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Abstract—This paper explores the use of the Cardiff non-
linear behavioral model to characterize the response of multiple-
input power amplifiers. In particular, a case study is presented
on a 300 W load modulated balanced amplifier operating at
2.1 GHz. The model mathematical formulation is presented, and
the comparison between original data and model shows an error
below 3%. More importantly, it is shown that the model can
accurately interpolate between characterization points allowing a
reduction of up to 96% of the points needed to accurately predict
the model behavior. This significantly reduces the simulation and
measurement time for multiple-input PA’s whilst attempting to
determine the optimal driving conditions.

Index Terms—Power amplifier, behavioral modeling, nonlinear
modeling, adaptive phase alignment.

I. INTRODUCTION

MODERN communication signals have a very large peak to
average power ratio to increase their spectral efficiency.

This requires the use of advanced power amplifier (PA) archi-
tectures to provide amplification with good energy efficiency.
Most of these architectures make use of multiple transistors
interacting non-linearly. The most popular of these solutions
is the Doherty PA [1], which is almost a standard choice
in narrowband base-station transmitters. The more recently
introduced load modulated balanced amplifier (LMBA) [2],
[3] and some of its variants, like the inverted-LMBA, have
demonstrated a better ability to operate on wider frequency
bands.

Independently from the architecture of perspective, there
are important advantages from a performance point of view
if the multiple transistors can be driven by independent RF
inputs, rather than derived from a single input by means of
passive signal splitters. In fact, the so-called Multiple-Input,
Single Output (MISO) PAs allow a “digital” signal splitting
at baseband level, with the possibility of imposing non-linear
relations between the several inputs which can help to optimize
the RF performance [4], [5].

Increasing the number of inputs means increasing the de-
grees of freedom in using the PA, so the search for an optimum
configuration of the input signals becomes an interesting
engineering problem.

For MISO PAs, the search for the optimum input con-
figuration, either directly in measurement or with a circuit
level simulation, can be very time consuming. Therefore, a
behavioral model extracted on a few characterization points
that can still provide reasonable results on a denser exploration
of the results is of great interest. For instance, work in [6]

proposes a behavioral model based on expansion of multiple-
input, multiple-output Voltera theory [7] for system level
simulation of a PA with two input signal.

For this paper, we propose using the Cardiff behavioral
model to represent the response of a dual-input inverted
LMBA. After presenting the mathematical formulation used
for the model, we will analyze the characterization data with
different density of points, to understand what is the minimum
set needed to accurately model the PA.

II. CARDIFF MODEL

The Cardiff model is a polynomial mathematics formulation
in the A-B wave domain, formed around a large signal
operating point (LSOP). It describes the device outgoing
phasor BP,h in terms of phase and magnitude of incoming
phasor AP,h (where ‘p’ is the port index and ‘h’ is the
harmonic index, referenced to the fundamental frequency f0).
The model mathematical development is based on the general
mixing theory to account for the fact that when multiple
CW harmonically related stimuli are injected into a multi-port
nonlinear system they interact (“mix”) [8].

A classic application of the Cardiff model is to extract a
nonlinear model from the nonlinear measurement (usually load
pull) data [9], [10]. The model coefficients are then imported
within a nonlinear computer-aided design CAD simulator to
be used for the design of a PA. In addition, the model is also
used in algorithms of active load-pull measurement system for
the development of high-speed load-pull measurement systems
[11].

Due to the generality and flexibility of the Cardiff model’s
mathematical formulation, it can be adopted for other uncon-
ventional applications, such as predicting the response of a
MISO PA. In fact, its general formulation can be used to
predict the response of any multi-port nonlinear system where
at least two stimulus signal, with varying phase and magnitude,
are interacting.

For the case of the MISO PAs, where the goal is to model
the device’s single output response (B3,1 and B3,0) to the
varying two input stimulus signals (A1,1 and A2,1), the Cardiff
model mathematical formulation in (1) can be used [9].
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Where the phase exponent parameter, ‘n’, can range from −∞
to +∞ and the corresponding magnitude exponents,‘m’ and
‘x’, can range from 0 to +∞. Note, in this instance, as the
output of the PA is matched to 50 Ω, the effect of the reflected
signal at the output is ignored (A3,1 = 0).

As shown in (1), the model is normalized to the phase
of the fundamental frequency at port 1 (∠A1,1). This phase
normalization establishes a time shift to ensure that each
harmonic aligns when the phase of the fundamental is 0 °.
Therefore, the model coefficients are only dependent on |A1,1|,
and not the ∠A1,1. This not only simplifies the model’s
mathematical formulation, it also enforces the time invariance
of the model [12].

III. VERIFICATION

A. Data collection strategy
To verify the Cardiff model formulation in (1), the data

was collected from simulations of a 300 W inverted-LMBA at
2.1 GHz. The Auxiliary PA (biased in class C) consists of two
170 W GaN HEMTs [13] in balanced configuration. For the
Main PA (biased in class AB), a 40 W GaN HEMT [14] is
used. Fig. 1 shows the block diagram of the inverted-LMBA.

Fig. 1. Block diagram of a MISO PA with two inputs and one output. The
Cardiff model formulation can be used to predict the PA’s output response
B3,1 respective to the two input stimulus signals, A1,1 and A2,1.

As shown, separate input ports are used for the Auxiliary (port
1) and Main (port 2) PA. The input stimulus signals A1,1 and
A2,1 are injected into the port 1 and 2, respectively. The device
response at the output (port 3) is represented by B3,1.

As only the relative phase between the two input trajectory
(∠A2,1/A1,1) is required, the “measurement” data, the ∠A1,1

was fixed at 0 ° and only data at different |A1,1| was collected.
With regard to the trajectory at port 2, both magnitude and
phase of the A2,1 were swept. Initially smaller data points
with total of ‘N1 = 26× 276 = 7562’ were used (where ‘26’
and ‘276’ are the number of |A1,1| and A2,1 sweep points,
respectively) . The model’s interpolation capability was tested
using a larger dataset with ‘N2 = 79×2412 = 190548’ points.
The simulation time between the two data sets increased
almost proportionally to the increase of number of points.

B. Model verification against “measurement” data
The normalized mean square error (NMSE) (2) is used to

investigate the accuracy of the model and validate it across

all the dataset. Fig. 2 (a) shows the calculated NMSE (dB)
value for both B3,1 and B3,0 (for DC current (h=0) the
term ‘B3,0 =∆ I3,0’) vs. input drive level (Pav). Each data
point on the graph represents the deviation of the model from
measured dataset at specific Pav level. Fig. 2 (b) and (c) show
a comparison between the measured and modeled B3,1 and
B3,0, respectively, while |A1,1| = max.
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(b)
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Fig. 2. Comparison of modeled and measured data. (a) NMSE (dB) vs Pav ,
and (b) measured vs. modeled B3,1; (c) measured vs. modeled B3,0. The
model was generated from the smaller dataset ‘N1 = 7562’.

As shown in Fig. 2 the model is capable to accurately
predicting the device response with an NMSE value of less



than -30 dB, with NMSE defined as:

NMSE =

∑
i |BMeasured

p,h −BModeled
p,h |2∑

i |BMeasured
p,h |2

(2)

In terms of percentage, this is only a 3% deviation between
the modeled and measured dataset.

C. Interpolation verification

One of the main advantage of using a behavioral model
is is that there is a significant reduction in the size of the
required dataset due to the interpolation between the measured
points. In order to verify this capability of the model, the larger
dataset with N2 = 190548 points was tested using the model
coefficients extracted only from N1 = 7562. Fig. 3 (a) shows
the NMSE (dB) value for B3,1 and B3,0 over the range of Pav;
Fig. 3 (b) and (c) shows a comparison between the modeled
B3,1 and B3,0 while |A1,1| = max.

As shown in Fig. 3, the model is capable to accurately
interpolating the measured data with NMSE value of less
than -30 dB. In this example, the total number of required
data points to model the device behavior was reduced from
‘190548’ to ‘7562’. this is more than a 96 % reduction in the
required dataset’s density.

IV. OPTIMUM INPUT TRAJECTORY

The model’s prediction of the device output response re-
spective to the input stimulus signals can be used to identify
the optimum input trajectory (e.g., to achieve the maximum
efficiency). Fig. 4(a) shows the power added efficiency (PAE)
vs. output power. The grey cloud of points shows all the pos-
sible combination of the inputs, while the solid line highlights
the maximum PAE that can be achieved by properly selecting
the inputs. Fig. 4(b) shows the input settings that lead to the
optimum PAE, specifically the relative phase (∠A2,1/A1,1),
and the available power at the two inputs. Finally, Fig. 4 (c)
the gain vs. output power with highlighted the gain resulting
from selecting the input settings for optimum PAE.

As shown in Fig. 4 (a), if the ‘Optimum’ trajectory is
selected, PAE of more than 50 % can be achieved at 10 dB
output back-off (OBO), with peaks of around 67 % at both
maximum power level and 7 dB OBO level. As expected, to
achieve this optimal performance, a phase shift at the input
is required in the OBO region (from around 60 ° to around
120 °), as shown in Fig. 4 (b). This type of power-dependent
phase offset was also reported for the dual input Doherty PA
in [15], where a digitally controlled adaptive phase alignment
at the input is proposed. As shown in Fig. 4 (c) the optimal
PAE is achieved by a compromise in the gain performance.
Depending on the application and requirements a different set
of combinations can be used, for example if maximum gain
is required than different (∠A2,1/∠A1,1) can be selected.

V. CONCLUSION

The Cardiff behavioral model can be used to accurately
predict the output response of a MISO PA to the input stimulus
signals. The model coefficients can be used to interpolate
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Fig. 3. Comparison of measured and interpolated dataset. (a) NMSE (dB) vs.
Pav (dBm), (b) comparing the interpolated and modeled B3,1 at Pav = max.
The model was generated from the smaller dataset ‘N1 = 7562’ which is
capable to predict a a larger dataset ‘N2 = 190548’. This means a 96 %
reeducation in the density of the required dataset via interpolation capability
of the model. .

between the measurement data, hence, significantly reducing
the required data when trying to identify the optimal driving
conditions. In this paper, the model has been verified, using the
simulation data of a 300 W inverted-LMBA with NMSE value
of less than -30 dB. The model shows the dataset needed to
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Fig. 4. (a) PAE (%) vs. output power; (b) Relative phase between the two
input drives (∠A2,1/A1,1) vs. output power (P1 (dBm) and P2 (dBm) are
available powers at port 1 and 2, respectively); (c) Gain vs. output power.
The ‘Optimum’ refers to the data points with highest PAE (%) value at each
output power level, where ’Other’ refers to the rest of the dataset.

accurately predict the original dataset can be reduced by 96 %
while still maintaining a good accuracy.
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