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It is estimated that in the human brain, short association fibres (SAF) represent more than half of the total white 

matter volume and their involvement has been implicated in a range of neurological and psychiatric conditions. 

This population of fibres, however, remains relatively understudied in the neuroimaging literature. Some of the 

challenges pertinent to the mapping of SAF include their variable anatomical course and proximity to the cortical 

mantle, leading to partial volume effects and potentially affecting streamline trajectory estimation. This work 

considers the impact of seeding and filtering strategies and choice of scanner, acquisition, data resampling to 

propose a whole-brain, surface-based short ( ≤ 30–40 mm) SAF tractography approach. The framework is shown 

to produce longer streamlines with a predilection for connecting gyri as well as high cortical coverage. We 

further demonstrate that certain areas of subcortical white matter become disproportionally underrepresented in 

diffusion-weighted MRI data with lower angular and spatial resolution and weaker diffusion weighting; however, 

collecting data with stronger gradients than are usually available clinically has minimal impact, making our 

framework translatable to data collected on commonly available hardware. Finally, the tractograms are examined 

using voxel- and surface-based measures of consistency, demonstrating moderate reliability, low repeatability and 

high between-subject variability, urging caution when streamline count-based analyses of SAF are performed. 
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. Introduction 

Functional integration of the brain subunits is mediated in part by

he white matter ( Neubert et al., 2010 ) which comprises a vast net-

ork of connections between neuronal populations and has been shown

o exhibit change in response to physiological processes ( Scholz et al.,

009 ; Hihara et al., 2006 ; Dubois et al., 2014 ; de Groot et al., 2015 ;

later et al., 2019 ) and disease ( Mito et al., 2018 ; Datta et al., 2017 ;

e Schipper et al., 2019 ). The white matter is typically divided into

rojection, commissural and association fibres. It is estimated that the

ssociation fibres, connecting the cortical areas within hemispheres,

ominate the white matter ( Schüz and Braitenberg, 2002 ). They are

n turn subdivided into long and short range (local) fibres, sometimes
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lso distinguishing neighbourhood association fibres ( Schmahmann and

andya, 2006 ). The long-range fibres course in the depth of the white

atter, connecting distant areas of the hemisphere and forming distinct

undles that have largely consistent anatomy across individuals. Con-

ersely, the short association fibres (SAF) connect adjacent cortical ar-

as. Their most superficial component is often referred to as ‘U-fibres’

nd described as a thin band that runs immediately beneath the sixth

ayer of the cortex ( Schmahmann and Pandya, 2006 ) encompassing a

ingle gyrus or sulcus ( Schüz and Braitenberg, 2002 ). It is established

hat neighbouring cortical areas exhibit the strongest structural connec-

ivity ( Markov et al., 2014 ). Further, it is estimated that only ∼10% of

he cortico-cortical connections belong to the long fascicles, with the

olume of the U-fibres possibly as much as ∼60% of the total white
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atter volume ( Schüz and Braitenberg, 2002 ). It is remarkable there-

ore that in the neuroimaging literature SAF have only started to gain

ttention recently ( Ouyang et al., 2017 ). 

Diffusion MRI (dMRI) is the preferred method for studying structural

roperties and connectivity of white matter pathways in vivo . Its sensitiv-

ty to the random microscopic motion of water molecules ( Stejskal and

anner, 1965 ) enables judgements to be made regarding the local

rientational architecture and microstructural properties of the fibres

 Pierpaoli et al., 1996 ). In the past few years, a number of dMRI-based

tudies have shown that SAF are affected by age and sex ( Phillips et al.,

013 ) as well as pathology including autism ( d’Albis et al., 2018 ),

chizophrenia ( Phillips et al., 2011) , encephalitis ( Phillips et al., 2018 )

nd epilepsy ( O’Halloran et al., 2017 ; Liu et al., 2016 ; Govindan et al.,

013 ), among others. dMRI methods used to study SAF can be broadly

ivided into those that do not use tractography and those that do. The

ormer typically sample measures of microstructure in the superficial

hite matter as defined by regions of interest ( Nazeri et al., 2013 ) or

niformly along the cortical surface ( Phillips et al., 2013 , 2018 , 2011 ;

iu et al., 2016 ). This approach avoids any potential biases of tractog-

aphy and can be less affected by the differences in cortical folding by

sing surface registration ( Fischl et al., 1999 ) but it is insensitive to the

hickness and shape of the cortico-cortical bundles. On the other hand,

ractography-based methods capitalise on fibre orientation modelling

hich allows reconstruction of streamlines providing information about

hite matter morphology ( Mori and Van Zijl, 2002 ). Recent advances in

mage acquisition ( Jones et al., 2018 ) and processing as well as develop-

ent of advanced fibre orientation estimation methods ( Tournier et al.,

007 ; Dhollander et al., 2016 ; Jeurissen et al., 2014 ) and streamline

ntegration and filtering algorithms ( Smith et al., 2012 ; Daducci et al.,

015 ; Smith et al., 2015 ) have improved the quality of tractography.

espite this, available tools are typically used to study whole-brain trac-

ograms or focus on the deep white matter bundles that show consistent

rganisation across individuals and thus the performance of these tools

or investigating SAF remains uncertain. 

. Challenges in SAF reconstruction 

The study of SAF is confounded by a number of anatomical

onsiderations and methodological limitations (for an overview, see

uevara et al., 2020 ; Jeurissen et al., 2017 ; Rheault et al., 2020 ;

eveley et al., 2015 ) which span initial tractogram generation, SAF-

pecific filtering and analysis. 

.1. Tractogram generation 

Tractogram generation faces the challenges of partial volume effects

due to the proximity of SAF to the cortex and CSF spaces) and com-

lex local anatomy with crossing, bending, kissing, and fanning fibres.

heir subcortical course makes SAF potentially more sensitive to the so-

alled “gyral bias ” – the phenomenon in tractography where many more

treamlines terminate in the gyral crowns as opposed to the sulcal fundi

 Li et al., 2010 ; Nie et al., 2011 ; Chen et al., 2012 ; Van Essen et al.,

014 ; Schilling et el., 2018 ; Cottaar et al., 2021 ; St-Onge et al., 2018 ).

his is disproportionate in relation to the respective axonal connections

which also favour the gyri) as reconstruction algorithms fail to produce

he sharp turn towards the gyral wall seen on histology ( Schilling et al.,

018 ). Specifically in the context of U-fibres, the gyral bias has been

emonstrated even when state-of-the-art acquisition and tractography

ere used ( Movahedian Attar et al., 2020 ). Additionally, streamline re-

onstruction can experience difficulty traversing the subcortical white

atter preferring a tangential trajectory instead ( Reveley et al., 2015 ).

his tendency is highly undesirable for the long-range connections but

ay prove beneficial for SAF as tracking is encouraged along the natu-

al SAF course. It is therefore important to investigate the influence of

hese effects on SAF tractography. 
2 
.2. Tractogram filtering 

From the spatial filtering perspective, SAF may be defined lo-

ally based on manual dissections ( Catani et al., 2012) , Catani et al.,

017 ) or functional MRI signal-derived cortical regions of interest

 Movahedian Attar et al., 2020 ), whilst for globally (brain-wise) de-

ned SAF, the filtering criteria typically involve size, shape/location

nd/or cortical parcellation. Despite the existence of studies examining

he anatomical course of SAF in isolated brain regions ( Catani et al.,

012 ; Catani et al., 2017 ), the absence of a detailed anatomical knowl-

dge regarding the distribution and consistency of SAF on a whole-brain

evel or even a universally accepted definition ( Ouyang et al., 2017 )

omplicates development and validation of non-invasive methods ded-

cated to the study of this subset of the white matter. For instance,

he length definition of SAF (or U-fibres) varies across sources. Some

uthors have focused on the relatively long streamlines of 20–80 mm

 Guevara et al., 2017 ; Kai and Khan, 2019 ) or more ( Román et al.,

017 ), mainly concerning the bundles connecting neighbouring gyri;

hile others ( Song et al., 2014 ; Movahedian Attar et al., 2020 ) in-

luded the smaller range of 3–30 mm based on the classification by

chüz and Braitenberg (2002) . Next, although using streamline simi-

arity measures (typically shape and distance metrics) as filtering crite-

ia ( Román et al., 2017 ; O’Halloran et al., 2017 ; Kai and Khan, 2019 )

ay appear appealing, this may lead to exclusion of otherwise valid

treamlines as SAF have been demonstrated to exhibit complex, diverse

orphology ( Movahedian Attar et al., 2020 ) and varying spatial over-

ap ( Zhang et al., 2010 ); this is particularly true for shorter ( < 35 mm)

treamlines ( Román et al., 2017 ). The use of cortical parcellations (divi-

ion of the cortical mantle into discrete areas) can carry uncertainties of

ts own. The choice of parcellation scheme, termination criteria during

racking, and the way streamlines are associated with individual parcels

ll influence the result ( Yeh et al., 2019 ). 

.3. Tractogram comparison 

Group-wise analysis of SAF is challenged by inter-subject variation

n cortical folding ( Rademacher, 2002 ). Even the sulci known to ex-

ibit more anatomical consistency across individuals (such as those cor-

esponding to the primary somatosensory areas ( Rademacher, 2002 )

emonstrate individual morphological differences up to 1-2 cm in a

ommon reference frame ( Steinmetz et al., 1989 ). The trajectories of

hort (up to 40 mm) superficial streamlines appear to be strongly influ-

nced by the gyral pattern ( Bajada et al., 2019 ). Taken together, one

hould expect low consistency when comparing SAF tractograms com-

osed of shorter streamlines between individuals based on their shape

r spatial distribution alone. Connectome-based comparisons using cor-

ical parcellations are possible yet again they face the same challenges

s described above. 

The aim of the current study was to develop a methodological frame-

ork suitable for whole-brain tractography of SAF ≤ 30 − 40 mm. To pro-

uce SAF-specific tractograms, we introduced simple, anatomy-driven

ltering criteria that did not require manual dissection/pruning or the

se of additional shape/parcellation-based priors. We hypothesised that

istributing streamline seeds directly on the white matter surface as well

s employing surface-based filtering techniques will be less prone to

iscretisation errors and promote more desirable streamline features in

egions with fine anatomical detail. To this end, we defined a set of de-

criptive features and used them to compare surface-based tractograms

gainst tractograms generated with a voxel-based method. We followed

his with an investigation into how these features changed depending on

ngular and spatial resolution, number of shells and b-values by com-

aring different diffusion acquisitions, as well as performing dMRI data

nterpolation to smaller or larger voxels. The tractograms were then as-

essed for within-subject consistency to evaluate the framework, cou-

led with between-subject analyses to inform the reader of what could
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Fig. 1. Pipeline summary. After seeding from white surface mesh (WSM) coordinates (top row, 1-3), tractograms are filtered (top row, 4) to ensure each streamline 

starts and ends in the neocortex (grey-grey filter) of the same hemisphere (hemisphere-hemisphere filter) and escapes into white matter along the way (grey-white- 

grey filter). The grey-grey filter (bottom row, 1-3) functions by finding the closest midcortical coordinate (MCC, average of the matching WSM and pial coordinates) 

for each streamline end (with K-means clustering of MCCs for speed - bottom row, 1). A streamline end is considered in the grey matter if it lays within the local 

cortical half-thickness of its MCC (bottom row, 3). Then, two intersections with WSM (one either end) are sought (bottom row, 4) at which point the intracortical 

portion is truncated. The optional surface-based analysis is conducted after the filtering (top row, 5). 
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e expected during the use of the method for population studies. A list

f abbreviations is provided in Table 1 . 

Table 1 

List of abbreviations. 

Abbreviation Meaning/Interpretation 

ACT Anatomically-constrained tractography 

CVB Between-subject coefficient of variation 

CVW Within-subject coefficient of variation 

dMRI Diffusion magnetic resonance imaging 

DSI Diffusion spectrum imaging 

DTI Diffusion tensor imaging 

FA Fractional anisotropy 

fODF Fibre orientation distribution function 

FWHM Full-width half-maximum 

GG Grey-grey filter 

GMWMI Grey matter – white matter interface 

GWG Grey-white-grey filter 

HARDI High angular resolution diffusion imaging 

HH Hemisphere-hemisphere filter 

ICC Intraclass correlation coefficient 

LCHT Local cortical half-thickness 

MGA Maximum gradient amplitude 

MCC Mid-cortical coordinate 

SA ”State-of-the-art ” acquisition 

SAF Short association fibres 

ST ”Standard ” acquisition 

TDI Track density imaging 

WSM White surface mesh 

. Material and methods 

.1. Proposed surface-based SAF tractography framework 

The overall workflow is summarised in Fig. 1 . A FreeSurfer-

enerated fine cortical mesh ( Fischl, 2012 ) is used to place streamline
3 
eeds in dMRI space. Tracking is performed using a probabilistic track-

ng algorithm (described below) with fibre orientation distribution func-

ions (fODFs) generated from multishell dMRI data ( Table 2 ). 

By definition, a streamline representing a population of association

bres must satisfy the following criteria: (1) both ends terminate in

he neocortex; (2) both ends terminate in the same hemisphere; (3) the

treamline courses through the white matter. Three respective filters en-

uring these three criteria are met are applied to the initial tractogram.

irst, for each streamline end the closest point on the mid-cortical mesh

s identified. The streamline terminates within the cortex if the distance

o this closest point is no greater than half of the cortical thickness at

hat point. Second, a prior knowledge of which hemisphere each surface

oint belongs to ensures that the streamline starts and ends in the same

emisphere. Finally, the course within the white matter is confirmed by

dentifying two intersections (one either end of the streamline) with the

hite matter surface. The following paragraphs detail each of the steps

escribed. 

.1.1. Initial streamline generation 
The FreeSurfer white matter surface mesh (WSM) typically contains

1.5 vertices/mm 

2 for a total of ∼250 K vertices (points) for both

emispheres (excluding the medial wall) and a face (triangle) area of

0.3 mm 

2 (range: 0.07–0.7 mm 

2 , top and bottom 2% excluded) rep-

esenting a reasonably dense and even spread. This can be further

emeshed if needed: in this work, triangle edges whose length exceeded

he mean by two standard deviations are bisected (resulting in more

ormally distributed edge length and triangle area histograms) to gen-

rate additional seeding points. Point coordinates are then transformed

o dMRI space with ANTs ( Avants et al., 2009 ) using the inverse warp

see Section 3.2.1 for registration details) and concatenated into a single

rray used to initiate seeding with MRtrix 3.0 ( Tournier et al., 2019 ). To

his end, MRtrix was modified such that it could read coordinates from

he array and use them as seeds with equal weights during tractogram

eneration. This seeding mechanism was verified by visual inspection of
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Table 2 

Acquisition parameters utilised for dMRI sequences in the two cohorts studied. TE, echo time. TR, repetition time. 

Parameters ST-300 mT/m SA-300 mT/m ST-80 mT/m SA-80 mT/m MICRA 

Scanner Siemens Connectom Siemens Connectom Siemens Prisma Siemens Prisma Siemens Connectom 

Resolution (mm 

3 ) 2.4 ×2.4 ×2.4 1.2 ×1.2 ×1.2 2.4 ×2.4 ×2.4 1.5 ×1.5 ×1.5 2 ×2 ×2 

Directions (per b-value) 30 60 30 60 # 

b-values (s/mm 

2 ) 1200 1200 1200 1200 200 

3000 3000 3000 3000 500 

5000 5000 1200 

2400 

4000 

6000 

TE/TR (ms) 89/7200 68/5400 89/7200 80/4500 59/3000 

# MICRA dataset had 20, 20, 30, 61, 61, 61 noncollinear direction per b-value, respectively. 
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(  
eed distribution on T1-weighted volumes in dMRI space and by compar-

ng input and output seed coordinates (data not shown). Next, tracking

s performed using the second-order integration probabilistic algorithm

FOD2 ( Tournier et al., 2010 ) which can handle the expected large num-

er of fibre crossings and challenging morphology; probabilistic tracking

as previously been demonstrated to result in less gyral bias ( Nie et al.,

011 ), potential for better performance on the receiver-operator char-

cteristic curve ( Grisot et al., 2021 ) and greater spatial overlap of SAF

 Guevara et al., 2020 ). The “select ” parameter (number of streamlines

n the unfiltered tractogram) is set to 5 million to ensure an adequate

umber of streamlines per vertex. An additional restriction on the max-

mum streamline length of 40 mm is used to be consistent with the SAF

efinition of Schüz and Braitenberg (2002) also accounting for the fact

hat intracortical portions are later truncated (see Section 3.1.2 ). Impor-

antly, the fODF amplitude threshold is kept sufficiently low at 0.05 to

acilitate tracking at the grey-white interface. Other parameters are left

t default settings in the MRtrix implementation of iFOD2 (max angle:

5 °, step size: 0.5 mm, fODF power: 0.25). 

.1.2. Streamline filtering 
Grey-grey (GG) filter. To identify streamlines starting and ending in

he neocortex, midcortical coordinates (MCC) are defined by averaging

oordinates of the matching WSM and pial surface mesh vertices. Next,

ocal cortical half-thickness (LCHT) is defined as the Euclidean distance

etween the MCC and the corresponding WSM vertex to account for

ocal variation in cortical thickness. Both ends of each streamline in the

nitial tractogram are then evaluated for “intracortical position ” by (1)

dentifying the closest MCC, (2) measuring the Euclidean distance to

t, (3) comparing this distance to the LCHT measure of said MCC. The

intracortical position ” is confirmed if the streamline terminates in a

phere centred on the MCC and with the radius LCHT (see Appendix A).

To improve computational efficiency, all MCCs are clustered with

-means using squared Euclidean distances ( Arthur and Vassilvit-

kii, 2006 ); finding the centroid closest to a streamline end means the

losest MCC needs only be identified within the cluster of that centroid

see Appendix B). 

Hemisphere-hemisphere (HH) filter. The original hemispheric member-

hip (left or right) of all cortical vertices and thus MCCs is known; the

emispheric allocation of each streamline end is then straightforward

nce its closest MCC is identified during GG filtering. This filter acts by

nly preserving streamlines whose both ends reside in the same hemi-

phere. 

Grey-white-grey (GWG) filter. After ensuring all streamlines terminate

ntracortically, the last filter needs only to detect escape into white mat-

er. Streamlines travel some distance within the cortex before this hap-

ens (mean: 3-4 mm, median: 2-3 mm), typically resulting in a non-

orrespondence between the MCC associated with a streamline’s end

nd the streamline’s intersection with WSM. Due to the possibility of

his occurring on a subvoxel scale, and because the exact point of in-

ersection with WSM is of interest, filtering is performed by detecting

ntersections between streamline segments and WSM faces instead of
4 
pplying a white matter mask. As considering all segments of all stream-

ines with all WSM faces would be extremely inefficient, intersections

etween bounding boxes are used in the initial step to significantly re-

trict the search space. The pseudocode is provided below: 

for each hemisphere: 
for each streamline: 

define the bounding box 
find all surface faces within the bounding box 
define a bounding box for each identified face 
define a bounding box for each individual streamline segment 
register intersection between face and segment bounding boxes 
for each bounding box intersection: 

check for segment-triangle interse ction 

Segment-triangle intersection detection is performed using signed

olumes but as this is approximately three times slower compared to

atching segment and face bounding boxes, the latter is done first. In

ddition to detecting escape into white matter, the filter allows to as-

ociate each streamline end with its nearest WSM vertex and truncate

treamlines at that point if desired (enabled in this work). Importantly,

n the proposed framework we assume that streamlines generally follow

he grey-white interface and ignore any WSM intersections that occur

etween the two intracortical ends (the consequences of that are exam-

ned in Results). 

.2. Framework evaluation 

Evaluation took a multi-phase approach. First, the results from the

roposed surface-based framework were compared against a voxel-

ased method and the differences explored. Next, the roles of scanner,

cquisition and dMRI data resampling on framework performance were

valuated for parameter optimisation. Finally, experiments were carried

ut to evaluate within- and between-subject consistency of SAF trac-

ograms obtained using the proposed framework. 

.2.1. Data acquisition and pre-processing 
Acquisition parameters for all protocols are summarised in Table 2 . 

Cohort A. Repeatability data from the MICRA study ( Koller et al.,

020 ) were used to assess the different methods ( Section 3.2.2 ) and

he consistency of results ( Section 3.2.4 ). In short, after a written in-

ormed consent, brain MR data of six healthy adults (3 males and 3

emales, age range 24–30) were obtained using the Siemens Connectom

MGA = 300 mT/m) scanner. Each participant was imaged five times us-

ng the same protocol within a two-week period at approximately the

ame time of day. 

Cohort B. Tractograms were evaluated using a data set of 14 subjects

4 males and 10 females, age range 16–30) acquired on two different 3T

canners with different maximum gradient amplitudes (MGA): Siemens

onnectom (MGA = 300 mT/m) and Siemens Prisma (MGA = 80 mT/m)

 Tax et al., 2019 ). Two acquisition protocols were used: “standard ” (ST)
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Table 3 

Tractogram features used for evaluation and their definitions. 

Feature Definition 

Streamline count Total number of streamlines in the final tractogram 

Mean streamline length (mm) Average streamline length of the tractogram 

Mean distance to WSM vertex (mm) Mean Euclidean distance from each end of each streamline to its closest WSM vertex 

Coverage (%) Percentage of WSM vertices considered “closest ” to at least one end of one streamline 

Coverage bias Proportion of “covered ” (as in previous definition) WSM vertices residing in gyri, corrected by proportion of all WSM vertices residing in gyri 

Streamline ends in gyri (%) Percentage of streamline ends terminating in gyri 

Mean fractional anisotropy Mean fractional anisotropy sampled to a streamline, averaged across all streamlines 
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F  
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e  
nd “state-of-the-art ” (SA), with the latter having higher spatial and an-

ular resolution achieved with multiband acquisition and stronger gra-

ients to shorten echo time ( Table 2 ). This, in turn, enabled a higher

ignal-to-noise ratio per unit time for a given b-value, allowing for utili-

ation of higher b-values which are more sensitive to intra-axonal water

isplacement ( Jones et al., 2018 ; Setsompop et al., 2013 ; Genc et al.,

020 ). Written informed consent was given by all subjects. 

Pre-processing . Spin-echo echo-planar dMRI images were corrected

or slice-wise intensity outliers ( Sairanen et al., 2018 ), signal drift

 Vos et al., 2017 ), Gibbs artifact ( Kellner et al., 2016 ), eddy current dis-

ortion and motion artifact ( Andersson and Sotiropoulos, 2016 ), echo-

lanar image distortion ( Andersson et al., 2003 ), and gradient non-

inearities ( Glasser et al., 2013 ; Rudrapatna et al., 2018 ). In all exper-

ments, dMRI data resampling took place at the end of pre-processing

nd before tractogram generation. In all cases, data were upsampled

o 1 ×1 ×1 mm 

3 ( Dyrby et al., 2014 ) and, for the evaluation of voxel

ize effects (Cohort B), resampled to 2 ×2 ×2 mm 

3 . Diffusion tensor

stimation in each voxel was performed with nonlinear least squares

 Jones and Basser, 2004 ). The fODF ( Tournier et al., 2007 ) was derived

sing 3-tissue response function estimation ( Dhollander et al., 2016 )

nd subsequent multi-shell multi-tissue constrained spherical decompo-

ition ( Jeurissen et al., 2014 ) with harmonic fits up to the eighth order.

he quality of the pre-processing steps as well as fODFs were visually

onfirmed for all subjects. 

Anatomical data (Siemens MPRAGE1 sequence, voxel size:

 ×1 ×1 mm 

3 , TR/TE 2300/2.81 ms) were run through the FreeSurfer

.1 package ( Fischl, 2012 ) which includes standard T1-weighted

olume pre-processing steps. For Cohort A, the longitudinal stream

esigned for repeated acquisitions was used ( Reuter et al., 2012 ). One

ubject lacked a T1-weighted volume for one of the sessions; instead,

he within subject template (referred to as “base ” in the longitudinal

tream) was used, resulting in a total of six “base ” and twenty-nine final

referred to as “long ”) sets. The quality of produced surface meshes

as visually inspected at every step and corrected where necessary

s per the standard FreeSurfer protocol. dMRI-derived fractional

nisotropy (FA) volumes were non-linearly registered to FreeSurfer

1-derived “brain ” volumes using ANTs; coordinates of surface vertices

ere then brought into dMRI space using the inverse transform and

egistration quality was visually confirmed in each case. An average

ubject template was created for group analyses from the six “base ”

ets with FreeSurfer’s make_average_subject command and used it as a

ommon space template for all “long ” sets (surface co-registration done

ith surfreg ). 

.2.2. Tractogram evaluation 
The following section describes assessments used in the first two ex-

eriments (comparison with voxel-based method and effects of scan-

er, acquisition, resampling). Depending on the experiment, some as-

essments were avoided if not relevant. 

The features used to characterise SAF tractograms are listed in

able 3 . 

For the purposes of “coverage ”, “coverage bias ”, “streamline ends

n gyri ”, mesh vertices with negative mean curvature were considered

o lie in gyri and the rest in sulci. The difference between “streamline
5 
nds in gyri ” and “coverage bias ” was that for the latter the streamline

umbers were not taken into account, and only parts of the cortical

urface covered were considered. 

Streamline angle at the cortex. Axonal projections follow a near-radial

ourse in gyral crowns and a more tangential course along sulcal banks

nd fundi ( Van Essen et al., 2014 ; Schilling et al., 2018 ). To assess

hether SAF tractograms were consistent with this pattern, position

long the gyral blade was discretised into equally spaced bins and the

verage angle between the first streamline segment and the cortex (cal-

ulated as 90°  ̶angle to normal) per bin was plotted against the position

n the gyral blade. The cortical surface was then subdivided according

o position along the gyral blade (mean curvature values) into five zones

f equal area (from gyral crowns to sulcal fundi) and the mean angle for

ach zone, as well as the overall mean angle, were calculated. Only the

ins in the 5-95% range were used for this calculation as the bins at

xtreme ends had multiple empty values. Empty bins within the 5–95%

ange (few points in the gyral extremes) had values imputed using in-

erse distance weighted interpolation. 

Distribution of connections along the gyral blade. Distribution of SAF

treamlines in relation to gyri and sulci was further investigated by split-

ing position along the gyral blade into five regions of equal area (as in

he previous paragraph) that were used as nodes. Undirected connec-

ivity matrices were then constructed with edge weights determined by

treamline counts similar to the recent work by Cottaar et al. (2021) . 

.2.3. Comparison with voxel-based method 
Choice of benchmark and tractogram generation. It was hypothesised

hat voxel-based seeding and filtering are subject to discretisation errors

esulting in uneven streamline end distribution, with smaller regions

eing misrepresented or excluded (Appendix C). To investigate how the

roposed framework fared against voxel-based methods, the established

Rtrix ACT/GMWMI was used for benchmarking. 

To produce SAF tractograms, MRtrix ACT/GMWMI pipeline was

odified in the following way. First, FreeSurfer’s “aseg ” volume was

ransformed to dMRI space using the previously computed registration

nd nearest neighbour interpolation (preserving segmentation labels).

his acted as the input into MRtrix’s FreeSurfer-based five-tissue-type

5TT) segmented tissue image generation algorithm ( Smith et al., 2012 ).

he 5TT image was then manipulated such that the cerebellar cortex

nd the amygdala/hippocampus were excluded from the grey matter

olume (matching the cortical areas used in surface seeding), while the

eep nuclei as well as the ventricles were added to the white matter vol-

me with their original volumes set to null. The manipulation effectively

orced all streamlines to start and end at the neocortex. Following this, a

rey matter-white matter interface (GMWMI) volume was produced and

ractogram generation performed with matching parameters (including

he fODF threshold of 0.05 and the ≤ 40 mm length limit) until the total

umber of streamlines for ACT/GMWMI exceeded that of the surface

ethod by 20%. Precise cropping at the grey-white matter interface

as enabled. Then, for each streamline end the closest WSM vertex was

ound, and streamlines connecting the two hemispheres were discarded.

inally, streamline removal continued at random until the total number

f streamlines equalled that of the surface method for each data set. Clos-

st WSM vertices identified in the previous step allowed surface-based
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ssessments of the ACT/GMWMI-produced streamlines analogously to

hose of the proposed framework. 

.2.4. Effects of scanner, acquisition, resampling 
Fibre orientation distribution functions. Scanner and sequence effects

n fODF configuration were first evaluated visually. For this compar-

son only, all four data sets of a subject were registered to the same

subject-specific) T1-weighted volume, with fODFs computed prior to

egistration. Three separate depths were plotted for ease of comparison:

rey-white interface, deep white matter, and cortex. The former was rep-

esented by WSM in the same space, while the latter two were formed

y projecting the WSM coordinates by 1 mm deep or superficial, respec-

ively, along the vectors of the matching WSM and pial surface vertices.

Next, in order to evaluate fODF orientation systematically, the first

largest) peaks of all fODFs in original subject dMRI space were ex-

racted to represent the greatest probability of local streamline propaga-

ion. Peak orientation at the three depths described above was sampled

or each vertex of the WSM using trilinear interpolation (mirroring the

FOD2 algorithm used for tractography) and the angle with surface nor-

al was calculated using dot product. Angles at the three depths were

hen plotted against position on the gyral blade similar to the streamline-

ngle cortex plots described in “3.2.2. Tractogram evaluation, Stream-

ine angle at the cortex ”. 

Tractogram comparison. Tractograms were brought into Prisma/ST/2

m 

3 space with affine co-registration (12 degrees of freedom) of the

orresponding FA volumes and subsequent transformation of stream-

ine point coordinates using ANTs. After the tractograms were inspected

isually, the effects of scanner, acquisition and resampling were addi-

ionally investigated using linear modelling with response variables as

efined in “3.2.2. Tractogram evaluation, General characteristics ”. 

.2.5. Assessment of consistency 
TDI maps. Volume-based track density imaging (TDI) maps for each

ession were generated with MRtrix’s tckmap command ( Calamante

t al., 2010 ). The maps were compared in average subject space by

pplying the previously obtained dMRI-to-T1 transform followed by a

base-to-average ” transform (concatenated and performed in a single

tep using ANTs). 

Surface-based analysis. Each streamline end was associated with its

losest WSM vertex allowing streamline-related metrics to be recorded

t these vertices in subject anatomical space. This enabled the use of

urface-based registration for comparisons, which due to the complex-

ties of cortical folding, can be superior to volume-based registration

or these superficial structures. The following measures on the surface

ere recorded: (1) number of streamlines per vertex; (2) mean stream-

ine length per vertex; (3) mean FA per streamline per vertex. The latter

an be thought of as sampling FA along the surface with a kernel whose

ize and shape changed informed by the streamlines at the vertex being

ampled. For all surface-based analyses, only the cortical surface (ex-

luding the “medial wall ” label) was studied. Individual subjects’ results

Appendix D) were co-registered, stacked ( mris_preproc ) and smoothed

 mri_surf2surf ) at 5 mm full-width at half-maximum (FWHM). Smooth-

ng is commonly used in neuroimaging to boost signal-to-noise ratio,

lleviate registration misalignment, and improve normality of residuals

 Jones et al., 2005 ). As per-vertex testing was not sensitive to between-

ertex interactions, smoothing provided an alternate means to account

or these interactions. 

.2.6. Statistical analysis 
All statistical analyses were performed in MATLAB 2015a. Hypoth-

sis testing was performed with a significance level of 0.05 in all cases.

Effects of surface seeding. Data were inspected and concluded to be

pproximately normally distributed (allowing for the small sample size)

ased on QQ plots as well as Shapiro-Wilk test ( p > 0.05). For “mean

istance to WSM vertex ”, the sixth subject (Cohort A) was an outlier
6 
nd was excluded from assessing that feature. A two-tailed paired sam-

le t-test was then used on within-subject means in all cases except for

coverage ” which was assessed as an absolute deviation from 1 using a

ne-tailed paired sample t-test. 

Effects of scanner, acquisition, resampling. Linear mixed effect mod-

lling was used because the data were non-independent. The model was

onstructed as follows: 

data ∼ 1 + scanner + acquisition + voxel size + scanner ∗ acquisi-
ion + (1|participant) 

‘Scanner’, ‘acquisition’, ‘voxel size’ were nominal variables repre-

enting fixed effects, while ‘participant’ was a nominal variable rep-

esenting random effects and reflecting the assumption that within-

articipant data will be correlated. This model produced better esti-

ates for all types of data (confirmed with Bayesian information cri-

erion and likelihood ratio test, the latter based on maximum likeli-

ood estimates) compared against a simpler model without the scanner-

cquisition interaction. Interaction with ‘voxel size’ was not considered

ecause upsampling was a post-processing step done by re-gridding and

nterpolation independent of hardware and scanning protocol. Final es-

imates were calculated using restricted maximum likelihood. Residu-

ls were inspected for normality (QQ plots and Shapiro-Wilk test), ho-

oscedasticity (by plotting against fitted values), absence of autocorre-

ation (by plotting in order) to confirm that the model assumptions were

et, although a small number of outliers were accepted when assessing

or normality. A Box-Cox power transformation on the response variable

 ( “coverage ”) was applied to alleviate heteroscedasticity. 

Consistency of SAF tractograms. Repeatability and between-subject

ariability were calculated using within- (CV W 

) and between- (CV B )

ubject coefficients of variation, respectively ( Laguna et al., 2020 ). Re-

iability of metrics was characterised using single measurement intra-

lass correlation coefficient for absolute agreement ICC(3,1) with sub-

ect effects modelled as random and session effects fixed ( McGraw and

ong, 1996 ). The data were formulated with a linear mixed-effects

odel ( Chen et al., 2018 ). For voxel-based (TDI) and surface-based anal-

sis, CV W 

, CV B and ICC were calculated at each voxel/vertex. 

. Results 

.1. Comparison with voxel-based method 

Seed distribution. The distribution of seeds that resulted in stream-

ines is illustrated in relation to the WSM in the top row of Fig. 2 . This

emonstrates that surface seeding produced a smaller number of unique

eeds yet appeared to provide a more consistent GMWMI coverage ob-

erved in both gyri and sulci. Despite this, a small minority of vertices

id not give rise to streamlines. 

Final tractograms. Compared to the voxel-based method ( Table 4 ),

he surface approach resulted in longer streamlines ( p < 0.001) with

engths distributed more evenly across the target range ( Fig. 2 , his-

ograms). Streamlines terminated closer to the surface ( p = 0.001), ap-

roached a larger number of vertices ( p < 0.001) and these vertices

ere more evenly distributed between gyri and sulci ( p = 0.021). In con-

rast, the voxel-based method offered a far less biased distribution of

treamline terminations between gyri and sulci ( p < 0.001) and had

lightly higher mean fractional anisotropy ( p < 0.001). Additionally,

he mean streamline-cortex angle was slightly greater with the surface-

ased approach ( Fig. 2 , bottom plots). Examining region-specific angles,

he same was true in the walls and sulci but the angle in the gyri was

reater with voxel-based approach. 

Streamline cropping. It was hypothesised that the difference in his-

ograms of streamline length was driven by differences in termination

nd/or filtering criteria. The surface approach only truncated the ter-

inal portions of each streamline where they extended into the cortex

hile everything in between remained unchanged. Filtered this way, it

as noted that streamlines would sometimes escape into the cortex in

etween these terminal portions but promptly return to the white mat-



D. Shastin, S. Genc, G.D. Parker et al. NeuroImage 260 (2022) 119423 

Fig. 2. Comparison of surface- and voxel-based strategies. A: Distribution of seeding coordinates (yellow) related to a section of the WSM (green) in the paramedian 

premotor cortex (region-defining box in the middle). With surface seeding, most (but not all) vertices resulted in streamlines, visually achieving a more spatially 

uniform distribution. B: Final tractograms for the same subject showing similar appearances except for minimal streamline extension in a few areas into the deep 

grey matter with the surface method. Bottom, upper row: Histograms of streamline length (averaged across cohort) show a near-linear decline with the surface 

method and roughly a power law decline with the voxel method. Illustration in the centre shows a streamline coursing tangential to the grey-white interface (semi- 

transparent). Most sections are subcortical (blue) but the few escapes into the grey matter (red) would have met the conventional termination criteria resulting in 

a considerably shorter streamline. Bottom, lower row: Plots of streamline angle at the cortex along the gyral blade (averaged across cohort) show less acute angle 

with the surface method. Also see legend for Figure 6 . Connectivity matrices in the centre show the number of streamlines connecting the five zones along the gyral 

blade (averaged across cohort) produced with the two methods. Colour represents streamline counts. 

7 
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Table 4 

Tractogram differences between surface- and voxel-based methods. 

Surface Method Voxel Method 

Mean SD Mean SD t-stat 1 p 2 

Streamline count 1.3M 97K 1.3M 97K matched matched 

Mean streamline length (mm) 19.61 0.18 10.27 0.28 51.81 < 0.001 

Mean distance to white surface vertex (mm) 3 0.37 0.00 0.57 0.07 -7.06 0.001 

Coverage (%) 90.03 1.09 85.45 1.21 17.94 < 0.001 

Coverage bias 4 1.02 0.01 0.96 0.01 -2.73 0.021 

Streamline ends in gyri (%) 72.08 0.85 51.40 1.08 86.72 < 0.001 

Mean fractional anisotropy 0.31 0.01 0.32 0.01 -17.50 < 0.001 

1 t-statistic with 5 degrees of freedom for each row (4 degrees for mean distance to WSM vertex). 
2 Paired T-test using within-subject averages, two-tailed unless specified otherwise. 
3 Sixth subject was excluded from the assessment as the voxel method’s result was an outlier (0.71 mm). 
4 One-tailed t-test for absolute deviation from 1. 
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er after a short distance. Without producing grossly aberrant shapes,

his enabled streamlines to contour the grey-white interface for longer.

his is illustrated in the 3D model at the bottom of Fig. 2 - the intra-

ortical segments (in red) are short, near-tangential to the surface and

hey do not deviate far. On the other hand, the voxel-based method did

ot allow streamlines to course through the cortex, leading to multi-

le interrupted, short segments. To confirm this was the key difference,

he first data set from each subject’s time series was processed analo-

ously to the main pipeline, except now streamlines were cropped ev-

ry time the WSM was traversed. Continuing with the illustration in

ig. 2 , the stricter cropping mechanics broke the streamline into three

horter (blue) streamlines by excluding the red segments. This crop-

ing method produced an average of 2 M streamlines with the mean

ength of 8.76 mm, demonstrating results very comparable to the voxel

ethod. As all processing steps up to the GWG filter were identical, this

ifference is directly attributable to cropping. Another major similarity

ith the voxel method was that 51.5% of streamline ends terminated

n the gyri, contrasting sharply against the 72.08% seen when crop-

ing at terminations only. Together, these findings strongly suggest that

ropping at terminations alone enabled streamlines to “navigate ” sulcal

undi more easily with more streamlines reaching the neighbouring gyri

herefore translating to increased bias. The connectivity matrices at the

ottom of Fig. 2 corroborate this by showing that gyri were joined by

any more streamlines compared to sulci. 

To verify that the streamlines did not veer deeply into the grey mat-

er when only their outer sections were truncated, the white matter mask

as dilated by 1 mm 

3 (to include the WSM which was used for crop-

ing). Across all available data sets, on average only 1.47% (range: 0.83–

.15%) of streamlines escaped this dilated mask and only 2.51% (range:

.40–3.41%) of SAF-containing voxels were found outside, confirming

hat throughout their length, > 95% of streamlines stayed approximately

ithin the confines of the WSM (allowing for the discrepancy between

he mesh and the voxel grid). 

Surface seeding. To study the role of surface seeding specifically, the

rst data set from each subject’s time series was processed analogously

o the main pipeline but the seeding was done from the voxel method’s

rey-white interface file using MRtrix tckgen’s -seed_rejection flag, mean-

ng the probability of seeding from a given voxel was proportional

o the voxel’s value. On average, this resulted in 1 M slightly shorter

18.48 mm) streamlines with reduced surface coverage (84.31%) but a

arginally decreased gyral bias (68.68%). This was not strictly repre-

entative of the voxel method’s seeding mechanic which was difficult to

eplicate precisely; however, it raises the possibility that surface seeding

ontributed to the difference in cortical coverage observed in Table 4 . 

.2. Effects of scanner, acquisition, resampling 

The experiments in the following section continue to employ the pro-

osed surface-based seeding and filtering method. 
8 
Fibre orientation distribution functions. While the shape and direction

f most glyphs at the grey-white interface did not differ strongly from

 visual perspective, some glyphs along the gyral wall had noticeably

ore anisotropy and radial orientation with the “state-of-the-art ” data,

articularly Connectom scanner; the same was even more evident in the

ortex (see Fig. 3 ). 

Whole-brain, 1st fODF peak angle plots performed in subject space

or all subjects confirm this observation, demonstrating increasingly ra-

ial orientation of peaks from deep white matter to cortex; again, “state-

f-the-art ” sequences showed by far the steepest increase in radiality go-

ng outwards, followed by smaller-voxel data and the use of Connectom

canner. 

Tractogram comparison. There were clear qualitative differences in

ractogram appearance depending on the scanner, acquisition, and re-

ampling used ( Fig. 5 ). Most notably, for some configurations there ex-

sted regions less densely populated by streamlines. The “standard ” se-

uences (lower angular and spatial resolution, lower b-values, lower

umber of shells) seemed particularly prone to this limitation. Using

ower spatial resolution data as well as the Prisma also appeared to con-

ribute to this effect, although to a lesser degree. Further, depending on

he scanner and sequence type used, the dominant direction of stream-

ines appeared to change in the crowns of some gyri. 

The linear mixed model revealed that the choice of scanner, ac-

uisition and resampling all had statistically significant effects on the

ractograms ( Table 5 ). Overall, in this cohort the sequence type and

ata resampling had the most influence on results, while the scanner

hoice appeared less important. Most notably, the streamline count was

rofoundly reduced when using “standard ” sequences and resampling

o larger voxel grids. While there was a statistical difference in mean

treamline length with the use of Prisma scanner and larger voxels, this

as in the order of 1-2 mm as opposed to the difference with the voxel

ethod (see Section 4.1 , “Comparison with voxel-based method ”). The

se of Prisma scanner, “standard ” sequences and larger voxels all re-

uced cortical coverage as well as the number of terminations in the

yri. Finally, mean fractional anisotropy decreased with Prisma and

standard ” sequences but increased with larger voxels, possibly as more

ignal from the deep white matter was included. 

Contribution of intermodal registration differences to resampling ef-

ects arising due to different voxel size was studied qualitatively (Ap-

endix E). A degree of misalignment between 1 mm and 2 mm data

rrespective of scanner or sequence type was obvious; however, the re-

ion particularly affected on Fig. 5 (yellow arrow) remained well aligned

and vice versa), suggesting that registration imperfections did not dom-

nate these results. Additionally, to assess whether resampling effects

ere linked to step size during tracking, tractography for a small num-

er of data sets with 2 ×2 ×2 mm 

3 voxels was repeated using a halved

0.5 mm) step size; this, however, produced similar results (data not

hown). 

Streamline angle at the cortex. The general shape of the distribution

emained similar irrespective of the parameters, with least acute an-
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Fig. 3. Comparison of fODFs (l max = 8, scale = 3) generated using Connectom (top row) and Prisma (bottom row), “state-of-the-art ” (left column) and ”standard ”

(right column) acquisitions for the same subject on a 1 mm isotropic voxel grid, affinely co-registered to the same T1-weighted volume. Inset in the bottom right 

shows the region compared. Green outline: grey-white interface, red outline: 1 mm superficial, blue outline: 1 mm deep. State-of-the-art acquisitions (particularly 

from the Connectom scanner) demonstrate increased anisotropy along the gyral wall with glyphs pointing radially (yellow arrowheads) or turning more sharply 

(purple arrowhead). Colour of the glyphs represents orientation: SI, superior-inferior; AP, anterior-posterior; RL, right-left. 
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les seen in the gyri, a near-parallel course along the walls followed by

 slight increase in angles near the sulci ( Figure 6 ). For all data sets,

he gyral and sulcal angles were more dispersed compared to the walls.

hile parameter-associated variation of mean angles in most sectors

tayed within a degree, in the sulci this increased prominently when

standard ” sequences and larger voxels were used, less obviously im-

acted by scanner choice. 

Distribution of connections along the gyral blade . Similar to Cohort

, connectivity matrices showed that streamlines forming connections

rom gyri to (same or other) gyri were the most prevalent ( Fig. 7 ).

his was followed by streamlines connecting gyri to walls and gyri to

ulci, with streamlines connecting sulci to sulci being the least com-

on. These differences remained broadly similar irrespective of the

arameters used, although their scale increased with Connectom scan-

er, “state-of-the-art ” sequences, and data upsampling. As all data sets

tarted with the same number of unfiltered streamlines and the filtering

as performed in the same way, the differences are likely due to how

he streamlines propagated at the integration step. Figs. 3 and 4 demon-
9 
trate that the “state-of-the-art ” sequence on the Connectom scanner had

ore above-threshold fODFs deeper in the cortex of the gyri and walls

ut not the sulci, with a more anisotropic, radially directed orientation

f fODF lobes. This could have resulted in more streamlines reaching the

ortex in those segments and thereby surviving the filtering, explaining

he differences in final streamline counts and their distribution. 

.3. Assessment of SAF tractograms 

Following the initial tractogram generation, the framework runtime

as 2-2.5 h with parallel processing (12 CPUs) enabled. On average,

6% of the original streamlines survived the filtering. Tractograms in

ohort A appeared to agree with the expected anatomy and no man-

al pruning was required ( Fig. 8 ). For the most part, SAF appeared

o course in a bundled fashion and there appeared to be numerous

ixing of bundles as highlighted by direction-encoded colour maps

 Figs. 2 , 5 , 8 ). Tractogram features of interest were already presented

n Section 4.1 ( “Comparison with voxel-based method ”). The distribu-
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Fig. 4. Effect of scanner, acquisition, resampling on the orientation of FODs (calculated for 1st peak only) in relation to the cortex, depending on the location along 

the gyral blade. Each plot shows average angle distributions across all subjects, sampled at three depths (green: grey-white interface, blue: 1 mm deep, red: 1 mm 

superficial). Mean angle is shown under each title (deep white/grey-white/cortex, respectively); same is provided on the x-axis for the five equal-area sectors of the 

gyral blade. Grey vertical lines illustrate boundaries between the five sections along the gyral blade. Green vertical lines represent 5–95% range used for average 

angle calculation. Connectom scanner, “state-of-the-art ” sequences, smaller voxel data all demonstrate steeper peak rotation from near-parallel to near-perpendicular 

orientation (from deep white to cortex, respectively) particularly in the gyral wall. 
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ion of values on the surface in a single subject is demonstrated seen in

ppendix D. 

Compared to the Connectom/SA/1mm voxel data set from Cohort B,

umber of streamlines (1.30 M vs 1.25 M), their mean length (19.61 mm

s 17.87 mm) and mean fractional anisotropy (0.31 vs 0.32) as well as

ortical coverage (90.03% vs 90.85%) and the percentage of streamline

nds in the gyri (72% vs 73%) were all of the same order (allowing

or some minor differences). The plots of streamline-cortex angle dis-

ributions ( Figs. 2 and 6 ) revealed greater mean angles throughout the

urface. 
10 
.4. Track density imaging maps 

Although TDI maps suggested an overall moderate reliability of the

patial distribution of streamlines (median ICC: 0.754), repeatability

as low (median CV W 

: 76.02%) suggesting a lot of variation within

ubjects ( Fig. 9 ). Median CV B was 287.64% (thresholded in the figure),

ttesting to a very high variation between subjects when comparing TDI

aps. The immediate subcortical areas showed the least consistency

typical values for CV W 

: 30–50% reaching 200–600%; typical values

or CV B : 300–400%), possibly due to cortical folding differences (and
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Table 5 

Effect of scanner, acquisition, resampling on the final SAF tractogram estimated using linear mixed effects modelling. Intercept is the 

mean for Connectom, SA ( “state-of-the-art ”) acquisition, smaller voxels (reference), and subsequent beta values are estimated fixed 

effect coefficients (representing deviations from that mean for Prisma, ST ( “standard ”) acquisition, larger voxels, respectively). The 

95% confidence interval is provided in the adjacent columns. 

s Beta Lower 95% Upper 95% p-value 

Intercept 1.25M 1.19M 1.30M < 0.001 

Scanner (Prisma) 18K -32K 68K 0.475 

Acquisition (ST) -340K -390K -290K < 0.001 

Voxel size (2 ×2 ×2 mm 

3 ) -309K -344K -273K < 0.001 

Scanner (Prisma) ×Acquisition (ST) 45K -26K 115K 0.213 

Mean streamline length (mm) 

Intercept 17.87 17.65 18.08 < 0.001 

Scanner (Prisma) 1.04 0.83 1.24 < 0.001 

Acquisition (ST) 0.24 0.04 0.45 0.019 

Voxel size (2 ×2 ×2 mm 

3 ) 2.08 1.93 2.22 < 0.001 

Scanner (Prisma) ×Acquisition (ST) -1.08 -1.37 -0.8 < 0.001 

Coverage (%) – power transformed ( 𝜆= 4.3) 

Intercept -0.08 -0.09 -0.07 < 0.001 

Scanner (Prisma) -0.01 -0.02 0 0.004 

Acquisition (ST) -0.03 -0.04 -0.02 < 0.001 

Voxel size (2 ×2 ×2 mm 

3 ) -0.03 -0.03 -0.02 < 0.001 

Scanner (Prisma) ×Acquisition (ST) 0.03 0.02 0.04 < 0.001 

Streamline ends in gyri (%) 

Intercept 0.73 0.73 0.74 < 0.001 

Scanner (Prisma) -0.01 -0.01 0 0.037 

Acquisition (ST) -0.04 -0.04 -0.03 < 0.001 

Voxel size (2 ×2 ×2 mm 

3 ) -0.03 -0.03 -0.02 < 0.001 

Scanner (Prisma) ×Acquisition (ST) 0.02 0.01 0.03 < 0.001 

Mean fractional anisotropy 

Intercept 0.32 0.31 0.32 < 0.001 

Scanner (Prisma) -0.01 -0.01 -0.01 < 0.001 

Acquisition (ST) -0.04 -0.05 -0.04 < 0.001 

Voxel size (2 ×2 ×2 mm 

3 ) 0.02 0.02 0.02 < 0.001 

Scanner (Prisma) ×Acquisition (ST) 0.02 0.02 0.03 < 0.001 

Fig. 5. Appearances of SAF tractograms depending on the choice of scanner, acquisition, resampling. A region from the right frontal lobe of the same subject is 

shown in coronal plane (inset in the left upper corner). Tractogram slices are 1 mm thick, all voxels are isotropic. Differences in streamline density are most noted 

along a sulcal wall (yellow arrow) and a gyral crown (red arrow). Local variation in the predominant direction of streamlines is also seen (green arrow, red arrow). 
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he associated registration imperfections) coupled with partial volume

ffects or less reliable tracking on the grey-white interface. 

.5. Surface-based analysis 

To minimise registration-related distortions and cortical folding-

riven differences, streamline data were projected on the surface in na-

ive space before applying surface registration ( Fig. 10 , also Appendix

). Analysis of termination density demonstrated moderate reliability

median ICC: 0.767) and low repeatability (median CV W 

: 31.55%) to-

ether with high between-subject variability (median CV B : 106.18%),

lthough this compared favourably to the results seen with TDI analy-
11 
is. Similar ICC coefficients and improved coefficients of variation were

hown for mean length per vertex (median ICC: 0.733, median CV W 

:

3.02%, median CV B : 40.36%) and mean FA per vertex (median ICC:

.687, median CV W 

: 8.05%, median CV B : 21.70%). 

. Discussion 

We have presented a focused approach to short association fibre

nalysis by marrying tractography with mesh representation of the

ortex motivated by the close association of SAF with the latter. We

ere specifically interested in studying the shorter pathways (consistent

ith the definition in Schüz and Braitenberg (2002) as these pathways
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Fig. 6. Effect of scanner, acquisition, resampling on the streamline-cortex angle, depending on location along the gyral blade. Each plot shows average angle 

distributions across all subjects. Colour bars represent streamline counts. Mean angle (not adjusted for streamline count) is shown in each title as ̄𝛼; same is provided 

on the x-axis for the five equal-area sectors of the gyral blade. Grey vertical lines illustrate boundaries between the sectors. Green vertical lines represent 5–95% 

range used for average angle calculation. Most differences appear in the sulci, with Prisma scanner, “standard ” sequence and larger voxels leading to increased mean 

angles. 
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re particularly sensitive to inter-individual cortical folding variations

 Bajada et al., 2019 ) and harder to study using the more established ap-

roaches ( Román et al., 2017 ; Zhang et al., 2018 ; Guevara et al., 2017 ;

an Essen et al., 2014 ). We believe that this study adds a number of

seful contributions to the literature. 

.1. Comparison with voxel-based method 

First, we compared surface- and voxel-based approaches in the con-

ext of SAF tractography. We demonstrated that the voxel method

roduced preferentially short streamlines (mean: 10.27 ± 0.28 mm,

edian: 6.29 ± 0.27 mm) with a uniform cortical coverage (evi-

enced by the connectivity matrices and minimal gyral bias). Con-

ersely, the surface method was more inclusive of longer streamlines
12 
mean: 19.61 ± 0.18 mm, median: 19.69 ± 0.36 mm) with predilec-

ion for connecting gyri consistent with the common definition of U-

bres ( Schüz and Braitenberg, 2002 ). This was due to the particular

ltering strategy we adopted; interestingly, contrary to our initial hy-

othesis, the main difference did not come from using a surface-based

pproach specifically but rather from choosing to remove only the ter-

inal intracortical streamline segments, meaning that incursions into

he cortex along the streamline course (which we demonstrated to be

inimal) were accepted. The effect may potentially be sought after in

he context of connectomics, clustering or shape analyses where the very

hort streamline length may decrease sensitivity to regional changes. On

he other hand, along-streamline microstructural sampling will be more

onfounded by partial volume effects. We explored this in the context of

ean fractional anisotropy; and with our small sample ( n = 6), the differ-



D. Shastin, S. Genc, G.D. Parker et al. NeuroImage 260 (2022) 119423 

Fig. 7. Effect of scanner, acquisition, and voxel 

size on SAF connectivity between different po- 

sitions along gyral blades. Cortical surface was 

divided into five zones with equal areas from 

sulcal fundi to gyral crowns. Each image shows 

the absolute number of streamlines connecting 

different zones across all subjects. Connectivity 

matrices suggest that Connectom, ”state-of-the- 

art ” sequence, small voxel size increased the 

overall number of connections but particularly 

so between gyral crowns and the surrounding 

areas. 
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1  
nce was marginal (surface mean: 0.31 ± 0.01, voxel mean: 0.32 ± 0.01)

ut statistically significant ( p < 0.001). We did not perform comparisons

ith alternative voxel-based techniques but expect that only truncating

he terminal intracortical segments would produce results akin to those

f our surface-based method. 
13 
Compared to filtering, the choice of seeding strategy, while seem-

ngly less impactful, still merited consideration. In our assessments,

urface-based seeding increased the coverage of the grey-white inter-

ace (from 84.31% to 90.03%) and resulted in more streamlines (from

.0 M to 1.3 M); however, we were not able to replicate the voxel-based
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Fig. 8. Final appearance of SAF tractogram following the filtering process. Left: SAF streamlines overlaid on the T1-weighted volume in dMRI space (coronal view, 

1 mm thick slice). Right, first column: SAF bundles will often deviate from the orthogonal planes in their course. Thicker slices (5 mm) are provided for a better 

appreciation of their extent. Right, second column: TDI maps of the same regions are provided. Regions on the left are represented in the right-hand columns under 

matching letters. 

Fig. 9. Repeatability of SAF using TDI map comparison in common space. All maps were superimposed on the average T1-weighted volume. CV W 

and CV B were 

thresholded at 100%. ICC was thresholded at < 0.5 and > 0.75. CV W 

, coefficient of variation within subjects. CV B , coefficient of variation between subjects. ICC, 

intraclass correlation coefficient. 

14 
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Fig. 10. Surface-based analysis demonstrated on the lateral cortex of the right hemisphere. N S , termination density (number of streamlines/vertex). L S , mean 

streamline length/vertex. FA S , mean streamline fractional anisotropy/vertex. CV W 

, coefficient of variation within subjects. CV B , coefficient of variation between 

subjects. ICC, intraclass correlation coefficient. Values at each vertex were recorded in subject space, then transformed into average subject space before running 

analyses. CV W 

and CV B were thresholded at 100%. 
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eeding strategy precisely. We did not explore the effects of placing more

eeds on the surface (for surface-based seeding) or increasing the seed

ask resolution (for voxel-based seeding). We would expect the former

o further increase cortical coverage (e.g., FreeSurfer WSM is particu-

arly anisotropic around the gyral crowns which was partially addressed

ith our remeshing strategy and could be further improved using uni-

orm surface sampling ( Bowers et al., 2010 ), and the latter to decrease

he number of streamlines and make them shorter (as fewer seeds will

e placed in the subcortical white matter negating the effects described

n Reveley et al., 2015 ). 

.2. Effects of scanner, acquisition, resampling 

Second, we investigated the impact of scanner, sequence, dMRI data

nterpolation on SAF tractograms produced with the surface method.

verall, the Connectom scanner, “state-of-the-art ” sequence (more

hells, stronger diffusion weighting, higher angular and spatial reso-

ution) and upsampled data had the most satisfactory results. Consid-

red in isolation, sequence type seemed to play the biggest role as the

state-of-the-art ” data had more streamlines and greater cortical cover-

ge. This is consistent with previous reports using higher angular resolu-

ion ( Vos et al., 2016 ) and was likely accentuated by using probabilistic

ractography ( Grisot et al., 2021 ). Similar changes were observed with

psampling, in keeping with the literature ( Dyrby et al., 2014 ; Shastin

t al., 2019 ). The choice of scanner (Connectom with MGA = 300 mT/m

s Prisma vs MGA = 80 mT/m) impacted the outcomes the least with
15 
ractograms demonstrating visually comparable results. This latter find-

ng suggests that the approach may be suitable for good-quality data

rom clinical scanners, making it more widely accessible. 

It remains uncertain whether sacrificing angular in favour of greater

patial resolution would be worthwhile for imaging this particular popu-

ation of fibres. Previous work has suggested the ideal voxel size of under

.85 mm isotropic to remain sensitive to the shorter subpopulations of

AF based on the smallest U-fibre turning radius of 0.95 mm ( Song et al.,

014 ; Movahedian Attar et al., 2020 ). Considering the angular error of

5–25° in the superficial white matter at 0.25–1 mm resolution across

 broad range of q-space sampling schemes and orientation reconstruc-

ion methods, the voxels would probably have to be even smaller ( Jones

t al., 2020 ). On the other hand, higher b-values and high angular res-

lution increase sensitivity to the intra-axonal component of the white

atter and allow a better resolution of crossing fibre orientations, re-

pectively ( Novikov et al., 2019 ; Vos et al., 2016 ; Jeurissen et al., 2014 ).

espite their lower spatial resolution, the tractograms of Cohort A ap-

eared to match, if not surpass in quality, those of Cohort B. Neverthe-

ess, fODF-based tractography algorithms may not perform as well in re-

ions with branching, turning, fanning fibres even when multiple fODF

eaks are detected ( Grisot et al., 2021 ). More focused research into this

uestion would be of benefit to mapping SAF in the future. It would also

e important to establish whether acquisition schemes and orientation

econstruction approaches that maximise the accuracy of SAF tractogra-

hy would degrade the fidelity of long tract delineation, and vice versa

 Shastin et al., 2019 ). 
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.3. Gyral bias 

Third, a special consideration was given to investigating gyral bias

n the context of SAF tractography. This was conducted by inspect-

ng tractograms, comparing distributions of streamline terminations and

treamline-associated vertices in gyri and sulci, and evaluating stream-

ine connections between sections along the gyral blade. Additionally,

e looked at the angle formed by first streamline segments and the over-

ying cortical mesh depending on the position along the gyral blade;

nd, in Cohort B, also the angle formed by first fODF peaks (at different

epths) and the overlying cortical mesh. 

Our filtering strategy produced longer streamlines that largely cir-

umvented sulcal fundi and connected gyri (72.1% terminations in the

yri). Enforcing strict streamline cropping for every WSM intersection

roduced a termination distribution that was strikingly similar to that of

he voxel-based method (51.5% of streamline ends in the gyri). This is

ignificant as we demonstrate that, aside from the underlying anatomy,

rientation reconstruction accuracy and tractography integration algo-

ithm, gyral bias is strongly dependent on filtering/termination crite-

ia. Histology suggests that fewer axons enter the cortex around the

ulcal fundi; this skew, albeit exaggerated, is also seen with tractog-

aphy ( Schilling et al., 2018 ). On the other hand, it is also well known

hat streamline density is not representative of the underlying axonal

ensity ( Schilling et al., 2018 ) or even the underlying fODF integrals

 Smith et al., 2015 ). Depending on the intended application, distribut-

ng weights to individual streamlines based on the diffusion signal

 Smith et al., 2015 ; Daducci et al., 2015 ) may provide a more biologi-

ally meaningful measure of connectivity although this remains to be ex-

lored in the context of SAF. For this to be effective, axonal populations

eed to be represented with at least some streamlines. Tractograms oc-

upied similar anatomical spaces with surface and voxel methods; how-

ver, certain areas (particularly near sulcal walls) became underrepre-

ented when the “standard ” sequences (as well as, to some degree, larger

oxel size and lower MGA scanner) were used. Quantitively, the sur-

ace method ( p < 0.001), “state-of-the-art ” sequences ( p < 0.001), data

psampling ( p < 0.001) and Connectom scanner ( p = 0.004) increased

ortical coverage. 

A secondary observation was that irrespective of acquisition param-

ters, resampling strategy or tractography approach used, the mean

treamline-cortex angle varied only by a few degrees. On this finer scale,

standard ” sequences and larger voxels promoted more “perpendicular-

ty ” with the cortex in the sulci. This goes against the existing histolog-

cal evidence whereby axons enter the sulcal cortex at near-tangential

ngles ( Van Essen et al., 2014 ; Schilling et al., 2018 ); these parameters

ere therefore unwanted. Furthermore, when comparing the orienta-

ion of fODF peaks at different depths with streamline orientation, it is

lear that the mean streamline orientation at the grey-white interface

in all sections along the gyral blade) largely followed that of the 1 st 

ODF peak at the same depth. The sharper rotation of peaks observed in

he cortex of the gyral walls with “state-of-the-art ” sequences (as well as

onnectom scanner and upsampled data) had no influence on streamline

rientation (0.5 mm step size). More generally, while the proportional

elationship between different sectors remained consistent with the pub-

ished histology ( Schilling et al., 2018 ), the range of absolute values was

uch lower (41°–46° for crowns, 13°–16° for walls with tractography,

8 ± 15° and 40 ± 17° with histology, respectively). This discrepancy is

ithin the angular error in the superficial white matter shown by Jones

t al. (2020) which is also an order greater than its variation arising from

ifferent q-space sampling schemes, orientation reconstruction methods

nd spatial resolution. 

.4. Surface representation 

Fourth, our approach to the representation of SAF-related measures

n the surface merits a mention. Projection of streamline-related data

n the surface can be achieved by searching for all streamlines within a
16 
phere around a WSM vertex ( Padula et al., 2017 ; Bajada et al., 2019 ).

his approach lacks specificity and in regions where non-continuous

arts of the cortical mantle lie in proximity with each other (e.g., oppo-

ite banks of a narrow gyrus), erroneous inclusion of streamlines may

ccur. Alternatively, streamline density ( Li et al., 2010 ; Nie et al., 2011 )

nd orientation termination ( Chen et al., 2012 ) around a surface vertex

ave been quantified as the number/orientation of streamlines penetrat-

ng the adjacent faces normalised by the combined surface area of the

aces. Our approach similarly relies on mesh intersection; however, by

owering fODF threshold (in the context of increased diffusion weight-

ng and higher angular resolution) we enable many more streamlines to

each the cortex. Alternatively, in tractograms where streamlines do not

ully approach the mesh, the allocation can be done using the shortest

uclidean distance; we applied this for the voxel-based method by pre-

lustering WSM vertices as described in Section 3.1.2 . Such “projection ”

n the surface is particularly suited in the context of SAF due to their

hort length and local course, ensuring each vertex is reasonably repre-

entative of its environment. It takes advantage of surface registration

nd may be used for per-vertex or cluster-based statistical comparison

ethods, circumventing the use of cortical parcellation if desired and

herefore avoiding the associated issues of lower sensitivity within and

rtificial boundaries between cortical regions. 

.5. Consistency of SAF tractograms 

Our analysis is complemented by the evaluation of whole-brain SAF

ractograms for repeatability, reliability, and between-subject variabil-

ty. This demonstrated varying results depending on the approach taken.

s expected, track density imaging maps demonstrated large variability

n the spatial distribution of SAF between individuals but also within

ndividuals; in the attempt to minimise the role of registration imperfec-

ions and partial volume effects, alternative measures such as regional

ensity and mean streamline length of SAF were compared by project-

ng them on the surface resulting in improved repeatability and reduced

etween-subject variability but similarly moderate reliability. This urges

aution when performing analyses that depend on streamline numbers

evidenced by TDI maps and termination density analysis). 

Consistency of whole-brain SAF representation with streamlines trac-

ography has previously been addressed. Zhang et al. (2010) empha-

ised large spatial variability and difficulty in manual region-of-interest

egmentation of these tracts advocating for an automated approach.

hang et al. (2014) demonstrated more short-range than middle-range

treamlines with HARDI and DSI data, consistent with our results, and

he reverse for DTI data. They proposed the inability of the latter to de-

ect crossing fibres and therefore more false negatives as the likely mech-

nism. Guevara et al. (2017) used parcellation and shape- and distance-

ased clustering and found low-to-moderate variability in streamline

ounts. Román et al. (2017) refined this method by using non-linear

egistration, allowing detection of within-node connections, clustering

arger streamlines and using a bagging strategy, and reported moderate-

o-high repeatability of individual bundles. Zhang et al. (2018) gener-

ted an atlas of white matter pathways without the use of a cortical

arcellation, and subsequently applied it to a number of additional data

ets with variable acquisition methods that spanned different age ranges

nd included clinical cohorts. The authors showed high between-subject

ariation and moderate overlap between subject and atlas clusters. The

tlases ( Guevara et al., 2017 ; Román et al., 2017 ; Zhang et al., 2018 )

ere later compared in MNI space for bundle similarity, showing good

verlap ( Guevara et al., 2020 ). The same paper compared the impact of

ifferent tractography algorithms on consistency of clustering, showing

hat probabilistic tracking was able to reconstruct all bundles in 100% of

ases with a greater spatial coverage but lower repeatability. All these

tudies, however, placed focus on longer cortico-cortical connections

starting from 20 to 35 mm) exclusively, highlighting poor performance

ith shorter streamlines ( Román et al., 2017 ). It must also be pointed

ut that all of the above-mentioned work performed shape-based clus-
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ering. Our approach, on the other hand, is agnostic to streamline shape

hich can be an advantage (being more inclusive) or a disadvantage (be-

ng more influenced by false positive streamlines). Shape-based exclu-

ion of noisy streamlines can be implemented ( Drakesmith et al., 2019 ;

arker et al., 2016 ); however, the limited availability of validation data

or SAF on the whole-brain scale makes identification of such stream-

ines difficult. At the same time, the data offered here can be consid-

red as a baseline for future methodological developments. Develop-

ent of better scanning hardware, orientation reconstruction and trac-

ography/optimisation algorithms will also facilitate greater fidelity of

he tractograms. The use of multimodal surface registration algorithms

 Robinson et al., 2014 ) may further improve surface-based consistency.

While not studying SAF on a whole-brain scale, the study by

ovahedian Attar et al. (2020) is of special interest as, in common

ith our approach, it relied on the length definition of Schüz and Brait-

nberg (2002) and used dMRI data acquired using ultra-high gradient

onnectom scanner (choosing higher spatial resolution over stronger

iffusion weighting). Using relative streamline counts, the study eval-

ated connectivity within the occipital cortex. The authors divided

he bundles into “retinotopic ” (reflecting known anatomy) and “non-

etinotopic ” (false positive by design) based on fMRI-derived regions-

f-interest. They demonstrated high consistency of “retinotopic ” bun-

les (ICC 0.88 ± 0.70, CV 0.23 ± 0.23) but also moderate consistency

f “non-retinotopic ” bundles (ICC 0.69 ± 0.35, CV 0.25 ± 0.14) which

uggests that measures of consistency for SAF are strongly confounded

y false positives and again underlines the need for better validation

ethods on a whole-brain level. 

.6. Limitations 

Some limitations of our work should be highlighted. 

First, despite performing detailed analyses of tractograms our study

oes not provide histological validation. We referenced existing work

 Van Essen et al., 2014 ; Reveley et al., 2015 ; Schilling et al., 2018 ;

oshino et al., 2020 ) to support our results; however, the lack of de-

ailed, whole-brain ground truth makes such correlation incomplete,

nd this applies to all SAF tractography work to date. It is our hope

hat this gap will be filled as the interest in mapping the subcortical

hite matter increases. Understanding the dominant fibre configura-

ions (crossing, bending, fanning, turning) in subcortical white matter

ill inform the choice of q-space sampling, orientation representation

nd tractography algorithms ( Grisot et al., 2021 ); while data on regional

ariability in length, shape, density of SAF will provide a benchmark for

ethodological innovation. 

Second, the two cohorts used for our analyses had small numbers.

he cohorts were chosen because collectively they included unique data

rom the Connectom scanner allowing the impact of using ultra-high

radient strengths to be assessed and offered multiple timepoints for re-

eatability analyses. While the results need to be treated with caution,

hese data allowed to understand parameters that have an important role

n SAF tractography, appreciate the limitations of the proposed frame-

ork, and identify areas for further development. Our results suggest

hat, in the context of our framework, SAF reconstructions from good

uality data collected on a clinical scanner are comparable to those from

ata collected on a Connectom scanner. This makes it possible to assess

he effects described here in larger cohorts; however, further testing is

utside the scope of this paper. 

Third, the use of cortical surface meshes is central to our frame-

ork and as such it remains sensitive to registration quality between

1-weighted and dMRI data. Data sets containing distortions (such as

hose arising from susceptibility differences) or unusual anatomy (e.g.,

umours) are more likely to suffer from misalignment between the sur-

aces reconstructed from T1-weighted images and the white matter sig-

al on dMRI. This makes visual inspection on an individual basis cru-

ial. dMRI-based surface extraction could offer an alternative solution
17 
 Liu et al., 2007 ; Li et al., 2010 ; Shastin et al., 2020 ) if performed at

ufficiently high resolution. 

Last, the filtering pipeline took about 2–2.5 h to run using parallel

PUs, following the initial tractogram generation. Based on our experi-

ents we judged that such approach is suitable for SAF tractography as

xact interaction between streamlines and cortical structures is impor-

ant. Further developments to the framework could include GPU-based

xecution and the use of geodesic rather Euclidean distance for cortical

oordinate clustering ( Lopez-Lopez et al., 2020 ). 

. Conclusions 

We consider our work to be a first-time application of a dedicated

hole-brain, surface-based SAF tractography approach aimed at refin-

ng the study of this white matter sub-population. Surface-based seed-

ng and filtering algorithms coupled with a streamline length criterion

 ≤ 30–40 mm) ensured larger cortical coverage (90%) and promoted

yrus-gyrus connections (72% streamline ends in the gyri) consistent

ith a common definition of short association fibres. Despite some ad-

antage of using the ultra-high maximum gradient amplitude scanner,

he “state-of-the-art ” acquisition sequences comprising higher angular

esolution and stronger diffusion weighting appeared to achieve compa-

able results with a clinical scanner making the framework more broadly

pplicable. “Standard ” sequences, however, appeared to underrepresent

ome subcortical white matter. There also appeared to be an advantage

n upsampling the data. At the same time, our voxel- and surface-based

valuations of streamline density showed moderate reliability, low re-

eatability, and high between-subject variability, urging caution with

treamline count-based analyses. Some limitations such as the discrep-

ncy between streamline and axonal trajectories at the grey-white inter-

ace continue to present challenge and must be taken into consideration.

verall, the presented framework could be used as a vehicle for inves-

igating SAF in health as well as in clinical cohorts while also offering

 platform for future methodological experimentation, while the data

resented here can be used for benchmarking. 
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