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1. Introduction

An alternating sign matriz (ASM) is a (0,1, —1)-matrix with the property that the
non-zero entries in each row and column alternate in sign, beginning and ending with
+1. Alternating sign matrices were first investigated by Mills, Robbins, and Rumsey
[1], in a context arising from the classical theory of determinants. Connections to fields
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such as statistical mechanics [2] and enumerative combinatorics [3] were subsequently
discovered, and ASMs continue to attract sustained interest from diverse viewpoints. We
refer to Bressoud’s book [4], for a comprehensive account of the emergence of attention
to ASMs and the mathematical developments that ensued.

A recurrent theme in the study of ASMs is their occurrence, in independent contexts,
as natural generalisations of permutation matrices. This invites the question of whether
and how familiar themes in the study of permutations can be applied or adapted to ASMs.
For example, ASMs first emerged in the definition of the A-determinant of a square
matrix, which involves adapting the technique of Dodgson condensation by replacing
the usual 2 x 2 determinant with a version involving a parameter A. Alternating sign
matrices play the role for the A-determinant that permutations do for the special case
of the classical determinant, which arises if the value of A is set to 1. Lascoux and
Schiitzenberger showed in [5] that the set of n x n ASMs is the unique minimal lattice
extension of the set of n X n permutation matrices under the Bruhat partial order. An
extension of the concept of Latin squares, which arise by replacing permutation matrices
with ASMs, is investigated in [6] and [7].

Our focus in this article is on non-singular ASMs with the special property of having
finite order as elements of the general linear group. This topic connects to the position
of permutations among all ASMs, and also to some recent attention in the literature to
the behaviour on ASMs of algebraic invariants such as the spectral radius, characteristic
polynomial and Smith normal form [8-10].

In [9], Brualdi and Cooper study the maximum possible spectral radius of an ASM.
They note that the minimum spectral radius of an ASM is more easily identified, since
every ASM has common row sum 1 and hence has 1 as an eigenvalue; moreover the
permutation matrices are examples of ASMs whose eigenvalues all have modulus 1. The
following example is presented in [9], to show that the minimum possible spectral radius
of 1 may also occur in the case of an ASM that includes negative entries.

Example 1.1. The matrix

0 0 1 0
1 0 -1 0
A=|0 0 1 -1 1
0 0 0 0
0 1 0 0

is an ASM satisfying A% = I, the 5 x 5 identity matrix. Its characteristic polynomial is
(x —1)%(x + 1)(2% — 2 + 1) and its minimum polynomial is (z — 1)(z + 1)(z? — z + 1).

Within the set A, of all n x n ASMs, the set S,, of permutation matrices is a multi-
plicative group of n! elements. In the following lemma, we observe that a set of ASMs
that is a group under matrix multiplication must consist of permutation matrices.
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Lemma 1.2. Suppose that A and B are n x n ASMs that satisfy AB = I,,. Then A and
B are permutation matrices.

Proof. The first row of A has a 1 as its only nonzero entry; suppose that this occurs in
position j. Then a 1 in the (j,1) position is the only nonzero entry of Column 1 of B.
Every subsequent column of B is orthogonal to Row 1 of A, so Row j of B has only
zeros after its first entry. Similarly, Rows 2,...,n of A are all orthogonal to Column 1 of
B, so the only nonzero entry of Column j of A is the first. Deleting Row 1 and Column
j from A, and deleting Column 1 and Row j from B, leaves a pair of matrices A’ and
B’ in A,,_; that satisfy A’B’ = I,,_1. The conclusion follows by induction on n. O

While Lemma 1.2 eliminates the possibility that A, could contain multiplicative
groups other than subgroups of S,, Example 1.1 demonstrates the existence of finite
multiplicative groups that are generated by (non-permutation) ASMs. The matrix A of
this example generates a cyclic group of order 6 in GL(5,R), in which A itself is the only
non-identity ASM. While this cyclic group of order 6 is isomorphic to a subgroup of the
symmetric group S5, we note that it is not similar in GL(5,R) to a group of permutation
matrices. Since every element of order 6 in S5 consists of a 2-cycle and a 3-cycle, disjoint
from each other, every 5 X 5 permutation matrix of order 6 has characteristic polynomial
(22 = 1)(2® — 1) = (z — 1)%(x + 1)(2? + 2 + 1). Thus A is not similar to a permutation
matrix.

One may pose the question of which finite subgroups of GL(n,R) are generated by
invertible alternating sign matrices, and which such groups do not have isomorphic copies
within S,. In this article, we consider the case of finite cyclic subgroups and investigate
elements of finite multiplicative order in a particular subset of A,,.

In order to describe the class of ASMs of interest, we introduce the notion of a T-
block, adapted from [11,12]. A T-block is a n x n matrix whose non-zero entries form a
(not necessarily contiguous) copy of

i(_; )

We denote by T(i1, j1, 42, j2) the T-block with 1 in positions (i1,71) and (i2, j2), and
—1 in positions (i1, j2) and (i, j1), where i1 # is and j; # jo. We remark that this nota-
tional designation implies that T'(i1, j1, %2, j2) = T'(i2, j2, 1, J1). Whenever the situation
is sufficiently specified, we will choose the version with ¢; < i5. The following assertion
is essentially Theorem 6.2 of [11].

Theorem 1.3. Fvery n x n ASM can be obtained from the identity matriz I, through a
sequence of additions of T-blocks, in such a way that an ASM is obtained at every step.

An extension of Theorem 1.3 to n x n X n alternating sign hypermatrices appears in

7).
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In this article, we consider ASMs that differ from a permutation matrix by the addition
of a single T-block, having the form P + T for a permutation matrix P and T-block
T. We refer to any matrix of this form as a PT-matrix, and note that a PT-matrix
may or may not be an ASM. While the class of PT-matrices includes all permutation
matrices, our attention will be focused on non-permutation PT-matrices. The goal of this
article is to identify all ASMs of finite multiplicative order that are PT-matrices, up to
permutation similarity and transposition (where the matrices A and B are permutation
similar if B = PT AP for a permutation matrix P). We note that the properties of being
a permutation matrix, a T-block, or a PT-matrix, are all preserved under conjugation
by a permutation matrix. This is not generally true of an ASM however.

In Section 2, we recall some properties of rational matrices of finite multiplicative
order. In Section 3, we introduce the directed graph of a PT-matrix and use graph-
theoretic considerations to identify candidates for finite multiplicative order. In Section 4,
analysis of the minimum polynomials of matrices determined by these candidate graphs
leads to a complete description of PT-matrices of finite order. In Section 5, we show that
all but a few exceptions are permutation similar to alternating sign matrices.

2. Rational matrices of finite multiplicative order

In this section we recall some relevant properties of the characteristic and minimum
polynomials of matrices of finite order in GL(n, Q). For information on the minimum
polynomial of a matrix, the companion matrix of a polynomial, and related algebraic
background, we refer to Chapter 3 of [13].

For a positive integer d, we write ®4(z) for the dth cyclotomic polynomial, the monic
polynomial in Z[z] whose roots are the primitive roots of unity of order d in C. Then
®,(x) is irreducible in Q[z] and its degree is ¢(d), where ¢ denotes the Euler totient
function.

Suppose that A € GL(n,Q) has multiplicative order ¢. Then A* — I,, = 0, and so
the minimum polynomial m 4 (z) of A divides z* — 1 in Q[xz]. It follows that m(z) is a
product of distinct cyclotomic polynomials ®4(x), where d runs through a set of divisors
of t whose least common multiple is ¢. On the other hand, any matrix whose minimum
polynomial has this form does have finite order, equal to the least common multiple of
the orders of its roots in C*.

The possible finite orders of elements of GL(n, Q) are integers of the form lem(dy, ...,
dy), where the d; are positive integers with

For example, the possible finite orders of elements of GL(5,Q) are 1,2, 3,4,5,6,8,10, 12.
The possible orders of n x n permutation matrices are those integers that occur as the
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least common multiple of the parts in a partition of n. In the case n = 5, these are
1,2,3,4,5 and 6.

For the PT-matrices of interest in this article, the characteristic polynomial is gener-
ally more easily computed than the minimum polynomial. Both have the same irreducible
factors, but they may occur with higher multiplicity in the characteristic polynomial. We
will identify PT-matrices with the property that their characteristic polynomial is a prod-
uct of cyclotomic factors. For every d > 2, the polynomial ®4(x) is palindromic, meaning
that the sequence of its coefficients remains unchanged when reversed, or equivalently
that ®4(x) = x¢’(d)<1>d(%). The polynomial ®;(x) = x — 1 is skew-palindromic; revers-
ing the sequence of its coefficients negates each term. Every product of palindromic and
skew-palindromic polynomials is itself palindromic or skew-palindromic, according as the
number of skew-palindromic factors is even or odd. Thus we may restrict our attention
to PT-matrices with palindromic or skew-palindromic characteristic polynomials.

We recall that a square matrix in GL(n, C) is diagonalizable in GL(n, C) if and only if
its minimum polynomial has distinct roots. It follows that every rational square matrix of
finite order is diagonalizable over C, since its minimum polynomial divides z‘—1 for some
t. Indeed a matrix whose characteristic polynomial is a product of cyclotomic polynomials
has finite multiplicative order if and only if it is diagonalizable. This observation will be
useful at times in Sections 3 and 4. In a case where the characteristic polynomial has no
repeated irreducible factor, the characteristic and minimum polynomials coincide and
the matrix is diagonalizable.

Given a monic polynomial p(x) = 2" + a,_12" "' + -+ + a1x + ag, we define the
companion matriz of p(x) to be the n x n matrix C' that has 1 in the (i + 1,¢)-position
for 1 < i < n — 1, has the entries —ag, —a1,...,—a,_1 in Column n and has zeros in
all other positions. Then p(C) = 0, xn and p(z) is the minimum polynomial (and the
characteristic polynomial) of C'. For a positive integer k, we write Cj, for the companion
matrix of the polynomial 2*¥ — 1. We note that Cj, is a permutation matrix, representing
a cycle of length k.

3. Graphs and (0, 1, —1)-matrices

We associate a 2-arc-coloured directed graph I'y to a n x n (0,1, —1)-matrix A as
follows. The vertex set of T'4 is {v1,...,v,} and the coloured arcs are as follows:

o (vi,v;) is a blue arc if A;; = 1;
o (v;,v;) is ared arc if 4;; = —1;
o (v;,v;) is not an arc if A;; = 0.

The same interpretation of arcs and entries yields an association of a square (0,1, —1)-
matrix to a given 2-arc-coloured digraph, upon the choice of an ordering of the vertices.
Each graph corresponds to a permutation equivalence class of matrices.
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Fig. 1. Possible structures of I'r. (For interpretation of the colours in the figure(s), the reader is referred to
the web version of this article.)

We refer to a 2-arc-coloured digraph that is associated to a PT-matrix by the above
correspondence, as a PT-graph. Every PT-graph has at most two red arcs, since a
PT-matrix has at most two negative entries. A PT-matrix with no negative entry is
a permutation matrix, whose graph consists of disjoint directed cycles, with all arcs
coloured blue. A PT-matrix with exactly one negative entry has the form P + T, where
exactly one of the negative entries of the T-block T occurs in the same position as a 1 in
the permutation matrix P. If this occurs in Row 4, then Row i of P+ T is a duplicate of
another row, and hence P+ T has zero determinant and cannot have finite multiplicative
order. Since our interest is in PT-matrices that have finite order and are not permuta-
tions, we may confine our attention to PT-graphs that have exactly two red arcs. While
is it possible for a PT-graph to have a double blue arc, such a graph corresponds to a
PT-matrix with an entry equal to 2, which cannot be permutation similar to an ASM.
Our concern is thus with PT-graphs having exactly two red arcs and no multiple arcs,
corresponding to matrices of the form P + T, where the positions of non-zero entries
in the permutation matrix P and the T-block T" do not coincide. If T" is such a graph,
with n vertices, then its arcset is the disjoint union of a set of four arcs (two of each
colour) corresponding to the entries of a T-block, and a set of n blue arcs corresponding
to the entries of a permutation matrix. These two sets are uniquely determined by the
two red arcs. We write I'p for the subgraph of I" consisting of the four arcs determined
by entries of T and their incident vertices, and I'p for the subgraph similarly determined
by the arcs arising from P. The vertex set of I'p is the same as that of I', and its n arcs
comprise disjoint directed cycles. The arc set of I'r is disjoint from that of I'p, and I'y
has one of the forms presented in Fig. 1.

The graph I'r is weakly connected, meaning that its underlying undirected graph
is connected. The weakly connected component of I" that includes I'r involves arcs
from at most four cycles of I'p, since each vertex of I'r occurs in one cycle of I'p.
Since any additional weakly connected components of I" are directed cycles, a (0,1, —1)-
matrix corresponding to I' has finite multiplicative order if and only if the submatrix
corresponding to the weakly connected component that includes I'y does. For this reason,
for the remainder of this section we only consider weakly connected PT-graphs. We
consider separately the cases where the vertices of I'p are incident with one, two, three
or four cycles of I'p.
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The reverse of a digraph T is the graph obtained from I' by reversing the directions of
all arcs, while maintaining any arc colouring. The operation of reversing the arc directions
in a two-arc-coloured digraph has the effect of transposing the corresponding (0,1 — 1)-
matrix. Since the matrix property of having finite multiplicative order is preserved under
transposition, this observation is useful in limiting the number of graph types requiring
analysis.

Given any digraph I" with arcs coloured red and blue, we say that a walk in T is
negative if it includes an odd number of red arcs (counted with repetition), and positive
if it includes an even number of red arcs. For a positive integer k, we write w,j(um)
and wy, (u,v) respectively for the numbers of positive and negative walks of length k
(abbreviated to k-walks) from the vertex u to the vertex v in I'. Let A be the (0,1, —1)-
matrix determined by the ordering vy, ..., v, of the vertices of I'. It is routine to show
that for a positive integer k, the entry in the (i, j)-position of A* is

wyl (vi,v5) = wi; (vi,05). (1)

Suppose that A* = I,,, for a positive integer k. Then the numbers of positive and negative
k-walks from u to v in I' coincide, for any pair u and v of distinct vertices. For any vertex
u, the number of positive k-walks from u to u exceeds the number of negative k-walks
by 1. By applying these observations to directed graphs corresponding to PT-matrices,
we will be able to reduce to four general classes of weakly connected PT-graphs, whose
corresponding PT-matrices include all examples of finite multiplicative order that are
not permutations, up to permutation equivalence and transposition.

3.1. Type 1: a single cycle

We refer to PT-graphs and matrices involving a permutation with a single cycle as
being of type 1. The following schematic diagram represents a typical PT-graph of type
1, with the black segments representing the arcs of a cycle of length n, corresponding to
a permutation matrix P, and the four coloured arcs representing the entries of a T-block.
There is no assumption that these four arcs are collectively incident with four distinct
vertices, they may have any of the configurations in Fig. 1. Also shown is an example of
a PT-matrix of type 1.

& 01 -1 10
00 1 00
00 0 10
00 0 01
10 1 -10

Necessary and sufficient conditions for a PT-matrix of type 1 to have finite multi-
plicative order are established in Section 4.1.
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3.2. Type 2: a pair of cycles

The distinct PT-graph structures (up to arc reversal, or equivalently, matrix transpo-
sition), where the vertices of I'r belong to exactly two cycles of I'p, are depicted below.
We refer to these graphs and their corresponding matrices as type 2(a), type 2(b), type
2(c), and type 2(d), respectively. In the case of type 2(d), the relative positions of the
three vertices of I'r along the directed cycle Cy is not considered to be prescribed.

Cq ¢ €y ¢

G) Gy ) C2

Type 2(a): Let M be a matrix corresponding to a graph of type 2(a). Every walk from
a vertex of C1 to a vertex of Cy involves an odd number of red arcs, and is therefore a
negative walk. Because there is a walk of length k from a vertex in C; to a vertex in Co
for every k > 1, this means that there are negative entries in off-diagonal positions of
MP* for every k > 1. Thus matrices of type 2(a) cannot have finite multiplicative order.

Type 2(b): Let T be a PT-graph of type 2(b), where m; and mq are the lengths of the
cycles C; and Cs respectively. We may order the vertices of I' so that the corresponding

matrix is
A= le D sz + Tl,ml-‘,-kg;ml-i-l,klv

where @ denotes the matrix direct sum. A routine calculation using row operations shows
that the characteristic polynomial of the A given by

p(a?) — pmitme + l.ml-l‘mz—kl + xm1+m2—k2 — g pm2 xm1—k1 _ mm2—k2 +1
If A has finite order, then p(z) must be either palindromic or skew-palindromic.

o If p(z) is skew-palindromic, then the leading coefficient has opposite sign to the
constant term. It follows that z™ %1 = g™2=F2 = 20 So k; = my and ke = ma.

o If p(x) is palindromic, then (m; + mo — k1) + (m1 + mao — k2) = mq + ma, so
k1 + ko = mq 4+ mo. Because k1 < my and ky < my, it follows that k1 = m; and
ko = mo as above.
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The conditions k; = my and ks = mo hold only if the negative entries of the T-block in
A cancel positive entries of Cy,, @ C),,, which means that A = Cy,, +m, and in particular
A is a permutation matrix. Thus every PT-matrix of type 2(b) that has finite order is a
permutation matrix.

Type 2(c) and Type 2(d) are considered in Sections 4.2 and 4.3; non-permutation
examples of finite order occur in these cases.

3.83. Type 3: three cycles

The distinct PT-graph structures (up to arc reversal) where the vertices of I'r belong
to three cycles in I'p are depicted below. We refer to these cases as type 3(a), type 3(b),
and type 3(c), respectively.

GQ@% (6 Cs G (‘33

Type 3(a): In a PT-graph of type 3(a), every walk from a vertex in C; to a vertex in Cy

involves exactly one red arc, and is therefore a negative walk. Since there is a walk of
length k from a vertex of C; to a vertex of Cy for every k > 1, it follows that negative
entires occur in all positive powers of PT-matrices of type 3(a). Hence no PT-matrix of
this type has finite order.

Type 3(b): If the vertices of a PT-graph of type 3(b) are listed with those of the cycle C3
first, followed by those of C; and then Cs, the corresponding PT-matrix is block upper-
triangular with three square blocks on the diagonal. Subject to a suitable ordering of
the vertices of Cy, the second diagonal block is the companion matrix of a polynomial
of the form 2™ + z* — 1, where k < m. Such a polynomial cannot be palindromic or
skew-palindromic and hence cannot be a product of cyclotomic polynomials. Hence a
PT-matrix of type 3(b) cannot have finite multiplicative order.
Matrices of type 3(c) are considered in Section 4.4.

3.4. Type 4: four cycles

The case where the vertices of I'r belong to four different cycles of I'p is depicted
below.
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C1 Ca

Cs Cy

Every walk from a vertex of C; in the above graph to a vertex of Cs involves only
blue arcs and is therefore positive. Such walks occur of all positive lengths, and so every
power of a PT-matrix of type 4 has positive off-diagonal entries. Hence no PT-matrix
of type 4 has finite multiplicative order.

We summarise the conclusions of Section 3 below.

Theorem 3.1. Let T' be a weakly connected PT-graph with two red arcs (ui,vi) and
(uz,v2), and with no multiple blue arcs. Let T'r be the subgraph of T' with vertex set
{u1,v1,u2,v2}, whose arc set includes the two red arcs and the blue arcs (ui,v2) and
(ug,v1). Let Tp be the subgraph of T' on the full vertex set, whose arcs are exactly those
that do not belong to T'r. Then T p is composed of disjoint directed cycles. If the (0,1, —1)-
matrices corresponding to I' have finite multiplicative order, then either T' or its reverse
s of one of the following four types.

e Type 1: U'p is a single directed cycle.

o Type 2(c): The graph T'p consists of two disjoint directed cycles, with uy and usg
belonging to one of these cycles and vy and vy to the other. The vertices uy, us, v1, V2
are distinct.

o Type 2(d): The graph T'p consists of two disjoint directed cycles, with u; belonging
to one of these cycles and uq,v1 and vy to the other. The vertices v1 and us are
distinct, but vo may coincide with one of these.

o Type 3(c): The graph T'p consists of three disjoint directed cycles. The vertices u;
and ug belong to the same cycle of I'p, and the other two cycles each includes one
of v1 and ve. The vertices uy,us,v1,v are distinct in this case.

4. Elementary PT-matrices of finite multiplicative order

We refer to a PT-matrix as elementary if its graph is weakly connected. Every PT-
matrix is permutation similar to the matrix direct sum of an elementary PT-matrix and
a permutation matrix, so we focus on the elementary case.

In this section we analyse elementary PT-matrices of finite order, which correspond
to graphs of one of the four types identified in Theorem 3.1. We establish a classifica-
tion, up to permutation similarity and transposition, of elementary PT-matrices of finite
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multiplicative order. Examples of finite order exist in all four cases, but their orders can
differ from those of permutation matrices of the same size only for Types 1 and 2(d).
No generality is lost by restricting to PT-matrices with weakly connected graphs, since
the addition of a new connected component to a graph is equivalent to extending the
corresponding matrix via a direct sum. Central to our analysis is the fact that the char-
acteristic polynomials of PT-matrices have a particularly amenable form in the cases
of interest. This enables us to identify all PT-matrices whose characteristic polynomial
is a product of cyclotomic polynomials. As we noted in Section 2, such a matrix has
finite multiplicative order if and only if it is diagonalizable. Lemma 4.1 below is the
main technical tool that we employ to determine necessary and sufficient conditions for
diagonalisability of PT-matrices of the four types.

Lemma 4.1. Let A be a block upper triangular matriz in M,(Q), with diagonalizable
square p X p and q X q blocks P and Q in the upper left and lower right respectively,
where p+ q = n. Let g(x) be the greatest common divisor of the minimum polynomials
of P and Q respectively, and let N be the upper right p x q block of g(A). Then A is
diagonalizable if and only if Nv belongs to the columnspace of g(P), for every vector v
in the right nullspace of g(Q).

Proof. We write mp(z), mg(z) and ma(z) respectively for the minimum polynomials
of P, @ and A. Since P and @ are diagonalizable, neither mp(x) nor mg(z) has any re-
peated irreducible factors. We define the polynomials p(x) and ¢(z) by mp(z) = p(z)g(x)
and mg(z) = g(z)g(x). We note that ged(p(x),q(z)) = 1. Since A is diagonalizable if
and only if its minimum polynomial has distinct roots, and since the irreducible factors
of ma(z) are exactly those of mp(z) and mg(x), it follows that A is diagonalizable if
and only if ma(z) = p(x)q(z)g(x).

We now consider under what conditions the matrix product A" = p(A)q(A)g(A) is
equal to zero. Since P and @ are diagonalizable, CP and C? have bases consisting of
eigenvectors of P and @ respectively. Thus C™ has a basis {u1,...,up, v1,...,v,} where
each u; is an eigenvector of P with ¢ zeros appended, and each v; is an eigenvector of )
with p zeros prepended. Then A’u; = 0 for 1 < 4 < p, since p(A)u; = 0.

The last g entries of each the vectors vi,...,v, comprise an eigenvector of ) whose
corresponding eigenvalue is a root either of ¢(z) or g(x). If v; corresponds to a root of
q(x), then g(A)v; has zeros in its last ¢ positions and A'v; = mp(A)q(A)v; = 0.

Now let v be a vector in {vy,...,v,} that corresponds to an eigenvalue of @ that is a
root of g(x). Then

A'v = g(A)p(A)g(4) = a(A)p(4) < e ) - <q<P>p<P>N”> .

Oq><1 Oq><1

Since no root of ¢(x) is an eigenvalue of P, the matrix ¢(P) is nonsingular, and A’v = 0 if
and only if p(P)Nv = 0; that is if and only if the vector Nv belongs to the right nullspace
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of p(P). Since the minimum polynomial of P is p(x)g(z) and P is diagonalizable, the
right nullspace of p(P) is equal to the columnspace of g(P). We conclude that A is
diagonalizable if and only if Nv belongs to the columnspace of g(P) for every vector v
in the right nullspace of ¢(Q). O

The condition of Lemma 4.1 is equivalent to the assertion that the zero eigenvalue
of g(A) has full geometric multiplicity, but our analysis will employ the formulation in
the lemma. This depends on the feasibility of calculating the entries of g(A) and the
right nullspace of ¢(Q). In most cases of interest, @ is the companion matrix C, of the
polynomial ¢ — 1, whose entries are 1 in the first subdiagonal and upper right position,
and 0 elsewhere. Typically, P is the companion matrix of a polynomial with few non-zero
coefficients. The upper-right p x ¢ block M of A is a sparse matrix of rank 1, with at
most four non-zero entries spread over at most two columns. The polynomial g(z) has
the form x9 + 1 for some integer g, so N is the upper right block of A9. This is given
by

PI"IM +PI2MQ+ P 3MQ* +-- -+ MQI L.

The effect of right multplication by C; on an entry of M is to shift it one step left, or into
Column ¢ if it is in Column 1. The effect of left multiplication by a companion matrix
P is to shift the entry one step downward, unless it is in Row ¢, in which case the final
column of P enters. In most cases of interest, an entry a in position (i, 7) of M leads to
g appearances of a in A9, in a diagonal pattern of positions starting at (i,j — g+ 1) and
proceeding downwards and to the right.

We proceed to consider each of the four possible graph types listed in Theorem 3.1,
where the above remarks will apply. For a positive integer ¢, we write [t]o for the high-
est power of 2 that divides t. We note the following properties of common divisors of
polynomials of the form x? 4 1.

Lemma 4.2. Let s and t be positive integers. Then

o ged(z® — 1,2t — 1) = g&ed(st) 1,

o ged(2® + 1,20+ 1) = { )+ 1 [s] = [f]

1 if [s]a # [t]2
8¢ (s,t) i
. gcd(xs—l,xt‘i'l):{ " 1 o ii gzigz

4.1. PT-matrices of Type 1: a single n-cycle

We may order the vertices of a PT-graph of Type 1 so that its corresponding PT-
matrix has the form C,, +7'(1, j1,d+1, j2), where d < 5. We write A for C,, +T(1, j1,d+
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1,72) and observe (using cofactor expansion on the first row), that the characteristic
polynomial p(z) of A has the following simple form, with at most six non-zero terms.
For an integer ¢, we write [t] for the remainder on dividing ¢ by n.

Theorem 4.3. For d < %, the characteristic polynomial of A = Cy, +T(1,j1,d + 1, jo) is
plz) =a™ — 2" 4 gln=aitd 4 gn—ja _ pln—jatd] _ 1

We wish to determine when p(z) is a product of cyclotomic polynomials. We begin by
considering its constant term, which may differ from —1 only if either j; or js is equal to
either n or d. The only such case in which the constant term is 1 or —1 is when j; =d
and jo = n. In this case A is a permutation matrix, corresponding to a pair of cycles of
lengths d and n — d.

We assume now that neither j; nor js is equal to n or d. Since its constant term is —1,
the polynomial p(z) of Theorem 4.3 can be a product of cyclotomic polynomials only if
it is skew-palindromic. This occurs in the following two cases.

Casel n—j1i+n—jo=nand [n—j;+d+[n—j2+d =n.

From the first equation, j; + jo = n, so the second equation reduces to [jo + d] =
[/1 + d] = n, which means that j; + jo + 2d is a multiple of n. Since j; + jo = n
and d < %, this can be satisfied only if 2d = n. We note that [j; — jo|, which is
the distance between the columns occupied by entries of T, is even in this situa-
tion.

In this case, I'(A) consists of a directed cycle of length n = 2d, which we write
as

V1 — Up — Up—1 — *+° —> V2 — U1,

with additional blue and red arcs from v; and vz 41 to vj, and vj,, corresponding to
the entries of T', where j; # jo and j; — jo is even. It remains to identify the values
of j1 and jo for which A has finite order.

Case2 n—j1+[n—ji+d =nandn—js+[n—jz+d =n.
This occurs only if {n +d — 2j1,n +d — 2j2} = {0,n}. This means that d and n are

%, "T'"d} In particular, |j; — ja| = 2

both even and {ji,j2} = 5

In this situation we may label the vertices so that the graph I'(A) consists of a
directed n-cycle on blue arcs as in Case 1 above, with four additional arcs corre-
sponding to the entries of 7', directed from v; and vg41 to some v; and v; 4z, where

d is even.

Reversing all arcs in a graph arising in Case 2 results in a graph of the type described
in Case 1. It follows that every PT-matrix arising in Case 2 above is permutation sim-
ilar to the transpose of one that arises in Case 1. For this reason, we consider Case 1
only.
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We now write j for the minimum of j; and js, and write n = 2d.
o If j1 <jo,then j=75,A=C,+T(1,5,d+1,n—j), and
p(z) =2 —a" I — 2 Iyl 1 = (27 — 1)(md_j — 1)(xd —1).
e If j; > jo, then j = jo, A= C +T(1,n — j,d+1,4), and
pla)=a" + 2" + 2 — g —gf 1= (27 + 1) (2T +1)(2? - 1).

In any case where p(z) is a product of distinct cyclotomic factors, we can conclude
that the matrix has finite multiplicative order. In the case where p(z) is a product of
cyclotomic factors with repetition, we need to consider the relationship between p(z) and
the minimum polynomial m(z) of A. To this end we consider the minimal A-invariant
subspace of C™ that contains the vector vy, which has 1 in position 1, —1 in posi-
tion d 4+ 1, and zeros elsewhere. This vector spans the 1-dimensional column space of
T.

Fori=1,...,d, we write v; for the vector in C™ that has 1 in position 7, —1 in position
d+ i and zeros elsewhere. We write V for the span of the v; which clearly has dimension

d and consists of all vectors in C™ of the form v , where v € C%. It is evident that

V is A-invariant, since it is Cy-invariant, and Tz € (v1) C V for all € C™. Moreover,

C’ﬁbvl =41, fori=1,...,d—1, and C’ffvl = —v1. We note that Avy = vy + avy, where
a € {—1,0,1}. Applying A repeatedly, it follows for i < d—1 that A*v; = v; 11 +w, where
w is a linear combination of vy,...,v;. In particular, B; = {vy, Avy, A%vy,..., A9ty }

is a linearly independent set and a basis of V. It follows that the restriction to V of
the linear transformation determined by A is non-derogatory; its minimum polynomial
has degree d. We extend B to a basis B of C™ by appending the standard basis vectors
€d+t1,---,6€n. Rewriting with respect to the basis B, we find that A is similar to the
matrix A" with the following block upper triangular form.

e The lower right d x d block of A’ is Cy, the companion matrix of % — 1. That
Ae; € e+ Visclear fori=d+1,...,n—1, and Ae,, = e; = v1 + €441, since the
last column of A is just e;.

o The upper right d x d block of A’ has only zero entries outside its first row. In the
first row, the entry in the (1,n — j) position of A’ is 1 or —1 (according as A; ,_;
is positive or negative), and the entry in the (1, n)-position is 1. All other entries in
this region are zeros.

e The lower left d x d block of A’ is Ogxg.

o The upper left d x d block of A’ is the companion matrix of the minimum poly-
nomial of the restriction to V of the linear transformation determined by A.
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This is 2% which is (27 — 1)(z%7 — 1) if Ay; = 1, or (27 + 1)(z?7 + 1) if

xd—1"

Alj =—1.

Since (27 — 1)(z%7 — 1) has 1 as a repeated root, the upper left block of A’ can have
finite order only if A;; = —1. In this situation, the block has finite order if and only if
the polynomials 27 + 1 and %7 + 1 are relatively prime, which occurs if and only if
[7]2 # [d — j]2, as noted in Lemma 4.2. We assume that this condition holds, so that the
upper left block of A’ has finite order.

Since [j]2 # [d — ]2, it follows that [d]s = min([j]2, [d — j]2) and hence that x¢ — 1
is relatively prime to both z7 + 1 and 2?7 + 1. Thus A = Coq + T(1,2d — j,d + 1,5)
has finite multiplicative order in any case where j < d and [j]a # [d — j]2. Since the
minimum polynomial of A in this situation is (27 + 1)(2977 + 1)(z? — 1), the order is
lem(27, 2d — 24, d).

For PT-graphs and PT-matrices of Type 1, we have the following conclusions. The
PT-graph I is defined here as in Theorem 3.1. For vertices u and v of T, dp(u, v) denotes
the length of the path from u to v along the cycle I'p.

Theorem 4.4. Let " be a PT-graph of type 1 of order n, with red arcs (uy,v1) and (ug, va).
Then the (0,1, —1)-matriz corresponding to I (with respect to a vertex ordering) has finite
multiplicative order if and only if n = 2d is even, the 2-parts of the integers dp(vi,u1)+1
and dp(ug,v1)—1 are different, dp(vy,u1)+dp(va,us) = d—2, and either dp(uy,us) = d
or dp(vy,v9) =d.

The two versions of the final condition in the statement of Theorem 4.4 correspond
to the cases where T itself, or its reverse, is described by a matrix having the form in
the above discussion.

Theorem 4.5. A n x n PT-matriz A of Type 1 has finite multiplicative order if and only

if n is even and either A or its transpose is permutation similar to a matriz of the form
Cn+T(,n—j,d+1,5),

where n = 2d, j < d and [j]2 # [d — jla. In this case the multiplicative order of A is
lem(24,2d — 24, d).

It is possible for a n x n PT-matrix of Type 1 to have a multiplicative order that does
not occur as the order of a permutation matrix in S,,. For example if n = 10, choosing
j=1or j =2 gives PT-matrices (shown below) whose respective multiplicative orders
are lem(2,8,5) = 40 and lem(4,6,5) = 60. Neither 40 nor 60 occurs as the order of an
element in the symmetric group Syg, since neither occurs as the least common multiple
of the integers in a partition of 10.
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-1 0 0 0 0 0 0 O 1 1 0O -1 0 0 0 0 O 1 0 1
1 0 000 0 00 0 0 1 00 0 0 0 O 0 0 O
01 0 0 0 0 0 O 0 0 0 1 0 0 0 0 O 0 0 O
001 0 0 0 0O 0 0 0 01 0 0 0 O 0 0 O
00 0 1 0 0 0 O 0 0 0 00 1 0 0O 0 0 O
10001 000 —-10 0 10 01 00 —1 00
00 0 0 O0O 1 0O 0 0 0 00 0 01 O0 0 0 O
0 0 0 0 0 O0O 1O 0 0 0 0 0 0 0 0 1 0 0 O
00 0 0 0 O0 01 0 0 0 00 0 0 0 O 1 0 0
0 0 00O 0O O0OO0O0 1 0 0 00 0 0 0 O 0 1 0

Cyo+7(1,9,6,1), order 40 Cio+T(1,8,6,2), order 60

It will be shown in Section 5 that the PT-matrices arising in Theorem 4.5 are all per-
mutation similar to alternating sign matrices.

4.2. Type 2(c): two cycles connected by four arcs of T

In a PT-graph of Type 2(c) in Theorem 3.1, the permutation component consists of
a pair of cycles of lengths p and ¢ respectively, where p + ¢ = n and each of p and ¢ is
at least 2. The T-component contributes four additional arcs, a pair of red arcs directed
from distinct vertices 21 and x5 of the p-cycle to distinct vertices y; and yo respectively
of the g-cycle, and a pair of blue arcs from z; to y2 and from x5 to y;. We assume that
y1 and yo are labelled so that the directed path along the g-cycle from y, to y; is no
longer that the one from y; to ys.

We order the vertices of I' as follows. We begin with the vertices of the p-cycle,
starting with x; and proceeding against the direction of the arcs in C. We continue with
the vertices of the g-cycle, proceeding against the direction of the arcs of the cycle, to
end with ys.

With respect to this ordering, the n x n matrix A of I" has the following description,
where @ denotes the matrix direct sum.

A=(Cpr@Cy)+T(1,n,h+1,n—1),

where h is the length of the path from x5 to z; in the p-cycle, and [ is the length of the
path from ys to y; in the g-cycle. We derive conditions on h,l,p and ¢, for A to have
finite order. Since A is block upper triangular with C}, and C; as its diagonal blocks, it
has finite order if and only if its minimum polynomial is lem(z? — 1,29 — 1), and in this
case its order is lem(p, ¢). If this occurs, then neither p nor g can be a divisor of the other,
since inspection of walks of length max(p, ¢) from vertices of C' to vertices of C’ shows
that A™2x(?:9) has non-zero entries in its upper right p x ¢ region. For example, there
is at least one positive g-walk from u to the in-neighbour of v' in C’, and no negative
one. There is at least one positive p-walk from the out-neighbour of v in C' to v/, and
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no negative one. Thus it is not possible that A has order p or ¢, and we may confine our
attention to cases where neither p nor ¢ divides the other.

We write g for ged(p, q) and note that g < 4, and son —1 > p+ g, since [ < 4. We
apply Lemma 4.1 with g(z) = ged(a? — 1,27 — 1) = 29 — 1. Then

g(A) =AY — I, = (Q(Cp)@g(cq))JrZT(L [h+iln—g+in—l—g+i), (2)

where [h+1i] = h+i—p if h+1i exceeds p, and is otherwise equal to h+i. In place of the
1 in the upper right position of A, A9 (or A9 — I,,) has a strip of g entries equal to 1, in
a diagonal arrangement from position (1,7 — g+ 1) to position (g,n). A similar pattern
occurs for each of the three other non-zero entries in the upper right p x g block of A.

We write N for the upper right block of g(A). By Lemma 4.1, we need to consider
whether Nv belongs to the column space U of g(C,), for every vector v satisfying
9(Cy)v = 0. The column space of CJ — I, consists of all vectors u € CP? for which
the sum of the 5 entries u;, Ujyg, . - . s Uit (2—1)g is zero, fori=1,...g — 1.

A basis for the right nullspace of g(Cy) is given by {w1, ..., w,}, where w; has entries
equal to 1 in the g positions with indices congruent to ¢ modulo g, and zeros elsewhere.

According to (2), the non-zero columns of N occur in two (possibly overlapping)
contiguous bands, from Column ¢ — g + 1 to Column n, and from Column ¢ —1 —g+1
to Column g — [ of N. The nonzero entries of IV occur as follows, where 1 < i < g.

e Column ¢ — ! — g+ i of N has —1 in position 7 and 1 in position [h + i].
e Column ¢ — g + i has 1 in position ¢ and —1 in position [h + 4].

It follows that Nw; is either equal to Column ¢ — g +¢ of N (if i < g — ) or to the sum
of Columns ¢ — g +iand ¢ — [ — g+ 1+ of N, where [ + i is the reminder on dividing
I + i by g. This sum is zero if g|l, otherwise it is the vector with 1 in positions ¢ and
[[+i+ h], —1 in positions [ + i and [i + h], and zeros elsewhere. This vector belongs to
the columnspace of g(P) only if g|h. It now follows from Lemma 4.1 that A has finite

multiplicative order if and only if g divides either [ or h, giving the following conclusions
for PT-graphs and PT-matrices of type 2(c), as described in Theorem 3.1.

Theorem 4.6. Let T be a PT-graph of type 2(c), in which the two cycles have lengths p
and q, the vertices w1 and uy belong to the p-cycle, and the vertices vi and vy belong to
the g-cycle. Then a (0,1, —1)-matriz corresponding to T has finite multiplicative order if
and only if at least one of dp(u1,us) and dp(vi,ve) is a multiple of ged(p, q).

Theorem 4.7. Let A be a PT-matriz of type 2(c). Then A has finite multiplicative order
if and only if A or its transpose is permutation similar to the matriz C, & Cy+T(1,n, h+
1,n—1), where 1l < h <p, 1 <1 <gq, and gcd(p, q) divides at least one of h and l. When
this occurs, the order of A is lem(p, q).
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Every matrix arising in Theorem 4.7 is similar to a permutation matrix. Those that
are permutation similar to alternating sign matrices will be identified in Section 5.

4.3. Type 2(d): two cycles connected by two arcs of T

We now consider PT-matrices corresponding to graphs of Type 2(d), in the clas-
sification given in Theorem 3.1. The matrix of Example 1.1 is of this type, with the
underlying permutation involving a 4-cycle and a fixed point. Let I" be a PT-graph of
order n = p + ¢, consisting of disjoint directed cycles of lengths p and q, whose arcs are
coloured blue, and the following four additional arcs involving vertices 1, x2,y; of the
p-cycle (with 21 # x2) and a vertex ys of the g-cycle: (x1,y1) and (z2,y2), both coloured
red, and blue arcs (x1,y2) and (z2,y1).

We order the vertices of I" as follows. Vertices of the p-cycle are listed first, ordered
against the direction of the arcs of the cycle, and ending with y;. Vertices of the g-cycle
follow, again against the direction of the arcs, and with y, appearing last.

With respect to this ordering, the matrix A of I' has the form

A= (Cp © Cq) +T(ilan7i23p)7

where 7; and iy are the (distinct) respective positions of 21 and x5 in the vertex ordering.
We write P for the upper left p x p block of A and note that P is the companion matrix
of the polynomial

p(z) =aP + o7t — g2t -1,

Since A is block upper triangular with P as its upper-left block, A may have finite
multiplicative order only if P does. The polynomial p(z) cannot be palindromic, since its
leading and constant coefficients cannot coincide. It is skew-palindromic only if i1 4+ =
p + 2. We assume that this holds and rewrite 75 as ¢. Then

pla) = (@ = 1)@ + 1),

and, by Lemma 4.2, P has finite order if and only if [i — 1]o > [p — i + 1]o. We assume
that this condition holds, and hence that the order of P is the least common multiple of
p—1i+1and 2(: — 1). We proceed to consider when A has finite order.

First we consider the case where [g]a > [i — 1]o. We write d and g respectively for
ged(4,7 — 1) and ged(g,p — i+ 1). Then the greatest common divisor of the minimum
polynomials of P and C, is m(z) = (z¢ + 1)(29 — 1).

By Lemma 4.1, a necessary and sufficient condition for A to be diagonalizable, or
equivalently to have finite multiplicative order, is that the zero eigenvalue has full geo-
metric multiplicity in the matrix (A¢ + I,,)(AY — I,,). Since the polynomials ¢ + 1 and
29 — 1 are relatively prime, this condition holds if and only if it holds separately for
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A%+ I, and A9 — I,,. We consider A% + I,, first. The right nullspace of C(‘Ii + 14 has di-
mension d and is spanned by the vectors ui, ..., uq, where for i = 1,...,d, u; has entries
alternating between 1 and —1 in positions ¢, i +d, ¢+ 2d to g — d + i, starting with 1 in
position 7. The columnspace of Pd+Ip has dimension p—d, and is spanned by the vectors
w1, ..., Wp—q in CP, where w; has 1 in positions ¢ and 7 + d, and zeros elsewhere. This
space consists of all vectors in CP with the property that for i = 1,...,d, the alternating
sum of the sequence of entries in positions congruent to ¢ modulo d is zero.

The non-zero entries of the matrix Ny are confined to the last d columns. Since u;
has —1 in position ¢ — d + ¢ and its last d entries are otherwise zero, the vectors Nyu;
are respective scalar multiples of the last d columns of N;. Thus A% + I,, satisfies the
condition of Lemma 4.1 if and only if the columnspace of Ny is contained in that of
pi 4 I,. Column ¢ —d + 1 of Ny is equal to column g of the upper right block of the
original A. It has two non zero entries; —1 and 1 in positions ¢ and p + 2 — ¢. This
vector v belongs to the columnspace of P? + I if and only if d divides p + 2 — 2i and
(p+ 2 —2i)/d is even. This condition is equivalent to the statement that d|p and p/d is
even, since d divides 7 — 1. Every column of Ny is a linear combination of vectors with
two non-zero entries of opposite sign, whose positions are separated either by |p+ 2 — 2i]
or by 2¢ — 2. Thus the condition that p/d is an even integer, which is necessary to ensure
that v belongs to the columnspace of Pd—i—Ip, is also sufficient to ensure that Nyu belongs
to this space, for every u in the right nullspace of Q% + I.

We now consider the corresponding question for the matrix A9 — I,,. The analysis
and conclusion here closely mirror those of Section 4.2. The column space of P9 — I, has
dimension p and consists of all vectors in C? with the property that for each i € {1,..., g}
the sum of all entries in positions congruent to ¢ modulo g is zero. If N, is the upper
right p x ¢ block of A9 —1I,,, then every column of N, occurs as the product Nyu for some
u with (Q9 — I;)u = 0. As above, Column ¢ — g + 1 of N, has only two non-zero entries,
of opposite sign and separated by a vertical distance of |p + 2 — 2i|. This vector belongs
to the column space of P9 — I, only if g divides p+ 2 — 2¢, and as above this condition is
sufficient to ensure that the column space of N, is contained in that of P9 — I,,. Since g
is a divisor of p—i+1, the condition g|p — 2i + 2 is equivalent to g|i — 1 and hence to g|p.

Theorem 4.8. The PT-matriz A = (Cp, & Cy) + T (i1,n, 2, p), where i1,i2 < p, has finite
multiplicative order if and only if the following conditions are satisfied.

o i1 +ia=p+2, and [ig — 1|2 = [p —i2 + 1]o;
e g|p, where g = ged(q,p — iz +1);

o [gl2 < [i2—1]2, or [q]2 > [i2—1]2 and p/d is an even integer, where d = ged(§,ia—1).

If the conditions in Theorem 4.8 hold, then the order of A is

lem(p —ia + 1, 2is — 2,q).
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If [g]2 = [i2 — 1]2, this is equal to lem(p — i3 + 1,43 — 1,q), which is the order of a
permutation of degree p + ¢. In general however, the order of A need not coincide with
that of a permutation. For example, we may set p = io = 2¥ + 1, and ¢ = 1, for any
positive integer k. We obtain a (2% +2) x (2¥ +2) matrix of order lem(1,2*+1 1) = 2k+1,
An n x n permutation matrix of order 2*+! exists only if n > 2k+1,

The 10 x 10 example with & = 3 and order 16 is below, along with an ASM to which
it is permutation similar.
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4.4. Type 3(c): three cycles

The remaining case concerns PT-matrices corresponding to graphs of type 3(c) in
Corollary 3.1. The analysis for this resembles that of type 2(c), although it is simpler.
A graph of Type 3(c) has three cycles of lengths p, ¢ and m. Additionally, it has a pair
of blue arcs directed from distinct vertices 1 and zy of the first cycle, respectively to
vertices y and z of the second and third cycles, and a pair of red arcs from z; to z and
9 to y. With respect to a suitable ordering of the vertices, the corresponding matrix is

A=(CproCy@Cp)+T(,p+q,i,p+q+m),

where 1 < i < p. Applying Lemma 4.1 as in previous cases, we find that the upper left
(p+¢q) x (p+ q) block A,14 of A has finite multiplicative order if and only if ged(p, q)
divides i — 1. We assume that this holds, and note that Ay, is then similar to C, @ Cg,
via a change of basis that does not affect the first p basis elements. It follows that A
itself is similar to the matrix A’ = (Cp, @ Cq & C,) — E1 ptg+m + Ei ptq+m, Where E;
has 1 in the (4, j)-position and zeros elsewhere. Now A’ has finite order if and only if the
(p+m) x (p+m) matrix (Cp, ® Cp,) — E1 pim + Ei pym does, and applying Lemma 4.1
confirms that this occurs if and only if ged(p, m) divides i — 1.

Theorem 4.9. Let p,q,m be positive integers, with p > 2, and let i be an integer with
1 < i < p. The matrix

A=(C,LdC@®Cn)+T(,p+q,i,p+q+m),
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which represents a PT-graph of Type 3(c), has finite multiplicative order if and only if
ged(p, q) and ged(p, m) both divide i — 1. In this case the order of A is lem(p, q,m) and
A is similar to the permutation matriz Cp & Cq & Cpy,.

5. ASM-permutability

It remains to determine which of the PT-matrices of finite multiplicative order are
permutation similar to alternating sign matrices, or ASM-permutable. We consider this
question separately for the four types, using the following strategy in all cases. In
Section 4, we identified a standard form for a PT-matrix of each of the four types,
selected with ease of calculation of characteristic and minimum polynomials in mind.
This amounts to a choice of ordering of the vertices of the corresponding digraph, which
we now label as 1,2,...n. We need to determine whether the same n vertices can be
rearranged to an ASM-ordering, which means that the corresponding (0,1, —1)-matrix
is an ASM. An ASM-ordering must satisfy four constraints, one arising from each of the
four rows and columns in which the matrix has three non-zero entries, which are the rows
and columns occupied by entries of the T-block. Each of the four constraints stipulates
that a particular vertex, labelling the position of the —1 in the relevant row or column,
must occur between two other vertices, which label the positive entries in the same row
or column. The consistency of the four constraints needs to be checked.

5.1. Type 1

By Theorem 4.5, every PT-matrix of finite order of Type 1 (or its transpose) is
permutation similar to a matrix of the form

A:Cn+T(1an7]7d+17])a

where n = 2d is even, 1 < j < d and [j]2 # [d — j]2, which implies that d > 3. We write
I for the graph determined by the above matrix A, and write 1,2,...,n, for the vertices
of I', in the order determined by A. An ordering of the vertices of I" is an ASM-ordering
if and only if it satisfies the following conditions, determined respectively by Rows 1 and
d+ 1 of A, and by Columns j and n — j.

7 occurs between n — j and n;
n — j occurs between j and d;
1 occurs between d + 1 and j + 1;

Ll o

d + 1 occurs between 1 and n — j + 1.

The vertices j,d,n — j and n that appear in the first two conditions are distinct. The
first two conditions imply that in any ASM-ordering, these four occur either in the order
d,n—j,j,n orn,j,n—j d. Since the reverse of an ASM-ordering is an ASM-ordering, we
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may concentrate on the former case, and consider whether the remaining n — 4 vertices
can be inserted so that the conditions arising from Columns j and n — j also hold.

The vertices 1,5 + 1,d + 1 and n — j + 1 are distinct, and can be ordered so that
conditions 3 and 4 are satisfied. If all eight vertices that appear in the above conditions
are distinct, then the two sets of four can be ordered independently, and the arrangement
can be completed to an ASM-ordering of the full vertex set.

We note the only possible coincidences between the four-vertex sets {d,n — j,j,n}
and {1,5+1,d+ 1,n — j + 1}, as follows.

l=j,n—j+l=nd+l=n—j j+1=d.

The first two possibilities above are equivalent, and so are the second two. All four cannot
be satisfied simultaneously, since j cannot be simultaneously equal to 1 and d — 1, as
d > 3. The positions of 1 and n—j+1, or of d+ 1 and j + 1, may be constrained by the
appearance of d,n — j, j,n in that order in a candidate ASM-ordering. In the first case,
d+ 1 and j + 1 may be inserted freely and independently, in order to satisfy conditions
3 and 4. In the second case, the same applies to 1 and n — j + 1, hence the following
statement.

Theorem 5.1. Fvery PT-matriz of finite multiplicative order of Type 1 is permutation
similar to an alternating sign matriz.

5.2. Type 2(c)

By Theorem 4.7, a PT-matrix of Type 2(c) of finite order (or its transpose) is per-
mutation similar to

A=CpaCy+T(1,n,h+1,n—1), (3)

where 1 < h < p, 1 <1 < ¢, and ged(p, q) divides at least one of h and I. We write
1,...,n for the vertices of the graph I" determined by A, ordered according to the rows
and columns of A. From Rows 1 and h 4+ 1 and Columns n — [ and n of A, we observe
that an ordering of the vertices 1,...,n is an ASM-ordering if and only if it satisfies the
following four conditions.

n — [ occurs between p and n;
n occurs between n — [ and h;
1 occurs between h + 1 and n — [ + 1;

W=

h 4+ 1 occurs between 1 and p + 1.

The four vertices that appear in the first two conditions are distinct, and so are the four
that appear in conditions 3 and 4. If an ASM-ordering exists, then one exists in which
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the vertices p, n — I, n, h occur in that order. We consider when conditions 3 and 4 are
compatible with this constraint.

Potential intersections of the four-vertex sets {n—I,p,n, h} and {1, h+1,n—1+1, h+1}
are limited to the following possibilities:

l=h, h+1=p,n—Il+1=n, p+l=n—1

If at most two of the above equalities hold, it is possible to insert the remaining vertices
from {1,h,n — 1+ 1,p+ 1} to ensure that conditions 3 and 4 are satisfied. If any 3 of
them hold however, conditions 3 and 4 are incompatible and cannot be simultaneously
satisfied. This occurs in the following two cases.

Case 1: h=1and h+ 1 =p, and [ is either equal to 1 or ¢ — 1. In this case p = 2, and
the two vertices in the g-cycle that have indegree 3 are consecutive in the g-cycle.

Case 2: Alternatively, [ = 1 and [ = ¢ — 1, and h is either equal to 1 or p — 1. In this
case ¢ = 2 and the two vertices of the p-cycle that have outdegree 3 are consecutive
in the p-cycle.

We conclude as follows.

Theorem 5.2. Let T be a PT-graph of type 2(c) as defined in Theorem 3.1. Then there is
an ordering of the vertices of I' whose corresponding (0,1, —1)-matriz is an ASM, unless
one of the cycles in U'p has length 2, and the two vertices of I'p in the other cycle are
consecutive in that cycle.

Theorem 5.3. If the matriz A of (3) has finite order, then it is permutation similar to
an ASM, except in the following two cases

e p=2,qisodd, ¢ =3 andl e {l,q—1};
e gq=2,pisodd, p>3and he {l,p—1}.

The stipulation that ¢ or p is odd in the two cases of Theorem 5.3 arise from the finite
order conditions in Theorem 4.7, and not from considerations of ASM-permutability.

5.3. Type 2(d)

By Theorem 4.8, a PT-matrix of finite order of Type 2(d) (or its transpose) is per-
mutation similar to

A:Cp@cq+T(ilvnai27p)a (4)

where n = p + q, i1 # i9, i1 < p, 1o < p and 47 + i2 = p + 2, with some additional
conditions that do not enter our analysis here. The condition i; +i2 = p+ 2 ensures that
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i1 > 2 and i9 > 2. A vertex ordering of the corresponding graph is an ASM-ordering if
and only if it satisfies the following conditions, arising respectively from Rows i; and ig
and from Columns p and n.

p occurs between i — 1 and n;
n occurs between i3 — 1 and p;
i1 occurs between 1 and is;

Ll o o

i occurs between 1 and p + 1.

The four indices occurring in the first two conditions are distinct, and if an ASM-ordering
exists, then one exists in which the entries 1 — 1, p, n, is — 1 occur in that order.
Possible repetitions among the eight vertices that appear in the four conditions above
are as follows.

i1=porig=iy—1, 1=i3—lorl=is—1,ia=poris=4—-1, p+1=n. (5

In each of the first three points above, the two possibilities are mutually exclusive. As in
previous cases, if up to two elements of {i1, 1,45, p+ 1} belong to {iy — 1, p, n, is — 1},
an ASM-ordering of all n vertices may be completed.

First we suppose that iy and is are not consecutive, so that iy # is — 1 and 45 # i1 — 1.
In this case {i1,1,i2,p + 1} and {i; — 1, p, n, ix — 1} can intersect in at most three
elements, and this occurs if and only if {i1,i2} = {2,p} and p+1 =n,s0 ¢ = 1. If
(i1,i2) = (2,p), then 1,i2,p + 1 appear in that order and i; can be inserted between
1 and iz, so that all four requirements are satisfied. If (i1,i2) = (p,2), then is,p + 1,1
occur in that order, and 7y cannot be inserted so that the third and fourth conditions
are simultaneously satisfied.

Suppose now that i; and i, are consecutive, and suppose first that i; = io — 1. Then
if at least three of the four equalities of (5) are satisfied, either 1 = i; —1 or is = p. Since
i1 + 12 = p + 2, each of these conditions implies that p = 3. If either of them is satisfied
then both are, and in this situation condition 3 is not satisfied; i; does not occur between
1 and 5.

On the other hand if i3 = ¢; — 1 and three or more of the conditions of (5) hold,
then i1 = p = 3 and 43,41, 1 occur in that order, so that the third ordering condition is
satisfied. The fourth can be satisfied by a suitable choice of position for p + 1, provided
that p+ 1 # n in which case the fourth condition cannot be satisfied. No ASM-ordering
exists in the case (i1,i2,q9) = (3,2,1).

Our conclusion for PT-matrices of type 2(d) is as follows.

Theorem 5.4. The PT-matriz A of (4) is permutation similar to an ASM, except where
qg=1,1iy=2 andi; = p.



356 C. O’Brien, R. Quinlan / Linear Algebra and its Applications 651 (2022) 332-358

5.4. Type 3(c)
A n x n PT-matrix of Type 3(c) is permutation similar to
A=(Cr@Ci@®Cn)+T(Lp+q,ip+q+m), (6)
where p, g and m are positive integers with p > 2 and p+¢g+m =n,and 1 <i < p. An
ordering of the vertices 1,...,n of the graph I determined by A is an ASM-ordering if
and only if it satisfies the following conditions.
n occurs between p and p + g;

p + q occurs between ¢ — 1 and n;
1 occurs between 1 and p + 1;

Ll e e

1 occurs between ¢ and p + q + 1.

From the first two conditions we deduce that if an ASM-ordering exists, then one exists
in which the vertices p, n, p 4+ ¢ and i — 1 occur in that order. The possible repetitions
among the eight vertices that appear above are

i=p, l=1—-1,p+l=p+q ptqg+l=n.

If any three of the above equalities hold, then conditions 3. and 4. cannot be simultane-
ously satisfied by the insertion of the remaining element, hence the following conclusion
on ASM-permutability for PT-matrices and graphs of type 3(c).

Theorem 5.5. The matriz A of (6) is permutation similar to an ASM, except in the
following three cases:

e p=i=2,and 1€ {qg,m};
e i=pandqg=m=1;
e i=2andg=m=1.

6. Conclusion

The results of this article identify all PT-matrices of finite order, whose associated
graphs are weakly connected, or equivalently have the property that every cycle of the
permutation component includes a vertex that is incident with an arc corresponding to
an entry of the T-block. Such examples can be augmented by the addition of permutation
matrices as new diagonal blocks. We have observed that n x n elementary PT-matrices of
types 1 and 2(d) may have finite multiplicative orders that do not occur in the symmetric
group of degree n.
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It is not true that every alternating sign matrix of finite multiplicative order is permu-
tation equivalent to a matrix direct sum of permutations and elementary PT-matrices,
as the following example shows.

o O O = O O
SO = = O O =
— -0 = O O
O = O O O O
o O = O O O

-1
1
0
0

This matrix A has multiplicative order 12 and its minimum polynomial is

Oy(2)P1o(z) = (x — 1)(z* — 22 +1).

It is clear that A is not a PT-matrix since it has three negative entries; however it may
be obtained from a permutation matrix by the addition of two T-blocks.

While there exist 6 x 6 elementary PT-matrices of order 12, the analysis in Section 2
confirms that none of their characteristic polynomials has ®12(x) as a factor. Thus A is
not similar to a PT-matrix. Since the symmetric group of degree 6 has no element of
order 12, A is not similar to a permutation matrix either.

It would be of interest to know the maximum possible number of negative entries in
a n X n ASM of finite multiplicative order. The maximum possible number of negative
entries in an ASM of specified size occurs in the diamond ASMs, which never have finite
order, since their spectral radii exceed 1, as shown in [9].

By Lemma 1.2, a finite cyclic group generated by a non-permutation ASM A must
contain elements that are not ASMs. It would be of interest to investigate the number of
ASMs that can occur in such a group. The following 8 x 8 example A generates a cyclic
group of order 24, in which A2 is also a (non-permutation) ASM. This example has type
2(d) in our classification.

00 0O0O0 O 1 0 0 0 0O 1 0 00
10000 O 0O 0000 0 O 10
00 0 0O 1 -1 1 010 0 -1 1 0 0
A 0010 0 -1 1 0 A2 0 0 0O 1 0 -1 1
00010 0 00| 0 010 0 -1 10
00 0 0O 1 0 0 0 00 0 O 1 0 0
00 0 01 0 00 0 0 01 0 0 00
01000 O 0O 1000 O O 00O
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