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Purpose: Definition of a macromolecular MR spectrum based on diffusion
properties rather than relaxation time differences and characterization of
non-Gaussian diffusion of brain metabolites with strongly diffusion-weighted
MR spectroscopy.
Methods: Short echo time MRS with strong diffusion-weighting with b-values
up to 25 ms/μm2 at two diffusion times was implemented on a Connectom sys-
tem and applied in combination with simultaneous spectral and diffusion decay
modeling. Motion-compensation was performed with a combined method based
on the simultaneously acquired water and a macromolecular signal.
Results: The motion compensation scheme prevented spurious signal decay
reflected in very small apparent diffusion constants for macromolecular signal.
Macromolecular background signal patterns were determined using multiple
fit strategies. Signal decay corresponding to non-Gaussian metabolite diffusion
was represented by biexponential fit models yielding parameter estimates for
human gray matter that are in line with published rodent data. The optimal fit
strategies used constraints for the signal decay of metabolites with limited signal
contributions to the overall spectrum.
Conclusion: The determined macromolecular spectrum based on diffusion
properties deviates from the conventional one derived from longitudinal relax-
ation time differences calling for further investigation before use as experimental
basis spectrum when fitting clinical MR spectra. The biexponential characteri-
zation of metabolite signal decay is the basis for investigations into pathologic
alterations of microstructure.
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2 ŞIMŞEK et al.

1 INTRODUCTION

Proton MR spectroscopy (1H-MRS) offers noninvasive
insights into brain metabolism and provides a tool for
noninvasive diagnosis and monitoring. 1H-MR spectra
obtained at short TEs provide best SNR for quantifica-
tion of brain metabolites. However, signals from macro-
molecules (MMs)2–4 that overlap with the small molecular
metabolite signals and are not predefined by knowledge
about their composition and concentrations complicate
quantification at short TE.4–6 For most accurate and robust
quantification of metabolite tissue contents, it is, thus,
recommended to use an experimental MM spectrum as
part of the basis set for linear combination model fit-
ting. Furthermore, absolute quantification of MM signals
in terms of tissue content and variation in composition
may inherently carry information on pathologies.4,7 MM
resonance characteristics are distinct from those of small
metabolites by considerably shorter T1 and T2 relaxation
times2,3,8,9 and up to 20 times smaller apparent diffusion
coefficients (ADCs).10 This has been exploited to define
a macromolecular background (MMBG) spectrum to be
used in quantification or as entity of clinical interest. The
short T2 is the basis for using mathematical models to
define or compensate for MMBG signals.5,11–13 Relying
on T1 differences, single3 or double14 inversion recovery
techniques have been used to null metabolite signals and
to determine an experimental MMBG pattern for specific
acquisition settings. Similarly, a combination of saturation
or inversion recovery scans with specific postprocessing15

or multidimensional modeling16,17 have been applied for
the same aim. Finally, the differences in ADC values in
combination with metabolite-nulling have been the basis
for combined T1 and diffusion-weighting based definition
of the MMBG in rodents on a preclinical scanner18 with
much higher gradient strength than available on standard
clinical scanners.

In addition to serving as a tool to differentiate metabo-
lites from MMs, diffusion-weighted MRS (DW-MRS) has
also become a contender for the elucidation of brain
microstructure.19–21 The main gain when switching from
water to metabolites as diffusion probes is the fact that
unlike water, most metabolites reside almost exclusively
in intracellular space, and some of them have even a
celltype-specific origin. N-acetylaspartate (NAA) and glu-
tamate (Glu) are known as neuronal markers, while
myo-inositol (mI), glutamine (Gln) and, possibly to a
lesser extent, total choline compounds (tCho) are assumed
to be glial markers.21 Therefore, the diffusion character-
istics of these metabolites provide specific microstruc-
tural information without having to rely on modeling of
exchange and assumptions on compartment properties
as for water. One challenge originates from the fact that

metabolite diffusion coefficients are considerably smaller
than those of water, which implicates that higher dif-
fusion weighting has to be applied for substantial DW
contrast. Unfortunately, on clinical MR scanners, strong
diffusion-weighting implicates the use of longer TE, which
makes observation of non-singlet metabolites difficult,
and/or STEAM with inherently lower SNR—in particu-
lar if non-Gaussian diffusion or the determination of the
MMBG pattern is targeted, both depending on heavy signal
diminution of metabolite signals.

The current study aimed at establishing DW-MRS on a
Connectom scanner with very large gradient strength22 for
investigating human subjects at comparable TE as used in
clinical spectroscopy. A DW-weighted STEAM sequence23

with highest diffusion-weighting allowed by peripheral
nerve stimulation and offering simultaneous acquisition
of metabolite and water signals was used in combina-
tion with multidimensional simultaneous fitting of spec-
tral and diffusion decay information to define a MMBG
spectral pattern devoid of residual metabolite signals that
can be compared with T1-based MMBG patterns. In addi-
tion, the study aimed at determination of non-Gaussian
diffusion characteristics for a wide range of metabolites,
including those that are primarily observable at short TE.

2 METHODS

The details of methods are given in the Supporting Infor-
mation Text S1 in Appendix S1, which is available online,
while the following description is limited to the basic prin-
ciples.

2.1 Experimental setup and data
acquisition

Most measurements were performed on a
3T-MAGNETOM Skyra Connectom-A (Siemens
Healthineers) with 300 mT/m per gradient axis.

Localization was carried out by STEAM23 applying
trapezoidal diffusion gradients. The sequence is deter-
mined by TE, the mixing time TM, the duration of diffu-
sion gradients δ, and the nominal diffusion time Δ. The
calculated diffusion-weighting term b includes contribu-
tions from all gradients and cross-terms.

Metabolite-cycling served as water-elimination
method providing simultaneous records of water diffusion
and reference signals for motion compensation.23

Phantom measurements were carried out to determine
the maximum diffusion-weighting within the periph-
eral nerve and cardiac stimulation (PNS/CS) limits.24 A
PNS/CS simulation tool25,26 was used as a guide in devising
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the experimental parameters aiming for short TE and mod-
erate TM. Two protocols with TM/Δ values of 35/50 ms
and 65/80 ms were defined for TE = 30 ms, both aimed
at MMBG determination (maximal b-value at minimal
TE/TM for consistency with clinical MRS) rather than
evaluation of diffusion-time dependence of ADCs. For
Δ = 50 ms, six b-values from 0.38 to 10.71 ms/μm2 and for
Δ = 80 ms, 11 b-values from 0.37 to 25.1 ms/μm2 were
recorded. The highest generally feasible gradient strength
was 140 mT/m per axis.

Twelve healthy subjects (7 female, age 28± 5.2 years)
were examined with a volume of interest (VOI) of
23± 4 cm3 in occipito-parietal cortex. Acquisition param-
eters included: 64 acquisitions, 4000 Hz spectral width,
TR dictated by peripheral-pulse triggering with a mini-
mum of 1.8 s. The effective TR (TReff) was tracked using
time stamps. Scans with metabolite-nulling and the same
sequence were recorded in separate sessions and subjects.

All scans were performed in accordance with the com-
petent ethical review boards.

2.2 Processing

Processing was performed in MATLAB (incl. Data prepa-
ration27,28), Python, jMRUI29 and FiTAID.16,30 jMRUI29

was used for creation of cohort-average spectra follow-
ing application of two motion-compensation schemes.
Nineteen spectra with artifacts were excluded from
cohort-averaging.

2.2.1 Motion compensation

The previously described water-signal based
motion-compensation23 (W-MoCom) includes ampli-
tude restoration. Since the water signal amplitudes are
influenced by irregular heart rates, a correction factor
(1− exp[−TReff/T1]) was applied to each acquisition
before definition of reference level (top quartile of scans)
for subsequent amplitude-upscaling. Figure 1 illustrates
the effect on water reference levels for illustrative DW
measurements. Typically, the TR-correction increased the
reference level. The effect was strongest when heart-rate
fluctuations caused TReff to jump from two to three or
even four RR periods.

The second stage of compensation for motion-related
signal loss (M-MoCom) was based on the MM resonance
at ∼0.9 ppm.311 At first, internal gold-standard diffusion
decay for this signal area was formed from individual
datasets of best quality. This was subsequently used to
upscale individual b-value spectra for all subjects such that
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F I G U R E 1 Illustration of the definition of the reference level for the water signal used for the W-MoCom correction scheme and the
effect of TReff correction. Normalized signal intensities (orange) of single acquisitions from three subjects are plotted in order of their
recordings (areas of a Voigt line fitted to the water peak). Areas are shown after TReff correction for variance in T1 saturation due to
physiologic changes in heart rate. The reference level was defined as the median of the top quartile of all acquisitions (green). The W-MoCom
reference levels are illustrated before (blue line) and after (red line) TR correction. (For ease of illustration, water signal intensities were
normalized with the highest intensity obtained from each scan.)
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(A) (B)

F I G U R E 2 Illustration of the motion correction scheme M-MoCom for multiple subjects. A, The individual M0.94 areas estimated for
each b-value are plotted in comparison to the monoexponential fit for the specific subject and the whole cohort. Orange crosses represent the
averaged M0.94 areas over all subjects, whereas the blue dots correspond to M0.94 areas obtained from a single subject. The green line indicates
the reference diffusion decay obtained from a monoexponential fit of cohort-averaged areas (from six subjects). Subject 4 shows a
systematically motion-corrupted signal decrease, whereas subjects 2 and 3 feature single spectra with apparent signal drops. B, Spectra
obtained from a single subject (subject 4) are depicted for six b values before (top) and after (middle) M-MoCom. The effect of M-MoCom is
best appreciated in the zoomed panels. The cohort spectra after M-MoCom are presented at the bottom.

they all showed the same monoexponential decay for this
MM peak. The resulting monoexponential fit provided the
undistorted diffusion decay for the whole MMBG pattern
with an ADCM0.94 of (3.4± 0.7)× 10−3 μm2/ms (R2 = 0.74).
Figure 2A illustrates individual diffusion attenuations of
M0.94 in comparison to the reference decay from the
cohort-average from six subjects. The deviations of the
M0.94 peak signal are the base for the correction factors for
M-MoCom.

2.2.2 Data fitting

Spectra were fitted in FiTAID30 in a 2D-fashion as con-
nected series of spectra including all different DW spectra.
The model included 19 metabolites and a MMBG sig-
nal representation consisting of equally spaced Voigt lines
with identical Gaussian and Lorentzian broadening. Prior

knowledge between the b-value spectra could include
monoexponential or biexponential signal decay. Where
no diffusion signal behavior was enforced in FiTAID, the
signal decay was subsequently fitted in Python.

Table 1 charts all simultaneous and sequential fit
strategies used for the analysis of metabolite diffusion and
creation of MMBG patterns. The metabolites were divided
into two categories, named major and minor metabolites,
where a biexponential signal decay representation was
only fitted with full flexibility for major metabolites. The
major metabolites were Glu, Gln (some models only), mI,
NAA, tCho, and total creatine (tCr; Cr+PCr). This choice
was based on expected size of signal contribution, initial
fit results, and non-Gaussian diffusion characteristics in
mouse brain.32,33

In Table 1, “simultaneous spectral/diffusion model-
ing” specifies whether diffusion signal decay was enforced
in FiTAID, reducing the area-related fit parameters to 2
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T A B L E 1 Overview of all fit strategies used in this study: Two main fitting procedures govern the various strategies

b-Values
used
[ms/𝛍m2]

MMBG
pattern
estimation

Simultaneous spectral fit/
diffusion modeling b-Values

used
[ms/𝛍m2]

Subsequent diffusion
modeling

Case label
Major
metabolites

Minor
metabolites Case label

Major
metabolites

Minor
metabolites

SF-A all monoexp SF-A1 <11 monoexp monoexp

SF-A2 all biexp monoexp

SF-A3 all biexp biexpcon

SF-B all monoexp monoexp SF-B1 <11 monoexp

SF-B2 all biexp

SF-C <11 monoexp monoexp monoexp

SF-D all monoexp biexp monoexp

SF-E all monoexp biexp biexpcon

SF-F <6 monoexp monoexp

Note: The simultaneous spectral fit / diffusion modeling represents the simultaneous two-dimensional signal modeling in FiTAID, whereas the subsequent
diffusion modeling comprises the diffusion signal decay analysis in Python using estimated metabolite areas found for a spectral fit without diffusion
constraints in spectral fitting.
Abbreviations: biexp, biexponential signal representation; biexpcon, constrained biexponential signal representation; monoexp, monoexponential signal
representation.

for monoexponential (Equation 1) and 4 for biexponential
decay (Equation 2). If no amplitude relation was enforced
in FiTAID independent area fit variables per b-value were
estimated in FiTAID and the “subsequent diffusion mod-
eling” was performed in Python.

S(b) = S0e(−bADC) (1)

S(b) = S0

(
ffaste(−bADCfast) + (1 − ffast) e(−bADCslow)

)
(2)

For pure monoexponential analyses, limited b-value
ranges were chosen. For biexponential fitting, bound-
aries for metabolite ADCs were based on mouse data32:
0.10–0.25 μm2/ms for the fast and 0.01–0.10 μm2/ms for
the slow component. For water, the division was at
0.3 μm2/ms. The whole MMBG signal was always mod-
eled with monoexponential decay and predefined ADC
(see M-MoCom procedure).

SF-A3, SF-E, and SF-F were developed based on results
from other fit strategies and to best represent diffusion
decays respecting underlying signal decay representations,
appropriate b-value ranges, while limiting the number
of free fit variables. For SF-E, aimed at the conclusive
definition of the diffusion-based MMBG and best esti-
mation of biexponential decays, minor metabolites were
represented by a constrained biexponential model where
only ADCfast and the total signal were estimated while f fast
was fixed at 0.5 and ADCslow at 0.03 μm2/ms (based on
Refs10,32 and our initial results for major metabolites). SF-F
was devised to obtain most robust monoexponential ADCs

to be compared to literature (using b-values <6 ms/μm2).
Individual subject data were fitted for SF-A, SF-C, and
SF-D.

3 RESULTS

Figure 3 presents postprocessed spectra for a single sub-
ject and the cohort average for both diffusion times. The
spectral quality of both datasets is excellent in terms of
SNR and linewidth. The metabolite contributions show
the expected strong diffusion decay, while the MMBG sig-
nals remain little affected throughout. The main focus is
placed on the data with longer diffusion time and higher
b-values while the results for shorter TM are mostly pro-
vided in the Supporting Information.

Figure 4 illustrates the fit results for all spectral fitting
models for the lowest, an intermediate, and the highest
diffusion-weighting. The residues are largest for the low-
est b-value throughout and the shape and magnitude of the
residuals is similar between fit strategies. The fit results for
Δ = 50 ms are provided in Figure S2 in Appendix S1.

3.1 Diffusion properties of metabolites

The ADC results of monoexponential diffusion analysis
at Δ = 80 ms for the most intense metabolites are listed
in Table 2. Corresponding diffusion decays are illustrated
in Figure 5A. Corresponding data for Δ = 50 ms can be
found in Supporting Information Table S3 and Figure S4
in Appendix S1. Estimated monoexponential ADCs for
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Single Spectra Cohort Spectra

F I G U R E 3 Spectra obtained from a single subject (left) and cohort average spectra (right) are illustrated for both diffusion times. The
upper part contains the spectra for TM/Δ = 35/50 ms with six b values up to 10.7 ms/μm2. The spectra at the bottom were recorded with
TM/Δ = 65/80 ms and with 11 different b values up to 25.1 ms/μm2.

F I G U R E 4 Sample spectral fit results from all fitting procedures at Δ = 80 ms. Experimental (black), fitted (color-coded), and residual
signal (black) spectra are illustrated for three selected b values in the cohort average spectrum. (b values in units of ms/μm2.)
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T A B L E 2 Estimated ADCs of metabolites for monoexponential signal decay at Δ = 80 ms from fitting the cohort average spectra
in a restricted b-value range

Monoexponential diffusion fit

ADC [𝛍m2/ms]

Metabolites SF-A1 SF-B1 SF-C SF-F

Aspartate 0.133 ± 0.044 0.172 ± 0.009a 0.250 ± 0.025a 0.046 ± 0.006a

Glutamate 0.079 ± 0.008 0.079 ± 0.006 0.106 ± 0.003a 0.115 ± 0.002a

Glutamine 0.123 ± 0.015 0.112 ± 0.014 0.181 ± 0.009a 0.250 ± 0.009a

Myo-Inositol 0.077 ± 0.039 0.092 ± 0.024 0.112 ± 0.003a 0.181 ± 0.003a

NAA 0.063 ± 0.005 0.069 ± 0.003 0.063 ± 0.001a 0.093 ± 0.001a

Taurine 0.047 ± 0.076 0.080 ± 0.009a 0.130 ± 0.024a 0.141 ± 0.004a

tCholine 0.052 ± 0.004 0.054 ± 0.002 0.059 ± 0.001a 0.064 ± 0.002a

tCreatine 0.088 ± 0.004 0.087 ± 0.003 0.095 ± 0.001a 0.107 ± 0.001a

Note: Results are listed for all spectral fitting methods as estimated value ± the corresponding error estimate. Data for Δ = 50 can be found in Supporting
Information Table S3 in Appendix S1.
a Indicates that the error represents the CRLB estimated in simultaneous fitting, whereas other errors are calculated by the diffusion in python analysis
based on the estimated areas from FiTAID.

(B)(A)

F I G U R E 5 Diffusion attenuation estimated for some metabolites as found for the different fitting/modeling schemes for Δ = 80 ms.
Monoexponential (A) and biexponential (B) diffusion attenuation of some metabolites obtained from multiple fitting strategies. Dotted lines
indicate diffusion signals determined from estimated signal areas (circles) in the subsequent diffusion analysis, whereas in SF-C, SF-D, SF-E,
SF-F, the diffusion signal was estimated by simultaneous fitting. Beware that for monoexponential decay estimation in part A, data were
restricted to b< 11 ms/μm2 for SF-A1, SF-B1, and SF-C, and to b< 6 ms/μm2 for SF-F. The signal decays are plotted on consistent vertical
scales. Differences in estimated amplitudes at b = 0 ms/μm2 reflect different estimated metabolite contents and possibly differences in the
simultaneously determined underlying MMBG signal.

further metabolites are collected in Table S5 in
Appendix S1. Estimated metabolite ADCs are fairly consis-
tent throughout the different schemes, although scheme
SF-F should be considered as yielding best estimates.

Figure 5B demonstrates the biexponential representa-
tion for the expected non-Gaussian diffusion attenuation
of the “major” metabolites and water as determined by
the different fit strategies. The corresponding numerical
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T A B L E 3 Estimated model parameters from biexponential fitting of the cohort average spectra with multiple models juxtaposed to data
from the literature

Metabolite Study/species TE [ms] 𝚫 [ms] Case Label ADCfast [𝛍m2/ms] ADCslow [𝛍m2/ms] ffast

Glutamate Current study 30 80 SF-A3 0.250± 0.048 0.033± 0.013 0.42± 0.16

SF-B 0.246± 0.069 0.029± 0.008 0.44± 0.09

SF-D 0.195± 0.027a 0.034± 0.006a 0.51

SF-E 0.236± 0.027a 0.039± 0.004a 0.44

Rat10 22 121.7 0.30± 0.02 0.026± 0.002 0.5 ± 0.02

Glutamine Current study 30 80 SF-A3 0.238± 0.211 (0.030) (0.500)

SF-B 0.114± 0.009 — 1.0 ± 0.0

SF-D 0.125± 0.051a — 1

SF-E 0.225± 0.027a (0.030) (0.500)

Myo-Inositol Current study 30 80 SF-A3 0.250± 9.192 0.030± 0.071 0.48± 0.76

SF-B 0.250± 0.003 0.041± 0.045 0.48± 0.49

SF-D 0.250± 0.014a 0.032± 0.003a 0.55± 0

SF-E 0.250± 0.017a 0.029± 0.002a 0.51± 0

Rat10 22 121.7 0.24± 0.02 0.037± 0.003 0.51± 0.05

Mouse32 33.4 64.2 0.198± 0.034 0.029± 0.09 0.51± 0.12

NAA Current study 30 80 SF-A3 0.225± 0.006 0.021± 0.006 0.39± 0.07

SF-B 0.169± 0.030 0.010± 0.008 0.56± 0.08

SF-D 0.162± 0.006a 0.010± 0.002a 0.59± 0

SF-E 0.152± 0.006a 0.010± 0.002a 0.57± 0

Rat10 22 121.7 0.27± 0.01 0.024± 0.001 0.51± 0.01

Mouse32 33.4 64.2 0.220± 0.023 0.019± 0.002 0.49± 0.03

tCholine Current study 30 80 SF-A3 0.100± 0.018 0.024± 0.062 0.47± 1.26

SF-B 0.100± 0.123 0.035± 0.047 0.35± 1.3

SF-D - 0.054± 0.005a 0

SF-E 0.106± 0.046a 0.032± 0.013a 0.39

Rat10 22 121.7 0.22± 0.03 0.034± 0.003 0.49± 0.05

Mouse32 33.4 64.2 0.176± 0.011 0.024± 0.005 0.52± 0.06

tCreatine Current study 30 80 SF-A3 0.250± 0.023 0.051± 0.005 0.35± 0.07

SF-B 0.195± 0.062 0.047± 0.011 0.42± 0.16

SF-D 0.140± 0.006a 0.028± 0.003a 0.62

SF-E 0.177± 0.009a 0.038± 0.002a 0.5

Rat10 22 121.7 0.27± 0.01 0.027± 0.001 0.49± 0.02

Mouse32 33.4 64.2 0.191± 0.033 0.023± 0.005 0.6 ± 0.09

Water Current study 30 50 SF-A3 0.722± 0.038 0.080± 0.023 0.92± 0.02

SF-D 0.803± 2× 10−5a 0.115± 6× 10−6a 0.88

80 SF-A2 0.721± 0.017 0.059± 0.006 0.92± 0.01

SF-D 0.741± 1× 10−5a 0.060± 4× 10−6a 0.92

Mouse32 33.4 64.2 0.649± 0.120 0.069± 0.028 0.91± 0.03

Note: Results from SF-E are considered to be most relevant from this study and are, thus, printed in bold.
a Indicates that the error represents the CRLB estimated in simultaneous fitting, whereas other errors are calculated by the diffusion in python analysis based on
the estimated areas from FiTAID.
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results are presented in Table 3 in comparison to litera-
ture. Similar ADC values emerged from all fitting schemes,
with SF-E highlighted because it best fulfills theoretical
constraints. The non-Gaussian diffusion characteristic of
water is evident above a diffusion-weighting of∼5 ms/μm2

and apparently well represented by the biexponential
model. Non-Gaussian diffusion properties are apparent for
most “major” metabolites—visually most convincing for
Glu, NAA, and tCr. SF-E yields well-defined biexponential
diffusion characteristics for all major metabolites. How-
ever, mI shows a very high ADC fast (at the parameter space
limit).

Illustrative results for evaluating single-subject data
are presented in Supporting Information Figure S6 in
Appendix S1, which demonstrates the variation of results
over the cohort and, thus, indicates the robustness of
results.

3.2 MMBG estimation

Some of the estimated MMBG spectral patterns are pre-
sented in Figure 6 (others in Supporting Information
Figure S7 in Appendix S1) and the resulting parameter-
ization for SF-E in Supporting Information Data S8 in
Appendix S1. The patterns are contrasted with respect to
impact of mixing (diffusion) times as obtained with iden-
tical fitting method in 6A and effect of modeling method
at the same mixing time in 6B. For all cases, the patterns
are almost identical from 0 to 1.8 ppm irrespective of mix-
ing time, b-value range and fit strategy. In A, it is striking
that the MMBG patterns show considerably higher sig-
nal intensities for the short TM (lower maximum b-value
and less T1-related signal loss in TM) throughout the rest
of the spectral range. The fitting methods comparison in
part B shows that the monoexponential FiTAID fit (SF-C,
restricted b-value range) yields the MMBG with highest
intensity. Comparing SF-A, SF-D and SF-E, all with the full
b-value range, the differences for the emerging MMBGs
are rather minor except that SF-E consistently shows low-
est intensity from 2 to 4 ppm. The constrained biexpo-
nential representation for the minor metabolites seems
to attribute less signal intensity to the MMBG than the
other fit models. Part C1 provides an illustrative com-
parison of our final diffusion-based MMBG (SF-E) with
a conventional T1-relaxation-based MMBG obtained with
the same STEAM-sequence in a different group of sub-
jects. It features considerably less intensity >1.8 ppm. Part
C2 contains the surplus of MMBG intensity arrived at if
the metabolite-nulling based MMBG (presented in C1) is
added to the basis set for fit-strategy SF-E.

F I G U R E 6 Estimated MMBG signal patterns obtained with
different fitting strategies at both TM (and diffusion) times (dashed
line for TM = 35 ms; solid line for TM = 65 ms). The estimated
MMBG patterns are contrasted with respect to different TM times
with the same fitting method in (A) and different modeling
methods at the same diffusion times in (B). C, The diffusion-based
MMBG pattern is contrasted with a MMBG derived from metabolite
nulling (IR), i.e., based on relaxation time differences, where in
C1 MMBG-IR is overlaid with the presumably best diffusion-based
MMBG with enforced biexponential representation (SF-E).
Exploring the intensity difference between the two patterns
>1.0 ppm, a further 2D fit of the cohort data was performed, where
MMBG-IR was included as a base spectrum with mono-exponential
signal decay and additional signal from slow-decaying entities was
modeled as a second MMBG pattern with the same ADC. This
second MMBG pattern (DW|IR) is plotted in C2. It shows broad
features at 1.34, 2.075, 2.38, 3.02, 3.25, 3.74, and 3.89 ppm (CH3

peak of total creatine calibrated as 3.03 ppm). They can represent
metabolites in restricted environments with short T2 (e.g. in
mitochondria or intracellular space in myelin sheaths) or
macromolecules with longer T1 or originate from experimental and
processing inadequacies. Acquisition and processing details for
arriving at MMBG-IR can be found in Supporting Information Text
S1 in Appendix S1; MMBG patterns from other strategies are
included in Supporting Information Figure S7 in Appendix S1. The
parameterization for the pattern of SF-E is provided in Supporting
Information Data S8 in Appendix S1.
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4 DISCUSSION

This article reports on in-vivo diffusion characterization of
metabolite and MM resonances in human brain obtained
by MRS with very high diffusion-weighting at short mix-
ing and echo times. Instead of the conventional approach
of relying on differences in T1 for the definition of MM
signals, the strong distinction between ADCs of MMs and
metabolites is exploited for estimation of the MM back-
ground resonances. Moreover, the diffusion characteristics
of metabolite signals are investigated at very high b-values
at short TE for human gray matter, which has previously
only been accessible for rodent brain.

4.1 Limits for strength of diffusion
weighting

The current study was conducted on a MR scanner with
Connectom gradients22 currently offering the strongest
gradient strengths for use in human subjects. Compar-
ing the gradient strength of 300 mT/m to that of con-
ventional 3T scanners (≤80 mT/m) translates into up to
14 times higher b-values. However, maximum attainable
b-values are limited by PNS/CS22 rather than hardware
performance under the conditions for human brain MRS.
Therefore, a simulation tool23,24 was used to explore stim-
ulation limits for the allowed parameter range (slew rate
and gradient strength on all axes) for STEAM with differ-
ent echo and mixing times. Phantom measurements were
also needed to verify the calculations and probe the param-
eter space for typical VOI orientations. As a compromise
for large b-value (short TE and medium TM) 140 mT/m
on each axis in the patient coordinate system turned out
to be the highest allowed gradient amplitude, yielding
b = 25.1 ms/μm2. Stimulation limits, thus, reduced the
benefit from the Connectom system to a factor of 3 for the
chosen diffusion-weighting scheme.

4.2 Motion compensation

Cardiac motion-related signal loss was minimized
by peripheral triggering during acquisition. Residual
motion-related signal loss was mitigated through two
compensation schemes in postprocessing. First, a water
signal-based method was applied in analogy to that in
Ref.23 However, peripheral triggering with signal modula-
tion from varying effective TRs complicates the definition
of motion-related signal loss. T1-saturation correction
of the water signal intensities was, therefore, applied
to improve the definition of the motion-free reference
level23,34 needed for amplitude correction for each shot

(Figure 1). Given the faster diffusion of water compared
to metabolites, the efficiency of W-MoCom decreases
substantially with high diffusion-weighting. Hence, a
secondary motion-compensation scheme based on MM
signals,31 called M-MoCom, was introduced to eliminate
residual motion artifacts. This was applicable to human
DW-MRS due to fairly short TE and TM values in our
study, while earlier examinations required long TE leading
to insufficient MM signal. Still, M-MoCom could only be
applied to the averaged spectrum per b-value. It remained,
therefore, important to use the simultaneously acquired
water signal for phase-definition in single acquisitions to
guarantee coherent addition of individual acquisitions.
To apply signal amplitude corrections in M-MoCom, an
undistorted reference diffusion decay of the MM signals
had to be estimated first. This was possible using the
cohort average from the most reliable individual subject
data (ADC <0.010 μm2/ms, examples in Figure 2) and
the isolated 0.9 ppm MM signal. The estimated ADC for
MMs of 0.003 μm2/ms is slightly lower than that found in
rodent brain studies (0.006,10 0.007,18 0.00532 μm2/ms)2

and, thus, seems to represent actual MM diffusion, rather
than residual motion-related effects. This also proves the
successful combination of the two motion-compensation
methods.

Even though M-MoCom can correct for motion-related
signal decay at high b-values, it should be realized that it
may also introduce erroneous signal variation because the
low SNR of the M0.94 peak in individual spectra entails
the risk of imperfect fitting with related miscorrection and
amplitude errors of all metabolite signals for this b-value.
Such a case is seen in Figure 2, where the diffusion sig-
nal obtained from subject 3 shows a similar signal decay
as for the cohort, but the first point is much lower than
expected. This produces a large correction factor at the
lowest b-value, which is most likely not motion-related but
due to an improper model fit. Manual review of suspected
misfits with subsequent improved fitting or skipping of
the M-MoCom or elimination of this data point can be
considered as remedy but is tedious and may introduce
bias.

4.3 Fitting models and methods

With regard to different fitting and signal modeling strate-
gies, maximal robustness for estimated parameters can be
introduced when fitting the spectral and diffusion dimen-
sions simultaneously as opposed to fitting spectra indepen-
dently (i.e., without amplitude-relation) followed by diffu-
sion decay modeling of the estimated signal areas (SF-A).
This benefit comes at the cost of being limited to the rep-
resentations for the diffusion signal decay implemented in
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the spectral fit program. With FiTAID, this means that the
diffusion-related signal decay has to be exponential, where
the monoexponential case had been used before30 and
the biexponential representation was introduced for this
study by inserting two independent signals with mono-
exponential decay, each describing the same metabolite.
For b-values extending to >20 ms/μm2 as used here, it
seems advisable to allow for biexponential decays for all
metabolites32 except for MM signals. However, such a
general approach introduces an excessive number of vari-
ables that is prone to overfitting. Non-Gaussian diffusion
with estimation of all relevant parameters was, therefore,
only implemented for so-called major metabolites with
substantial signal representation (according to a heuristic
definition). Accordingly, minor metabolites were repre-
sented with a Gaussian diffusion model in some of the
strategies in spite of the large b-value range (SF-B, SF-D)
and with somewhat restricted b-value range (SF-C,) where
a monoexponential decay model may be sufficient consid-
ering the limited SNR. The finally developed model SF-E,
however, used the full b-value range for MMBG definition
and biexponential signal representation for all metabo-
lites, but relied on prior knowledge for those decay param-
eters that do not show large variance in the literature32

and where SNR is insufficient for their estimation. The
biexponential representation for all metabolites is crucial
in the determination of the MMBG since MMBG pattern
areas (Voigt-line intensities) would compensate for any
metabolite signal included in the measured data but not
represented in the metabolite model. It is, therefore, not
surprising that SF-E yielded the lowest MMBG intensi-
ties in areas where the MMBG overlaps with metabolite
signals.

4.4 ADC estimations

ADC estimates obtained with various fitting strategies are
reasonably consistent overall but have major disparities in
some cases. This is not surprising, given the differences
in the employed priors. For Gaussian diffusion (Table 2,
Supporting Information Table S3 in Appendix S1), ADC
estimates for major metabolites tend to be larger for simul-
taneous fitting. SF-F with b-values restricted to<6 ms/μm2

yields even higher values than SF-C indicating that the
lower estimates are biased by non-Gaussian diffusion
>5.5 ms/μm235 The final optimized strategy SF-F, which
is based on the MMBG-pattern from SF-E, profits from
concentration constraints and is defined on the short-
est b-value range. It yields values that are in very good
agreement with literature for human and animal brain
(Figure 7). There are two to three outliers for metabolites

at one of the two diffusion times where limited differenti-
ation with other spectral metabolite patterns is the likely
cause (Gln vs. Glu, mI vs. Gly). An experimental approach
targeted at the monoexponential range smaller b-values)
would probably render less variability. The ADC values at
the shorter diffusion time tend to be higher, in-line with
expectation,36,37 although this study did not really aim at
definition of diffusion time dependence of ADCs, the two
diffusion times were just a side-product of two alternative
settings to define the MMBG. In strategies with simultane-
ous MMBG determination and in particular for the shorter
diffusion time, it appears that multiple ADCs (Glu, Gln,
Asp, GSH, EA, PE) were overestimated and the result-
ing MMBG intensity adjusted at the respective resonance
positions to compensate. This indicates that simultane-
ous definition of MMBG and metabolite ADCs can lead
to ambiguous results when using a limited b-value range.
Therefore, predefining the MMBG pattern with higher
b-values and using a limited b-value range to estimate
metabolite ADCs in a second step, as done in SF-F, is
advantageous.

In non-Gaussian diffusion analysis, it can be disputed
for which settings a biexponential model is sufficient to
represent38 metabolite diffusion data. Figure 5B confirms
that this choice adequately describes the experimental
data for the b-value range achieved in this study. Only
the water data may suggest a slight deviation from the
model at very high b-values. Ligneul et al.32 have used
this model for metabolite diffusion previously, even closely
fitting the experimental data at higher b-values. The dif-
ficulties with describing non-Gaussianity in our study
relates more to the fact that a reliable definition of biex-
ponential decays bases on sufficient coverage of the rel-
evant b-value range and can only succeed if the ADCs
of the two components are sufficiently distinct. Some of
the results in Table 3 clearly raise doubts in this respect
for almost all metabolites. Only for NAA and Glu, the
fast component fraction is defined with less than 20%
error in SF-B where diffusion modeling is performed as
a separate step. In concurrent spectral and diffusion sig-
nal modeling (SF-D, SF-E) this error is not available since
FiTAID provides CRLB for the fit parameters only, and
the fractions are calculated from the component ampli-
tudes.3 However, considering CRLB of component sizes
and ADCs, it appears that simultaneous fitting is, in prin-
ciple, able to define these parameters with remarkable
precision: The areas of almost all metabolites are defined
with relative CRLB <∼10%. This also applies to the ADCs
with CRLB <20% for almost all metabolites in both com-
ponents. Of note, this assessment is inherently overopti-
mistic being based on the assumption that the fit model
is correct, and that variance is equal between and within
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F I G U R E 7 Illustration of estimated monoexponential metabolite diffusion constants found in this study in comparison to literature
results10,23,31,37,41–49 for animals and humans. The plots provide values as function of diffusion time to ease the comparison even though the
current study was not targeting this dependence. The ADC values estimated with strategy SF-F are plotted for this study.

spectra, i.e., due to random noise without contributions
from variations between sequentially obtained spectra.
Hence, it only defines a lower bound of the real error.
Nevertheless, this analysis suggests that the simultaneous
fit model is well suited for the definition of biexponen-
tial diffusion decays in the current setup. Given that the
errors in subsequent modeling are similar to the CRLB
in simultaneous modeling for some of the major metabo-
lite ADCs, it appears that the CRLB provide reasonable
estimates of real errors. In summary, this suggests that
all bi-exponentially represented metabolites indeed show
non-Gaussian decays in their data, maybe with the excep-
tion of mI, where ADCfast is likely overestimated due to

artifacts around 3.4 ppm in the lowest diffusion-weighted
spectra, and tCho, where the ADCs are only a factor
3 apart in SF-E and no second component was found
in SF-D.

SF-E is expected to provide the most accurate results,
given the biexponential decay for all metabolites and the
restriction of metabolite contents to meaningful values
(see Supporting Information Text S1 in Appendix S1). The
enforced parameters for minor metabolites are well in-line
with the estimated values for the major metabolites, and
potential deviations of true values from those in the prior
are not expected to have substantial influence given the
SNR in the data.
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There are few data in the literature with which to com-
pare, first because the current study is unique for humans
and second because animal studies often did not include a
biexponential representation. Still, mouse32 and rat data10

(Table 3) are in-line with the current results (especially for
SF-E), despite different acquisition methods (incl. b-value
range) and species. As in the literature, the relative frac-
tions of both components are near 50% for all metabolites
(and f fast at 90% for water). One clear deviation from lit-
erature is seen for NAA where the current study yields a
smaller ADC for both components-in particular ADCslow
is even limited by the lower boundary. A preliminary
analysis using a MMBG from metabolite-nulling instead
of the diffusion-based MMBG confirms the main results,
although the slow ADC tends to even smaller values and
thus the non-Gaussian characteristic would appear even
stronger.

4.5 MMBG determination

The definition of the MMBG signal pattern usually exploits
T1-differences for MM vs. metabolite signals, which entails
challenges to properly compensate for differences in T1
between different metabolite signals and modest T1 dif-
ferences between MMs and some metabolites. Here, we
base this definition on the large difference in molecu-
lar size reflected in >30 times slower diffusion of MMs
compared to small metabolites. For most accurate and
undistorted determination of MMBG signals, it is crucial to
use a short TE to prevent T2-related signal loss. Addition-
ally, a short TM mitigates alterations of the MM pattern
due to differing T1 values of its constituents. It is never-
theless essential to apply very strong b-values to achieve
a sufficient suppression of metabolite signals. Fulfilling
these conditions is achieved with a Connectom gradient
system. Still, since complete suppression of metabolite
signals is impossible—due to constraints imposed by stim-
ulation limits, but also considering non-Gaussian metabo-
lite diffusion due to brain microstructure—the acquisi-
tion scheme has to be combined with appropriate dif-
fusion signal modeling, ideally in a simultaneous spec-
tral/diffusion fitting scheme. Earlier preliminary results
from a standard clinical scanner were based on somewhat
longer TE, substantially longer TM, and rather modest
diffusion-weighting (5.2 ms/μm2).39

For the different fitting approaches used here, only
minor differences appeared in the final MMBG patterns.
The definition is clearly more consistent when extending
the b-value range to >20 ms/μm and considering biexpo-
nential decay. Some of the differences between shorter and
longer diffusion times could be attributable to T1 signal
decay of MMBG resonances during TM (Figure 6A). The

MMBG pattern differences between fitting approaches ms
are likely due to the limited precision in the definition of
the metabolite ADCs for some of the minor metabolites,
particularly with subsequent diffusion modeling without
amplitude bounds when fitting the high b-value spectra.
Given the consistent results for metabolite diffusion con-
firming the imposed priors, SF-E is expected to provide the
most accurate estimate for the MMBG pattern, where the
non-Gaussian diffusion component is taken into account
also for the minor metabolites.

Even when applying optimized methodology, a
DW-based definition of the MMBG pattern is still
restricted by inherent limits of the approach. One is the
unknown composition of the MMBG, which was tackled
by using a versatile general signal representation with
equally spaced Voigt lines, which is flexible to adapt to
the actual pattern but may be prone to overfitting. The
main basic limit, however, is due to the complex diffusion
decay of metabolite signals. The non-Gaussian diffusion is
hard to accurately represent in the limited b-value regime
and with the limited SNR. Additionally, any signals from
metabolites that are restricted to small compartments
within the diffusion time would be indistinguishable
from MM signals. When comparing the diffusion- with
relaxation-based MMBG (Figure 6C), appreciable differ-
ences are observed. While the characteristics are similar
<1.8 ppm, the MMBG pattern from the diffusion-based
definition shows more intensity, in particular near or/at
resonance positions of prominent metabolite features (2.0,
3.0, 3.2, 3.7–3.9 ppm). A preliminary combined analysis
with a metabolite-nulling MMBG and a diffusion-based
extension confirms the visual difference. These differ-
ences can be due to spatially restricted and T2-broadened
metabolites in general (possibly echoing a reported trans-
verse relaxation time dependence of the ADC of creatines
in human brain40 although not confirmed in rodents32)
or the enforced prior of equal ADCs for Cr and PCr; but
part of this discrepancy can also be due to macromolec-
ular signals with longer T1s (side chain mobility, partial
signal suppression by the inversion recovery method) or
experimental inaccuracies, e.g., stemming from removal
of metabolite signals (often done in a heuristic fashion).

4.6 Limitations

4.6.1 Data

The data at the lowest b-values (0.37 and 1.4 ms/μm2)
showed artifacts around 3.5 and 3.9 ppm for some subjects,
probably due to spurious echoes. Even though evidently
corrupted data were not used, it is unclear whether the fast
ADC found for Glc is real (and corroborating expectation
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for a partially interstitial metabolite) or due to remaining
artifacts. This could also affect the mI resonance.

4.6.2 Model

The MMBG model is heuristic, and the parameterization
could have a certain influence. The restrictions enforced
in the diffusion model are also partly arbitrary, in partic-
ular the differentiation into minor and major metabolites.
Other choices taken for the diffusion and spectral models,
although well rationalized, could also be disputed, such as
the assumption of identical diffusion behavior for compos-
ite peaks despite their different molecular size and poten-
tially different cellular distribution (PCho/GPC; Cr/PCr).
Moreover, Cr and PCr were modeled with equal concentra-
tions to limit the overall fit flexibility because initial trials
with fewer constraints yielded implausible results. Ampli-
tude restraints to keep concentrations within a physiologi-
cally reasonable range (which was somewhat questionable
for the smaller b-value range) were only introduced for
SF-A3, SF-E, and SF-F. Estimated metabolite ADC values
from mouse data32 were used as prior in defining the upper
boundary (0.25 μm2/ms) in the simultaneous fit, while the
lower bound (0.01 μm2/ms) was imposed to guarantee a
clear differentiation to the MMs. Still, some metabolite
ADCs ended up at the upper or lower bounds.

5 CONCLUSIONS

DW-MRS at high diffusion-weighting offers an alternative
for definition of the MMBG signal pattern that is essential
to be known for robust fitting of clinical 1H-MR spectra.
Covering a b-value range up to 25.1 ms/μm2 and simul-
taneous spectral/diffusion fitting allowed for appropriate
modeling of the spectral signals under the constraints of
the diffusion signal decay. This turned out to be benefi-
cial for both, the definition of the MMBG pattern, but also
the determination of metabolite diffusion characteristics.
Biexponential signal representation was both essential and
sufficient for the major metabolite signals and also the
concurrently acquired water signal. Motion-compensation
using the water signal and a macromolecular signal pre-
vented artifactual signal decay that would bias the diffu-
sion evaluation. Even higher diffusion-weighting would
be beneficial but was limited by physiologic stimulation
in the current study. Intrinsic limitations to distinguish
non-Gaussian metabolite signal decay or contributions
of physically restrained metabolites from macromolecular
signals must be taken into account and may contribute to
differences with respect to relaxation-based macromolec-
ular spectra.
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ENDNOTES
1Following the convention introduced in the consensus paper of Ref 4

this peak is labeled M0.94, even though at 3 T it is centered rather at
0.92 ppm.

2Ref 32 found different values depending on the b-value range
(and indications for biexponential behavior) and also a trend for
a TE-dependence. In the current study, the estimated ADC for
MMs was 0,008 μm2/ms if no individual data with faster decay was
excluded.

3Straight-forward error propagation cannot be applied to determine
a CRLB of the component fraction since the CRLBs are correlated.
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24. Şimşek K, Döring A, Pampel A, Möller HE, Kreis R.
Diffusion-weighted MRS at short TE using a Connectom sys-
tem: non-Gaussian metabolite diffusion and macromolecular
signals in human brain. In: Proceedings of the Virtual Conference
of ISMRM; 2020:0364.

25. Hebrank FX, Gebhardt M. SAFE-model -- a new method for pre-
dicting peripheral nerve stimulations in MRI. In: Proceedings of
the 8th Annual Meeting of ISMRM, Denver, CO, USA; 2000:2007.

26. Szczepankiewicz F, Westin CF, Nilsson M.
Maxwell-compensated design of asymmetric gradient wave-
forms for tensor-valued diffusion encoding. Magn Reson Med.
2019;82:1424-1437.

27. Simpson R, Devenyi GA, Jezzard P, Hennessy TJ, Near J.
Advanced processing and simulation of MRS data using the FID
appliance (FID-A)—an open source, MATLAB-Based Toolkit.
Magn Reson Med. 2017;77:23-33.

28. Hall EL, Stephenson MC, Price D, Morris PG. Methodology
for improved detection of low concentration metabolites in
MRS: optimised combination of signals from multi-element coil
arrays. Neuroimage. 2014;86:35-42.

29. Stefan D, Di CF, Andrasescu A, et al. Quantitation of magnetic
resonance spectroscopy signals: the jMRUI software package.
Meas Sci Technol. 2009;20:104035. doi:10.1088/0957&hyphen;
0233/20/10/104035

30. Adalid V, Döring A, Kyathanahally SP, Bolliger CS, Boesch C,
Kreis R. Fitting interrelated datasets: metabolite diffusion
and general lineshapes. Magn Reson Mater Phys Biol Med.
2017;30:429-448.

31. Ligneul C, Valette J. Probing metabolite diffusion at ultra-short
time scales in the mouse brain using optimized oscillating gra-
dients and “short”-echo-time diffusion-weighted MRS. NMR
Biomed. 2017;30:e3671. doi:10.1002/nbm.3671

32. Ligneul C, Palombo M, Valette J. Metabolite diffusion up to very
high b in the mouse brain in vivo: revisiting the potential corre-
lation between relaxation and diffusion properties. Magn Reson
Med. 2017;77:1390-1398.

33. Palombo M, Ligneul C, Valette J. Modeling diffusion of
intracellular metabolites in the mouse brain up to very
high diffusion-weighting: diffusion in long fibers (almost)
accounts for non-monoexponential attenuation. Magn Reson
Med. 2017;77:343-350.
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35. Genovese G, Marjańska M, Auerbach EJ, et al. In vivo
diffusion-weighted MRS using semi-LASER in the human brain
at 3 T: methodological aspects and clinical feasibility. NMR
Biomed. 2021;34:e4206. doi:10.1002/nbm.4206

36. Valette J, Ligneul C, Marchadour C, Najac C, Palombo M.
Brain metabolite diffusion from ultra-short to ultra-long time
scales: what do we learn, where should we go? Front Neurosci.
2018;12:2.

37. Döring A, Kreis R. Magnetic resonance spectroscopy extended
by oscillating diffusion gradients: cell-specific anomalous dif-
fusion as a probe for tissue microstructure in human brain.
Neuroimage. 2019;202:116075. doi:10.1016/j.neuroimage.2019.
116075

38. Novikov DS, Kiselev VG, Jespersen SN. On modeling. Magn
Reson Med. 2018;79:3172-3193.

39. Döring A, Adalid V, Boesch C, Kreis R. On the exploitation of
slow macromolecular diffusion for baseline estimation in MR
spectroscopy using 2D simultaneous fitting. In: Proceedings of
the 26th Annual Meeting of ISMRM, Paris, France. 2018:1315.

40. Branzoli F, Ercan E, Webb A, Ronen I. The interaction
between apparent diffusion coefficients and transverse relax-
ation rates of human brain metabolites and water studied
by diffusion-weighted spectroscopy at 7 T. NMR Biomed.
2014;27:495-506.

41. Palombo M, Ligneul C, Najac C, et al. New paradigm to assess
brain cell morphology by diffusion-weighted MR spectroscopy
in vivo. Proc Natl Acad Sci USA. 2016;113:6671-6676.

http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
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