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A B S T R A C T

Smart cities attempt to reach net-zero emissions goals by reducing wasted energy while improving grid stability
and meeting service demand. This is possible by adopting next-generation energy systems, which leverage
artificial intelligence, the Internet of things (IoT), and communication technologies to collect and analyze big
data in real-time and effectively run city services. However, training machine learning algorithms to perform
various energy-related tasks in sustainable smart cities is a challenging data science task. These algorithms
might not perform as expected, take much time in training, or do not have enough input data to generalize
well. To that end, transfer learning (TL) has been proposed as a promising solution to alleviate these issues.
To the best of the authors’ knowledge, this paper presents the first review of the applicability of TL for energy
systems by adopting a well-defined taxonomy of existing TL frameworks. Next, an in-depth analysis is carried
out to identify the pros and cons of current techniques and discuss unsolved issues. Moving on, two case
studies illustrating the use of TL for (i) energy prediction with mobility data and (ii) load forecasting in sports
facilities are presented. Lastly, the paper ends with a discussion of the future directions.
1. Introduction

1.1. Preliminary

Developing smart and sustainable cities represents a significant
and challenging approach to curtail wasted energy and promote a
transition towards clean energy using digitization (Carrera, Peyrard,
& Kim, 2021). This has become possible using next-generation energy
systems, requires new characteristics and functionalities to manage
smart city services, satisfy consumers’ needs, improve resilience and
enhance energy efficiency. In this respect, increasing the reliability and
resilience of energy systems has become a significant concern, where
digitalization is a crucial player (Himeur, Ghanem, Alsalemi, Bensaali
and Amira, 2021; Kathirgamanathan, De Rosa, Mangina, & Finn, 2021).
Therefore, energy systems have recently undergone several changes due
to the advance of the smart grids, adoption of artificial intelligence
(AI) and the internet of things (IoT), integration of renewable energies
(e.g., wind and solar photovoltaic), and electric vehicles (EV), and

∗ Corresponding author.
E-mail addresses: yassine.himeur@qu.edu.qa (Y. Himeur), me1003659@qu.edu.qa (M. Elnour), f.fadli@qu.edu.qa (F. Fadli), nader.meskin@qu.edu.qa

(N. Meskin), PetriI@cardiff.ac.uk (I. Petri), RezguiY@cardiff.ac.uk (Y. Rezgui), f.bensaali@qu.edu.qa (F. Bensaali), aamira@sharjah.ac.ae (A. Amira).

deployment of cyber-security measures (e.g., blockchain) (Elnour et al.,
2022; Singh et al., 2020).

AI-based big data analytics have become essential in the energy
sector as they play a crucial role in developing the next generation
of energy systems (Himeur et al., 2021). The digitalization of the
energy sector and the large amount of data produced by energy systems
require powerful and intelligent tools to make the energy industry
more efficient and secure (Petri, Rana, Rezgui, & Fadli, 2021). Thus,
AI-based big data analytics tools found their way by effectively an-
alyzing and evaluating large-scale datasets (Varlamis et al., 2022).
Specifically, areas of application are numerous, among them building
energy management systems (BEMSs) (Fan, Sun, Zhao, Song, & Wang,
2019; Qin, Ke, Wang, & Fedorovich, 2021), smart grid (SG) and en-
ergy trading (Wang, Li, Ho and Qiu, 2021), anomaly/fault detection
and diagnosis (AFDD) (Himeur, Alsalemi, Bensaali, & Amira, 2020a),
thermal comfort control (Gao, Li and Wen, 2020; Ngarambe, Yun,
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Abbreviations

AFDD Anomaly/fault detection and diagnosis;
AI Artificial intelligence;
BAMS Building energy management systems;
BDGP Building data genome project;
BGEC Baltimore gas and electric company;
BGRU Bidirectional gated recurrent units;
BiLSTM Bi-directional long-short term memory;
BPNN Backpropagation neural network;
CAE Convolutional autoencoder;
CAISO California independent system operator;
CART Classification and regression tree;
CBTL Cross-building transfer learning;
CETL Cross-equipment transfer learning;
CGAN Conditional generative adversarial network;
CNN Convolutional neural network;
CRTL Cross-region TL;
CRL Clustered reinforcement learning;
CSTL Cross-site Cross-site;
CV-RMSE Coefficient of variance of the root mean

squared error;
CZTL Cross-climate zones transfer learning;
DANN Domain adversarial neural network;
DATCNN Domain adversarial transfer convolutional

neural networks;
DBN Deep belief network;
DDNA Deep domain network adaptation;
DEA Denoising autoencoder;
DL Deep learning;
DNN Deep neural network;
DRL Deep reinforcement learning;
DTL Deep transfer learning;
EV Electric vehicles;
GANT Generative adversarial network transfer;
GEFC Global energy forecasting competition;
GRU Gated recurrent unit;
GIS Gas-insulated switchgear;
HVAC Heating, ventilation, and air conditioning;
HTL Heterogeneous transfer learning;
HmTL Homogeneous transfer learning;
IoT Internet of things;
iTCM Intelligent thermal comfort management;
ITCNN Intelligent thermal comfort neural network;
ITL Inductive transfer learning;
LSTM Long-short term memory;
MAPE Average absolute percent error;
MCC Matthews correlation coefficient;
ML Machine learning;
MMD Maximum mean discrepancy;
MPC Model predictive control;

& Santamouris, 2020), electric vehicle (Zhang et al., 2020), renew-
able energy and microgrids (Aslam et al., 2021; Cheng, Zhu, Gu,
Yang and Mohammadi, 2021), non-intrusive load monitoring (NILM)
or energy disaggregation (Himeur, Alsalemi, Bensaali, & Amira, 2020c;
Himeur, Alsalemi, Bensaali and Amira, 2021), etc. Additionally, AI-
2

based big data analytics have great potential for accelerating and
MTL Multi-task transfer learning;
NILM Non-intrusive load monitoring;
NILMTK Non-intrusive load monitoring toolkit

(NILMTK);
NN Neural networks;
OTL Online transfer learning;
OfTL Offline transfer learning;
PIR Performance improvement ratio;
PMV Predicted mean vote;
PRISMA Preferred reporting items for systematic

reviews and meta-analysis;
RL Reinforcement learning;
RNN Recurrent neural network;
REDD Reference energy disaggregation dataset;
REFIT Personalized retrofit decision support tools

for UK homes;
S2P Sequence-to-point;
S2S Sequence-to-sequence;
SARSA State–action–reward–state–action;
SEP Sub-transmission expansion planning;
SG Smart grid;
SMI Similarity measurement index;
STL Sequential transfer learning;
STVS Short-term voltage stability;
SVM-AD Support vector machines with adapting

decision boundaries;
SVR Support vector regression;
TCA Transfer component analysis;
TGAN Tabular generative adversarial networks;
TL Transfer learning;
UAV Unmanned aerial vehicle;
UTL Unsupervised transfer learning.

supporting the energy sector’s transformation from fossil-based to zero-
carbon (Varlamis et al., 2022). They can serve as an intelligent layer
across different energy systems to identify patterns, improve systems’
performance, and predict outcomes of complex situations (Elnour et al.,
2021; Himeur, Alsalemi, Al-Kababji, Bensaali and Amira, 2020). More-
over, for various energy tasks of the building energy sector, such as
load forecasting and thermal comfort control, conventional physics-
based models require thorough and case-specific building information
(e.g., material, geometry, windows size, etc.) for creating energy effi-
ciency models (Fadli et al., 2021; Himeur et al., 2022). Also, its de-
velopment needs tremendous effort while achieving sufficient accuracy
and efficiency is challenging for runtime building control, and ensuring
scalability for field implementations is tough. By contrast, data-driven-
based algorithms only need building operational data, e.g., thermal
response, building operations, environmental patterns, to train their
models (Himeur et al., 2022; Sardianos et al., 2020). Put simply, the
model structures could remain invariant for distinct buildings (Chen,
Tong, Zheng, Samuelson and Norford, 2020).

On the other hand, consumers can contribute to a stable and green
energy grid intelligently connected to energy networks. Typically,
smart building solutions and smart meters already exist, and vast
amounts of data can be recorded, processed, and analyzed to polish
end-users energy consumption behaviors (Wang, Xu, Wang and Li,
2019). This is possible by providing them with on-time, engaging,
and explainable energy-saving recommendations (Alsalemi et al., 2020;
Sardianos et al., 2021). Additionally; in smart networked buildings, for
example, connected appliances can react to prices on the electricity
market and adapt to the building energy consumption profiles (e.g., to
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boost their consumption when electricity is abundant and cheap and do
the inverse is the price increases) for saving energy and reducing costs,
thanks to the AI-based big data analytics (Más & Kuiken, 2020). In this
context, integrating end-users information (such as energy consump-
tion preferences, habits, time, windows, etc.) and building parameter
settings into the data-driven models can help further improve energy
optimization (Alsalemi et al., 2020; Sayed, Alsalemi, Himeur, Bensaali
and Amira, 2021).

However, the broad utilization of AI-based big data analytics in
energy systems can be prevented or delayed by various key barriers,
among them (i) data scarcity, where historical data or real-time records
may not be promptly available due to shortages of grid communication
infrastructures (Li, Wu, Attar and Xu, 2022; Yang, Hou, Liu, Zhai and
Niu, 2021), (ii) lack of labeled datasets for training machine learning
(ML) models (Himeur, Alsalemi, Bensaali, & Amira, 2020b; Tariq et al.,
2021), (iii) high computing resource requirements, especially when
deep learning (DL) models are trained on a massive range of energy
data (He et al., 2020; Liu, Yu, Liang, Griffith and Golmie, 2021); (iv)
supervised learning can create highly accurate models by training ML
models for completing a wide range of tasks using annotated datasets,
however, its application on real-world scenario may encounter some
issues if actual data deviates or strays from the training sets. To that
end, reducing the volume of training datasets, creating labeled datasets,
and decreasing the training time while maintaining adequate learning
performance are challenging and crucial issues (Lv, Lou, Kumar Singh,
& Wang, 2021).

To alleviate the impact of the above-mentioned barriers, transfer
learning (TL) has been recently introduced as a solution that can bring
numerous advantages to the development process of energy systems
based on AI and big data analytics (Feng et al., 2022; Li, Li, Liu, Wang
and Zhang, 2021). Typically, TL helps to (i) save computing resources
and improve efficiency when training new models since the ML models
can be pretrained offline on large-scale datasets and then fine-tuned
on small datasets (Ahmed, Jeon, Chehri, & Hassan, 2021); (ii) train
ML models on available annotated datasets before validating them on
unlabeled datasets, which is of utmost importance, keeping in mind
that labeling data is an arduous task that takes time and effort and
requires the intervention of experts (Che, Deng, Lin, Hu, & Hu, 2021;
Zheng, Qi, Zhuang, & Zhang, 2021); (iii) train ML models using simu-
lated or synthetic data instead of real-world environments (Ko & Park,
2021), (iv) leverage knowledge from existing models instead of starting
from scratch each time, and (v) exploit the knowledge acquired from
previous tasks for improving generalization about others (Kim, Choi,
Kim, & Choi, 2021; Prakash, Murugappan, Hemalakshmi, Jayalakshmi,
& Mahmud, 2021).

1.2. Transfer learning conceptual background

TL consists of training a model on a specific domain (or task) and
then transferring the acquired knowledge to a new, similar domain (or
task). For example, if we consider building thermal comfort prediction,
the data from a specific building can be used to train an ML model
and learn the optimal model parameters before retraining a part of
the model (i.e., fine-tuning) and performing the validation process
on new target buildings (which can be from the same or different
region/country) (Yang, Cheung, Ding and Tan, 2021). In this regard,
TL has mainly been introduced to (i) overcome the problems of data
scarcity encountered with small datasets, which hinders training a full-
scale model from scratch, and (ii) reduce computational cost. We briefly
summarize the definitions widely used in TL:

Def. 1 - Domain: Let us consider a specific dataset 𝑋 =
{

𝑥1,… , 𝑥𝑛
}

∈ 𝜒 ,
n which 𝜒 represents the feature space, and 𝑃 (𝑋) refers to the marginal
robability distribution of 𝑋. A domain is defined as D = {𝑋, 𝑃 (𝑋)}.
n TL, the domain that contains the initial knowledge is defined as the
3

ource domain, where it is represented by D𝑆 . By contrast, the domain c
ncluding the unknown knowledge to be learnt is named the target
omain, it corresponds to D𝑇 (Lu, Tian, Zhou, & Liu, 2021).

Def. 2 - Task: Considering the previously defined dataset 𝑋 =
𝑥1,… , 𝑥𝑛

}

∈ 𝜒 , which corresponds to a set of labels 𝑌 =
{

𝑦1,… , 𝑦𝑛
}

∈
, where 𝛾 represents the label space. A task can be defined as T =
𝑌 , 𝐹 (𝑋)}, where 𝐹 is denotes the learning objective predictive func-
ion that could be represented as well as a conditional distribution
(𝑌 |𝑋). Following the task definition, the label spaces of the source
nd target domains are represented as 𝛾𝑠 and 𝛾𝑇 , respectively (Ramirez,
onioni, Salti, & Stefano, 2019).

ef. 3 - Transfer Learning (TL): if we consider a source domain D𝑆
nd its corresponding task T𝑆 , a learned function 𝐹𝑆 can be inter-
reted as the knowledge obtained in D𝑆 using T𝑆 . When there is a
ifference between domains or tasks, the goal of TL is to get the target
redictive function 𝐹𝑇 for target task T𝑇 with target domain D𝑇 . Put
ifferently, TL aims to help improve the performance of 𝐹𝑇 by utilizing
he knowledge 𝐹𝑆 , where D𝑆 ≠ D𝑇 and T𝑆 ≠ T𝑇 . In doing so, TL can
e represented as follows (Lu et al., 2015):

𝑆 = {𝑋𝑆 , 𝑃 (𝑋𝑆 )}, T𝑆 = {𝑌𝑆 , 𝑃 (𝑌𝑆∕𝑋𝑆 )} → D𝑇 = {𝑋𝑇 , 𝑃 (𝑋𝑇 )},

𝑇 = {𝑌𝑇 , 𝑃 (𝑌𝑇 ∕𝑋𝑇 )} (1)

ef. 4 - Domain Adaptation: considering the source domain D𝑆 for
he task T𝑆 and the target domain D𝑇 for task T𝑇 , where D𝑆 ≠ D𝑇 .
omain adaptation aims at learning a predictive function 𝐹𝑇 so that

he knowledge obtained from D𝑆 and T𝑆 can be used for enhancing
𝑇 . In other words, the domain divergence is adapted in 𝐹𝑇 (Li, Gu,
hang, & Chen, 2020).

Overall, classifying data where D𝑆 ≠ D𝑇 or T𝑆 ≠ T𝑇 is the main
hallenge that TL algorithms attempt to meet. One popular idea to
o so is by reducing the difference between domains or tasks, which
nsures certain similarities between the corresponding feature or label
paces (Tuia, Persello, & Bruzzone, 2016). Fig. 1 explains the difference
etween conventional ML and TL techniques.

.3. Contribution of the paper

Although the significant effort recently put by the energy research
ommunity to develop TL-based energy applications, there is only one
urvey study that has recently been introduced by Pinto, Wang, Roy,
ong, and Capozzoli (2022). Typically, the authors have focused on

nvestigating the use of TL for smart buildings, with a brief description
f its utilization for load forecasting, systems control, and building
ynamics. Also, open questions and future directions have superficially
een discussed. However, we present in this paper a comprehensive
urvey of the research progress of TL in the energy sector. Specifically,
his study attempts to intensely discuss the latest trends in using TL to
erform different big energy data analytics, such as load forecasting,
hermal comfort control, energy disaggregation (or NILM), AFDD, and
on-intrusion detection in smart grids, etc. Moreover, a critical dis-
ussion is conducted to identify the open challenges that need to be
ddressed and facilitate the broad deployment of TL-based solutions
n energy systems. This includes the negative transfer, overfitting,
easurement of transfer gains, unification of TL, and reproducibility

f TL results. Additionally, two case studies are presented to provide
he reader with insight into real-world applications. They illustrate (i)
he use of TL for load forecasting in sports facilities that suffer from a
ack of public datasets and (ii) energy prediction during the COVID-
9 pandemic using mobility data. Moving forward, future research
irections that provide insights into where the actual research effort is
oncentrated and the challenges that will attract considerable research
nd development in the near future are identified. Lastly, the essen-
ial findings following this study are derived. Overall, the principal

ontributions of this paper are summarized as follows:
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Fig. 1. Difference between conventional ML and TL techniques for multiple tasks: (a) conventional ML and (b) TL.
• A thorough overview of existing TL-based energy systems for
sustainable smart city applications is introduced. It is based on
a generic taxonomy for classifying them into different categories
with reference to the similarity of the domain/task, learning
process, feature space, and application scenario.

• Detailed analysis and in-depth discussion are performed to inform
the state-of-the-art of current issues of TL-based energy systems.
This includes negative transfer, overfitting, reproducibility of sci-
entific results, knowledge gain quantification, and unification of
TL.

• Introducing two case studies that explain the use of TL-based
models to (i) forecast loads of sports facilities suffering from the
lack of open datasets. Typically, a TL is adopted, where neural
network (NN)-based model predictive control (MPC) is pretrained
on a simulated dataset and then fine-tuned on a small target
dataset. The latter has been collected from a sports facility at
Qatar University; and (ii) forecast electrical loads using mobility
data during the COVID-19 pandemic.

• Future research directions towards improving the performance of
TL-based energy systems are described, which revolve around us-
ing (i) online TL, (ii) federated TL, and (iii) transfer reinforcement
learning.

findings.
Fig. 2 portrays the structure of this review and summarizes the

main. The rest of this paper is organized as follows. Section 2 explains
the adopted research methodology. Section 3, presents an overview
of TL-based energy contributions in sustainable smart cities. Moving
on, TL potential and notable use cases are described in Section 4.
Following, a critical discussion is conducted in Section 5 to identify
key challenges. Next, two case studies are presented in Section 6 before
deriving the future research directions in Section 7. Lastly, the paper is
concluded in Section 8.

2. Review methodology

2.1. Objective of the study

Our review methodology is based on the approach described in Mo-
her, Liberati, Tetzlaff, and Altman (2009). Specifically, identifying the
necessity to conduct a survey is of utmost importance, and the results of
review papers help clarify the state of knowledge and identify needed
4

research. The necessity for the survey presented in this paper comes
from the fact that a variety of research studies, solutions, and method-
ologies have been proposed recently in the energy sector to tackle
different challenges. The latter includes (i) the lack of labeled datasets,
data scarcity, and small real-world datasets, and (ii) the necessity to
reduce the training time of DL models, etc. Moreover, our investigation
reveals that no systematic survey has already been proposed to explain
the use of TL in energy systems. Therefore, by conducting this survey,
the following questions will be answered:

1. Why is TL attracting substantial interest in energy systems for
smart and sustainable cities, and what are its challenging appli-
cations?

2. What are the methodologies used to achieve them and how can
they be classified?

3. What are the principal issues encountered by the research com-
munity while developing TL-based energy systems?

4. What are the essential research directions that TL-based energy
systems should follow in the near future to improve their per-
formance and facilitate their applications in the real world and
promote sustainable cities?

2.2. Literature search strategy

We conducted the bibliometric research under the perspective of
a narrative review. Existing studies on using TL for energy systems
have been searched. Our search instigation has been taken place on the
“Scopus” and “Web of science”, “ScienceDirect”, “IEEE”, “ACM”, and
“Taylor & Francis” databases from 2016 to 2021. In this way, the fol-
lowing terms have been searched in the titles, abstracts, and keywords:
(‘‘transfer learning’’ OR ‘‘domain adaptation’’) AND (‘‘energy systems’’
OR ‘‘fault diagnosis’’ OR ‘‘anomaly detection’’ OR ‘‘load forecasting’’ OR
‘‘thermal comfort prediction’’ OR ‘‘energy disaggregation’’ OR ‘‘smart
grid’’ OR ‘‘energy trading’’ OR ‘‘renewable energy’’) AND (publication
date: 2016–2021).

In this respect, research studies introduced between January 2016
and February 2022 are discussed in this framework. This period has
arbitrarily been selected to evaluate the recent and pertinent con-
tributions. Typically, this framework discusses English-written peer-
reviewed journal articles, conference proceedings papers, and book
chapters. The selection process adopted in this review relies on adher-
ing to the specifications of the “preferred reporting items for systematic
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Fig. 2. Organization of the review paper and its main contributions.
eviews and meta-analysis (PRISMA)” (Moher et al., 2009), which is
practical and efficient approach for writing survey studies. Con-

retely, a search was performed for the last seven years (January
016–February 2022), where 493 articles were initially identified.
oving on, 109 duplicates have been eliminated using reference man-

ger software. The remaining frameworks have been filtered by their
itles, keywords, and abstracts, where 296 references were reserved.
astly, a full-text evaluation is performed, and in the end, 211 articles
hat fit the conditions are retained. In addition to reviewing existing TL-
ased energy systems for sustainable smart city applications, two case
tudies are included in this article to provide the reader with insights
bout using TL for (i) energy prediction with mobility data and (ii) load
orecasting in sports facilities. Fig. 3 explains the main literature search
teps considered in this systematic review.

. Overview of TL-based energy systems for smart cities

The focus of this section is on reviewing TL-based energy systems
ntroduced to improve smart energy city services and solve different
esearch gaps. Typically, this paper sheds light on the latest trends
n using TL in energy systems for smart cities. To that end, we at-
empted to cover most of the tasks related to the use of energy systems
or sustainable and smart city applications, including building energy
orecasting, AFDD, thermal comfort control, energy disaggregation,
he proliferation of renewable energy technologies (e.g., EVs within
mart cities), development of smart grid (SG), and energy trading.
pecifically, these tasks are the most important for optimizing energy
5

functions in smart cities and promoting sustainability and economic
growth while at the same time enhancing the quality of life for citizens.
Although there is no unified or standard taxonomy of TL techniques, we
attempted in this section to categorize them based on different aspects,
such as the similarity of domain/task, learning process, feature space,
and application scenario. Those metrics have been adopted to help the
readers to understand TL from different perspectives. Fig. 4 illustrates
the categories of TL identified using the adopted taxonomy.

3.1. Sorted by the similarity of domain/task

3.1.1. Transductive TL
In this case, the source and target tasks are similar, but their

domains are different. Moreover, annotated data is only available in the
source domain, making this category quite similar to semi-supervised
learning processes. Additionally, if the source feature space is similar
to the target feature space (𝑋𝑆 = 𝑋𝑇 ), but the marginal probability
distributions of input data are different (𝑃 (𝑋𝑆 ) ≠ 𝑃 (𝑋𝑇 )), the trans-
ductive TL is related to a domain adaptation (Ribani & Marengoni,
2019). Another important example of transductive TL is the use of
synthetic data in a source task, generated by energy simulation software
(e.g., EnergyPlus, TRNSYS, eQUEST, etc.), for boosting the performance
of a target task that has real-world data (Ko & Park, 2021; Ribani &
Marengoni, 2019).

In energy systems, the domain can refer to different space fea-
tures. Typically, this includes the electric equipment and devices that

consume energy heating, ventilation, and air conditioning (HVAC)
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Fig. 3. The main literature search steps considered in this systematic review.
systems, chillers, domestic appliances, smart meters, etc.), buildings in-
cluding electric equipment, and having different operation parameters,
industrial infrastructures, etc. To that end, domain-adaptation-based TL
techniques have been classified into four sub-categories:

(a) Cross-equipment TL (CETL): refers to transferring knowledge ac-
quired with an equipment (or more) to another one that can be from
the same category or a different one, but they have some similarities.
For example, in energy disaggregation, an ML algorithm can be trained
to segregate aggregated loads, and then the characteristics learned of
an appliance can be transferred to other appliances. This is the case
of D’Incecco, Squartini, and Zhong (2019), where a sequence-to-point
(S2P) model has been used to transmit and adapt the implicit char-
acteristics learned by a “complex” device (i.e., washing machine) to a
“simple” device (i.e., a coffee machine). Moreover, to avoid overfitting
due to data scarcity and lack of annotated datasets in AFDD systems,
Liu et al. (2021) investigate a CETL using four CNN-based strategies
to diagnose and detect faults in different building’s chillers. In doing
so, two TL tasks are conducted by splitting two chillers’ data into
the source and target domains, where limited data has been reserved
for the latter. CETL has improved the diagnosis accuracy by 12.63%
and 8.18% under two different scenarios with limited modeling data.
Moving forward, a CETL-based AFDD scheme is introduced in Di,
Shao, and Xiang (2021), which is based on transferring the knowledge
acquired by a stacked autoencoder (SAE) of bevel-gear cross-operation
conditions.

Cross-site TL (CSTL): also called cross-building TL (CBTL), aims at
transferring the knowledge of ML algorithms by training and testing
them on similar sites (e.g., buildings, industrial infrastructures, etc.)
but with different parameters (e.g., thermal energy density profiles, the
number of occupants, etc.), or entirely different sites (e.g., households
vs. commercial buildings) but recorded from the same geographical
region. In Park and Park (2021), individual thermal comfort prediction
is conducted using a CSTL-based scheme that relies on transferring
the knowledge of the combination between CNN and support vector
machines (SVM) models (i.e., CNN–SVM) from different but similar
6

indoor buildings and thermal environments. In doing so, environmental
conditions and physiological data have been used to train a CNN–
SVM on a data-rich building before testing it on a target subject with
insufficient data. Specifically, a homogeneous ensemble TL mechanism
is adopted, in which (i) 1D-CNN and DNN are first pretrained on the
source building dataset, (ii) a fine-tuning is conducted based on the
availability of data in the target subject, (iii) SVM and random forest
(RF) are trained on randomly sampled data batches from the target
building, and (iv) weighted soft voting is performed to estimate the
final individual thermal comfort prediction. The experimental tests
conducted on two target subjects have shown that the accuracy and
F1 score varies from one subject to another. Typically, they both
reached 95% for the first subject while they attained 85% and 83%,
respectively, for the second subject.

Similarly, in Wang et al. (2021), a CSTL-based thermal load fore-
casting system is introduced, which helps in modeling a district heating
station’s energy consumption based on analyzing other heating stations’
data. The main idea behind this work is to directly transfer some hidden
layers in the pretrained model with source domain data and then fine-
tune the remaining hidden layers with target domain data. Hence, only
the parameters of the layers directly transferred are entirely trained
with the source domain data, effectively avoiding overfitting that may
occur during the transfer process. In this context, collected source data
is first preprocessed before being used to train an RNN model. Next,
the parameters of most of the hidden layers are frozen, while those of
the rest are assigned and retrained with the target domain dataset.

(c) Cross-region TL (CRTL): in this case, data from different
sites/equipment/devices located in other geographical regions are con-
sidered to train and transfer the knowledge of ML models. A typical
example is proposed in Gao et al. (2021), in which a CRTL-based
thermal comfort control approach is proposed, where data recorded
from different cities with a similar climate zone is used for learn-
ing thermal comfort patterns. In this context, a TL-based multilayer
perceptron (MLP) model has been designed and trained to predict
thermal comfort accurately. Additionally, the prediction performance
has been enhanced using a GAN-based resampling method, i.e., tabular

generative adversarial networks (TGAN), which can handle the class
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d

Fig. 4. The taxonomy adopted to review existing TL-based energy systems sorted with reference to different aspects, including (i) learning process, (ii) feature space, (iii) application,
(iv) computing requirements, and (v) similarity of domain/task.
imbalance characteristics of occupants’ thermal sensation data. Empir-
ical evaluation has been conducted on the ASHRAE RP-884 dataset,1
where the superiority of the TL-MLP approach versus state-of-the-art
has been demonstrated in terms of the prediction accuracy and F1
score. In doing so, an accuracy of 54.50% with an F1 score of 55.12%
have been achieved.

(d) Cross-climate zones TL (CZTL): it capitalizes data from different
sites/equipment/devices located in different regions with distinct cli-
mate zones. Although predicted mean vote (PMV) has been investigated
for decades to optimize the thermal comfort in buildings, its perfor-
mance is low accurate. It has two major issues related to modeling data
inadequacy and thermal comfort parameter inadequacy. To close this
gap, a CZTL-based approach is introduced in Hu, Luo, Lu, and Wen
(2019), which predicts the thermal comfort of target buildings from
a different climate zone than the buildings used in the pre-training
process. Therefore, data has been recorded for five months to build a
new dataset, called intelligent thermal comfort management (iTCM),
with reference to the intelligent thermal comfort management system
used in the collection process. The pre-training has been conducted
on the famous ASHRAE dataset, while iTCM has been used for the
target domain. In this line, the pre-training has been performed using
a DL model called intelligent thermal comfort neural network (ITCNN)

1 https://www.sydney.edu.au/architecture/staff/homepage/richard_de_
ear/ashrae_rp-884.shtml.
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before validating its performance on the iTCM data. The experimen-
tal results obtained in terms of the accuracy, macro-F1 score, and
Matthews correlation coefficient (MCC) have revealed the superiority of
the CZTL-ITCNN approach compared to the PMV model and other con-
ventional ML algorithms, although the performance in general needs
further improvement.

3.1.2. Inductive TL (ITL)
The ITL refers to the case where the target and source domains are

the same (or extracted from the same site/equipment under the same
conditions); however, the target and source tasks are different. In this
context, ITL algorithms use the inductive biases of the source domains
to help enhance the target tasks. Based on whether the source domains
contain annotated datasets or not, ITL can additionally be split into
two subgroups called multitask learning and Sequential (self-taught)
learning respectively.

(a) Multi-task TL (MTL): involves training an ML model on different
tasks jointly. Hence, it learns standard features among various tasks
that share some layers. In energy systems, it has been shown that
multitask TL schemes can undergo performance degradation in compar-
ison with single-task learning (Chen, Zheng, Hu, Wang and Liu, 2019).
Typically, in Chang, Chen, and Lin (2018), an autoencoder is utilized to
develop MTL-based energy disaggregation. While in Xuan, Shouxiang,
Qianyu, Shaomin, and Liwei (2021), an MTL-based load forecasting
approach is introduced using CNN and gated recurrent unit (GRU)
models for regional integrated energy systems. Moving on, a clustered

https://www.sydney.edu.au/architecture/staff/homepage/richard_de_dear/ashrae_rp-884.shtml
https://www.sydney.edu.au/architecture/staff/homepage/richard_de_dear/ashrae_rp-884.shtml
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reinforcement learning (CRL) is adopted in Chen, Zheng et al. (2019)
to implement an MTL-based solution, promoting energy efficiency in
edge computing.

(b) Sequential TL (STL): in this case, the source and target tasks
are not necessarily similar, and the knowledge is transferred with a
sequence of steps. Additionally, STL comprises two main stages by
contrast to MTL (i) the ML model is pretrained in the first stage on
a source dataset (e.g., unsupervised), and (ii) it is adapted to another
target task (e.g., supervised) in the second phase. A typical example
is an STL-based scheme, introduced in Fang et al. (2021), to transfer
the knowledge of long-term load forecasting tasks to a short-term
prediction task with limited data. Typically, a long-short term mem-
ory (LSTM) has been utilized to capture the temporal characteristics
across target and source–target buildings. In contrast, using domain
adaptation, a domain adversarial neural network (DANN) model has
been deployed to identify domain-invariant characteristics between the
target and source buildings.

3.1.3. Unsupervised TL (UTL)
In unsupervised TL, both source and target domains are different

(D𝑆 ≠ D𝑇 ), and their datasets are unlabeled. To transfer the knowledge
and learn the target task, unsupervised TL relies on measuring the
correlation between the source and target domains using unsupervised
ML models. So far, there is little research work on this setting. It
has been utilized in applications for fault and anomaly detection. For
example, in Su, Yang, Xiang, Hu, and Xu (2022), a dilated convolu-
tion deep belief network (DCDBN) is developed to extract transferable
characteristics from raw vibration data of rotary machinery’s bearings
under variable running conditions from the source and target domain
simultaneously. Then the DCDBN model is used along with pseudo
labeling technology to train an NN-based classifier for bearings fault
detection. Similarly, in Michau and Fink (2021), an adversarial domain
adaptation for feature extraction is combined with a one-class classifier
for unsupervised anomaly detection in industrial applications. It aims
to accommodate the changing operating conditions that can cause
variations in the monitored data. That is, source and target data have
different distributions, and UTL is applied mainly to extract transferable
features between the two domains.

3.2. Sorted by learning process

Based on the learning process, TL can be categorized into offline TL
(OfTL) and online TL (OTL).

3.2.1. Offline TL (OfTL)
In this case, both the source and target domains are established,

where the learning process’s goal is to perform a one-time knowledge
transfer to adjust the model. Put simply, the source domain will not be
updated with actual data during the training. For instance, various en-
ergy disaggregation frameworks have used real-world public datasets,
such as the reference energy disaggregation dataset (REDD) (Kolter &
Johnson, 2011), and personalized retrofit decision support tools for
UK homes (REFIT) (Murray et al., 2015) to train their model in an
offline manner. However, its performance may drop when applied to
new unseen data because of the lack of online updates.

3.2.2. Online TL (OTL)
OTL refers to the learning process in which once the training is

running; the model is updated with new data recorded from actual
measurement, making the models constructed by this learning process
more adaptable to the target domain (Kang, Yang, Yang, Fang, & Zhao,
2020; Zeng, Li, Jiang, & Song, 2021). Moreover, measuring the varia-
tion of data distribution is quite tricky as the data in the target domain
is dynamically injected and processed (in real-time). This makes the
OTL more challenging than OfTL (Bao, Mohammadpour Velni, & Shah-
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bakhti, 2020). A typical example, in this case, is the work described
in Grubinger, Chasparis, and Natschläger (2017), where an OTL for
monitoring indoor environmental quality in residential buildings has
been designed to be part of a model-predictive-control implementation.
Specifically, weighted predictions of an offline ML model learned on a
set of data-rich buildings (source domain) have been used to update an
online ML model validated on new buildings with limited data (target
domain).

3.2.3. Deep TL (DTL)
DL, which is a specific type of NNs that consist of an input layer,

an output layer, and several hidden layers, has been widely used in
energy systems for different purposes, e.g., load forecasting in build-
ings (Runge & Zmeureanu, 2021), renewable energy prediction (Ku-
mari & Toshniwal, 2021; Wang, Lei, Zhang, Zhou and Peng, 2019),
powerlines inspection (Jenssen, Roverso, et al., 2018), AFDD (Taheri,
Ahmadi, Mohammadi-Ivatloo, & Asadi, 2021), etc. In doing so, various
DL models have been used to process energy data, among them CNN,
recurrent neural network (RNN), deep auto-encoder (DAE) (Fan et al.,
2019). Every layer of a DL model comprises numerous nodes, which
combine data inputs with several coefficients or weights that either
amplify or dampen those inputs (they assign importance to input data
based on the targeted learning task). The output of each node layer
represents the input for the subsequent layer. To perform specific
energy tasks, energy data is cleaned and preprocessed before being
sent to the input layer to calculate the classification result. The output
is then passed in a multistep process until satisfactory classification
accuracy.

(a) Fine-tuning: the most popular DTL in energy systems relies on fine-
tuning a pretrained DL model when the source and target domain
are almost similar. Fig. 5(a) illustrates an example of DTL conducted
using fine-tuning of a hybrid CNN-LSTM model for thermal comfort
prediction in buildings. Typically, two scenarios are shown (i) when the
whole network is fine-tuned, and (ii) some particular layers (learning
layers) are fine-tuned. This TL architecture has been adopted in Somu,
Sriram, Kowli, and Ramamritham (2021), where the parameter weights
from the two source domains from the same climate zone (ASHRAE and
Scales project datasets) have been utilized for improving the learning
process of the hybrid CNN-LSTM architecture in the target domain
(from a distinct climate zone). The first layers close to the input data
have been retrained on the target domain data as they capture the
pertinent features (climatic characteristics) of the dataset. In contrast,
the deeper layers have been frozen since they are responsible for the
classification task i.e., thermal comfort labeling.

Developing fine-tuning-based DL has recently received increasing
interest in energy applications. In Chen, Tong et al. (2020), the authors
use a fine-tuning-based MLP paradigm to perform an MPC of HVAC
with natural ventilation in smart buildings. Typically, indoor air tem-
perature and related humidity are predicted using the fine-tuning-based
MLP model, in which the few layers have been frozen. Following, the
remaining layers have been fine-tuned using a dataset of the target
domain. In Hooshmand and Sharma (2019), the authors develop a TL-
based energy predictive model for energy assets that have a limited
amount of data. A CNN model (which is appropriate for capturing daily,
weekly, and interday cyclostationary samples, seasonalities, and trends)
has been designed and pretrained on public datasets (from the Open
PV Project2) to forecast daily energy consumption before fine-tuning
the weights of the last layer to train the model on a limited training
dataset. Similarly in Jung, Park, Jung, and Hwang (2020), a TL-based
DNN model is implemented to forecast monthly electricity consumption
using data from different districts or cities (in South Korea). After
training and testing the model on source data, all the layers are fine-
tuned using the target domain. Also, in Jiang and Lee (2019), all the
layers of the TL-based LSTM model used to predict temperature and

2 https://energy.duke.edu/research/energy-data/resources.

https://energy.duke.edu/research/energy-data/resources
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Fig. 5. An example explaining the principle of a deep TL-based on a hybrid CNN-LSTM model: (a) Structure of fine-tuning, and (b) Structure of deep domain network adaptation
(DDNA).
energy demands in buildings have been fine-tuned (this is instead of
freezing the parameters of the encoder/decoder and only fine-tuning
the parameters of the dense layer). Moving on, a TL-based ANN model
to predict one-hour-ahead energy demand is proposed in Li, Xiao, Fan
and Hu (2021). Typically, the errors obtained by the first layers of the
target model are back-propagated into the base (copied) features for
fine-tuning them to fit the target task.

(b) Deep domain network adaptation (DDNA): Fine-tuning has been
widely used because of its simplicity; also, it is easy to implement
and be understood. However, fine-tuning becomes less effective when
the distributions of source and domains are distinct. Seeking for other
alternatives, many studies have investigated the consideration of dis-
tance measurements in TL into the original networks. This is named
networks adaptation, which is based on adjusting the cost function of
the initial network through the addition of a domain loss that measures
the distribution of the source and target datasets (Wang et al., 2021).
Fig. 5(b) portrays an example of a DDNA framework built on CNN
to adjust the distribution in fully connected layers through domain
distance measurement.

A typical example of DDNA-based frameworks is proposed in Fang
et al. (2021), which is based on using and LSTM-based deep ad-
versarial neural networks (LSTM-DANN) to extract domain invariant
features from the source and target domains. Next, the distance be-
tween extracted source and target domains’ components is measured
using maximum mean discrepancy (MMD). Lastly, MMD results have
been considered as the similarity metric indices for calculating regres-
sion weights and prediction values of the LSTM-DANN model. Moving
on, a DDNA-based approach that helps detect intrusions against SG
attacks is proposed in Zhang and Yan (2019). In doing so, domain-
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adversarial training is first introduced for creating a mapping between
the labeled source data and the unlabeled target data. Specifically,
the dissimilarity of the features mapped from the source and target
domains is minimized to help classifiers learn better when applied to
a new feature space against unknown threats. In Lin, Ma, Zhu, and
Liang (2021) a DDNA-based energy disaggregation method is designed
using temporal CNNs, which helps learn the dynamic characteristics of
individual appliance loads. Distances between the source and target do-
main distributions have been measured to quantify domain adaptation
losses. The latter has been combined to identify the NN’s weights using
backpropagation for training.

(c) Generative adversarial network transfer (GANT): GANs consisting of
generative networks (generators) and discriminative networks (discrim-
inators) excel in generating new datasets which have similar statistics
as the training sets (Goodfellow et al., 2020). The synthetics patterns
are generated by generative networks with reference to the input
datasets and then estimated by the discriminative networks to distin-
guish them from the source. Although GANs have initially been pro-
posed to perform unsupervised learning, they have also been effective
in supervised, semi-supervised, and reinforcement learning processes.
Moreover, the principles of GANs have successfully been applied to TL
to develop the GANT models, where the characteristics of the source
and target domains learned by the generators are transmitted to the
discriminators. The latter identifies the source of the features and then
sends back the results to the generators. This operation is repeated until
the features become indistinguishable.

In Ahmed, Zhang, and Eliassen (2020), GANs are used to per-
form a GANT-based energy disaggregation. In doing so, the generator
receives the aggregate energy measurements and generates appliance-
level data, while the discriminator discriminates between real and

synthetic data. Moving on, the knowledge learned from the source
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Fig. 6. A general structure of a GANT model used in Ahmed et al. (2020) for NILM. The discriminator D implicitly learns the loss function to detect the source of the appliance-level
signature.
domain is transferred to the target domain based on addressing the
model generalizability by (i) using a TL of parameter sharing and (ii)
minimizing the distance between the features extracted from the source
and target domains. Besides, in Han et al. (2021), Han et al. introduce
GANT-based AFDD for actual power lines in SG. In this regard, a con-
ditional GAN (CGAN) has been deployed to augment fault observations
and hence increase the data amount. Then, the loss function of CNN
is redesigned based on TL to develop an improved CNN-based fault
classification framework. The improved CNN has been then trained
using both simulated and adversarial data to make the distribution of
both categories of feature patterns closer. This has resulted in better
fault classification performance. Fig. 6 illustrates a general structure of
a GANT model.

3.3. Sorted by feature space

Based on the nature of the features in the source and target do-
mains, we can also be classified TL into homogeneous TL (HmTL) and
heterogeneous TL (HTL). In HmTL, the dimensions and semantics of
the feature sets in both the source and target domains are similar. By
contrast, in HTL, the dimensions and semantics of the feature spaces
are different in the source and target domains. In Hu et al. (2019),
an HTL-based thermal comfort monitoring system is developed. It aims
at utilizing source domain datasets for developing a related pretrained
classification model based on a DNN architecture. Following, the result-
ing model is used to update the features of the original target domain,
which are mapped to a higher dimension space. Additionally, in Gao,
Shao et al. (2021) and Somu et al. (2021), HTL is used to develop an
accurate NN-based forecasting model for thermal comfort for a building
in a particular city with limited data, utilizing data from multiple
cities in the same climate. The data of the two domains have different
features with some common ones.

The deployment of HTL is proposed in Pardamean, Muljo, Cenggoro,
Chandra, and Rahutomo (2019) to address the availability limitations
of datasets for computer vision-based crowd-counting applications in
terms of size and abundance when compared to image classification
and object detection problems. It presents the development of a smart
human-counting system using ImageNet dataset as the source, and a
CCTV collected data as the target. The proposed system can be used for
energy optimization in buildings. In Zhang, Bales and Fleyeh (2021),
DL and HTL are used for night setback identification of district heating
substations in which the time-series data are configured into images
and used on pretrained DL models.

A HmTL-based control framework for HVAC systems is developed
in Lissa, Schukat, and Barrett (2020) using RL. Lissa et al. investigated
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the learning transfer of the strategy of an HVAC controller from one
room to another in the same building to speed up the learning time
of the RL agent. While in Ahn and Kim (2022), HmTL is employed
to develop a prediction model of the power consumption of office
buildings towards improving efficiency. The simulation dataset of the
reference building is used as the source dataset, while the target domain
data are the short-term collected data. Similarly, in Demianenko and
De Gaetani (2021), an ANN and HmTL are used to support automated
building energy analyses in the context of building information model-
ing. The proposed approach helps in reducing simulation period while
considering various design parameters and assessing their impact on
the building energy use.

HmTL is applied extensively to tackle the big data requirement
for DL models, such as in Chen, Tong et al. (2020), in which it is
used to develop a deep neural network (DNN) of a building with
limited available data for model predictive control of HVAC and natural
ventilation. The DNN is first trained using the abundant data of another
building before being retrained for the desired building. In Gao, Ruan,
Fang and Yin (2020), HmTL is applied for energy consumption fore-
casting for a building with poor information data using a convolutional
neural network (CNN) and an LSTM network, in Ma et al. (2020), for
the reconstruction and imputation of missing building data before the
application of DL techniques, and in Moon, Kim, Kang, and Hwang
(2020) for an accurate and reliable building consumption short-term
load forecasting modeling.

3.4. Sorted by computing strategy

Despite that the breakthroughs in DL over the last decade have
revolutionized the energy sector (along with other research and de-
velopment fields), the state-of-the-art DL models (such as deep convo-
lutional neural networks (DCNN), AlexNet, GRU, DAE, LSTM) have a
plethora of parameters, and they require to be pretrained on large-scale
and comprehensive energy datasets. However, this task is not always
doable, especially when dealing with a real-time application or using
a constrained computing platform (Chen & Ran, 2019; Mahmoudi,
Belarbi, Mahmoudi, Belalem, & Manneback, 2020). To that end, the
idea of retraining existing DL models on new specific tasks or datasets
has gained growing attention. To assist TL in retraining DL models,
four computing methodologies have been investigated, including cloud
computing (Alsalemi, Al-Kababji, Himeur, Bensaali and Amira, 2020),
fog computing (Chen, Zheng et al., 2019), edge computing (Tan et al.,
2018), and hybrid computing (Al Maruf, Singh, Azim, & Auluck, 2021).
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3.4.1. Cloud computing
Cloud computing has first been adopted to ensure the computa-

tion requirements of TL-based energy systems due to its (i) storage
capacities that allow unlimited and scalable storage space and help in
integrating, aggregating, and sharing a massive amount of data and (ii)
processing capabilities, where unlimited virtual processing on-demand
is provided by cloud data centers (Khan, Tian, Ilager and Buyya, 2021).
For instance, in Brik, Esseghir, Merghem-Boulahia, and Snoussi (2021),
a cloud platform has been used for developing an IoT-based thermal
comfort prediction of people with physical disabilities. Accordingly, the
cloud has provided the end-users with various network services, such as
statistical analytics, real-time monitoring, and graphical visualization.

3.4.2. Fog computing
Fog computing processes in the middle layer between edge devices

and the cloud server for different purposes, including data filtering.
With the widespread deployment of smart meters and connected de-
vices, large-scale energy datasets are recorded (Farooq, Shabir, Javed,
& Imran, 2021). However, data processing and analyzing in cloud
centers have become impractical in many situations, especially for
decentralized and data-driven energy applications, because of its high
latency, downtime, and privacy preservation concerns. To alleviate
these issues, fog computing can help build distributed, latency-aware,
and privacy-preserving energy applications (Al Maruf et al., 2021).
Moreover, it is a promising option for time-sensitive TL-based energy
applications, such as energy disaggregation and AFDD, since it pro-
vides lower communication delays and improved network durability
versus the cloud. Additionally, it can offer practical privacy preserva-
tion as data is processed by various nodes in a complex distributed
system (Dey, Mukherjee, Pal, & Balamuralidhar, 2018), as it is demon-
strated in Cao, Liu, Wu, Guan, and Du (2019) and Kelati, Dhaou,
Kondoro, Rwegasira, and Tenhunen (2019).

3.4.3. Edge computing
The emergence of edge computing is due to its distributed comput-

ing architecture that adopts decentralized processing power, and its ad-
vantage of processing data (energy, environmental conditions, building
parameter settings, etc.) and sensitive information closer to its source
on IoT devices. The latter plays a significant role in promoting energy-
saving and sustainability since they help make the building environ-
ments and energy-related infrastructures sophisticated and automated
using ML- and DL-based solutions. Put simply, the intelligence and com-
puting tasks are moved to the edge devices to reduce the latency (Pérez,
Arroba, & Moya, 2021). Moreover, consumers are increasingly reluc-
tant to see their personal information being transferred to cloud data
centers. To that end, processing data on edge is much safer. Addition-
ally, the commercialization of an energy-related solution (e.g., a NILM
solution) on a substantial subscription basis, which requires important
resources to be allocated to the cloud (e.g., in terms of maintenance),
is still a challenge. Here again, going for an edge-based alternative can
significantly facilitate the commercialization process (Ahmed & Bons,
2020).

However, as edge devices are equipped with low computing re-
sources, running DL and other complex algorithms on them is chal-
lenging. To that end, TL has recently been proposed as an effec-
tive alternative, which can significantly reduce the computing require-
ments (Sufian, Ghosh, Sadiq, & Smarandache, 2020). In this regard,
effective light DTL architectures for energy systems can be developed
and implemented on edge computing environments as it has been done
in other research fields (Gong, Lin, Gong, & Lu, 2020; Sufian, You,
& Dong, 2021; Zhou et al., 2020). Moving forward, even though the
number of works targeting the implementation of TL on edge devices
for energy systems is still limited, this research direction has promising
perspectives for many reasons. For instance, actual IoT devices are
increasing in sophistication in addition to their vast proliferation, and
the computing requirements of ML/DL algorithms request that future
IoT devices should be comprised of more than simple sensors (having
8-bit microprocessors) (Pokhrel, Pan, Kumar, Doss, & Vu, 2021; Zhang,
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Si, Wang, Cao and Zhang, 2021).
3.4.4. Hybrid computing
Hybrid computing refers to using hybrid edge-cloud or fog-cloud

computing platforms, where the information processing operations are
distributed among different architectures (Leroy & Goedemé, 2021). In
this respect, low-level data preprocessing operations (e.g., data filter-
ing, data cleaning, etc.) are usually conducted either at the edge devices
or fog nodes, while high-level data processing (e.g., data augmentation,
classification, prediction, etc.) are performed at the cloud (Lee, Kim, &
Youn, 2020; Tao, Qiu, & Lai, 2021).

4. TL potential and notable use cases in sustainable smart cities

As most of the development levels and datasets of smart energy
cities are imbalanced, different problems are faced by the data scien-
tists, including the cold-start issue, data scarcity, and lack of annotated
datasets to train supervised ML models. To overcome these pitfalls,
TL is leveraged to accelerate the development of smart cities. In this
context, many studies have been investigated. For instance, in Dridi,
Amayri, and Bouguila (2022) and Lu, Zhou, Liu, and Zhang (2022), the
term urban TL is coined to explore the paradigms providing relevant
practitioners and city planners with recommendations about using the
TL technology. In Dridi et al. (2022), TL is used to estimate occupancy
detection in smart buildings for better energy and safety management.
However, the smart energy city that aims at optimizing urban energy
systems and improving the quality of life for citizens is a bit vague. It is
also realized through various tasks, including load forecasting, AFDD,
thermal comfort control, energy disaggregation, renewable energy in-
tegration, SG development, energy trading, etc. (Fan et al., 2022; Lu
et al., 2022). This study investigates the applications of TL for smart
energy cities since it is a cross-disciplinary research topic that helps
overcome some of the data-based challenges encountered with ML
tools (Hu et al., 2022). Typically, this review focuses on analyzing the
algorithmic contributions, which are the most critical part of building
TL-based smart energy city systems. Moreover, this is also because TL is
a series of ML strategies transferring knowledge from a source domain
(with rich data) to a target domain (with scarce data) (Anjomshoaa &
Curry, 2022; Maghdid et al., 2022).

4.1. Load forecasting

With the broad deployment of smart meters, the popularization
of sensor-based data, data-driven energy prediction is booming. It
analyzes historical sensor records to predict future energy usage using
ML algorithms, particularly DL models (Jin, Acquah, Seo, & Han, 2022;
Seyedzadeh, Rahimian, Rastogi, & Glesk, 2019). However, their main
issue is the necessity of vast amounts of historical data (often over
extended periods) for training DL algorithms and achieving robust
predictions (Qian, Gao, Yang, Yu, et al., 2020; Yang, Peng, Ye, Lu and
Zhong, 2021). That is not always possible, especially with the new
buildings or buildings having newly installed smart meters that provide
only small quantities of historical data, which cannot be sufficient
for creating accurate predictions. Typically, TL approaches have been
introduced as a practical solution to overcome the data scarcity issues
via using cross-domain datasets for improving predictions (Khan et al.,
2021; Wu, Wang, Precup, & Boulet, 2019; Ye & Dai, 2018).

In Mocanu, Nguyen, Kling, and Gibescu (2016), a CSTL method is
proposed to perform unsupervised load forecasting of buildings with
new behaviors and completely different buildings using the knowledge
of existing buildings. Accordingly, the idea relies on learning a build-
ing model by integrating a generalization of the state space domain.
In doing that, the RL state–action–reward–state–action (SARSA) and
Q-learning algorithms are explored for modeling building power con-
sumption. Then, a deep belief network (DBN) is integrated into the RL
models, making them appropriate for continuous states. This approach

has been validated on a comprehensive dataset (provided by Baltimore
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gas and electric company (BGEC)3), including various commercial and
esidential buildings, five buildings profiles, and gathered for seven
ears.

In Tian, Sehovac, and Grolinger (2019), a pretrained RNN model is
sed to develop a CETL approach for predicting the energy consump-
ion recorded by a target meter based on knowledge acquired from
ifferent kinds of meters. Typically, a similarity-based chained TL has
een utilized to train a sequence-to-sequence RNN (S2S-RNN) model
nd learn the similar energy consumption features of more than 400
eters in a chain manner. This has helped significantly reducing the

omputational cost when the CMTL has been validated on the global
nergy forecasting competition (GEFC) dataset. While in Hooshmand
nd Sharma (2019), the authors investigate the application of CSTL for
hort-term electricity load forecasting (24-h ahead) with limited data.
n doing so, a CNN-based energy predictive model is first developed
o capture inter-day, daily, and weekly energy consumption footprints,
nd trends and seasonalities of energy time-series. The TL is based on a
re-training process, which is introduced to learn the relevant charac-
eristics common across the buildings having the same type as the target
uilding. The acquired knowledge has been then adapted to the target
rediction model and tested on 23 randomly selected commercial and
ndustrial facilities (e.g., school, hospital, bank, grocery, light industry,
tc.) with limited data.

In Ribeiro, Grolinger, ElYamany, Higashino, and Capretz (2018),
CBTL approach is developed to predict building power consump-

ion using time-series multi-feature regression, and trend and seasonal
egulation. Mixed data from buildings with different characteristics
i.e., distributions and seasonal profiles) gleaned over a long time
rame have been used to predict the energy consumption of another
uilding having one month of data. MLP and support vector regression
SVR) models have been adopted to adjust the source buildings’ data.
he effects of time over time-series adaptation have been removed,
nd time-independent features have been prepared via a non-temporal
omain adaptation. Besides, in Gao, Ruan et al. (2020), Gao et al.
ntroduce two DL models, a 2D-CNN and a sequence-to-sequence (S2S)
odel with an attention layer, (2D-CNN-S2S) to implement a CSTL

cheme, which enhances the forecasting accuracy of a target build-
ng. Typically, data from three office buildings in China has been
onsidered to forecast the energy consumption of the target building.
n this context, compared to LSTM, S2S and 2D-CNN have enhanced
i) average absolute percent error (MAPE) by 19.69% and 20.54%
n average, respectively; and (ii) coefficient of variance of the root
ean squared error (CV-RMSE) by 31.18% and 30.32% on average,

espectively. Accordingly, to predict one year of energy consumption,
hey have employed one month of data for fine-tuning the model
retrained on two years of data (2015–2016) from every building in
he source domain. Similarly, a CSTL is investigated for short-term load
orecasting, where 24-h ahead building energy demand is predicted
n Fan et al. (2020). Specifically, the knowledge learned from buildings
ith high-quality data has been utilized to ease load forecasting in
uildings with limited data. In doing so, data of 407 buildings (from
he building data genome project (BDGP) Miller & Meggers, 2017)
ave been used as the source domain, while the data of the remaining
00 buildings have been utilized as the target domain. The model
rchitecture encompasses three parts (i) 1D-CNN layers that have been
eployed for automatically extracting local temporal characteristics
rom time-series, (ii) recurrent layers that have been used for cap-
uring interactions of intra-temporal characteristics, leading to better
ccuracy; and (iii) bidirectional operations and dropout techniques,
hich have been integrated to improve the prediction accuracy and
void overfitting. In this regard, by adopting this CSTL approach, the
rediction error has been reduced from 15% to 78%. Additionally, the
L value has been quantified using the performance improvement ratio

3 http://www.supplier.bge.com/.
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(PIR) and statistical tests. Accordingly, a mean PIR of 77.9% has been
reached for the feature extraction, while a mean PIR of 0.752 has been
attained for weight initialization.

In Li, Fu, Fung, Qu and Lau (2021), a CSTL scheme is proposed
to predict short-term energy consumption (for one-hour ahead) of
buildings with minimal data using a backpropagation neural network
(BPNN). The knowledge of BPNN acquired from 404 different source
buildings of the BDGP dataset has been transferred for the model
design for target buildings. This study has demonstrated that the critical
features influencing the performance of the CSTL scheme are the energy
consumption behavior and building industry. On the other hand, most
of the TL-based energy prediction schemes ignore discussing the process
of selecting the source domain data. Therefore, the prediction accu-
racy depends mainly on the similarity between the source and target
domains. To overcome this issue, Lu et al. (2021) propose a general
STL-based load prediction approach that integrates a similarity mea-
surement index (SMI) to select the source tasks’ data having the most
similar percentile with the target task data. An LSTM model has been
pretrained on data-rich tasks before being tuned on the target data-
scarce task. In this line, by integrating the SMI to the STL, prediction
error has been reduced by 1.81–5.65% compared to the STL without
SMI. Fig. 7 portrays the example of the STL based load forecasting
framework proposed in Lu et al. (2021).

TL is applied in Le et al. (2020) to develop a framework for multiple
electric energy consumption forecasting in a smart building utilizing
LSTM networks while minimizing computation time. The consumption
data is pre-processed to produce clean and complete daily consumption
data. K-means clustering algorithm is used to identify the multiple
daily load demand profiles in which Silhouette analysis is applied to
determine the appropriate number of clusters. For each cluster, i.e., de-
mand profile, an LSTM model is trained to develop the multiple profiles
forecasting LSTM models using TL. This reduces the training time of the
numerous computationally demanding LSTM networks. While in Jain,
Gupta, Sathanur, Chandan, and Halappanavar (2021) TL is applied
to tackle the effect of practical data sparsity/quality on the accuracy
of building consumption forecasting models. ML-based consumption
forecasting models, are first trained using the abundant simulation data
and then, using TL, are retrained using the limited practical data. The
use of TL in this context is investigated in two schemes: (i) feature
extraction scheme in which only the output segments of the ML model
are retrained, and (ii) parameters initialization scheme, in which the
full ML model is retrained. Due to limited practical data availability, TL
demonstrates its effectiveness in solving the load forecasting model’s
overfitting and poor performance issues. Similarly, in Xu and Meng
(2020), a hybrid TL model based on time series decomposition is
proposed in which the trend and seasonal components are handled by a
standard ML model for better interpretation of the seasonal cycles of the
load data. Then, a two-stage forecasting TL model is developed for the
irregular component to improve forecasting accuracy. Table 1 presents
a summary of the reviewed TL-based load forecasting frameworks, in
terms of the adopted ML model, type of TL, dataset, limitations and
best performance. The performance of reviewed methods have been
compared based on the metrics used in each framework, e.g., the
accuracy, F1 score, mean square error (MSE), root mean squared error
(RMSE), mean absolute error (MAE), PIR, or other statistical inspired
coefficients.

4.2. Anomaly/fault detection and diagnosis (AFDD)

Diagnosis of energy systems and monitoring their condition can effi-
ciently alleviate the impact of failures. This operation can help identify
the faults and anomalies due to energy components and equipment,
or even those that occurred because of consumers’ behaviors (Zhang
& Cheng, 2021). Data-driven-based AFDD has recently received grow-
ing interest from the energy research community. It benefits from

the actual and historical big data generated by the energy systems

http://www.supplier.bge.com/
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Fig. 7. Example of an STL-based load prediction framework used in Lu et al. (2021) to enhance the prediction accuracy of target task under the condition of limited data.
to identify anomalies and faults. Thanks to the advancement of ML,
intelligent automatic AFDD systems have been developed at a low cost,
and their reliability and accuracy are ever-increasing. However, the
broad deployment of AFDD is still limited by the quality and quantity
of training data and also the generalizability of the ML models (Tang,
Tang, & Chen, 2019).

The building energy sector puts significant effort into developing
AFDD systems to save energy for building operations as more than
20% can be wasted due to faults and anomalies during routine op-
erations (Teke & Timur, 2014). However, it is still challenging to
collect sufficient data from the faulty operation of building energy
systems since not all the faults can be reproduced without causing
damages to the buildings’ energy systems. Additionally, the quality
of data can also affect the diagnostic accuracy of AFDD models and
produce high false alarm rates (Wang et al., 2022). To that end, TL
has been actively used to transfer knowledge learned from data-rich
building energy systems to AFDD tasks in data-sparse systems (Han
et al., 2021; Wu, Jiang, Zhao, & Li, 2020). Moving on, since faulty
HVAC chillers can lead to increased energy consumption, reduced
thermal comfort, and increasing maintenance costs, developing robust
AFDD strategies help significantly alleviate these effects. In this line, an
AFDD system is proposed in Dowling and Zhang (2020) by conducting a
CSTL using a Bayesian classifier that helps HVAC faulty operations from
normal operations. Accordingly, the Bayesian classifier has been trained
13
on a data-rich building before transferring its knowledge to another
data-scarce building.

While most existing AFDD frameworks have focused on training
fault diagnostic ML models specific chillers, very few studies have been
reported to overcome the problem of transferring AFDD among highly
different datasets. This is a promising but challenging task, which was
addressed in Zhu, Chen, Anduv, Jin, and Du (2021). Typically, a generic
model that can learn the fault diagnosis knowledge on information-rich
source chillers and then transfer it to new target chillers is proposed.
In this respect, after standardizing heterogeneous patterns of different
chillers, a CETL based on domain adaptation is implemented to avoid
domain shifts that emerge from the difference of feature distributions
across chillers. Therefore, a DDNA is developed for generating the
diagnostic model for the target chillers, where the information about
normal operation profiles of the target chillers and the prior knowledge
are considered to train the NL models. For the empirical evaluation,
two screw chillers have been utilized as the target and source domains
accordingly, where extensive fault simulations and experiments have
been conducted. Results have indicated that the transferred diagnos-
tic knowledge has enabled decent diagnostic performance on a small
dataset. For instance, the accuracy for the first and second cycles are
81.27% and 74.93%, respectively. The block diagram of the CETL-
based AFDD system proposed in Zhu et al. (2021) is portrayed in
Fig. 8.
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Table 1
Summary of the reviewed TL-based load forecasting frameworks.

Work Year Model Type of TL Dataset Best performance Limitations

Ribeiro et al. (2018) 2017 MLP, SVR CSTL Private data MAPE = 0.0928,
MSE = 66,509

∙ Source and target buildings were from the same
region. No information about the performance of
the model on buildings from different regions.

Mocanu et al. (2016) 2019 SARSA,
Q-learning,
DBN

CSTL Private data (BGEC) RMSE = 0.02,
R = 0.99

∙ Performance varies from a scenario to another.

Tian et al. (2019) 2019 S2S-RNN CMTL CEFG MAPE < 10% ∙ Validated on meters’ records with similar
duration and reading intervals, no idea about its
performance on datasets with different duration
and reading intervals.

Hooshmand and Sharma (2019) 2019 CNN CSTL UCI repository Total normalized
averaged MAE
(TNA.MAE) = 0.7

∙ The performance varies significantly from a
building to another.

Gao, Ruan et al. (2020) 2020 S2S, 2D-CNN CSTL Private data MAPE = 0.0860,
CV-RMSE =
0.1482

∙ Validation on three buildings of the same
functional type and climate. The case of distinct
kinds of source, target buildings, and/or different
climate zones was not investigated.

Le et al. (2020) 2020 LSTM STL Private data RMSE < 1.4, MAE
< 0.9

∙ High computational cost for determining the
optimized hyper-parameters.

Xu and Meng (2020) 2020 AdaBoost
regression

CRTL GEFCOM2012,
Australia electricity
dataset

MAPE < 20 ∙ Moderate performance and privacy issues.

Fan et al. (2020) 2021 1D-CNNN,
LSTM

CSTL PIR (feature
extraction) = 77.9,
PIR (weight
initialization) =
0.752

BDGP ∙ High computational cost especially in the
training phase. Buildings in the empirical
evaluation were from the same region.

Li, Fu et al. (2021) 2021 BPNN CSTL BDGP dataset MAPE < 15 ∙ The performance is moderate and needs further
improvement.

Lu et al. (2021) 2021 LSTM STL Private data MAPE < 11 ∙ Have deviations in selecting the optimum source
tasks the target data is very limited, i.e., less than
9% of the source tasks data.

Fang, Gong, Li, Chun, Li et al. (2021) 2021 LSTM, DANN STL BDGP MAE = 5.3732,
MAPE = 0.0635,
CV-RMSE =
0.0811

∙ High computational cost for determining the
optimized hyper-parameters (using trial and error).

Jain et al. (2021) 2021 NN, RF STL Private data Accuracy = 80% ∙ Security and privacy issues.
In Wang, Yan et al. (2021), a CETL-based method is developed
sing domain adversarial transfer CNN (DATCNN) to diagnose gas-
nsulated switchgear (GIS) faults using small data samples. Typically,
eature representations are first learned from the target and source do-
ains using a residual CNN. Moving on, a domain adversarial training

s performed to transfer features, in which a conditional adversarial
rocess is used. Then, the joint distribution of labels and features is
nhanced to a random linear combination that conducts a simultaneous
daptation of labels and features. Similarly, in Chen, Qiu, Feng, Li,
nd Kusiak (2021), Chen et al. proposed a CETL-based approach using
nception V3 and TrAdaBoost, which enables detection and diagno-
is faults of wind turbines. In this context, two kinds of faults are
etected using SCADA data, i.e., gear cog belt fracture and blade
cing accretion. TrAdaBoost has been utilized to deal with imbalanced
atasets better than conventional ML models. Besides, in Yang, Zhang,
v and Wang (2021), an image recognition model based on DNN
s introduced to accurately extract image features and automatically
etect wind turbine blade damage. The Otsu threshold segmentation
ethod has been employed to segment the blade image and eliminate

he image background’s impact on the detection process. To enhance
his method’s capability in extracting abstract features and accelerating
he convergence efficiency, a TL is adopted using a CNN. Moreover,
n RF-based ensemble learning classifier is used for improving the
ccuracy of detecting the blade defects. The performance of the overall
14

odel has been evaluated using unmanned aerial vehicle (UAV) images
of the wind turbine blades. Additionally, although AFDD systems are
critical for the operation of wind turbines since they reduce the impact
of failures, enormous wind turbines cannot implement AFDD models
because of insufficient data. In this respect, because operational data
of corresponding wind turbines can have similar failure characteristics,
the authors in Li, Jiang, Zhang and Shu (2021) try to employ this
data to develop a CETL-based AFDD approach using convolutional
autoencoder (CAE). This helps in (i) alleviating the problems due to
data shortage of wind turbines and (ii) transferring knowledge from
similar wind turbines to target wind turbines.

While most existing chiller AFDD frameworks require annotated
datasets to train their models, van de Sand, Corasaniti, and Reiff-
Stephan (2021) attempted to avoid this issue by proposing a TL-based
technique to allow sharing the AFDD knowledge between heteroge-
neous chillers. In this respect, a domain adaptation that uses an SVM
with adapting decision boundaries (SVM-AD) and transfer component
analysis (TCA) for diagnosing faults is adopted. Thus, annotated source
domain data and unlabeled target domain data are aggregated in
the training phase. Moving on, since data cannot be sufficiently and
representatively recorded for short periods when newly-built yarn-
spinning workshops are studied. Moreover, anomalous energy profiles
in new spinning workshops may significantly differ from old ones
since, most likely, the anomaly rate is much lower in the new ones.
This data variation can affect the performance of TL algorithms and
make them less effective by underutilizing knowledge of the data-

rich workshops. To address these challenges, a cluster-based DDAN
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Fig. 8. The CETL-based AFDD system proposed in Zhu et al. (2021), which is applied in three steps: (i) heterogeneous data standardization, (ii) AFDD-TL using DANN and (iii)
AFDD testing of the target chillers.
is introduced in Xu, Wang, Zhang, and Li (2021), which (i) moves
the knowledge learned from old spinning workshops with rich energy
consumption data to the target data-scarce spinning workshops, and
(ii) improves the performance of TL. AFDD plays a critical role in
the aluminum extrusion process since energy consumption anomalies
frequently emerge because of improper extrusion parameters. To that
end, a DNN-based AFDD approach is introduced in Liang, Yang, Chen,
Xiao, and Lan (2018), where a large-scale datasets of extrusion ma-
chine is used to train the DNN model before transferring the acquired
knowledge to data-insufficient extruding machines. Table 2 summarizes
the TL-based AFDD frameworks discussed above with regard to various
parameters.

4.3. Thermal comfort control

Collecting real-world datasets of indoor spaces and individual char-
acteristics is delicate in terms of both the cost and time of the collection
operation and is unrealistic in certain cases (Valinejadshoubi, Moselhi,
Bagchi, & Salem, 2021). To that end, the quality of model-based control
algorithms representing building systems and dynamics is essential to
ensure the decent performance of smart buildings’ control and automa-
tion. For instance, using DL to perform a predictive control of HVAC
systems in buildings coupled with natural ventilation helps effectively
predict the buildings’ thermal responses considering several operational
and environmental conditions. However, reliably training DL models to
identify the dynamics of complicated physical processes (e.g., natural
ventilation) requires the record of a vast amount of historical data.
Unfortunately, this is not the case in most realistic scenarios, and
sufficient building operational data may not be available for different
reasons (Brik et al., 2021; Li, Fu et al., 2021).

To alleviate these issues, TL has been adopted in various studies. For
instance, in Grubinger et al. (2017), a CSTL-based scheme is introduced
to perform an online learning framework, which aims at enhancing
temperature predictions in households using a generalized OTL (GOTL).
Typically, a weighted combination of the source and target predictors
has been employed, and the convergence to the best-weighted predictor
has been guaranteed. Additionally, using transfer component analysis
15
(TCA) has enabled the combination of multiple source domains (res-
idential buildings), i.e., transferring knowledge from different source
domains. Moving forward, in Mosaico, Saviozzi, Silvestro, Bagnasco,
and Vinci (2019), a simplified state-space CSTL-based energy optimiza-
tion scheme is introduced that relies on (i) estimating occupancy of
HVAC systems using images collected from thermal cameras, and (ii)
transferring the knowledge of the AlexNet+SVR. Moreover, considering
various parameters, i.e., the occupancy, external temperature, tem-
perature setpoints, solar irradiance, wind speed, and humidity, HVAC
energy consumption has accurately been predicted.

In Chen, Tong et al. (2020) and Chen, Zheng and Samuelson (2020),
a deep MLP is used to perform a CSTL for MPC of natural ventilation
and HVAC systems in smart homes. The knowledge of the deep MLP
model has been transferred by freezing most of the deep MLP layers
(with 42,902 parameters) have been pretrained on a large-scale dataset
(with multi-year data) from a source building (in Beijing) before being
re-trained on another small dataset (including only 15 days data) from
a different building (in Shanghai) having 200 trainable parameters.
The two buildings have completely different window sizes, building
materials, and floor areas.

Besides, deep reinforcement learning (DRL) attracts increasing inter-
est due to its ability to perform an accurate control without analyzing
physical models at runtime. However, the long training time needed
to reach the desired performance still impedes its broad deployment.
To close this gap, Xu, Wang, Wang, O’Neill, and Zhu (2020) introduce
a BCTL-based scheme, which transfers the knowledge of a DRL-based
HVAC controller trained using data from a source building to an-
other controller applied on a data scare building. This was possible
with less effort and enhanced performance than a conventional DRL-
based approach without TL. While, in Bao et al. (2020), an STL-based
MPC scheme is proposed by online transferring the knowledge of an
ANN-based state-space linear parameter-varying (LPV-SS) model using
closed-loop data. The LPV-SS model is initially identified offline based
on inputs and outputs data, and an MPC approach was developed using
this model. To enhance the performance, the model is also refined using
collected closed-loop batch data and an online TL.
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Table 2
Summary of the reviewed TL-based AFDD techniques.

Work Year Model Type of TL Dataset Best performance Limitations

Liang et al. (2018) 2018 DNN CSTL Private data RMSE = 0.921,
MAPE = 3.41%

∙ Further investigations are needed to optimize
DNN parameters, e.g., the number of hidden
layers, hidden units, and learning rate for covering
different data complexity.

Dowling and Zhang (2020) 2020 Bayesian
classifier

CSTL Private data MSE = 0.7 ∙ Moderate fault detection performance.

Liu, Zhang et al. (2021) 2021 CNN CETL CEFG Accuracy = 94.37% ∙ Requires more stable TL performance and
stronger learning ability.

Zhu et al. (2021) 2021 CETL DANN Private data Accuracy = 81.27% ∙ Need to be applied for more faulty scenarios
occurred in the chillers.
Did not be validated for different types of chillers
(e.g., to transfer the knowledge from screw chiller
to centrifugal chiller).

Wang, Yan et al. (2021) 2021 DATCNN CETL Private data Accuracy = 98.9% ∙ Only working with labeled data, although it is
quite difficult to promptly identify the type of
insulation defect in GIS.

Chen et al. (2021) 2021 Inception V3,
TrAdaBoost

CETL Private data Accuracy = 86.4% ∙ Validation on three buildings of the same
functional type and climate. The case of distinct
kinds of source, target buildings, and/or different
climate zones was not investigated.

Yang, Zhang et al. (2021) 2021 CNN-RF CETL Private data Accuracy = 98% ∙ High computation complexity and no
classification of the type and severity of the defect.

van de Sand et al. (2021) 2021 TCA,
SVM-AD

CETL ASHRAE-1043 F1 = 98% ∙ Reproducing discriminative structures of the
underlying target domains’ distributions for faults
available at low severity is challenging.

Xu et al. (2021) 2021 AlexNet DDAN Private data Accuracy = 97.50%,
F1 = 94.87%

∙ High false alarm rate and security and privacy
issues.
In Lissa et al. (2020), Lissa et al. explore the spatial change of perfor-
ance accuracy of a CSTL-based thermal comfort control system using

n RL algorithm for buildings from the exact geographical location.
pecifically, the knowledge learned by a Q-learning model for moni-
oring an HVAC system has been transferred by adjusting it following
ome spatial changes. Using the TL has enabled reducing the learning
ime required for training optimal (or near-optimal control) by a factor
f 6 compared to the case without the TL. Moreover, when the spatial
ariation was less than 50%, similar performance for both static and dy-
amic HVAC control was reached, which presents an average time-out
omfort (ToC) error of 3.83% and 2.55%, respectively (Mohammadi,
l-Fuqaha, Guizani, & Oh, 2017). Besides, in Somu et al. (2021), a
ZTL-based thermal comfort prediction in buildings is proposed to
vercome the data inadequacy issue. Typically, source buildings from
similar climate zone have been used to train a CNN-LSTM model

nd then transfer the acquired knowledge to a target building from
different climate zone. Accordingly, the hybrid CNN-LSTM model

apitalizes the spatio-temporal characteristics of the thermal comfort
atterns (TCPs) for efficiently modeling thermal comfort. Only the
irst layers of the hybrid model are re-trained using data of the target
uilding. The experimental validation has been conducted using two
ource datasets (i.e., Scales Project4 and ASHRAE RP-884) and one
arget dataset (from a US office). The synthetic minority oversampling
echnique (SMOTE) has been utilized to overcome the scarcity of
amples across all thermal conditions in the considered datasets. Fig. 9
llustrates the typical flowchart of the CZTL-based thermal comfort
rediction.

In Natarajan and Laftchiev (2019), a cross-users TL (CUTL)-based
pproach is developed for thermal comfort prediction in the same build-
ng. Typically, data from the target users varies from that of the source
sers concerning the thermal parameters used in each office space, such
s a thermostat, space heater, humidity, and environmental stability,

4 http://www.scales-project.net/.
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where an HVAC system has been used to control these parameters.
Physiological data has also been recorded, including the metabolic rate,
calories consumed, skin temperature, heart rate, barometer, altimeter,
steps taken, and elevation. This data is then annotated by the users
by providing thermal comfort ratings. Moving on, the knowledge of
a ridge regression has been acquired and transferred to measure the
performance within-users and between users and its within-user has
been measured in both scenarios.

In Jiang and Lee (2019), a DTL-based thermal dynamics modeling
approach is proposed to predict the indoor temperature and energy
demand. In doing so, an LSTM-based S2S architecture has been adopted
to perform a deep domain adaptation (DDA). It has been trained
on a large-scale temperature and energy datasets temperature and
then fine-tuned on other small datasets collected from other build-
ings. Specifically, SML (Zamora-Martínez, Romeu, Botella-Rocamora, &
Pardo, 2014), and AHU5 datasets have been used to model temperature
variation, while two other energy data have been recorded from two
commercial buildings. Table 3 outlines the pertinent TL-based thermal
comfort control frameworks.

4.4. Energy disaggregation

Energy disaggregation, also called NILM, refers to the process of
inferring individual appliance energy consumption fingerprints from
an aggregated waveform (usually recorded by existing meters) using
ML modes. This application is receiving increasing attention from the
building energy community due to its ability to perform fine-grained
load monitoring at a low cost, in which no extra fee is required (Xia, Ba,
& Ahmadpour, 2021). However, although some labeled datasets exist,
the overall limited amount of annotated data used to train ML models
is a crucial challenge that hinders the deployment of this technology
at a large scale. To fill that gap, recent studies have investigated the

5 https://data.openei.org/submissions/636.

http://www.scales-project.net/
https://data.openei.org/submissions/636
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Fig. 9. A typical flowchart of TL-based thermal comfort prediction approach (Somu et al., 2021). Once the model is developed for the source building, it is refined for the actual
target location (distinct zone/building, etc.) using TL.
possibility to train ML models on existing rich-labeled datasets and
then generalize (or transfer their knowledge to different domains. That
is, even the test data has been recorded in another country compared
to the training labeled patterns (Katranji, Thuillier, Kraiem, Moalic, &
Selem, 2016).

Data scarcity can be a severe issue when applying smart NILM
solutions, especially those based on DL models. The latter requires vast
datasets to learn individual (unidentifiable) loads accurately. Also, their
generalizability to distinct domains is not guaranteed, e.g., when the
test sequences are derived from a different region/country compared to
the trained sequences (Murray, Stankovic, Stankovic, Lulic, & Sladoje-
vic, 2019; Schirmer, 2021). To overcome these problems, TL has been
introduced, which has significant benefits, among them (i) providing
possibilities to perform oracle NILM, where a unique model can be
deployed for all residential appliances everywhere; (ii) reducing the
number of sensors to be installed as the learned characteristics of an
appliance can be transferred to other appliances, i.e., by adopting CETL
or CSTL, and hence reducing financial costs; (iii) offering considerable
computational savings since pretrained models can be reutilized for
other appliances or domains (D’Incecco et al., 2019).

In this context, the authors in D’Incecco et al. (2019) use a S2P
model to investigate CETL and CSTL. In doing so, it has been demon-
strated that when performing a CETL, the implicit characteristics
learned by a “complex” device (e.g., washing machine) could be
adapted to a “simple” device (e.g., a coffee machine). Regarding the
CSTL, it was also possible to transfer the knowledge of S2P when
the training and test datasets are from the same domain (similar
buildings) without fine-tuning. By contrast, fine-tuning is required
before applying the S2P learning to the test data if they are not in the
same domain. Fig. 10 shows the concept of TL, portrayed by phase
I, where all the orange convolutional (conv) layers indicate trainable
layers using a comprehensive NILM dataset (Yang, Liu and Liu, 2021).
such as the personalized retrofit decision support tools for UK homes
(REFIT) (Murray, Stankovic, & Stankovic, 2017). In phase II, the first
17
𝑛−1 conv layers are frozen (layers are indicated by blue where the error
does not get propagated to), while the last conv layer (or layers) and
the fully connected (FC) are being adapted and trained to smaller NILM
datasets like the REDD (Kolter & Johnson, 2011), and UK-DALE (Kelly
& Knottenbelti, 2015).

A third scenario would be training a DNN model on data from
another domain, such as famously investigated imaging datasets like
ImageNet as in Deng et al. (2009), and then transferring the learning
to the NILM domain; this is called cross different domains TL (ADD-TL).
However, transitive TL should be applied to combat negative TL, which
occurs if the original and destination domains have little to nothing
in common (Li et al., 2022). It entails training the transferred DNN
into an intermediate domain that shares common features between the
source and destination domains (Liu, Zhang et al., 2021). In this regard,
Liu, Wang, and You (2019) adopt an ADD-based TL to disaggregate
energy footprints. Accordingly, the knowledge acquired by a pretrained
AlexNet CNN model is used for classifying the color-encoded V-I tra-
jectories of several device loads. In Murray et al. (2019), two different
CTL-based models are proposed to improve the generalization of CNN
and GRU models.

In Cavalca and Fernandes (2021), an ADD-TL scheme is imple-
mented to segregate energy fingerprints from the REDD repository.
Typically, the load time series is first transformed into 2D images. Next,
features are extracted using DTL. Then, the classification and annota-
tion of individual loads are performed. In Ahmed et al. (2020), two ML
approaches are introduced based on GAN and TL-based GAN (TrGAN)
models to perform NILM. Specifically, a GAN-NILM is first implemented
using parameter sharing TL. However, as the results demonstrated that
the parameter sharing is sensitive to the similarity between the source
and target domains, TrGAN-NILM has been introduced to minimize the
statistical distance between source and target domains in the feature
space. Overall, TrGAN-NILM performs well and outperforms most of
the existing approaches. Its only issue is that compact representations
cannot be learned directly from the aggregated load without the target
domain’s devices’ data.
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Table 3
Summary of the reviewed TL-based thermal comfort control frameworks.

Work Year Model Type of TL Dataset Best performance Limitations

Grubinger et al. (2017) 2017 S2P OTL Private data Moving average
RMSE curves

∙ Training the GOTL over a period of more than
five months is challenging.

Hu et al. (2019) 2019 ITCNN CZTL ASHRAE RP-884 ,
iTCM

Accuracy = 63.08%,
macro-F1 = 53.06%
45.50%

∙ The performance needs further improvements.
Data from one target domain (climate zone) was
used in the validation.

Jiang and Lee (2019) 2019 LSTM (S2S) DTL SML, AHU, private
data

CV-RMSE = 4.842%,
MAPE = 3.402%,
RMSE = 11.182%

∙ Not appropriate for multi-source TL or
unsupervised domain adaptation (unlabeled target
domain).

Mosaico et al. (2019) 2019 AlexNet + SVR ADD Private data MAE = 0.7, RMSE =
1.2, NRMSE = 13%

∙ High complexity as occupancy is detected by
analyzing images from thermal cameras.

Chen, Tong et al. (2020)
and Chen, Zheng et al.
(2020)

2020 Deep MLP CSTL Private data MSE = 0.16 ∙ Low transparency and interpretability.

Xu et al. (2020) 2020 DRL CSTL REDD Violation rates 𝐴𝜃 = 0
and 𝑀𝜃 = 0

∙ Low transparency and interpretability.
Did not consider the impact of building
construction materials or weather conditions.

Lissa et al. (2020) 2020 Q-learning CSTL Private data Average ToC error =
2.55%

∙ Consider only buildings from the same
geographical location.

Bao et al. (2020) 2020 ANN + LPV-SS OTL Private data MSE = 0.53 ∙ Offline identified model and the online
controlled system are similar.

Wang, Yuan et al. (2021) 2021 S2P, attention DNN CTL REFIT, REDD,
UK-DALE

CV-RMSE = 17.49% ∙ Excessively introduced knowledge may cause the
negative transfer phenomenon.

Gao, Shao et al. (2021) 2021 MLP, TGAN CRTL ASHRAE RP-884 Accuracy = 54.50%,
F1 = 55.12%

∙ Low accuracy and F1 score performance. Only
one target building was considered in the
validation part. Did not consider buildings from
different climate zones.

Somu et al. (2021) 2021 CNN-LSTM CSTL Scales Project,
ASHRAE RP-884

Accuracy = 59.84%,
PR = 56.68%, F1 =
56.54%

∙ Dependency to intrusive parameters and
challenge in assessing its generalizability to
different climate zones.

Park and Park (2021) 2021 CNN–SVM CSTL Private data Accuracy = 95%, F1
= 95%

∙ The performance varies from a target subject to
another.

Natarajan and Laftchiev
(2019)

2021 S2P, attention DNN CTL REFIT, REDD,
UK-DALE

RMSE = 0.82 ± 0.05 ∙ Consider users’ data from the same building. The
number of users participated in the study is very
low (five).
Fig. 10. A typical example of a TL-based energy disaggregation system (Yang, Liu et al., 2021), where (i) the orange convolutional (conv) layers indicate trainable layers and (ii)
the first 𝑛 − 1 conv layers in blue are frozen (so the error does not get propagated to). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
18
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In Zhou et al. (2021), a smart online NILM solution is introduced,
which has the ability of online inferring individual appliance loads
using transferred knowledge with limited recorded data. In doing so,
a DTL technique scheme is designed by using two DL networks in two
steps. An LSTM model was first employed for extracting lower-level
spatial and temporal characteristics from load gray-scale images gener-
ated after a 2D transformation. Secondly, a probabilistic neural network
(PNN) was utilized to classify devices and transfer the knowledge
between appliances. Also, the overall solution has been embedded into
a smart plug for demonstrating its efficiency in real-world scenarios.
Moving on, in Lin et al. (2021), Lin et al. propose a TL-based NILM
using a temporal CNN model for learning the dynamic characteristics of
individual devices’ loads. Specifically, a domain adaption loss has been
adopted for quantifying the domain distribution discrepancy between
source and target domain representations. Also, joint optimization of
domain adaptation and energy disaggregation has been used to learn
invariant representations across domains of individual device states.

In Yang, Liu et al. (2021), a DNN algorithm using an attention
mechanism is used to perform TL-based NILM, which can improve the
conventional S2P model with an attention layer and a time-embedding
layer. Thus, this scheme helped abandon the RNN structure and shorten
the training time, and hence, it was adequate to be used in model pre-
training with large datasets. Its validation on three distinct datasets:
REFIT, UK-DALE, and REDD, has shown the superiority of the new
attention model compared to a S2P model. Similarly, in Wang, Du
and Zhou (2019), a deep transfer-learning-based NILM technique is
introduced. A unique disaggregator is used for every appliance sig-
nature, which involves a feature extractor and a regressor. Then, a
learning model based on deep domain adaptation has been utilized,
which somehow helps align the distribution of energy patterns using
both the labeled and the unlabeled data.

Table 4 summarizes and compares the frameworks mentioned above
in terms of the appearance year, learning model, type of TL, the dataset
used in the validation process, and limitations. Hence, it is worth noting
that by adopting the TL strategy, a NILM algorithm can be deployed
in any environment without re-training it with new data from scratch
(from the new environment). In other words, TL improves learning in
a new environment via transferring knowledge from an initial climate
that has already been learned. Therefore, this means that an end-user
without any technical expertise can easily install such NILM solutions.
However, the burden falls over the developers’ shoulders to implement
a delicate transfer of knowledge from one domain to another. The
burden entails finding the closest domain to the NILM domain or
identifying the best intermediate domain common between them. For
the latter case, it might require data generation and labeling steps.

Although the increasing interest from academia and industry to
developing NILM systems, the latter still requires cross-building adap-
tation. Typically, a system designed for one building cannot be general-
ized to other buildings (applicability) and needs significant hand-tuning
before its application to those buildings (scalability). To alleviate these
problems, Humala et al. (2018) introduce a semi-supervised CSTL-
based NILM approach, namely UniversalNILM. The latter is based on (i)
modeling electrical devices in a few training buildings that have fine-
grained device-level signatures using combinatorial optimization (CO);
and (ii) transferring this knowledge to the test buildings (i.e., having
only aggregated consumption fingerprints) to extract appliance-level
load footprints.

In Houidi et al. (2021), a CSTL-based appliance identification ap-
proach is developed, where pertinent and understandable features are
first selected to help efficiently discriminate distinct individual ap-
pliances. In this line, a new dataset named home electrical appli-
ances recordings of NILM (HEAR-NILM)6 is introduced, which includes

6 http://dx.doi.org/10.21227/ww76-d733.
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appliance-level electrical characteristics recorded in steady-state con-
ditions. Next, the performance of various feature selection approaches
and classification models, e.g., DNN, k-nearest neighbors (KNN), linear
discriminant analysis (LDA), principal component analysis (PCA), and
mutual information (MI) have been assessed. Moving on, a TL is applied
to move the knowledge learned on the selected features from the new
dataset to a large-scale dataset, i.e., PLAID. Similarly, to overcome
the problem of data shortage, a CSTL-based energy disaggregation
scheme is proposed in Zhang, Watkins, and Kuenzel (2021). Typically,
multi-quantile LSTM (MQ-LSTM) and multi-quantile GRU models are
introduced to segregate the aggregated loads. They have been trained
on a public dataset and then fined tuned on a local dataset (target
domain) from a different area with distinct interval resolution and
different portions of energy signatures.

4.5. Renewable energy

The energy transition is accelerating the transformation of the en-
ergy sector and, with the expansion of renewable energies, is bringing
more and more new components into the system. As a result, there
may be little or no information available for new or modified plants.
The usual ML models cannot be applied here, and alternative physical
models do not always provide accurate results (Ding, Zeng, Hu, &
Yang, 2022). To that end, many studies have recently been proposed,
researching new methods for automated knowledge transfer between
individual system components in renewable energy systems (Schreiber,
2019).

The broad adoption of wind power systems has made the surge in
developing reliable and accurate probabilistic wind power forecasting
frameworks. In Qureshi, Khan, Zameer, and Usman (2017), a CZTL-
based short-term wind power forecasting scheme is introduced by
exploiting the knowledge of the DNN-based meta-regressor technique
(DNN-MRT) model. In this regard, a DAE has been used as a base-
regressor, while a deep belief network (DBN) has been utilized as
a meta-regressor. This system has experimentally been trained and
tested on a three-year dataset gathered from five different wind farms
situated in distinct climate zones in Europe. This dataset includes power
measurement (p) along with meteorological forecasts related to compo-
nents of wind, i.e., the corresponding speed (S), meridional component
of surface wind (MS), zonal Component of Surface Wind (ZS), and
direction (D) of wind. Similarly, in Cai, Gu, Ma, and Jin (2019), another
CZTL-based probabilistic wind power forecasting method is introduced.
Typically, a wind power quantile regression scheme is developed by
combining an instance-based TL model and gradient boosting decision
tree (GBDT). This approach exploits the spatial cross-correlation char-
acteristics of wind power generations in different zones to predict wind
power accurately.

Because obtaining the signal data of wind turbine faulty gearbox is
challenging along with diagnosing of the health condition under vari-
able working conditions, Ren, Liu, Shan, and Wang (2019) introduce a
fault diagnosis approach. It relies on variational mode decomposition
(VMD), multi-scale permutation entropy (MPE), and feature-based TL
(FTL). Typically, a CETL-based methodology is adopted, where the
target domain data is different from that of the source domain with
reference to the working conditions. Data representing a series of
mode components are collected by transforming the signals under
variable conditions, according to the vibration signal characteristics of
wind turbines. Moving on, the covariance between the source domain
and the target domain has been minimized using a linear transfor-
mation matrix. The difference in data distribution between the two
domains has been reduced. Next, characteristics of the covariance-
aligned source and target domains have been fed into an SVM classifier
for training and testing. In Guariso, Nunnari, and Sangiorgio (2020), a
DDNA-based solar irradiance forecasting approach is introduced using
feed-forward LSTM (FF-LSTM). Typically, the latter has been developed

and pretrained on the source domain data (collected from Como station,

http://dx.doi.org/10.21227/ww76-d733
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Table 4
Summary of the reviewed TL-based energy disaggregation frameworks.

Work Year Model Type of TL Dataset Best performance Limitations

Humala, Nambi, and
Prasad (2018)

2018 CO CSTL REDD, UK-DALE F1 = 0.58 ∙ The performance needs further improvements
and it has been tested on only four appliances.

Liu et al. (2019) 2019 AlexNet CNN ADD PLAID, WHITED Accuracy = 99.05 ∙ Energy disaggregation of multi-state loads is still
challenging, where the performance has dropped.

Murray et al. (2019) 2019 CNN, GRU CTL REFIT, REDD,
UK-DALE

F1 = 72.33% ∙ Performance varies from a dataset to another
and from an appliance to another, e.g., under
REFIT, recognizing the load of a dishwasher was
very challenging, while under DRED, the challenge
was with the refrigerator.

D’Incecco et al. (2019) 2020 S2P CETL, CTL REFIT, REDD,
UK-DALE

MAE = 11 ∙ When the domains are similar, fine tuning may
result in overfitting.

Cavalca and Fernandes
(2021)

2021 CNN VGG16 ADD REDD Accuracy = 96.7% ∙ validation on one dataset, which is not sufficient.
Moderate performance and privacy and security
issues.

Ahmed et al. (2020) 2021 GAN, TrGAN CTL REFIT, REDD,
UK-DALE

F1 = 80% ∙ Compact representations cannot be learned
directly from the aggregated load.

Zhou, Xiang, Xu, Yi et al.
(2021)

2021 LSTM, PNN ATL PLAID Accuracy = 92.27% ∙ The accuracy of disaggregation drops when
multi-state appliances are considered.

Lin et al. (2021) 2021 TCNN ADD Private data MAE < 3 ∙ The disaggregation of energy footprints including
simultaneous appliance switching operations is the
main issue.

Yang, Liu et al. (2021) 2021 MQ-LSTM,
MQ-GRU

CTL REFIT, REDD,
UK-DALE

MAE < 16 ∙ Performance varies from an appliance to another,
and ATL has not been investigated due to space
limitations. Only low-frequency was used, which
results in inaccurate prediction of appliance-related
events.

Houidi, Fourer, Auger,
Sethom, and Miègeville
(2021)

2021 DNN CTL PLAID, HEAR-NILM Accuracy = 99% ∙ Require a supervised pre-training on the target
dataset to achieve high performance and high
complexity to select the features.

Houidi et al. (2021) 2021 DNN CTL Private data RMSE = 0.58,
𝑅2 = 0.96

∙ Require labeled training datasets and the
performance needs to be improved.
in Italy) before being applied on the target domain with different
characteristics (e.g., latitude and geographical settings).

Another critical research topic that gains polarities in grid energy
management and renewable energy is related to developing lithium-
based batteries, which offer high specific power/energy densities.
Specifically, developing efficient and reliable lithium-based batteries
(i) plays a critical role in the mass roll-out of EVs, facilitates the
penetration of renewable energies globally (Shen, Sadoughi, Chen,
Hong, & Hu, 2019), and provides explicit socio-economic benefits
when transitioning towards the next-generation of energy systems.
To ensure a reliable and safe operation of lithium-based batteries,
estimating their lifetimes and online capacities is of utmost importance.
This task is performed using data-driven methods, including kernel
regression models or NNs, by learning the complicated dependency
of cell characteristic features extracted from the current and voltage
measurements on the capacity of a cell (Zhang et al., 2020). In this
context, DL models have demonstrated promising potentials in battery
capacity estimation. However, they have a plethora of parameters to
be optimized and require a massive amount of battery aging data
for training. Also, most of the ML-based algorithms suppose identical
data distributions between testing and training batteries, although
distribution discrepancies exist in real-world applications (Cheng et al.,
2021).

To overcome the issues mentioned earlier, Li, Li et al. (2021) use TL
and network pruning to develop compact CNN-based lithium-ion bat-
tery capacity estimation, which works on small datasets with enhanced
estimation performance. Accordingly, the CNN model is first pretrained
on a large source battery dataset, and the acquired knowledge is then
moved to a small target dataset for improving the estimation accuracy.
Moving forward, an approach for pruning the transferred model using
a fast recursive algorithm is introduced. This has helped reducing
20
the computational cost and size of the model while conserving good
performance. Moving on, in Che et al. (2021), the remaining useful
life (RUL) of a lithium-ion battery is predicted using a technique-based
online model correction with TL. This was possible by (i) optimizing the
threshold for health indicators using a Gaussian process regression, and
hence determining the end-of-life, and (ii) introducing an evaluation
approach for assessing the health indicators, and (iii) combining TL and
gated RNN for predicting the RUL and promoting online applications.
Similarly, in Kim et al. (2021), Kim et al. propose a DTL-based health
prediction approach for Li-ion batteries, which is based on a variational
LSTM (VarLSTM). In this regard, after training the VarLSTM on the
source dataset, its knowledge has been transferred and to the target
dataset. In doing so, the weights of LSTM cells have been frozen and
moved to the target dataset network while the weights of the fully
connected have been re-trained.

In Azkue, Lucu, Martinez-Laserna, and Aizpuru (2021), the authors
introduce a calendar aging approach for lithium-ion batteries using a
DTL model. In this line, the weights of the baseline DNN algorithm have
been retrained using a small dataset, where the initial weights of DTL
model have been adapted to the target dataset on account of the input–
output patterns learned during the pretraining. Besides, in Liu et al.
(2021), a DTL-based model is designed to predict the state-of-charge
for lithium-ion batteries, which is based on LSTM. The LSTM five layers
have been used to learn the state-of-charge dependency using a large-
scale dataset. Next, a TL strategy based on fine-tuning has been utilized
to regulate the parameters of the fully-connected layer and share other
layers’ knowledge.

4.6. Smart grid (SG) and energy trading

Cyber-security in SG: the SG has been among the significant break-

throughs of the energy sector; it showcases the best usage of computer
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intelligence to manage the energy network. Its benefits are enormous,
among them (i) improving the reliability and efficiency of the electric-
ity supply, (ii) integrating renewable energy into the existing networks,
(iii) providing end-users with the tools for optimizing their electricity
consumption, and (iv) assisting the development of EVs (Wang, Jiang,
Wang, Lv and Nowak, 2021). Smart meters installed in the SG gen-
erate large-scale datasets, where AI and ML models are employed to
analyze recorded data for various purposes, e.g., optimizing energy
consumption, detecting faults and anomalies of the electrical network,
and improving thermal comfort and safety of end-users. Moreover,
the SG faces rising cyber–physical attack threats, aiming to hack the
cyber–physical systems (CPS) or the communication systems, resulting
in national security deficits. Again, ML and DL play a critical role in
protecting the SG infrastructures against sophisticated attacks (Babar,
Tariq, & Jan, 2020).

However, most ML/DL algorithms assume that the testing and train-
ing datasets follow similar data distributions, which is not the case
in most dynamic time-varying SG systems. This is because operating
points can shift drastically over time, and therefore resulting data dis-
tribution variations can degrade classification performance and drive
delayed incidence responses. To close this gap, TL has recently been
proposed (Zhang, Bao, Yu, Yang, & Han, 2017). For instance, in Zhang
and Yan (2019), Zhang et al. introduce a domain-adversarial TL (DATL)
scheme to robustly detect intrusion against SG attacks. This approach
uses domain-adversarial training (DAT) to map the annotated source
domain and the unlabeled target domain. In this regard, the classi-
fier deployed learns and detects unknown threats in the new feature
domain. An SG cyber-attack dataset.7 has been used to evaluate this
approach and other baseline classifiers. Similarly, in Zhang and Yan
(2020), a semi-supervised DATL scheme is proposed, in which NNs
have trained a dataset of known attack incidences before transferring
its knowledge to another domain where data of the attack incidences is
rare, and only the normal data is labeled (abnormal data is unknown).
This approach has been then evaluated and compared to five base-
line classifiers, including ANN, SVM, classification and regression tree
(CART), and RF.

Moving forward, in Wang, Wu, Zhang, and Wang (2018), the knowl-
edge acquired using the TrAdaBoost algorithm (which is an instance-
based TL algorithm Dai, Yang, Xue, & Yu, 2007) is transferred from
a source domain with a large amount of data to a data-scarce tar-
get domain for constructing the dynamic security defense strategy of
vehicle-to-grid (V2G) systems. The evaluation of this scheme has been
conducted on simulated training/testing datasets, which have been gen-
erated using Mininet.8 Moving one, While using AI IoT devices can help
better manage the SG and ensure reliable communication between the
grid nodes, the enormous amounts of data recorded in geographically
vast grids overload the communication infrastructures. To alleviate
this issue, data compression at the source before communicating com-
pressed patterns has been investigated in the literature (Huang, Zhang
and Hsieh, 2021; Zhou, Xiang, Xu, Wang and Shi, 2021). In Das, Garg,
and Srinivasan (2020), an autoencoder is used to extract pertinent
structures from the SG data and then proceed with its compression.
Moving on, the generalization of this approach to data from distinct
geographical locations has been explored. Typically, the knowledge of
the autoencoders that have been pretrained on data from a specific
location has been transferred and adapted to the idiosyncrasies of a
target domain.

SG management: detecting faults in the powerlines of SG is challenging
due to the insufficiency of fault data used to train ML algorithms.
Indeed, ML-based AFDD models are trained using simulated data gener-
ated using different software (EnergyPlus, Matlab/Simulink, etc.). This
causes some issues in detecting the faults in real-world scenarios due

7 https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets.
8 http://mininet.org/.
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to the difference between simulated and accurate data. Thus, a fault
classification approach is developed using DATL in Han et al. (2021) to
meet this challenge. Accordingly, a conditional generative adversarial
network (CGAN) has been utilized to augment the actual fault data.
Following, the loss function of CNN has been redesigned based on TL
to build a new fault classification scheme based on improved CNN.
This scheme has been then trained on both simulated and adversarial
data before being validated on real-world powerlines data. Moving
forward, because early warning mechanisms are significant to main-
tain the reliability and security of SG systems, a vision-based dataset
with a TL-based approach that enables early warning classification is
developed in Gao et al. (2021). The dataset includes a large number
of instances pertaining to ten groups of high-risk objects, and power
grid infrastructures have been labeled. The knowledge learned with
CNNs to recognize power grid infrastructures and high-risk objects has
been transferred to evaluate its generalization ability in local regions
by loading the trained local patch responder with frozen weights.

On the other hand, with the integration of renewable energy into
the smart grid and the rapid increase of dynamic loads, new chal-
lenges have arisen to the stable operation of sub-transmission networks.
Typically, the short-term voltage stability (STVS) problem rises in sub-
transmission expansion planning (SEP) and therefore threatens the
stable operation of energy systems. While conventional methods of
treating STVS based on time-domain simulation are computationally
costly, Huang, Zhang and Zheng (2021) introduce a DTL-based method
based on bi-directional LSTM (BiLSTM), which efficiently identifies
resilient network structures at a low cost by only retraining some layers
of the model. In this respect, the knowledge acquired by the BiLSTM on
the original source system has been expanded to a similar target source
system (i.e., the similarity is in terms of composite loads, transmission
lines, and physical laws). Moreover, both the source and target tasks
aim at evaluating the STVS performance of different network structures,
and there is almost no difference in terms of the data size. Similarly,
in Li, Zhao, Lee, and Kim (2019), an NN-based TL scheme to infer
voltage stability margin is proposed, which requires a small amount
of offline-computed voltage stability margin data. Typically, the NN
predictor is first trained on a large binary stability-labeled dataset, and
the pretrained model is transferred and fine-tuned on a small dataset
of margins.

Energy trading: energy price prediction is becoming of significant impor-
tance for all the deregulated markets of the world. Recent research has
proved the significance of accurately predicting day-ahead electricity
prices, where different historical data from numerous markets could
be utilized as inputs for the prediction models. An ensemble of ML
and DL models has been adopted to perform this task. However, a
principal issue is how to exploit available multi-market source data is
still neglected effectively. Recent research has focused on using TL for
electricity price prediction (EPP) to answer this question. For instance,
in Gunduz, Ugurlu, and Oksuz (2020), a TL is adopted as a strategy
to exploit information from a set electricity price source markets and
then forecast the electricity price of a target market. Accordingly, a
bidirectional gated recurrent units (BGRU) model has been pretrained
using data from the source markets before performing a fine-tuning and
validating it on the target market. Since forecasting real-time electric-
ity price for wind power is crucial in operating energy markets and
avoiding price risks, DNN has been applied as it captures the temporal
relations of historical price time-series. Also, it automatically extracts
the relevant characteristics of the massive amount of data. However,
DNN-based models still need further improvements to deal with small
datasets and improve the prediction accuracy. In this context, a TL-
based electricity price forecasting approach is proposed in Yang and
Schell (2021), to transfer the knowledge acquired with a GRU on
different source domain data collected from different wind farms (in
the same region). This TL-GRU model has outperformed a DNN-based
model by 6.7% in terms of the mean absolute percent error (MAPE).

https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
http://mininet.org/
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5. Discussion of key challenges

TL-based domain adaptation techniques have proved their efficiency
in many application scenarios as they can outperform conventional
ML models in terms of different evaluation metrics. That is because
target domain data could seriously diverge from that used to train
the ML models. Moreover, the operation characteristics of the energy
systems such as HVAC systems, chillers, BAMSs, electrical devices,
etc, have a significant impact. However, it is worth noting that there
remain various problems. For instance, most TL-based frameworks
ignore describing the procedure of selecting the source domain data to
facilitate the learning of the target task. Indeed, in most situations, the
success of TL models lies in the similarity between the source–target
domains. Thus, the absence of similarity between the source and the
target domains significantly damages the TL, and even worse results
in negative transfer (Weiss, Khoshgoftaar, & Wang, 2016; Xu & Meng,
2020). Additionally, most DL approaches heavily depend on preprocess-
ing, e.g., frequency-domain analysis, time-frequency domain transform,
or time-domain feature calculation, where the similarity between the
source and target domains should be high, and the dimensions between
them need to be consistent. However, few studies have been devoted
to overcoming the inconsistency of the source and target information
dimensions. Among them, the study proposed in Hu et al. (2019), where
a DTL has been explored to conduct an efficient knowledge transfer
among heterogeneous domains. This section highlights the pressing
challenges attracting considerable interest in the actual time.

5.1. The problem of negative transfer

When the TL ends up with a degradation of the classification of
prediction performance (or accuracy) of the newly developed model, it
is due to negative transfer. Indeed, TL perfectly works if the source and
target domains are sufficiently similar. Put differently, when the data
used to pretrain the TL model is different enough than the data used
to re-train this model (or some of its parts), the performance might be
worse than expected. Moreover, regardless that the source and target
domains can appear similar to humans, algorithms may not always
agree with them. For example, in the building energy sector, even
the source and target data are collected from very similar buildings
located in the same region; it may be very different as each building
is personalized due to the variations of operation mode, occupant
behavior, thermal performance, etc. Moreover, the prediction perfor-
mance of the data-driven model in similar buildings is different due
to the factors mentioned above. In this regard, to correctly transfer the
knowledge of TL and avoid negative transfer, it is of utmost importance
to appropriately select the source domain, which is highly similar to the
target domain.

It is also worth mentioning that some studies, such as Dai et al.
(2007), have demonstrated that the quality of the TL performance
has a direct relation with the Kullback–Leibler divergence estimated
between the source domains and target domain datasets (Sousa, Silva,
Alexandre, Santos, & De Sá, 2014). Put simply, it may not be practical
for some application scenarios to use a TL; or, the successful TL’s ar-
chitecture should be reliable for heterogeneous problems. Additionally,
although these intuitive ideas have experimentally shown a relation be-
tween domain divergence and TL algorithms’ performance, theoretical
descriptions for these behaviors are still unknown.

Although there has been an increasing interest from the ML commu-
nity to fix the problem of negative transfer in TL algorithms, e.g., Chen,
Wang, Fu, Long and Wang (2019), Gui, Xu, Lu, Du, and Zhou (2018)
and Wang, Dai, Póczos and Carbonell (2019), only one study has
investigated this issue in the case of smart city or energy systems.
Specifically, Niu et al. (2020) attempted to avoid the negative trans-
fer problem by using a multi-source TL. This helps optimize energy
management using occupancy detection patterns and a multi-source
22

knowledge transfer. Typically, the negative transfer caused when using
only one data source domain has been avoided. Moreover, the perfor-
mance has been improved compared to the case of unsupervised ML.
To that end, one straightforward solution to avoid the negative transfer
in smart cities and energy systems is to transpose and adapt what has
been done in other research fields (Zhang, Deng, Zhang and Wu, 2020),
e.g., by filtering out unrelated source data as explained in Wang, Dai
et al. (2019).

5.2. The problem of overfitting

One of the challenges in developing TL-based techniques for energy
applications is overcoming overfitting, which is due to re-training
complex models with insufficient data. The size of the training dataset
is not the only influencing factor in this case. It is accompanied by the
complexity of the data-driven models, that is mainly in terms of the set
of model’s parameters. Although this issue is familiar with all the data-
driven models, overfitting in TL also occurs when the developed model
learns details and noises from source domain data that negatively
impact its outputs (Delfosse, Hebrail, & Zerroug, 2020). In TL, the
network layers cannot be removed to identify with confidence the
best classification/prediction parameters of the ML models. Typically,
removing the first layers may negatively impact the dense layers since
the number of trainable parameters will change. On the flip side, the
number of dense layers can be reduced; however, the analysis of the
number of layers to be removed while avoiding the overfitting of the
model is time-consuming and challenging.

Hence, the first step in applying TL is the careful and systematic
devising of the TL problem in terms of (i) the suitability of TL under
the existing constraints on the available data, and (ii) the proper TL
model selection according to the problem at hand. That is, TL should
be applied wisely to make use of its advantages. Even though TL is a
solution, it is not necessarily the solution for all applications. For that,
it is essential to conduct an assessment of the problem considering the
task objective, available data, current constraints, and possible ways
to tackle the problem. Nevertheless, overfitting can be partially mit-
igated following two schemes; (i) by using regularization techniques,
e.g., least absolute shrinkage and selection operator (LASSO) regular-
ization for multiple linear regressions (Das, Nair, Reddy, & Venkatesh,
2018), and dropout techniques for DL models (Alghamdi et al., 2020;
Fan et al., 2020); (ii) by elaborately designing a model development
approach. This is possible by dividing the overall datasets into three
ensembles for training, validation, and testing (using cross-validation)
to optimize model parameters; by applying early-stopping strategy in
model’s re-training (Prechelt, 1998). Also, avoiding overfitting can
be achieved by adopting data augmentation strategies for generating
synthetic data when training the DL model (Jha et al., 2019; Zhao,
2017).

5.3. Reproducibility of scientific results

Although the increasing interest devoted to using TL in multiple
energy applications, some factors are hindering the broad adoption
of TL-based models and essentially affecting reproducibility, and thus
empirical comparisons of TL-based solutions: (i) it is still challenging
to evaluate the generality of TL models as most of the frameworks
were evaluated on datasets that are collected from the similar subjects
that are under the same climate conditions; (ii) there is a significant
lack of using the same datasets and benchmarks to validate the new
TL models. This is because of the limited number of existing open-
source, benchmarked datasets; and (iii) different metrics and parameter
settings have been utilized to quantify the distance between the source
and target domains and assess the performance of TL-based solutions
in different datasets. The challenges above make the comparison of TL
techniques uniformly complicated even impossible.

Despite that energy disaggregation community has launched the
open-source non-intrusive load monitoring toolkit (NILMTK) (Batra
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et al., 2019) to allow fair and accessible comparisons of energy dis-
aggregation algorithms in a reproducible fashion (Batra et al., 2019).
However, the effort put in this direction is insufficient and does not
consider the challenges introduced by TL. Moreover, in Cook, Feuz, and
Krishnan (2013), Cook has attempted to define a realistic assumption
to quantify the similarity between two domains using a universal and
domain-independent distance. The latter enables intelligently select
appropriate algorithms and assess the performance of TL solutions;
however, its application has been limited.

5.4. Measuring knowledge gains

Measuring the knowledge gained when a TL model is adopted to
conduct specific tasks is of utmost importance. However, this challenge
did not receive its merit, and a few research works have targeted it.
Bengio et al. in Glorot, Bordes, and Bengio (2011) have attempted to
analyze how to quantify the TL gain. In this regard, four measures
have been introduced to quantify the gain knowledge, i.e., transfer
error, transfer loss, transfer ratio, and in-domain ratio. Despite that
these measures can overcome some interpretation issues related to the
performance results occurring when dealing with various source do-
mains, it is unknown how they will behave in other TL-based methods,
especially for energy applications where class sets are different between
problems. Further, they can result in non-definite performance if a
perfect baseline model is obtained.

To that end, simpler measures, including accuracy, F1 score, MSE,
RMSE, MAE, PIR, or other statistical inspired coefficients, which could
provide further information, e.g., the class agreement, have been widely
investigated for evaluating TL-based solutions in the energy sector.

5.5. Unification of TL

One principal challenge that may still impede the advance of TL-
based energy applications is the wide range of formulations used to
describe the mathematical background of developed TL algorithms. For
instance, while (Hu et al., 2019) promotes the idea of Heterogeneous
TL, Fan et al. (2020) opts for statistical investigations of TL-based
methodologies, Lin et al. (2021), Zhang and Yan (2019, 2020) focus on
domain-adaptation TL. Although these frameworks and others included
in this review share the same TL idea, they differ in their defini-
tion and implementation based on the scenario under consideration.
More importantly, different variant terminologies are used, leading to
confusion. To alleviate this issue, a unification of TL definitions and
background is becoming an emergency. Although the first tentative for
unifying TL has been proposed in Patricia and Caputo (2014), this is
still not enough to cover the energy sector.

6. Case studies

6.1. TL-based energy prediction with mobility data

Because of the COVID-19 global pandemic, enormous disruptions
have been brought to the operations of the energy systems. To opti-
mize energy consumption and maintain the lighting systems to work
perfectly during this problematic period, accurately forecasting energy
demand to correctly schedule electricity generation has been of utmost
importance. However, the high variations of occupancy levels and
mobility patterns and the quarantine and curfew measures applied
globally have considerably reshaped energy usage. Thus, precise fore-
casts of future energy demand have become challenging. For instance,
California independent system operator (CAISO)9 has released a public
ataset, which shows that in April 2020 energy demand was consis-
ently overforecasted. This is mainly due to the impact of new factors,

9 https://www.caiso.com/Pages/default.aspx.
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such as the mobility data, non-availability of sufficient data to train
forecasting models, etc.

We present in this section an example of using TL to predict energy
demand while considering mobility data for informing the forecast
model of socioeconomic changes. Moreover, an MTL is adopted to
transfer the knowledge of an NN model among different load regions. In
this context, the dataset used to validate this MTL-based load forecast-
ing scheme includes multiple data sources from 12 areas of different
countries. Mobility data is integrated into the NN similarly to weather
data, where all available features are concatenated and fed into the
input layer. The innovation of this model is related to integrating
the mobility data as day-ahead weather forecasting models have been
widely used and are pretty accurate. In this regard, to perform a day-
ahead forecast, day-ahead weather forecasts are concatenated with the
current day’s mobility data. For an n-layer NN, every hidden layer
𝐻𝑗 ; 𝑗 = 1,… , 𝑛 − 1 is parameterized as a fully-connected layer:

𝐻𝑗 = 𝜎𝑗 (𝑊𝑗𝐻𝑗−1 + 𝑏𝑗 ) (2)

𝑃𝑡+𝑘 = 𝑊𝑛𝐻𝑛−1 + 𝑏𝑛 (3)

where 𝑏𝑗 are the biases and 𝑊𝑗 are the trainable weights at layer j,
while 𝜎𝑗 represent the nonlinear activation functions for promoting
nonlinearity in the NN model. The stochastic gradient descent has been
used for minimizing MAPE in the training phase while the actual load
𝑃𝑡+𝑘 is collected.

𝑃𝑀𝐴𝑃𝐸 = 1
𝑀

𝑀
∑

𝑗=1

|

|

|

𝑃𝑡+𝑘 − 𝑃𝑡+𝑘
|

|

|

𝑃𝑡+𝑘
(4)

In the evaluation phase, four forecasting algorithms are considered:

• “Model 1: NN”, which is a standard NN for day-ahead energy
prediction (without mobility data);

• “Model 2: Retrain”, which has the same architecture as model
1 but retrained when COVID-19 pandemic takes the impact on
energy consumption (training data ranging from 15/02/2020 to
30/04/2020);

• “Model 3: Mobi”, which is based on including the mobility data
(training data from 15/02/2020 to 30/04/2020); and

• “Model 4: Mobi-MTL”, which extends model 3 by using multi-task
where similar tasks with similar-sized load regions are selected.
The MTL energy prediction process is designed by sharing the
features among various prediction tasks. In this respect, different
NNs are collectively co-trained as portrayed in Fig. 11. Typically,
the features, including the actual load, weather data, timing, and
mobility data from the Apple mobility report and Apple (2021)
Google COVID-19 mobility report (Google, 2021) are split (or
shared) between different prediction tasks (Fig. 11(b)) instead of
using all the features with one single task model (a conventional
NN model), as depicted in Fig. 11(a). Moreover, it is worth noting
that the features are randomly and equally split (shared) between
the various prediction tasks.
For an ensemble of prediction tasks 𝑖 = 1, 2,… , 𝑅 with the training
datasets 𝐷𝑡𝑟 considered in this framework, the same weights of the
first 𝑞 layers have been shared by the energy prediction models.
While, the last 𝑞 − 𝑛 layers have mapped the embeddings 𝐻𝑗 to
distinct outputs 𝑃𝑡+𝑘. In doing so, a NN is constructed as follows:

𝐻𝑞 = 𝜎𝑞(𝑊𝑞(𝜎𝑘−1(𝑊1𝐻0 + 𝑏1) ⋯)) + 𝑏𝑞 (5)

𝑃 (𝑖)
𝑡+𝑘 = 𝑊 (𝑖)

𝑛 (𝜎(𝑖)𝑛−1(⋯ 𝜎(𝑖)𝑞−1(𝑊
(𝑖)
𝑞+1𝐻𝑞 + 𝑏(𝑖)𝑞+1 ⋯)) + 𝑏(𝑖)𝑛 (6)

For the training of the MTL prediction NN (defined by Eqs. (5) and
(6)), a batch of training patterns has been sampled from 𝐷(𝑖)

𝑡𝑟 for
every task 𝑖 and the weights have been updated for 𝑊𝑗 , 𝑏𝑗 ; 𝑗 = 1,
⋯ , 𝑞 and 𝑊 (𝑖), 𝑏(𝑖),~𝑗 = 𝑞+1,… , 𝑛. Moving on, a fine-tuning step
𝑗 𝑗

https://www.caiso.com/Pages/default.aspx
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Fig. 11. The architectures of energy prediction models; (a) single prediction task, and (b) MTL.
has been employed to enhance the performance of this model,
in which only a specific task 𝑖 has was trained while the trained
weights 𝑊𝑗 , 𝑗 = 1,… , 𝑞 were fixed.

Two training datasets have been used to assess the performance of
he aforementioned models. Mobility data, covering the period 01/01-
5/05, 2020, has been excluded in the first dataset. By contrast, mo-
ility data has been used in the second dataset, which spans for three
onths (15/02/–15/05, 2020). Both datasets include relatively small
ata for energy prediction. Moreover, the former represents the pre-
ockdown period while the latter spans the after-lockdown duration.
ig. 12 portrays the day-ahead energy prediction results and error
istributions obtained when the aforementioned models are considered.
ypically, they represent two weeks of data that are related to the
Seattle City” light service data. Mobi-MTL has been trained using
atasets recorded from “Boston”, “Chicago” and “Mid-Atlantic” areas.
he superiority of both “Mod. 3: Mobi” and “Mod. 4: Mobi-MTL”
as been clearly seen compared to the other two models. Typically,
t has been shown that the integration of mobility information helps
he NN in better predicting the electricity usage profiles. Moreover,
Mod. 4: Mobi-MTL” has achieved the smallest energy prediction error.
his validates the intuition that CZTL prediction knowledge could be
eneficial when only limited data is available.

.2. TL-based load forecasting in sport facilities

Buildings consumption modeling can be utilized to manage and
ptimize their performance and operation to enhance energy efficiency.
ata-driven methods have been widely adopted for consumption pre-
iction/forecasting due to the availability of data in the building
utomation and automation systems (BAMSs). Consumption predic-
ion/forecasting for sports facilities was investigated and applied in
everal studies. For example, in Yuce et al. (2014), a NN was utilized
or the prediction of energy consumption and thermal comfort level
o manage and control an indoor swimming pool, in which simulation
ata was used to train the NN model, while real-world data was utilized
o calibrate the model. Additionally, in Elnour et al. (2022, 2021),
n NN-based dynamic forecasting model of a sports hall, developed
sing simulation data, was employed in a model predictive control
MPC) system to optimize the operation of its management system in
erms of energy consumption and users thermal comfort. As shown in
ig. 13, the MPC system consists of an optimizer and a forecasting
odel of the building operation to determine the best HVAC system

ettings based on an objective function. It attempts to determine the
24
control inputs 𝑢(𝑘 + 1), that are the zone’s temperature setpoint, the
AHU supply air’s temperature setpoint, and the fresh air inlet flow
rate. Numerical optimization is employed to find the proper inputs
over a prediction horizon that provide the best-predicted performance
according to the objective function. As indicted by Elnour et al. the
accurate performance of the NN-based forecasting model is essential for
a reliable operation of the proposed MPC-based system. These studies
are developed based on simulation data which are likely to have a
different distribution from the operation data collected from the actual
facility. Hence, a sufficient amount of practical data of adequate quality
is required for real-life applications.

Data-driven consumption modeling of new facilities and outdated
existing ones may be challenging as they probably lack sufficient data
to train the data-driven models. Moreover, BAMS operational data
are likely to have quality issues related to missing data, outliers, and
other anomalies. Hence, issues may be encountered for the real-life
application of these methods as a result of insufficient performance of
the data-driven forecasting model due to the limitation on the avail-
ability of data that cover diverse operating conditions. Consequently,
TL is useful in these scenarios for information extraction with limited
data. In this case study, we demonstrate the utilization of TL to boost
the performance of an NN-based dynamic forecasting model of the
sports hall in Elnour et al. (2021) when only limited practical data is
available. Initially, the NN-based model is trained using data generated
from a simulation model for 20 days that cover diverse operating
conditions. Then, it is used to develop a calibrated version of the model
using a limited practical dataset of around 2 days of the sports hall
operation. The benchmark of the performance of the TL-based models
is a standalone model that was trained, from scratch, using two days
worth of practical data. Two TL-based models were developed, which
are (i) Model 1 in which all the layers of the pretrained models are re-
trained, and (ii) Model 2 where only the output layer of the pretrained
model was retrained. In Model 1, the pretrained model is used for
the weight initialization of the TL-based model, considering that the
simulation data and the practical data differ in data distribution. While
in Model 2, the fixed layer of the pretrained model is used for feature
extraction, considering that the simulation data and the practical data
have identical features.

Fig. 14 presents a comparison between the standalone model and
the two TL-based models averaged over 30 repeats, given the stochastic
nature of the NNs. The performance of the standalone model and the
two TL-based models on the training dataset is adequate with an MSE

of less than 0.01, as shown in Fig. 14(a). However, as demonstrated
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Fig. 12. Forecast performance of TL models validated on data collected during the COVID-19 pandemic using different model configurations: (a) forecast results, and (b) forecast
error.
Fig. 13. The NN-based MPC system for sports facilities management and optimization. The MPC system consists of an optimizer and an NN-based forecasting model working
collectively to decide the proper inputs 𝑢(𝑘). The BAMS’s sensor measurements represents the states 𝑥(𝑘) which describe the system condition, and outputs 𝑦(𝑘) that are desired to
reach certain reference values 𝑟(𝑘).
in Figs. 15 and 14(b), the standalone model evidently has poor per-
formance with a median MSE on the test dataset is 1.75 due to the
small size of the training dataset (2 days worth of data). However,
even with the limited practical data for re-training the TL-based models,
their test MSE is about 50% lower. Moreover, unlike the standalone
model, the TL-based models have low variability since the models
25
are developed based on a pretrained model with some determinism
on the values of the weights. Nevertheless, the presented results are
obtained when the training of the standalone model and TL-based
models are conducted for 200 and 50 epochs, respectively. Hence,
the computational training overhead is tremendously decreased while
achieving favorable performance. In this case study, the application of



Sustainable Cities and Society 85 (2022) 104059Y. Himeur et al.

T
o
v

T
t
c
t
w
f
B
a

7

7

t
r
w
t
w
w
c
m
t
c
F

7

r
a
s

Fig. 14. Comparison between the standalone model and the two TL-based models of the NN-based forecasting model trained using the limited practical data. The box’s upper and
lower whiskers show the maximum and the minimum of each model’s MSE for the 30 repeats, respectively and the box extends from the lower to the upper quartile values. The
orange vertical line is the median and the dots represent the MSE outliers. The precision of the model is more when the whiskers are shorter, the box is narrower and overlapping
with median line, and with minimal outliers.
Fig. 15. Comparison between the consumption forecasting by the standalone model and the two TL-based models against the true power consumption on the training dataset.
he blue plot depicts the actual data, the orange one represents the predicted consumption using the standalone model, and the green and red plots overlapping with the blue
ne are the outputs of the predicted consumption data using the TL models. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)
L is advantageous when the available historical data is insufficient
o effectively train the NN-based model. TL demonstrates a remarkable
apability in improving the performance of the forecasting model when
he available data is scarce, given that the pretrained model used,
hich was trained on a dataset of a considerable size, is sufficiently

amiliarized with the type of features and/or tasks to be performed.
y applying the TL, the pretrained model’s parameters are tuned and
dapted to the new data/problem.

. Future directions

.1. Further generalization

Although many TL-based techniques have excelled in transferring
he knowledge of ML models from the source domains to different
elated target domains, still little information is available regarding
hat extent they can be generalized. To fill this gap, it is significant

o carry out more investigations about the capability of TL not only
ith reference to the impact of spatial or geographical changes but also
hen different building environments (e.g., sports facilities, commer-

ial buildings, office buildings, households, etc.), building construction
aterials, weather conditions (especially in larger countries or regions

hat experience higher temperature variations), occupants’ behavior are
onsidered simultaneously (Akhauri, Zheng, Goldstein, & Lin, 2021;
eng et al., 2021).

.2. Real-time TL

In some applications of energy systems that require operate in
eal-time such as energy disaggregation, short-term load forecasting,
nd AFDD, online TL is more appropriate since data is available in
equential order and is utilized for updating the best predictor which
26
predicts future operation data at every step (Grubinger, Chasparis, &
Natschläger, 2016). This is by contrast to offline learning that generates
the optimal predictor after being trained on the overall dataset at
once (Wu et al., 2017). Moreover, online learning can be very helpful
in learning computationally expensive energy tasks on edge, in which
it is difficult, even infeasible, to train the ML models on the entire
dataset while respecting the real-time condition (Mao, Ding, Tian, &
Liang, 2020; Sayed, Himeur, Alsalemi, Bensaali and Amira, 2021).

Except (Bao et al., 2020; Grubinger et al., 2016, 2017), most of the
included TL-based solutions for energy applications have concentrated
on implementing offline TL, as we have been shown in this review.
This could be justified because using TL in energy systems is still in
its infancy and needs further investigation before being adopted in
real-world scenarios. However, online learning using small datasets of
real-time energy data is inevitable, especially for detecting faulty ap-
pliances and HVAC systems (Liao, Cai, Cheng, Dubey, & Rajesh, 2021),
disaggregating energy data and identifying electrical devices (Krysta-
lakos, Nalmpantis, & Vrakas, 2018), quantifying personalized thermal
comfort (Ghahramani, Tang, & Becerik-Gerber, 2015), and detecting
intrusions in smart grids (Yang, Zhai and Li, 2021). To that end,
developing online TL techniques should be the target in the near future.

7.3. Federated TL

Developing efficient TL-based energy systems for load forecasting,
energy disaggregation, thermal comfort control, AFDD, and many other
tasks is inherently tied to the development of data (Alsalemi, Himeur,
Bensaali, & Amira, 2021). In most energy systems, data may exist in
the form of isolated domains (collected from different sources) with
limited sharing perspectives between operators, consumers, and other
stakeholders or between smart sensors and the central processing server
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(CPS) that performs energy data analytics (Saputra et al., 2019). How-
ever, developing effective energy data analysis models that consider
all the parameters impacting the energy systems requires frequent data
sharing between the aforementioned nodes and contributors, thus rais-
ing privacy concerns and increasing the risks of attacks. Therefore, this
hinders further development of TL and restricts its deployment (Fekri,
Grolinger, & Mir, 2021; Ramu et al., 2022).

To alleviate those issues, federated learning has recently appeared
as a potential solution that can manage the increasing data sharing
demand without compromising users’ privacy (Sharma, Park, & Cho,
2020). More particularly, federated TL has emerged as a variant of
federated learning, enabling transferring knowledge among domains
that do not have overlapping features and users. For instance, in Li, Ye,
Song and Tse (2021), a distributed federated NILM system is introduced
using federated learning and TL, which has achieved promising privacy
preservation while maintaining good performance. Similarly, FedNILM,
a practical federated learning-based energy disaggregation system on
edge devices, is presented in Zhang et al. (2021). Typically, FedNILM
has been developed to preserve users’ privacy and provide energy
disaggregation services to large-scale edge clients. This was possible
by (i) personalizing edge model development using unsupervised TL,
(ii) leveraging secure data aggregation through federated learning, and
(iii) performing effective cloud model compression using multi-task
learning and filter pruning. Moving on, the first framework adopting
federated learning for energy prediction in residential buildings is
introduced in Taïk and Cherkaoui (2020).

7.4. Transfer reinforcement learning

Reinforcement learning plays a significant role in various energy
systems, especially for BAMSs, thermal comfort control, energy demand
response monitoring, etc. Reinforcement learning excels at learning
actions given a set of states without environment models and domain
knowledge. This was doable by directly learning state–action value-
functions or control policies. However, it is possible to wipe out the
necessity of a domain expert if the environment model is learned based
on the transitions experienced by the agent. Typically, reinforcement
learning agents learn through interaction with the environment. Hence,
the near-optimal policies can be learned based on previous experiences
after several trials, while there is no need for prior knowledge.

However, many trials could be required to achieve optimal control
performance. The learning agent faces a set of conditions and verifies
the outcomes after carrying out various actions. This can result in high
computational costs. To overcome this issue, TL can be integrated into
reinforcement learning to reuse knowledge from another agent. In this
regard, an agent that already has experience in a specific state can share
that with another agent in a similar environment. This helps avoid the
necessity to revisit the same state, as it has been demonstrated by Lissa
et al. (2020), in which a considerable speed-up was achieved in the
learning time on an HVAC control system. Similarly, in Lissa, Schukat,
Keane, and Barrett (2021), TL is applied to a DRL-based heat pump
monitoring system for better leveraging energy-saving in a microgrid.
In this line, a DRL algorithm has been employed to monitor domestic
hot water temperature and optimize PV self-consumption. Next, a TL
has been applied to speed up the convergence process. Besides, in Fu
et al. (2020), a building load forecasting scheme that combines DNN
and TRL (DNN-TRL) is proposed. Specifically, a stack denoising autoen-
coder (DEA) is used for (i) extracting the deep characteristics of load
forecasting and (ii) sharing the hidden layer structures for transferring
the common information between various load forecasting problems.
The output of the stack DEA network is utilized as the input of the
Sarsa-based RL algorithm for improving the prediction performance of
the building load forecasting. Moving on, a TRL-based rescheduling
of differential power grids that considers the security challenges is
27

presented in Wang and Tang (2022).
8. Conclusion

Cities are growing in size and resilience, but they require a more
robust, smarter, and greener energy infrastructure to thrive fully. Sav-
ing energy is critical to this goal; however, implementing energy-saving
programs that progressively shift away from fossil fuels and towards
renewable energy resources is insufficient. In this regard, a transition
to sustainable and renewable energy is pressing through developing the
next-generation energy systems, especially by introducing the latest AI
technologies. Training and testing AI models in practical applications
face many problems because (i) data is gathered from distinct working
environments or different energy systems (or devices), and the quantity
of data is insufficient to train AI models, especially DL algorithms.
Therefore, TL was proposed to overcome these issues by enhancing
classification rates, avoiding overfitting, and improving energy systems’
generalization ability.

This paper presented a comprehensive review of TL-based energy
systems, which significantly impact developing the next-generation
energy systems for smart city applications. To summarize, several
achievements of TL have been reported for load forecasting, thermal
comfort control, energy disaggregation, AFDD, smart grid and energy
trading, etc. Although requiring a significant amount of training data,
intelligent data-driven techniques for conducting the aforementioned
energy tasks are attracting growing interest from academia and in-
dustry because of their performance superiority versus physics-based
models and predicted mean vote models. TL has become a research
hotspot in the energy sector since it helps in optimizing the perfor-
mance of energy systems in different situations, e.g., when they cannot
(i) provide sufficient data, (ii) generate labeled data, or (iii) meet the
high computing resource requirements. We described in this framework
the significant progress made by the TL community in energy systems
via discussing existing frameworks, their learning methodologies, their
pros, and cons. Moreover, the effectiveness of the TL models has been
discussed under various application scenarios. Typically, we have high-
lighted the limitations of conventional ML algorithms and how TL can
help improve their performance in energy systems. Also, in addition to
crucial breakthrough works on this subject, many challenges still need
to be overcome. Most of the principal challenges on TL, e.g., negative
transfer, overfitting, measurement of transfer gains, unification of TL,
and reproducibility of scientific results, have started to be explored.
Furthermore, future directions that help better exploit TL, improve its
generalizability, and expand its deployment in real-world energy appli-
cations have been identified and briefly described, including real-time
TL, federated TL, and transfer reinforcement learning.

Overall, this review will be a comprehensive reference to guide the
energy and smart city research communities in developing TL-based
energy systems. This is mainly for applications that suffer from the
unavailability of real-world datasets due to the difficulty of collecting
multi-modal data, such as sports facilities.
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