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It is highly demanding and challenging to maximise the stiffness of the interpenetrating phase compos-
ites (IPCs) while still keeping their isotropy. In this paper, the elastic properties of IPCs reinforced by three
different types of regular lattice fibre networks are investigated by computer simulation and analytical
methods. The numerical results indicate that the larger the difference between the Poisson’s ratios and
the smaller the difference between the Young’s moduli of the constituent materials, the larger the
Young’s moduli of these IPCs are. It is also found that structural hierarchy can enhance the stiffness of
these IPCs by 30%. In addition, the three types of IPCs have Zener anisotropy factors in the range of
1:0� 0:04 in most cases, could have an almost isotropic Young’s modulus two times larger than the
Voigt limit, and a Poisson’s ratio with a positive or negative or zero value. Moreover, they are easy to
manufacture, their Young’s moduli are in general 1.0–3.0 times those of the conventional particle or short
fibre reinforced composites and other types of IPCs including those reinforced by the triply periodic min-
imal surface (TPMS) shells, and the type of IPCs with the largest Young’s modulus has been identified.
Crown Copyright � 2022 Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Interpenetrating phase composites (IPCs) are a class of compos-
ites in which the constituent phases are continuous in their geom-
etry and each phase is interconnected in terms of its architecture
or microstructure to bear loads independently and hold the com-
pleteness of the structure, even if the other phases of the compos-
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ites fail [1]. The co-continuous structure of all the phases provides
the IPCs with various advantages in tuneable stiffness, strength,
coefficient of thermal expansion, high impact resistance and
enhanced ionic conductivity [2–11], compared to their conven-
tional, discretely reinforced counterparts, such as particle, whisker
or unidirectional fibre reinforced composites [12–17]. IPCs rein-
forced by a regular cubic or body centred cubic open-cell foam
structure have been studied by experimental measurements
[10,18,19], finite element (FE) simulation [20,21] and molecular
dynamics [7]. The effects of the constituent materials’ mechanical
properties, however, have not been systematically considered.
Foam based IPCs have been manufactured and found to be much
stiffer and stronger than those of the constituent foams [22]. Triply
periodic minimal surfaces (TPMS) are also regarded as promising
reinforcement structures for IPCs [23–25] and experimental results
indicated that the mechanical properties of the TPMS reinforced
IPCs were much better than those of the IPCs with the idealized
Schoen’s I-WP reinforcement structures at 15% volume fraction
[23,25]. However, this conclusion may need further consideration
as the connecting parts of the idealized reinforcement structure
are composed of sharp connection edges, which is not considered
a well-designed structure.

Notably, it has been found that the Young’s Modulus of an
almost isotropic composite can significantly exceed the Voigt limit
[26,27], which had long been regarded as an unreachable limit of
the stiffness of isotropic composite materials. Moreover, the Pois-
son’s ratio of IPCs was proved to be tuneable to any desired value,
e.g. positive, or negative, or zero when using special matrix mate-
rial or specifically designed auxetic reinforcement structures [26–
29]. Analytical approach and FE simulation also showed that in
addition to the superior mechanical properties, IPCs also per-
formed well in terms of their thermal and electrical conductivities
[30].

In general, the factors which affect the mechanical properties of
composites include the geometrical structure, mechanical proper-
ties of the constituent materials (such as Poisson’s ratios, Young’s
moduli), interphase conditions between reinforcement and matrix
[27,31]. Identical periodic cells, including cubic, and body-centred-
cubic (BCC or tetrakaidekahedral) cells have been widely used to
simulate the reinforcement structure of IPCs [20,21,27,32,33].
However, very little effort has been made to explore the combined
effects of the micro-scale structure and the mechanical properties
of the constituent phases on the effective mechanical properties of
the IPCs.

This paper aims to perform numerical simulations to investi-
gate these effects on the elastic properties of IPCs with different
types of geometric structures of the reinforcement phase, and to
achieve an almost isotropic Young’s modulus much larger than
the Voigt limit. In addition, an analytical approach will be intro-
duced to determine the normalised Young’ s moduli of the compos-
ites within the feasible design space of the Young’s moduli and
Poisson’s ratios of the constituent materials. The results obtained
in this paper will be compared to the relevant experimental and
simulation results of IPCs and conventional composites, and the
IPC with the largest and almost isotropic dimensionless Young’s
modulus will be identified. The IPCs studied in this paper can have
a size frommacro scale down to micro or nano scale, and they have
applications in most engineering structures.
2. Geometric structures and computational methods

2.1. Geometric structures

This paper focuses on the two-phase interpenetrating compos-
ites made of two homogeneous and isotropic constituent materials.
2

Thus, the reinforcement structure in a two-phase IPC is a kind of
open cell foam. As simple and easily manufacturable structures,
three types of reinforcement fibre network structures are consid-
ered: (I) cross-cubic, (II) cross-cubic with space diagonals, (III)
tetrakaidekahedral. All the reinforcement fibres are assumed to
have the same uniform circular cross-section and the matrix phase
completely and perfectly fills the porous space of the fibre-network
(i.e. there is no interlayer or defect between the fibres and the
matrix). Logically, the stiffer the reinforcement lattice structure,
the larger the stiffness of the IPC. Obviously, the cross-cubic lattice
has the largest nearly isotropic Young’s modulus among all differ-
ent types of open cell foams (fibre-networks), but the BCC and
cross-cubic lattice with space diagonals have better isotropy.
Moreover, all these three types of reinforcement fibre networks
are easy to produce compared to other perfect regular open cell
structures such as TPMS.

Representative volume elements (RVEs) are usually used to
model the mechanical properties of composites [34]. RVE models
should be sufficiently small to reduce the calculation time and suf-
ficiently large to include all the features and characteristics of the
structure to represent the target material. As all three types of IPCs
have periodic structures, periodic RVE models and periodic bound-
ary conditions are used to simulate their mechanical properties, as
shown in Fig. 1. The material in cyan colour represents the matrix
while the material in purple colour represents the reinforcement
fibre networks.

All three types of cubic RVEs are assumed to have the same edge
length L, the Young’s moduli and Poisson’s ratios of the constituent
materials (i.e. matrix and fibre-network) are denoted as Em; Ef ; mm
and mf , respectively. In order to compare their effective elastic
properties, the three different types of IPCs are assumed to have
the same volume fraction of the reinforcement fibre network mate-
rial Vf . To make it easier to partition the reinforcement fibre-
network into tetrahedral elements, the intersections of the fibres
are represented by the smallest possible spheres that can enclose
the intersection lines between the connected fibres. As the IPCs
are made of only two constituent materials, it is obvious that
Vf þ Vm ¼ 1. The volume fractions of the reinforcement fibre net-
work structures considered in this study range from 3% to nearly
the geometrical upper limit of each type of the structures. The fibre
diameters of the three types of reinforcement fibre networks dI , dII

and dIII should thus satisfy the following relations:

dI < L# ð1Þ

dII <
ffiffi
2

p
1þ

ffiffi
3

p L# ð2Þ

dIII <
ffiffi
6

p
8 L# ð3Þ

where L is the edge length of the corresponding cubic RVE model.
Thus, the maximum fibre volume fractions (i.e. upper limits) of

the three types of IPCs considered in this study are given below in
Table 1. It should be noted that if the fibre volume fraction is too
small, the total number of elements of the RVE model would be
too large, which would be significantly increase the computational
cost.

When the volume fractions of the reinforcement fibre networks
approach their upper limits, the corresponding matrix structures of
the three types of IPCs are shown below in Fig. 2.

2.2. Model parameters

In order to explore how the elastic properties of the IPCs are
affected by those of their constituent materials and volume frac-
tions, the Young’s moduli and Poisson’s ratios of the constituent
materials should be in reasonable ranges.



Fig. 1. Periodic RVE models of IPCs reinforced by three different types of self-connected regular fibre networks: (a) Type I, (b) Type II, (c) Type III.

Table 1
Fibre volume fractions of different types of composite structures.

Min Volume fraction Max Volume fraction

Type I 3% 90%
Type II 3% 85%
Type III 3% 80%
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The Young’s moduli of most metals, alloys, ceramics and carbon
fibres are in the range between 60 and 400 GPa; and most solid
polymers have a Young’s modulus from 0.1 to 10 GPa [35]. In most
metal matrix composites reinforced by a metal or ceramic, the
ratio Ef =Em stays in the range from 2 to 10, e.g. Al/Al2O3 IPCs
[36]. In this paper, the Young’s modulus of the matrix material is
assumed to be Em ¼ 1, thus the Young’s modulus of the fibre-
network material is Ef ¼ Ef jactual=Emjactual, and the obtained effective
Young’s modulus of the IPC, Ec , is a dimensionless modulus which
has already been normalised by the Young’s modulus of the matrix
material.

Although the possible Poisson’s ratios of isotropic materials are
in the domain (�1, 0.5), most natural materials have a positive
Poisson’s ratio. For example, cork’s Poisson’s ratio is very close to
0 [37]; Beryllium and Boron are close on the periodic table and
have similar Poisson’s ratio between 0.02 and 0.1 [38]; Bones have
a Poisson’s ratio from 0.1 to 0.2, woods are anisotropic materials
with a directional Poisson’s ratio from 0.2 to 0.4; and the Poisson’s
ratios of metals such as iron, aluminium and copper lie in the inter-
val of (0.2, 0.4). When it comes to synthetic or fabricated isotropic
materials, however, the range of their Poisson’s ratios is signifi-
Fig. 2. The corresponding matrix structures in the RVEs when
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cantly widened. Solid polymer/rubber and low density regular or
irregular open cell foams have a Poisson’s ratio close to the upper
limit 0.5 [39,40]; modern carbon fibre fabrications and their com-
posites can have a Poisson’s ratio from 0.02 to negative [38]; re-
entrant foams [41], auxetic composites can have an isotropic Pois-
son’s ratio close to �1.0 [35].

In the simulations of this paper, Ef =Em ¼ 2 is for two similar
constituent phases (e.g. metal-ceramic IPCs) and Ef =Em ¼ 10 is for
two constituent phases with some larger difference in Young’s
moduli (such as polymer-aluminium or resin-glass IPCs). It has
been found that the Young’s moduli of an almost isotropic compos-
ite could be tuned to surpass the Voigt limit with disparate Pois-
son’s ratios [26,27]. Thus, mm and mf are set to be as different as
possible within the possible range of isotropic materials to show
the effect of Poisson’s ratios of the constituent materials on the
elastic performance of the IPCs. Based on the above discussion,
the possible values of Em; Ef ; mm and mf of the constituent materials
of the IPCs are given in Table 2.
2.3. Computational method

The RVE models of the IPCs reinforced by the three different
types of fibre-networks as shown in Fig. 1 are constructed in ANSYS
software [42]. Both the fibre and matrix in each RVE model are dis-
cretized by solid 187 tetrahedral elements. As all three types of
IPCs are periodic, periodic boundary conditions are applied to the
RVE models in the finite element simulations. To obtain the
effective Young’s modulus Exx and Poisson’s ratio vxy of the IPCs,
their fibre volume fractions approach their upper limits.



Table 2
Young’s moduli and Poisson’s ratios of the constituent materials.

Ef =Em 2 10
mf 0.05 0.49
mm �0.8 0.49

Z. Zhang, H. Zhu, R. Yuan et al. Materials & Design 221 (2022) 110923
a tensile strain of 0.1% is applied to the RVE models in the [100]
direction in the simulations.
3. Results

The focus of this study is to investigate how the elastic proper-
ties of the IPCs depend on the geometrical structure and the vol-
ume fraction of the reinforcement fibre-network, and the
combination of the elastic properties of the two constituent mate-
rials. As all three types of RVEs have cubic symmetry, the IPCs have
only three independent elastic constants [39] to be determined,
namely Exx, Gxy and mxy. Further, the factor of their anisotropy will
be evaluated.

3.1. The normalised Young’s moduli of IPCs

To study how the elastic properties of these IPCs depend on
those of their constituent materials, six different combinations of
the elastic properties of their constituent materials are considered
and given in Table 3. For the convenience to compare the Young’s
moduli of the IPCs with those of other composite materials, the
Young’s moduli of the IPCs are normalised by the Voigt limit and
expressed as

En ¼ Ec=EcVoigt# ð4Þ

where EcVoigt ¼ Ef Vf þ EmVm.
For different combinations of the constituent materials given in

Table 3, Fig. 3 presents the comparison of the normalised Young’s
moduli of the three types of IPCs. The broken horizontal line with a
dimensionless value of 1.0 stands for the Voigt limit normalised by
itself. Thus, the results plotted above this line indicates that the
Young’s modulus of the IPC Ec is larger than the Voigt limit.

As can be seen from Fig. 3, the normalised Young’s moduli En of
the IPCs decrease, reach their lower limits, and then increase with
the increase of the fibre volume fraction when both mf and mm are
positive. Most of the values of the normalised Young’s moduli of
the IPCs, En, are smaller than 1, indicating that the Young’s moduli
of the IPCs are smaller than the Voigt limit. However, when mf is
positive and mm is negative, the normalised Young’s moduli of the
IPCs increase first, reach their peaks, and then decrease with the
increase of the fibre volume fraction as can be seen in Fig. 3(c)
and (d). En is larger than 1 in most of the fibre volume fraction
range and can be significantly larger than 2.0 in some conditions.
Fig. 3(c) shows that for IPCs with Ef =Em ¼ 2 and the Poisson’s ratio
of their matrix being negative, their largest normalised Young’s
modulus can be obtained when the fibre volume fraction Vf is
between 20% and 30%. For similar IPCs with Ef =Em ¼ 10, Fig. 3(d)
Table 3
Parameters of the constituent materials used in comparison of the normalised
Young’s moduli of type I, II and III IPCs.

mf ¼ 0:49,
mm ¼ 0:05

mf ¼ 0:49,
mm ¼ �0:8

mf ¼ 0:3,
mm ¼ 0:3

Ef =Em ¼ 2 Fig. 3(a) Fig. 3(c) Fig. 3(e)
Ef =Em ¼ 10 Fig. 3(b) Fig. 3(d) Fig. 3(f)
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indicates that the largest normalised Young’s modulus can be
achieved when the fibre volume fraction Vf is around 10–15%.

In general, En increases with Ef =Em approaching 1 and with the
increase of mf � mm

�� ��. The normalised Young’s modulus of the type I
IPC is larger than those of the other two types of IPCs when the
Poisson’s ratios of both the two constituent materials are positive.
However, when the difference of Poisson’s ratios of the two con-
stituent materials is large (i.e. mf is positive and mm is negative),
the normalised Young’s modulus of the type III IPC is larger than
that of the type II, and the latter is larger than the type I in most
of the cases. The possible reason is that the much larger stiffness
of the type-I reinforcement fibre network (i.e. ‘open cell foam’)
dominates the stiffness of the IPC when the difference of Poisson’s
ratios of the two constituent materials is small. When the differ-
ence of Poisson’s ratios of the two constituent materials is large,
the stresses and strains in the type-III IPC are more non-uniform,
and the much higher stress and strain concentration in the type-
III IPC results in larger stored strain energy density and conse-
quently larger stiffness of the IPC. This finding may provide a
guideline for designing new lattice reinforced IPCs with the possi-
ble largest and almost isotropic stiffness. Thus, the largest stiffness
of almost isotropic IPCs depends on the interplay among the stiff-
ness of the reinforcement fibre-network (‘open cell foam’), the
combination of the constituent material properties, and the stress
and strain concentration level.

Here the extreme negative Poisson’s ratios of matrix materials
are selected to test the structures which are hard to find in com-
mon non-porous materials. However, it has been demonstrated
that with materials of easy-access and proper reinforcement struc-
tures, the Poisson’s ratio of solid composites can be designed to be
either positive, or negative, or zero [28]. It is possible to use these
structures as the matrix in all three types of IPCs in this work. For
example, the type-I solid auxetic structure (composite) of refer-
ence [28] (as shown in Fig. 4(a)) can be used as the matrix of the
type-I IPCs in this paper (as shown in Fig. 4(b)). The type-I solid
auxetic structure (composite) in reference [28] can reach a Pois-
son’s ratio of �0.4 with proper solid constituent materials. Fig. 4
(c) demonstrates that the normalised Young’s modulus of the
type-I IPCs with their matrix being a solid auxetic composite can
be larger than the Voigt limit.

3.2. The Poisson’s ratio of the IPCs

Fig. 5. shows the effects of fibre volume fraction on the Poisson’s
ratios of different types of IPCs with different combinations of the
constituent material properties. As can be seen, there is no obvious
difference between the Poisson’s ratios of these three different
types of IPCs, and they all can be positive, negative or zero depend-
ing on the constituent material properties and the fibre volume
fraction. Although a negative Poisson’s ratio cannot be achieved
by the three types of IPCs studied here when the Poisson’s ratios
of both the constituent materials are positive, the effective Young’s
moduli of these IPCs are much larger than those of the auxetic IPCs
[28].

3.3. The anisotropy factors of the IPCs

As all three types of the IPCs have cubic symmetry, they have
only three independent elastic constants and the anisotropy factor
can be expressed as [39]

A ¼ 2ðS11�S12Þ
S44

¼ 2ð1þvxyÞGxy

Exx
# ð5Þ

where Sij denote the components of the compliance matrix, vxy rep-
resents the Poisson’s ratio, Gxy the shear modulus and Exx the
Young’s modulus of the IPCs. The Young’s moduli and Poisson’s



Fig. 3. Comparison of the normalised Young’s moduli of the three types of IPCs with different combinations of constituent material properties.
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ratios of the three types of IPCs are obtained and presented in Figs. 3
and 5, and their shear moduli are also obtained by simulations. As
the shear moduli of the three types of IPCs are similar to their
Young’s moduli shown in Fig. 3 and the main difference is their
magnitudes, the results are not presented here. Thus, their aniso-
tropy factors can be obtained from Equation (5) and the results
are shown in Fig. 6. As can be seen, the anisotropy factors of the
three types of IPCs are very close to 1.0 except for the case with
the constituent material properties shown in Fig. 6(b). Therefore,
the elastic properties of all three types of IPCs are almost isotropic
in most cases, e.g. the cases with the difference between the
Young’s moduli of the two constituent materials not being too large
as shown in Fig. 6(a) and (c).

3.4. The feasible design space of the IPCs

The Young’s modulus Exx and Poisson’s ratio vxy of the IPCs rein-
forced by a cubic fibre-network can be theoretically obtained by
solving a set of linear equations [27]. To simplify the analysis,
the reinforcement fibres are assumed to have a uniform square
5

cross section of side length T. The analytical results of the nor-
malised Young’s moduli En of the type I IPCs can be obtained by
solving a set of simultaneous equations given in appendix 1.

Fig. 3(c) indicates that the type I IPC with cylinder fibres can
achieve a maximum normalised Young’s modulus when the fibre
volume fraction Vf ¼ 0:2. The same value is selected in the theoret-
ical analyse in this section. Thus T=L � 0:28714 is obtained from

Vf ¼ 3LT2 � 2T3
� �

=L3 ¼ 0:2: Confining the Poisson’s ratio of the

fibre material mf to (0, 0.5) and that of the matrix mm to (�1, 0.5),
the effects of mf , mm on the normalisedYoung’s moduli of the type
I IPCs with a fixed fibre volume fraction Vf ¼ 0:2 and different
ratios Ef =Em ¼ 2 and Ef =Em ¼ 10 can be analytically obtained and
shown in Fig. 7, where the grey horizontal plane represents the
normalised Voigt limit EV .

Furthermore, if the Young’s modulus of the fibre material Ef var-
ies from 1 to 100 and that of the matrix Em varies from 1 to 10, the
effects of Ef and Em on the normalised Young’s moduli (i.e. nor-
malised by the Voigt limit and obtained by the analytic method)
of the type I IPCs with the fixed fibre volume fraction Vf ¼ 0:2



Fig. 4. (a) The solid auxetic composite with a negative Poisson’s ratio [28], (b) the type-I IPC with its matrix being made of the solid auxetic composite, (c) demonstration of
the type-I composites with their Young’s moduli larger than the Voigt limit.

Fig. 5. Comparison of the Poisson’s ratios of the three types of IPCs with different combinations of the constituent material properties.
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and two different combinations of the Poisson’s ratios of their con-
stituent materials mf ¼ mm ¼ 0:3 and mf ¼ 0:49, mm ¼ �0:8 are illus-
trated in Fig. 8, where the grey horizontal plane represents the
normalised Voigt limit EV and the pink vertical plane represents
the cases when Em ¼ Ef . Obviously, the closer the Young’s moduli
of the two constituent materials Em and Ef , the larger the effects
of the Poisson’s ratios of the constituent materials on the nor-
6

malised Young’s moduli of the IPCs, and the IPCs have the largest
normalised Young’s moduli when Em ¼ Ef .

3.5. The self-similar hierarchical structure of IPCs

All the IPC structures presented in this paper have the potential
to form self-similar hierarchical structures to further tune their
mechanical properties. Here a two level self-similar hierarchy



Fig. 6. Comparison of the anisotropy factors A of the three types of IPCs with different combinations of the constituent material properties.

Fig. 7. Effects of mf and mm on the normalised Young’s moduli En of the type I IPCs with a fixed volume fraction Vf ¼ 0:2: (a) Ef =Em ¼ 2; (b) Ef =Em ¼ 10.

Fig. 8. Effects of Ef and Em on the normalised Young’s moduli of the type I IPCs with a fixed fibre volume fraction Vf ¼ 0:2: (a)mf ¼ 0:49; mm ¼ �0:8. (b) mf ¼ mm ¼ 0:3.

Z. Zhang, H. Zhu, R. Yuan et al. Materials & Design 221 (2022) 110923
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Fig. 9. Effects of self-similar structural hierarchy on the Young’s moduli of the type I IPCs with different fibre volume fractions Vf ¼ 0:1;0:2;0:3;0:4. (a) schematic illustration
of the hierarchical structure; (b) the enhancement of the Young’s modulus by structural hierarchy.
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based on Type I IPC structure has been designed as shown in Fig. 9
(a). The first level composite is made of two component materials
with Ef ¼ 2:0, mf ¼ 0:49, Em ¼ 1:0, mm ¼ �0:8 and the first level IPC
acts as the matrix of the second level, the reinforcement material of
the second level is the same as that of the first level. For the self-
similarity, the fibre volume fraction of the second level Vf2 and
the first level Vf1 are the same, thus Vf1 ¼ Vf2 ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Vf

p
.

Fig. 9(b) shows the comparison between the elastic moduli of the
hierarchical IPCs and the single-level IPCs with the same total fibre
volume fractions. As can be seen, structural hierarchy can signifi-
cantly enhance the normalised Young’s moduli of the IPCs.
4. Discussion

As the traditional particle composites and unidirectional fibre
reinforced composites have been well investigated, it is necessary
to compare the elastic properties of the lattice structured IPCs in
this paper to those of the conventional counterparts. Chawla
et al. [43] have done both experimental measurements and com-
putational simulation on the elastic properties of SiC/Aluminium
particle composites. Dekkers and Heikens [44] have tested the ten-
sile behaviour of polystyrene-glass-bead composites. Rousseau and
Tippur have studied the fracture behaviour of compositionally
graded epoxy based glass particle composites [45]. Comparing
the conventional composites to the IPCs could prove that reinforce-
ment with a self-connected phase significantly enhances the elas-
tic properties of IPCs with the same constituent materials and fibre
Table 4
Summary of particle reinforced composites used for comparison with our models.

Composites Ef (MPa)

SiC /Al [43]* 410,000
Glass/Polystyrene [44] 70,000
Glass /Epoxy [45]** 69,000

*Computational results from Ref. [43] are taken for comparison.
**Experimental results from Ref. [45] are taken for comparison.

Table 5
Reinforcement volume fractions of the particle reinforced composites in reference papers.

Composites Reinforcement volume fractions

SiC/Al [43] 10% 20%
Glass/Polystyrene [44] 10% 15%
Glass/Epoxy [45] 14% 22%

8

volume fraction. The elastic properties of the constituent materials
in the conventional particle reinforced composites in the reference
papers [43–45] are listed in Table 4, and their reinforcement vol-
ume fractions are listed in Table 5.

Fig. 10 shows the comparison between the normalised Young’s
moduli of the IPCs reinforced by the three types of regular fibre-
networks in this paper and those of the particle composites in
the reference papers [43–45]. As can be seen, the three types of
IPCs in general have a normalised Young’s modulus larger than
those of the particle composites.

Although IPCs can be fabricated via different methods
[22,23,32,36] as shown in Fig. 11, however, it is hard to fabricate
IPCs, especially those whose reinforcement phase is a well-
connected lattice (or a regular) structure. Thus, the relevant exper-
imental samples and results in literature often lack the compre-
hensiveness for exploring their superior mechanical properties.
Here, the relevant experimental and numerical results of the IPCs
in literature [22,23,32,36] are compared with the simulation
results of the IPCs in this paper. The elastic properties and the vol-
ume fractions of the constituent materials in the IPCs in literature
are listed in Table 6, and the normalised Young’s moduli of those
IPCs are compared with our results in Table 7 and Fig. 12.

As can be seen from Table 7, the Young’s moduli of the IPCs in
this paper are better than those of the IPCs fabricated with syntac-
tic foam [22,32], the alumina-aluminium composites [36], and the
TPMS-IPCs [23] which are relatively difficult to fabricate with met-
als like aluminum or steel. Al-ketan et al [23] have used 3D printing
to manufacture periodic IPCs reinforced by four different types of
mf Em(MPa) mm

0.19 74,000 0.33
0.22 3250 0.34
0.15 3000 0.35

30%
20% 25%

28% 35% 43%



Fig. 10. Comparison between the normalised Young’s moduli of the three types of structured IPCs and those of the traditional particle composites in literature: (a) the
computational results in [43], (b) experimental results in [44] and (c) the experimental results in [45].

Fig. 11. Different IPCs from literature for comparison. (a) Syntactic Foam with coated aluminium scaffold [22]. (b) Syntactic Foam reinforced by metal foams using open-cell
Duocel� aluminium [32]. (c) Al/Al2O3 composites [36]. (d) TangoPlus/VeroWhite composites formed by Boolean operations from TPMS [23]. All these results are experimental
except Jhaver and Hareesh’s work [22].
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Table 6
The elastic properties of the constituent materials and the fibre volume fractions in
IPCs in literature.

Composites Ef (MPa) mf Em (MPa) mm Vf

Syntactic Foam/Al [22] 68,900 0.34 1600 0.33 0.09
Syntactic Foam/Al [32] 69,600 0.35 5122 0.34 0.08
Al/Al2O3 [36] 380,000 0.35 69,600 0.25 0.65
TangoPlus/VeroWhite [23] 1660 0.3* 0.7456 0.3* –
Normalised in simulation [24] 1000 0.33 1.0 0.33 –
TangoPlus/VeroWhite [46] 1660 0.3 0.75 0.3 –

Table 7
Comparison between the normalised Young’s moduli of the different types of IPCs in
this work and those of the IPCs in literature.

IPCs in literature EN

Type 1 Type 2 Type 3 Results in literature

Syntactic Foam/Al [22] 0.583 0.378 0.333 0.276
Syntactic Foam/Al [32] 0.761 0.640 0.626 0.602
Al/Al2O3 [36] 0.871 0.789 0.791 0.792
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TPMS shells and experimentally measured their elastic properties.
Dalaq et al [24] have used finite element method to simulate the
elastic properties of these TPMS-IPCs. The type D of shell TPMS IPCs
(D-IPCs) possesses both good mechanical performance and iso-
tropy. Four types of shell TPMS IPCs were also fabricated by 3D
printing and the secondary IWP (IWP-S) IPCs have the largest
Young’s Moduli [46]. Here, the normalised Young’s moduli of the
D-IPCs obtained by experiments [23] and simulations [24], as well
as those of the IWP-S obtained by experiments [46] are compared
with the results of our models in Fig. 12(a), (b) and (c), respec-
tively. As can be seen, the IPCs in this paper in general have obvi-
ously larger Young’s moduli than those reinforced by TPMS shells.
For IPCs made of conventional constituent materials (i.e. with con-
stituent materials having positive Poisson’s ratios), the IPC rein-
forced by a cubic fibre-network has a larger Young’s modulus
than those of all other types of IPCs including the TPMS-IPCs.

It is noted that the composites with their reinforcement phase
being a regular cubic closed cell foam of uniform wall thickness
[26,30] have an almost isotropic Young’s modulus larger than
those of all other different types of nearly isotropic composites
and have a completely isotropic thermal or electric conductivity
that is the same as the theoretical upper limit of all the isotropic
composites. The high stiffness of the composites designed in [26]
is because regular cubic closed cell foams with a uniform wall
thickness have the largest almost isotropic stiffness among all
the single-phase cellular materials as confirmed by literature
[47], however, the composites in [26] are not IPCs.
5. Conclusion

In this paper, the effects of the constituent materials and the fibre
volume fraction on the effective elastic properties of three different
types of IPCs are investigated by finite element simulation and ana-
lytical methods. It can be concluded from the results that the elastic
properties of these of IPCs are almost isotropic, their Young’s moduli
could be much larger than the Voigt limit, and their Poisson’s ratios
could be positive, or negative, or zero. This is in line with the analyt-
ical results in [26,27]. The normalised Young’s moduli of the IPCs
depend strongly on the geometrical structure of the reinforcement
fibre network, the Poisson’s ratios and the ratio of the Young’s mod-
uli of the two constituent materials.

In general, the normalised Young’s modulus of the IPCs in this
paper increases when the ratio Ef =Em approaches 1 and when the
value of mf � mm

�� �� increases. When the Poisson’s ratios of the two
10
constituent materials are both positive, the normalised Young’s
modulus of the type-I IPC is larger than those of the other two
types of IPCs. In contrast, when the difference of Poisson’s ratios
of the two constituent materials is large (i.e. mf is positive and mm
is negative), the normalised Young’s modulus of the type-III IPC
is larger than that of the type II, and the latter is larger than the
type I in most of the cases. The possible reason is that the much lar-
ger stiffness of the type-I reinforcement fibre network (i.e. an ‘open
cell foam’) dominates the stiffness of the IPC when the difference of
Poisson’s ratios of the two constituent materials is small. When the
difference of Poisson’s ratios of the two constituent materials is
large, the stresses and strains in the Type III IPC are more non-
uniform, and the much higher stress and strain concentration in
the Type III IPC results in larger stored strain energy density and
consequently larger stiffness of the IPC. When Ef =Em is small (e.g.
Ef =Em ¼ 2), all three types of IPC are almost isotropic even when
the Poisson’s ratios of the constituent materials are very different.
When Ef =Em is large, the anisotropy of the IPCs is more dominated
by the reinforcement fibre network.

The Young’s moduli of the IPCs in this paper are larger than
those of their conventional counterparts like particle and short
fibre reinforced composites. The theoretical background is that in
IPCs, some struts/fibres can directly provide the ‘springs-in-paral
lel’ stiffening mechanism, while the other fibres can enable and
enhance the stiffening mechanism or effects of the different Pois-
son’s ratios of the constituent materials. In the particle composites,
however, the only stiffening mechanism is the ‘springs-in-series’
which is much weaker than the ‘springs-in-parallel’. Moreover,
these three types of IPCs are relatively easy to manufacture, and
have an additional mechanism for warning possible failure (e.g.
by application of an electric signal). When both the constituent
materials are conventional isotropic materials with positive Pois-
son’s ratios, the type-I IPC has the largest Young’s modulus among
all different types of IPCs including the TPMS-IPCs in [23,24].
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Appendix I

The geometrical structure shown in Fig. A1 is a 1/8 of the RVE
model of the type-I IPC (in Fig. 1a), where l denotes half the edge
length of the RVE (l = L/2). To simplify the analysis, the self-
connected reinforcement fibres are assumed to have a uniform
square cross-section with t being half the edge length of the
cross-section (t = T/2). This 1/8 RVE structure could be used to per-
form theoretical analysis on the stiffness of the type-I IPCs, and the
structure can be divided into 8 parallelepipeds. When the IPC is
stretched by a strain ex in the � direction, according to the struc-
tural symmetry, the normal stress components in the paral-
lelepipeds are denoted as rx1;rx2;rx3;ry1;ry2;ry3 and ry4, and
the corresponding lateral strain is denoted as ey.

The force equilibrium and the deformation compatibility condi-
tions require the following relations to be satisfied:

l� t
lEB

rx1 � mBry1 � mBry4
� �þ t

lEA
rx1 � mAry2 � mAry3
� � ¼ ex ðA1Þ

l� t
lEA

rx2 � 2mAry1
� �þ t

lEA
rx2 � 2mAry2
� � ¼ ex ðA2Þ

l� t
lEB

rx3 � 2mBry4
� �þ t

lEB
rx3 � 2mBry3
� � ¼ ex ðA3Þ



Fig. 12. Comparison between the normalised Young’s moduli of the three types of IPCs in this paper and the IPCs reinforced by different types of TPMS shells in (a) Ref. [23],
(b) Ref. [24], (c) Ref. [46].

Fig. A1. 1/8 RVE of the type-I IPCs for theoretical analysis.
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l� t
lEB

ry1 � mBrx1 � mBry4
� �þ t

lEA
ry1 � mArx2 � mAry1
� � ¼ ey ðA4Þ
l� t
lEA

ry2 � mArx1 � mAry3
� �þ t

lEA
ry2 � mAry2 � mArx2
� � ¼ ey ðA5Þ
l� t
lEB

ry3 � mBrx3 � mBry3
� �þ t

lEA
ry3 � mArx1 � mAry2
� � ¼ ey ðA6Þ
l� t
lEB

ry4 � mBry4 � mBrx3
� �þ t

lEB
ry4 � mBrx1 � mBry1
� � ¼ ey ðA7Þ
l� tð Þ2ry4 þ l� tð Þtry1 þ l� tð Þtry3 þ t2ry2 ¼ 0 ðA8Þ
The 7 unknown normal stress components and the lateral stress

ey can be determined by solving the above 8 simultaneous equa-
tions. Thus, the effective Young’s modulus and the Poisson’s ratio
of the IPC can be obtained.
Appendix II

The von Mise stress contour images of the deformed RVEs of the
type I and III IPCs are provided here for comparison, where Ef ¼ 2,
Em ¼ 1 and the uniaxial tensile strain ex ¼ 0:001 (see Fig. A2).



Fig. A2. The von Mises stress contour images of the deformed RVEs with Em ¼ 1, Ef =Em ¼ 2. (a) Type I, mf ¼ mm ¼ 0:3. (b) Type I, mf ¼ 0:49, mm ¼ 0:05. (c) Type I, mf ¼ 0:49,
mm ¼ �0:8. (d) Type III, mf ¼ mm ¼ 0:3. (e) Type III, mf ¼ 0:49, mm ¼ 0:05. (f) Type III, mf ¼ 0:49, mm ¼ �0:8.
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Fig. A2 (continued)
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