017. in-Chief of Handbook of Clean Energy Systems. He has led reseatfdrmpl

[36]C. Li, Z. Dong, G. Chen, B. Zhou, J. Zhang and X. Yu, "Data-driverfFuture Energy Profile) with funding of over 80 million Euro by Swedish
planning of electric vehicle charging infrastructure: a case stu@y@df Knowledge Foundation and industrial partners.
ney, Australia,"IEEE Trans. Smart Gridvol. 12, no. 4, pp. 3289-3304,

2021. L Jianzhong Wu (Member, IEEE) received the Ph.D. from

[37]1. ODKPRXG 0 /HKW-RWItahtrot StkatdghHor minimizing Tianjin University, Tianjin, China, in 2004. From 2004
voltage deviation and flicker in PV-richldV WU L E X W LIRtQJ. EletV. WH PV~ to 2006, he was at Tianjin University, where he is an
Power & Energy Sysvol. 120, pp. 105997, 2020. Associate Professor. From 2006 to 2008, he was a Re-

[38]P. Li,etal, 3'HHS UHLQIRU F Hiaseatlapiive Ddltagé Qatrol search Fellow at the University of Manchester, Manches-
of active distribution networks with mutiw HUPLQDO VRIML. RSHQ SRLQW ter UK. He is currently a Professor with the Cardiff
J. Elec. Powervol. 141 no.8, pp. 108138, 2022. School of Engineering, Institute of Energy, London,

[39]D. Cao, J. Zhao, W. Hu, F. Ding, Q. Huang and Z. Che§ WWHQ Wk R Q
enabled multi-agent DRL for decentralized Volt-VAR control ofivact
distribution system using PV inverters and SVAEEE Trans. Sustain.
Energy vol. 12, no. 3, pp. 1582-1592, 2021.

Haoran Ji (Member, IEEE) received the B.S. and Ph.D.
degrees in electrical engineering from Tianjin University,
Tianjin, China, in 2014 and 2019, respectively.

From 2019 to 2021, he was a Postdoctoral Research
with Tianjin University. He is currently an Associate
Professor in Tianjin University. His research interests
include distributed generation systems and optimal oper-
ation of distribution networks. He was supported by
China National Postdoctoral Program for Innovative
Talents in 2019.

Prof. Wu is the Editoin-Chief of Applied Energy. His current research in-
terests include energy infrastructure and smart grids.

Chengshan Wang(Senior Member, IEEE) received the
Ph.D. degree in electrical engineering from Tianjin Uni-
versity, Tianjin, China, in 1991.
He is currently a Professor with the School of Electri-
cal and Information Engineering, Tianjin University.
Prof. Wang is a Member of Chinese Academy of Engi-
neering. His research interests include distribution sys-
tem analysis and planning, distributed generation system
and microgrid.
Prof. Wang is the Editanr-Chief of IET Energy Systems Integration. He is
the Director of the Key Laboratory of Smart Grid of Ministry Education,
Tianjin University, Tianjin, China.

Yanda Huo received the B.S. degree in electrical engi-
neering from Tianjin University, Tianjin, China, in 2016.
He is currently working toward the Ph.D. degree in elec-
trical engineering with Tianjin University, Tianjin, China.

His current research interest is data-driven control of
distribution networks.



