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Abstract—Task knowledge is essential for robots to 

proactively perform collaborative assembly tasks with a 

human partner. Representation of task knowledge, such as 

task graphs, robot skill libraries, are usually manually 

defined by human experts. In this paper, different from 

learning from demonstrations of a single agent, we propose 

a system that automatically constructs task knowledge 

models from dual-human demonstrations in the real 

environment. Firstly, we track and segment video 

demonstrations into sequences of action primitives. 

Secondly, a graph-based algorithm is proposed to extract 

structure information of a task from action sequences, with 

task graphs as output. Finally, action primitives, along with 

interactive information between agents, temporal 

constraints, are modelled into a structured semantic model. 

The proposed system is validated in an IKEA table assembly 

task experiment. 

Keywords-human robot collaboration; learning from 

demonstration; assembly; human centric manufacturing 

I.  INTRODUCTION 

With the increasing demand for human-robot 
collaboration (HRC) in manufacturing scenarios, task-
level planning systems were proposed to generate 
collaborative robot motions at different levels of 
abstraction [1] [2]. However, these systems typically 
require some form of prior knowledge about the task as 
prerequisites, such as task graphs models and grounding 
skills. In most existing works, such task knowledge is 
usually pre-programmed by domain experts [3]. Manually 
specifying the task graphs and action primitives by 
domain experts is time-consuming and not user friendly. 
Thus, it is highly desirable to enable robots to perform 
them automatically. This paper proposes a system that 
segments and interprets primitive actions of an assembly 
task from video demonstrations, constructs the task graph, 
builds semantic model of action primitive as robot skill 
library and transfers them to enable human-robot 
collaboration, based only on demonstrations of human-
human collaboration. 

Robot learning from demonstrations (LfD) has seen a 
fast development in recent years [4], especially in 
manipulation tasks. The methods and learning outcomes 
vary according to the content of the demonstration. The 
assembly demonstration is a structured activity that 
normally contains several subtasks and many action 
primitives. An efficient two-step solution has been 
proposed to extract task knowledge from such multi-step 
demonstrations [5], [6]. It first segments the 
demonstration into primitive actions using heuristic rules 
based on human knowledge and then represents the 
demonstrated behaviours using structured graph models. 
In this work, we adapt this method, using a vision-based 
parser to track the motions of the demonstrators and 

objects, defining a set of heuristic rules to segment the 
demonstration into primitive action sequences, and 
extracting task knowledge models from these segments. 

2. Action segmentation

1.Demonstration 

3. Task graph modelling

4. Semantic modelling of 

action primitives

5. HRC planning & execution
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Figure 1.  A system graph shows the procedures of assembly skills 

transferring from demonstrators to robots. 

A task graph provides the task structure information 
required by the robot to plan for the task with uncertainties. 
One kind of task graph is the and/or graph [7], which is a 
widely used hierarchical model. An algorithm was 
proposed recently to generate and/or graphs automatically 
by recognizing the sequential and independent 
relationships of primitive actions [8]. However, this 
method assumes that “the sequential actions are not 
interrupted by parallel actions during the demonstration”. 
This assumption is not always true. The reason is that the 
execution of parallel actions is independent. Thus, the 
sequential actions may be interrupted by parallel actions. 
To address situations when this assumption does not apply, 
we propose an algorithm that models the task structure 
into a directed graph by identifying action-action 
relationships. The generated directed graph is easily 
transformed into an and/or graph.  

Different from LfD from a single agent, learning from 
dual agents is complex as agents may perform interactive 
actions in the demonstration, such as handover. Thus, 
action pair is present to describe interactive actions. In 
addition, the temporal constraints of an action pair are 
analyzed. The action primitives as well as their 
interdependencies are stored in a semantic model, which 
provides query and reasoning interfaces that are easy to 
use by the robot. 

With the aim of transferring task knowledge from 
human-human collaborations to human-robot 

Proceedings of the 27th International Conference on 
Automation & Computing, University of the West of 

England, Bristol, UK, 1-3 September 2022 



collaborations, this work studies the automated generation 
of assembly task knowledge models. The key 
contributions of this work are summarized below: 

 We propose a vision-based parser that is capable 
of real-time segment human-human 
demonstrations into sequences of action 
primitives without prior training. 

 We provide an algorithm to automatically extract 
task structure knowledge and generate task 
graphs from action sequences. 

 We construct a semantic model as a library of the 
learned skills, with interfaces for task planning in 
HRC. 

 We design an experiment to validate the 
proposed methods. In the experiment, an IKEA 
table is assembled by two people in a 
collaborative way. Through observation, a Kuka 
iiwa LBR robot could learn to collaborate with a 
human in the task. 

In the rest of the article, section II gives a brief 
overview of LfD and task knowledge modelling. Section 
III, components of the proposed system are provided in 
terms of a vision-based parser, task graph modelling and 
semantic models. Then, an assembly experiment is 
designed to test the proposed methods. Finally, our paper 
concludes in section V. 

II. RELATED WORK 

In the HRC content, knowledge engineering normally 
contains the experience acquisition, knowledge 
interpretation, constraints analysis, and modelling of task 
knowledge, with the task model being the output. There 
are various task model acquisition methods, including 
manual specification [8], [9], interactive learning, and 
learning from demonstrations. Anahita, etc. [10] proposed 
an interactive learning method where a human can teach a 
robot to construct hierarchical task models through 
demonstrations based on the structure information of 
objects and data flow between tasks. However, generating 
task knowledge models from demonstrations in HRC, 
which is the core of our method, has been paid limited 
attention until now. 

Knowledge interpretation is one of the most important 
procedures of knowledge acquisition from a real-world 
demonstration. Despite the advancement in computer 
vision techniques, automatic acquisition of symbolic task 
representation of LfD-acquired skills remains difficult [2]. 
An effective solution of symbolic abstraction is to 
interpret the demonstration and segment actions by 
applying intuitive physical knowledge. In the literature 
[11], an ontology-based parsing method was used to 
reason daily activities in virtual reality (VR) environment, 
recognising basic actions such as take, reach, etc. The 
parser is based on a VR engine, which provides state 
information about agents and objects. In this work, a 
vision-based phaser is proposed to interpret the 
demonstration in the real world. 

The generation of a hierarchical task model essentially 
is a process of interpreting the relationship of action 

primitives. In terms of the learning methods, Hayes et al 
[2] provided a transformation algorithm from task graph 
to hierarchical task model. Cheng et al [8] proposed a 
sequential/parallel task model and a corresponding 
algorithm that can identify the relationship of primitives. 
However, these works did not integrate with LfD based 
knowledge interpretation methods. We propose a novel 
task graph generation algorithm that integrates with the 
LfD based parser module. 

When learning from complex activities, an effective 
way is that a structured model can be constructed to store 
the interpreting knowledge of the demonstration. In [12], 
the obtained semantic information transformed into an 
ontology-based model, know-rob [13], and it provides 
interfaces for querying and reasoning for action planning. 

III. SYSTEM 

All components of the proposed system are shown in 
Figure 1. which consists of five steps. In step 1, two 
demonstrators conduct an assembly task collaboratively. 
Then, a vision-based parser is used with a set of rules to 
interpret the demonstration into sequences of action 
primitives. In step 3, through analysing action 
relationships, task structure information is extracted and 
then a task graph is constructed. Step 4 identifies the 
semantic information of the grounding skills and store this 
knowledge into a semantic model. The task graph and 
semantic model are used for symbolic-level planning in an 
HRC assembly task. 

Demonstrations are performed in a real lab 
environment, and two demonstrators conduct assembly 
tasks in a master-slave way. One of the partners is the 
principal operator, and the other one performs as an 
assistant. The ultimate goal of the robot is learning to act 
as an assistant to humans in assembly activities. 

A. Vision-based parser 

The scheme of the parser is shown in Figure 2. In 
general, firstly the skeleton model of demonstrators and 
the simplified model of objects are modelled based on the 
visual and depth information, and the 3D position info is 
obtained. Then, the kinematic information of both human 
and objects are calculated. The human poses are 
recognized based on the obtained status of humans and 
objects in real-time. 

Status Value

Velocity 0.2m/s

Distance 0.05m

 

Figure 2.  The video demonstration is interpreted. The skeleton model 
of humans is tracked and constructed, and the table leg is abstracted as a 

line segment. The velocity of the human wrist point is detected and the 

distance between the table leg and the hand is calculated. 

Thanks to the quick development of computer vision 
techniques [14], tracking of humans and objects are 
realized in real-time. Human poses in each frame are 
transformed into a 3D skeleton model, which contains the 



TABLE I.  THE STATE VARIABLES(SV) OF HANDS OF DEMONSTRATORS AND OBJECTS 

sv Types Examples  Description 

handmoving (h) boolean handmoving (hl_lefthand) = true The velocity of moving hand is above 0.15m/s 

inhand(h) objects inhand (hl_lefthand) = leg1 
The finger of the hand is attached around an object and finger-hand distance 
< 5cm 

hand2hand 

(h1,h2) 
boolean 

hand2hand (h1_lefthand, h2_righthand) 

= true 

The distance between hand1 to hand2 < 15cm, and at least one of hands has 

an object inhand, 

intouch (o1,o2) boolean intouch (leg1, table) = true The minimum distance between object1 and object 2 is less than 3cm. 

Note: h denotes the hands of humans; o denotes the object s

ACTION CLASSIFICATION RULES 

           Action 

sv 
idle grasp move handover screw hold 

handmoving (h) - F T - - F 

inhand(h) Ø ¬Ø ¬Ø ¬Ø ¬Ø b 

hand2hand (h1, 
h2) 

F F F T F F 

intouch (l, f) - T F - F - 

intouch (l, b) - - F - T - 

Note l: to be assembled objects in the experiment, table legs; f: experimental platform; b: to be 

assembled objects in the experiment, tabletop. T: true; F: false; -: Variables that do not affect 

classification results. 

cartesian coordinates of key points of humans. Objects are 
marked by Apriltage [15] to get the key point coordinates 
of objects in cartesian space, which can be easily 
transformed to the pose and position information. 

Due assembly tasks are mainly finished by the hands 
of workers, the velocity detection of hands is necessary. 
Given the skeleton model of demonstrators, the speed �� 
of the hand at time t is derived from the position of the 
hand at different points in time. The velocity of speed can 
be approximated by wrist joint speed. Thus, ��  is 
formulated as follows:  

��� � ��� �	�� , 	��� 
��/��� � ��� 

��  represents the speed of the hand; 	�  is the cartesian 
coordinates of the waist at time t; fps denotes frame rate 
per second; dis() denotes a function that returns the 
distance between two points. 

Object detection or tracking is required to obtain the 
poses of objects in each task and can be simplified using 
methods such as colour-based detection [16]. In this work, 
the spatial position of objects in each frame is abstracted 
into basic geometrical elements, such as line segments, 
flat surfaces. For example, a table leg, which is a cuboid, 
is simplified as a line segment ���,�� , and ��, ��  are 

endpoints of the line segment (refer to Figure 2. ). The 
distance from the hand to the table leg is represented by 
the minimum distance between key points of the hand to 
the line segment.  

 �� � ��� ��������,�� , ℎ��� 

ℎ  denotes the key points of hand at time t; min() is a 
function that returns the minimum value in the matrix. 

Due to the complexity of the assembly process, it is 
difficult to recognize action segment activities directly 
from the demonstration. Thus, a state-of-the-art method 
[6] is adapted and extended in this work. This is a 
knowledge-based method, which applies intuitive physical 
knowledge to interpret the demonstration. The 

segmentation process consists of two steps: (1) defining 
state variables; and (2) classifying actions based on rules. 
The defined state variables are listed in TABLE I. in terms 
of types, examples, and description, the state variables 
consist of two types, hand state variables, and 
environment state variables. handmoving(h), in-hand(h) 
and hand2hand(h1, h2) belongs to previous category. Note 
hand2hand(h1, h2) is extended that is set to monitor the 
interaction between different agents. In addition, 
intouch(o1,o2) is set to monitor the interaction of objects. 
The physical knowledge of action is designed as rules to 
classify the action, and it is listed in 0Handover is a 
critical action between different agents, where one agent 
passes objects to another one. This action starts when the 
hands of the two agents are approaching each other and 
one of the hands is grasping an object. The finish point is 
that the object pass to the other agent and hands are 
gradually far away from each other. The segmentation 
points are set when the action status changes, and action 
segmentation is realized. The segmentation information is 
used to automatically generate task graphs and semantic 
models. 

B. Automated task graph construction 

By applying the action segmentation, the approach in 
Section 3.A. the action sequences Ξ � "#�, #�, … #%&  of 
demonstrators is extracted from the performed 
demonstration, where n is the total number of 

demonstrations of assembly activity. #� � '(�� , (�� , … ()�� * 
means sequences of action primitives with �� action units ()�� � "�+��+�, +,-./�� &  that normally contains a 

motion and a relevant object, for example, ()�� �"�+�., �(,�. �.01&. In an assembly task, the actions in 
different demonstrations are usually the same, but the 
sequence of primitives vary. Besides, the action sequences 
may contain actions unrelated to the task, such as idle 
states. These actions should be removed from action 
sequences. 

The proposed method aims to construct a task graph 
from action sequences Ξ, which is easy to transform into a 
hierarchical task model. The key of constructing task 
graph 0 � "�, .& is to identify the relationship of all action 
primitives, with node � representing the action primitives 
and edge . denoting the transition between actions. Based 
on the identified relationships, it is easy to connect the 
primitives to form a task graph. We define a series of 
relationships of action primitives and the corresponding 
identification methods. Then, an algorithm is proposed 
that forms a task model. The identification method of 
nodes and edges in the task graph is introduced based on 
the relationship of primitives. 



 
Algorithm 1: Task graph generation 

 Input Ξ 
Output graph 

1: 
2: 

3: 

4: 
5: 

6: 

7: 
8: 

9: 

10: 
11: 

12: 

13: 
14: 

15: 

16: 
17: 

18: 

19: 

init graph, A, headnodeSet, endnodeSet 

A = generationPRM (Ξ) 

initAction = findInit Action (A) 
headnodeSet = initAction 

while then do 

  for each action a1 in headnodeSet do 
    actions= find FollowupAction (a1) 

    endnodeSet append (action) 

    for each action a2 in action do 
      graph.addEdge (a1,a2) 

    end for 

  end for 
  If endnodeSet is empty then 

    Break 

  Else then 
    headnodeSet = endnodeSet 

    endnodeSet.clear 

  End if 
End while 

In the industry assembly process, actions may have a 
dependent relationship with each other due to the physical 
features of products. Specifically, we define five 
relationships of action primitives, including pre-order 
action, post-order action, independent relationship, 
immediate predecessor action (IPA), immediate successor 
action (ISA). First of all, we define the primitive 
relationship matrix (PRM), denoted by A in the equation 
below, for a task, which represents the specific 
relationship of different primitive. It is defined as: 

2 � 345�5� ⋯ 4575�⋮ ⋱ ⋮45�57 ⋯ 45757
: 

When 45�5�=1, action (� is the preorder action of (�. 

The (�  should be finished before (�  starts. The pre-order 

action produced consequence is required by the execution 
of action (�. The preorder action set of (� is represented as Φ� . To identify that (�  is the pre-order action of (� , all 

action sequences Ξ  are going through to check the 
occurrence of  (� , (� . If (�  occurs before the occurrence of (�  in all 

sequences, (� is the pre-order action of (�; otherwise, not. 

When 45�5�= -1, action (� is the post order action (�. 

Action (�  should be finished before (�  starts. The 

relationship of post order is the inverse of preorder. The 
identification process is similar to it. 

When 45�5� = 0, action (� , (�  are independent. The 

action (�, (� can occur in any order. If the relationship of (� (� is not post order or pre order, (�, (� are independent. 

If (� is ISA of (�, the occurrence of (� is directly after 

action (�. The mathematic formulation of ISA is: 

∃� ∈ �1, �� , Φ> �  Φ� ? (�  

If (� is the IPA of (�, the occurrence of (� is directly 

before action (�. ISA is the inverse of IPA. If (� is the IPA 
of (�, (� is the ISA of (�. 

The proposed algorithm is shown in Algorithm1. The 

input of the algorithm is Ξ , the sequence of action 

primitives extracted from the demonstration. The output 
Graph is a task graph, which shows the structure 
information of an assembly task. Headnodeset is used to 
store a series of action primitives, which is regarded as the 
head node of an edge in the graph. Endnodeset is a list that 
contains the corresponding endnode of headnodeset. Line 
1 initializes the variables Graph, A, headnodeset, 
endnodeset to be empty. Line 2 generates a PRM matrix 
with Ξ  as input by using the identification method in 
Section 3.B. Line 2 find the initial nodes of the Graph, by 
using the following formulation. 

∃� ∈ �1, �� , Φ> �  @ 

When the preorder action set of an action primitive is 
empty, the action is regarded as the first node of Graph. In 
line 4, the headnodeset is assigned with the values of 
InitialAction. Line 5-19 find the endnode of headnodes 
and then construct edges in graph till to end iteratively. 
Line 6-8 find the endnodeset of each action in 
headnodeset. The searching rules of endnodeset is based 
on the ISA identification rule. Line 9-11 add edges in 
Graph by connecting headnotes and endnodes. Line13-15 
define the break rule: the graph is not updated in this loop. 
When endnodeset is empty, the graph does not add a new 
edge in this loop, then break the loop. Otherwise, 
endnodeset is used as a new headnodeset, in the meantime, 
the old headnodeset is cleared. 

C. Structured, semantic model 

As the vision-based parser discover sequences of the 
action of two demonstrators, segmented grounding skills 
are modelled into a semantic model in this section. During 
the task execution, workers conduct some collaborative 
actions. While modelling their collaborative behaviours, 
temporal constraints analysis of actions is necessary.  

The information stored by the semantic model is 
summarized as follow: (1) properties of the action 
primitives; (2) the manipulated objects information; (3) 
the action constraints of the interaction between 
demonstrators. 

 

Figure 3.  The semantic model of action primitives 

1) Constraint analysis 

The learned action primitives can be categorised into 

the main action A)  and assistive actions A5 , performed 

by the principal operator and the assistant respectively. In 

an  
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Figure 4.  Two examples of action segmentation outcome in assembly experiment 

assembly task, the cooperative behaviours of the 

operators generally consist of active and assistive actions. 

Thus, we construct cooperative action pair � � "A), A5&. 
The identified rule of � is that: if A) and A5 work on an 

object physical interactively, the "A), A5& is action pair. 

Especially, actions in � is not necessarily a single action 

unit, but sometimes a sequence of actions. 

The temporal constraints exist between actions in �. The 

execution time of action in the demonstration is an 

interval "�5C , �5D&, and �5C  is the beginning time and �5D is the 

end time. We define two types of temporal constraints, (1) 

prior. The assistive action should be done before the 

main action. The constraint is formulated as follows: �5EC < �5ED ≤ �5HD , 

 

(2) meantime. The assistive action should be done during 

the execution of the main action. The constraint is 

formulated as follows: �5EC ≤ �5HD < �5HD ≤ �5ED  

2) Semantic model 

The constructed semantic model is visualized in 

Figure 3. The properties of actions have motion, objects 

and trajectories. The motion is classified into mainAction 

and assistiveAction. The semantic model contains action 

pairs that contain the joint action of human and robot. 

During the HRC execution, we utilize the semantic model 

to control the robot, the robots can do joint action with 

humans based on the observation. The model can record 

action primitives and constraints. The model provides 

interfaces for querying and reasoning, and it can be used 

as a robot skill library.  

IV. EXPERIMENT 

In order to evaluate the proposed methods, a real 

assembly task is set by using an IKEA table (LACK) that 

has a tabletop and four table legs. We simplify the 

assembly process, with only two legs to be screwed into 

the tabletop, as assembling the other two legs is repetitive 

work. The objects to be assembled are placed on a 

platform. Two participants stand on the opposite sides of 

the platform. The main operator stands near the tabletop 

and far away from the table legs. Thus, the assistant is 

asked to handover the legs to the main operator. Besides, 

the assistant is asked to hold the tabletop to keep it stable, 

while the main operator is screwing the legs. All 

participants have read the assemble instructions of the 

table. 4 individuals participated in performing the 

assembly task. In total, the system records and interprets 

the assembly process 18 times. The demonstrations are 

recorded by an Intel RealSense D435 camera. 

A. The performance of action segmentation  

Figure 4. displays examples of the action  

segmentation of the human-human collaboration 

demonstration in the assembly task, including the 

duration of action primitives and the transition between 

different actions. The action primitives performed by 

different demonstrators were mostly the same, with some 

differences in duration and order. 

In order to evaluate the accuracy of the action 

recognition of the proposed methods, we obtained the 

ground truths by playing back the recorded videos and 

manually labelling the actions of every video frame. If 

the value is different from the result identified by the 

algorithm, the recognition result is incorrect. Accordingly, 

the recognition accuracy of all 18 demonstrations was 

91%. The main reason for the failures is the 

misestimation of visual tracking. For example, hands may 

be blocked by objects (e.g., legs), which leads to the 

inaccurate position estimation of the captured key points 

of hands. 

B. Task graph generation 

Begin

Handover

Leg1

Handover

Leg2

Move

Leg1

Screw

Leg1

Move

Leg2

Screw

Leg2

Termination

Handover

Leg 1

Move Screw ScrewMoveHandover

Leg 2

Assembly a table

(a)

(b)  
Figure 5.  The generated task graph and transformed hierarchical task 

model 

The input of the task generation algorithm in this task 

only needs the action sequences of two demonstrations 

(Figure 4. ) First of all, all ‘idle’ actions that are unrelated 

to the task are eliminated. Then, the segmentation data is 

fed into algorithm 1 to generate the task graph, shown in 

Figure 5. By using the algorithm in [2], a hierarchical 

task model is obtained by transforming the task graph 

(Fig. 5b). 

The number of required demonstrations to completely 

generate a task graph using the proposed algorithm 

depends on the structure of the task. Suppose a task has I 

levels in hierarchical model and � ∈ "1,2, … , I& level has 

�� independent nodes, which has /�K  children. �(L �/�K� 



means the number of the children of the node with the 

maximum children in level �. The number of required 

demonstrations to construct a complete task graph is ∏ �(L �/�K�N�  by using the proposed algorithm. The time 

complexity of our algorithm is O������, where � is the 

number of demonstrations and � is the number of action 

primitives. 

C. Semantic model 

In symbolic-level HRC task execution, the semantic 

model can be used to search for action primitives as well 

as the assistive action based on the main operator’s action. 

In this section, we present two examples of how these can 

be done. Besides, the invoking mode and functions of this 

model during HRC execution are illustrated. 

The first function of the model is to search for an 

action primitive. The search requires a motion name and 

an object name to be given. An example of the search 

result is shown as follows.  

action: (name: ‘hold_table_top’, type: ‘assitive action’ 

motion: [name: ‘hold’],  
object: [name: ‘table_top’], 

trajectory: [list]) 

Another function is to search for a corresponding 

assistant action. The search requires the main operator’s 

action name and is based on the rules of assistive action. 

The example shown below queries the assistive action of 

action ‘screw_table_leg1’.  

action: (name: ‘screw_table_leg1’, type: ‘main action’ 
motion: [name: ‘screw’],  

object: [name: ‘table_leg1’], 

trajectory: [list], 
assistiveType: [type: ‘meantime’], 

assistiveAction: [action: ‘hold_table_top’]) 

D. Assembly task execution 

We test our constructed models in an assembly 

experiment using a Kuka iiwa LBR robot. A task graph-

based action planner is used [3]. We modify the planner 

by replacing the Bayesian model with our proposed 

semantic model for querying the assistive action. Figure 6. 

shows that a robot is assisting a person in an assembly 

task, where the person is assembling an IKEA table. The 

action of the robot is planned by the planner. An 

experimental video is attached to this paper. 

  

Figure 6.  A robot collaborates with a person in an assembly task. 

V. DISCUSSION AND CONCLUSION 

Preparing knowledge models for symbolic planners in 

HRC is a time-consuming, user-unfriendly task. In this 

letter, we presented a system for automated knowledge 

model generation through visual demonstration 

interpretation, task graph modelling and semantic model 

generation. Despite the complexity of the assembly task, 

the parser achieved an accuracy of 91%. The task graph 

model was generated using only two demonstrations with 

an acceptable time complexity O������. The semantic 

model was tested in a real-world assembly experiment 

using an IKEA table.   
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