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The thigh-cuff release (TCR) maneuver is a physiological challenge that is widely used
to assess dynamic cerebral autoregulation (dCA). It is often applied in conjunction
with Transcranial Doppler ultrasound (TCD), which provides temporal information of
the global flow response in the brain. This established method can only yield very
limited insights into the regional variability of dCA, whereas functional MRI (fMRI) has
the ability to reveal the spatial distribution of flow responses in the brain with high
spatial resolution. The aim of this study was to use whole-brain blood-oxygenation-
level-dependent (BOLD) fMRI to characterize the spatiotemporal dynamics of the flow
response to the TCR challenge, and thus pave the way toward mapping dCA in the
brain. We used a data driven approach to derive a novel basis set that was then used to
provide a voxel-wise estimate of the TCR associated haemodynamic response function
(HRFTCR). We found that the HRFTCR evolves with a specific spatiotemporal pattern,
with gray and white matter showing an asynchronous response, which likely reflects the
anatomical structure of cerebral blood supply. Thus, we propose that TCR challenge
fMRI is a promising method for mapping spatial variability in dCA, which will likely prove
to be clinically advantageous.

Keywords: cerebral autoregulation, fMRI, resting-state, thigh-cuff manoeuvre, blood pressure, cerebral
physiology, BOLD

INTRODUCTION

Cerebral blood flow (CBF) is arguably the most critically important physiological parameter with
respect to neurological heath. The human brain has a very high metabolic rate, but a limited
capacity for substrate storage, so continual delivery of fresh blood is a prerequisite for healthy
functioning (Willie et al., 2014). Cerebrovascular control of blood flow occurs in many contexts,
but the term cerebral autoregulation (CA) is usually reserved to refer to the self-evident process
by which the cerebrovascular system reacts to fluctuations in systemic blood pressure to keep
CBF relatively constant (van Beek et al., 2008; Willie et al., 2014). A distinction between static
and dynamic modes of autoregulation is often made in the literature [sCA and dynamic cerebral
autoregulation (dCA) respectively], which primarily reflects experimental conditions and the
time-scale over which blood pressure changes are observed, rather than any formal suggestion
of fundamentally different processes (Brassard et al., 2021). The term dynamic CA (dCA) was
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introduced following the development of Transcranial Doppler
(TCD) ultrasound. This new technology allowed changes in
cerebral blood flow velocity (CBFV) to be measured at high
temporal resolution, and thus the CA response to the most
transient of mean arterial blood pressure (MAP) fluctuations to
be characterized (Aaslid et al., 1989). Short time scale fluctuations
in MAP (on the order of seconds) can be experimentally induced
with a variety of physiological challenges, including various
types of orthostatic maneuver, tilt-table tests, and thigh-cuff-
release (TCR) challenges (van Beek et al., 2008). Additionally,
MAP also exhibits spontaneous fluctuations across a broad band
of frequencies (Parati et al., 1995), including high frequency
changes on a beat-to-beat basis. Thus, using TCD to record CBFV
concurrently with spontaneous or induced MAP fluctuations has
permitted the temporal dynamics of dCA to be well characterized.
A host of analysis techniques have also been developed, all
attempting to extract the physiologically relevant indices of dCA
from the covarying MAP and CBFV time series (Panerai, 2009).
This experimental paradigm has proved to be extremely clinically
powerful, and there are many reports of altered dCA in a variety
of patient groups (White and Markus, 1997; Panerai et al., 2004;
Navarro et al., 2007; Aries et al., 2010).

However, the fundamental limitation of TCD is that it
only supplies global flow information, albeit with excellent
temporal resolution. Whilst undoubtedly powerful, particularly
when studying a relatively systemic process such as dCA, we
know that regional CBF is highly heterogeneous in humans
(Henriksen et al., 2018). This intra-individual variability, which
is fundamental to active neuronal functioning (Yuan et al., 2016)
and forms the basis of functional magnetic resonance imaging
(fMRI), is also relevant in the manifestation of cerebrovascular
diseases such as dementia (Morgan et al., 2021). Thus, it is
not unreasonable to conclude that the spatial pattern of activity
should not be discounted when characterizing dCA, especially in
the context of disease. To this end, fMRI techniques appear to
offer the most promise, as they allow flow related information
to be measured with high spatial resolution and whole-brain
coverage. Of the set of physiological challenges that have been
used to assess dCA, those based on gross whole-body physical
movements (e.g., squat-stand maneuvers or tilt-tables) are clearly
incompatible with the MRI. We have successfully experimented
with using lower body negative pressure (LBNP) to measure sCA
in a previous study (Whittaker et al., 2019a), but the technically
demanding experimental requirements present a considerable
challenge for widespread clinical research. Furthermore, the
significant subject motion associated with LBNP precludes it as
an effective means for measuring dCA. We have also shown
that endogenous fluctuations in MAP are correlated with fMRI
signals (Whittaker et al., 2019b), which we have suggested is
related to autoregulatory processes. However, these endogenous
MAP fluctuations are naturally lower in magnitude compared
with induced ones, which not only has implications for SNR, but
may also challenge the ecological validity (i.e., generalizability
to real-life scenarios) of using them to characterize dCA
(Simpson and Claassen, 2018).

However, the literature does include numerous studies, which
demonstrate the feasibility of employing TCR challenges to

measure dCA in the MR environment (Saeed et al., 2011;
Horsfield et al., 2013; Panerai et al., 2016). These important earlier
studies prove that fMRI is sensitive to autoregulatory responses,
however they almost invariably characterize dCA using only
global average time series, and so do not fully exploit the main
advantage of fMRI over TCD, i.e., the ability to spatially resolve
flow responses in the brain. Although (Horsfield et al., 2013)
did attempt to look at regional differences, they used a model
fitting procedure developed from TCD data, which accounts
for an initial signal drop and subsequent recovery. Thus, this
TCD originated method is likely to be suboptimal for use with
the fMRI signal, and may not be capable of revealing the full
spatiotemporal dynamics of the fMRI dCA response. Advances in
technology such as partially parallel imaging (Pruessmann et al.,
1999; Griswold et al., 2002) and simultaneous multi-slice (SMS)
(Feinberg et al., 2010; Moeller et al., 2010) now allow fMRI to
achieve reasonably good temporal resolutions with whole-brain
coverage. Thus, the purpose of this study is to explore the use of
simultaneous blood-oxygenation-level-dependent (BOLD) fMRI
and TCR to characterize the spatiotemporal dynamics of dCA in
the healthy human brain with whole-brain coverage.

MATERIALS AND METHODS

Experimental Protocol
Ten healthy male volunteers (aged between 20 and 41 years)
were recruited for a single session. All volunteers gave
written informed consent, and the Cardiff University School of
Psychology Ethics Committee approved the study in accordance
with the guidelines stated in the Cardiff University Research
Framework (Version 4.0, 2010). For each subject fMRI scans were
performed under two conditions. (1) TCR conditions coinciding
with a TCR maneuver as outlined below (tcr-fMRI). (2) Rest
conditions; during standard resting-state conditions (rs-fMRI).

Imaging Protocol
A Siemens 3T MAGNETOM Prisma scanner equipped with a 32-
channel receive head-coil was used to acquire data. The Centre
for Magnetic Resonance Research (CMRR) multiband sequence
was used to acquire SMS gradient-echo echo-planar imaging
(EPI) BOLD fMRI data with the following parameters; TR = 1 s,
TE = 30 ms, flip-angle = 58◦, 2 mm isotropic resolution, 60 slices,
multiband factor = 4, GRAPPA = 2. For 9 of the 10 subjects,
5 repeated tcr-fMRI scans were acquired, whereas for the first
subject 8 repeats were acquired. For the first 2 subjects 60 volumes
were acquired, whereas for the remaining 8 subjects 90 volumes
were acquired. This adjustment was made after the beginning
of the study to account for the possibility that a long scan time
may be needed to measure the full dynamics of the response. In
addition to tcr-fMRI scans, for each subject a rs-fMRI scan was
also acquired using the same parameters but with 600 volumes
(i.e., 10 min long). The rest scans were acquired immediately
after the last tcr-fMRI scan. Finally, a standard T1-weighted
MPRAGE scan was acquired for each subject for registration
purposes (FOV = 220 mm, TR = 2.2 s, TE = 3 ms, TI = 1.05 s,
α = 8◦, 224 continual sagittal slices, 0.7 mm isotropic resolution,
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6 m 53 s acquisition time). Concurrent physiological traces were
recorded for all runs, including photoplethysmography (PPG),
capnography for measuring expired partial pressure of end-tidal
carbon dioxide (PETCO2), and beat-to-beat blood pressure via
the MR compatible Caretaker system (Biopac, United Kingdom).

Thigh-Cuff Release Challenge Protocol
For each subject repeated tcr-fMRI scans were acquired according
to the protocol depicted in the schematic in Figure 1, with the
Vicorder system (Skidmore Medical, United Kingdom) used to
deliver the TCR challenge. For each subject, once positioned on
the scanner bed, pneumatic cuffs were placed around each thigh
at a level so that the upper edge of the cuff was approximately
at the level of the most inferior portion of the gluteus maximus
muscle (i.e., cuffs were placed on the upper thighs). Care was
taken to ensure that cuffs were firmly secured and tightly fixed
without discomfort for the participant. An additional standard
blood pressure cuff was placed around the arm to take blood
pressure measurements using an MRI compatible monitoring
system (Veris MR, MEDRAD, PA, United States). Once the
subject was positioned and ready to be moved into the bore of
the scanner, they were given a few minutes to relax and adjust
to the MR environment. Once the subject was ready to proceed
with the experiment blood pressure readings were obtained to
provide a reference for determining the cuff inflation pressure for
the TCR challenge. Two readings were taken to ensure that the
subject had reached a steady-state and had fully acclimatized to
being in the supine position, and the second reading was then
used as the reference measure.

For each subject and for each TCR maneuver the thigh cuffs
were inflated to 40 mm Hg above the reference systolic blood
pressure. Before the experiment began, one full run through of
the TCR maneuver was completed to ensure that the participant
could tolerate the challenge. All subjects tolerated the TCR-
challenge and none experienced any significant pain. Some mild
discomfort was reported, but never sufficiently severe such that
any subject chose not to continue the experiment.

Once in the scanner fMRI data were acquired to capture the
deflation period of the maneuver. The same basic procedure was
repeated according to the schematic as shown in Figure 1. First
the cuffs were inflated to the target level of 40 mm Hg above

the reference systolic blood pressure. Once the target level was
reached, the cuffs were held inflated at that pressure for 120 s
before being rapidly deflated. The fMRI scan was timed such that
data collection began 20 s before the deflation occurred. Once
data collection was complete a period of 110 s of rest was given
before the whole 300 s sequence was repeated.

Analysis
Main analysis code is available via this GitHub repository: https:
//github.com/jrwhittaker/tcr_fmri_analysis_scripts.

Pre-processing
Both tcr-fMRI and rs-fMRI data were preprocessed and registered
to MNI space with a pipeline created using AFNI (Cox, 1996),
FSL (Jenkinson et al., 2012), and ANTS (Avants et al., 2009).
Briefly, it consisted of the following steps. (1) De-spiking and
motion correction; (2) RETROICOR to remove cardiac and
respiratory cycle related variance; (3) Non-linear registration to
MNI space. (4) Regression to remove noise variance using a
CSF nuisance regressor (see Supplementary Figure 1 for time
series) and 6 motion parameters, which was combined with 0.01–
0.1 Hz bandpass filtering (rs-fMRI only) in a single step using
AFNI’s 3dTproject function; and (5) Averaging together of tcr-
fMRI repeats into a single scan to remove non TCR-challenge
evoked signal fluctuations. Concurrent physiological recordings
were processed to yield heart rate, MAP, and PETCO2 time
series as percentage signal change from the baseline period prior
to the TCR onset.

Novel Custom Basis Set
As is customary with the response to a brief neural stimulus,
we assume that the BOLD signal response to the TCR-challenge
(1BOLDTCR) is the output of a linear time-invariant (LTI)
system, meaning it is both time invariant and of finite duration.
Thus, in treating the TCR-challenge evoked transient MAP
response as an impulse input to the system, we can estimate
the impulse haemodynamic response function (HRF) to the
TCR-challenge (HRFTCR). Although fMRI studies typically use
a canonical HRF that is assumed to be homogenous across
the brain, this approach precludes the observation of regional
differences in temporal dynamics. As our aim is to characterize

FIGURE 1 | Schematic illustration of the timing of the fMRI scans with respect to the TCR challenge. Scans were timed such that they captured a 20 s baseline
before the TCR onset, and then allowed 70 s for the TCR response to evolve (40 s in the case of 2 subjects).
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the spatiotemporal dynamics of the TCR-challenge response we
need a method that allows us to fit 1BOLDTCR at a voxel-
wise level. However, 1BOLDTCR responses may be quite noisy
and contain considerable within and between subject variability.
Furthermore, we have no a priori assumptions regarding the
form the response should take, and the canonical HRF is unlikely
to be appropriate given that the mechanisms underlying the
TCR-response will likely be very different.

We therefore used a data-driven approach to derive a novel
basis set, which generalizes sufficiently well to account for within
and between subject variability, whilst minimizing the risk of
over-fitting. For each subject the Harvard-Oxford cortical atlas
was used to extract 48 cortical ROI time series from the mean tcr-
fMRI dataset, resulting in a total of 480 time series. We then fit a
smooth curve to each time series from a series of gamma density
functions as described in (Prokopiou et al., 2019), as given by

g (t, τ) =

{
e−t
√

στ
( et

τ

)√ τ
σ t ≥ 0

0 t < 0

where τ and σ determine the peak’s location and width,
respectively. A set of 8 such functions was used as regressors in
order to fit smooth 1BOLDTCR responses for every ROI time
series within a GLM. The parameter values used to generate
the regressors were varied so as to cover the range of temporal
dynamics in the expected 1BOLDTCR response. This resulted
in a set of 480 smooth response curves (10 subjects times
48 cortical ROIs) spanning the range of possible regional and
subject specific response shapes within the sample. Of these,
the top 50% (240) best fitting curves (according to R2) were
selected, and then a further dimensionality reduction step was
performed on this set of smooth curves by grouping them into
several clusters using the k-means clustering algorithm. The
elbow method was used to determine the optimal number of
clusters (13) from the sum of square distances as shown in
Figure 2A, with the elbow of the curve defined as the data point
with the largest Euclidean distance from the line connecting

the first and last points. Finally, we applied singular value
decomposition (SVD) to the set of cluster averaged response
curves. The first four singular vectors explained 91% of the
variance in the data, and so were taken as our orthonormal novel
basis set (Figure 2B).

Voxel-Wise Fit
The spatiotemporal dynamics of the TCR response were
characterized within a general linear model framework using a
model that included the novel basis set, a linear drift term and
an intercept. A second model was fitted that included PETCO2
traces to account for any effect of blood CO2 concentration on the
HRFTCR. The fitted response was then averaged across subjects to
obtain an estimate of the group level spatiotemporal dynamics.
To explore temporal dynamics within different tissue types, gray
(GM) and white matter (WM) masks were estimated for each
subject from partial volume estimates (PVE) derived from the
T1-weighted image, based on a criterion of PVE >95% for each
tissue type. To explore whether the temporal dynamics in WM
would show a differential effect based on depth (i.e., superficial
vs. deep WM), a series of erosion and subtraction calculations
were then applied to the WM masks to generate 4 sub-masks
that reflect proximity to the cortical ribbon. The most superficial
layer mask was created by subtracting a WM mask that had
one erosion performed from the total (un-eroded) WM mask.
Subsequent layers then follow this same pattern of subtracting
a more eroded mask from a less eroded mask. These sub-
masks are characterized as superficial WM, mid-superficial WM,
mid-deep WM and deep WM. Group averaged fitted responses
were then extracted from these masks. Finally, to identify any
coherent spatial structure in the HRFTCR we applied k-means
clustering to the group average voxel-wise fitted responses after
spatial smoothing (Gaussian kernel, FWHM = 5 mm). The
cluster number k was varied between the minimum of 2 and a
maximum of 6. Visual inspection showed that choosing k > 6
yielded diminishing returns in terms of highlighting structured
spatial variance.

FIGURE 2 | (A) Identification of the optimal number of clusters k for the k-means reduction step as part of the generation of the novel basis set. (B) Orthonormal
novel basis set.
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Comparison of Thigh-Cuff Release-Functional
Magnetic Resonance Imaging and
Resting-State-Functional Magnetic Resonance
Imaging
We would like to be able to examine the temporal dynamics
present in the tcr-fMRI data in a more quantitative way. However,
we want our approach to remain relatively unconstrained,
without specifying features of HRFTCR. To this end we have
chosen to look at the lag-adjusted correlation with global
signal (GS), as it should reveal the basic spatial pattern of the
relative temporal structure of the HRFTCR. The uninformed
nature of this approach has made it the preferred approach
for extracting global spatiotemporal information from resting-
state fMRI (Liu et al., 2017; Tong et al., 2019). This also allows
us to make a simple comparison between the manifestation of
spatiotemporal variance during the TCR and rest conditions,
and thus elucidate the degree to which dCA associated processes
manifest themselves in resting fMRI fluctuations. For each
dataset the GS was defined as the average time series within
a whole brain mask. Truncated subsets of the GS were time
shifted it in TR increments (i.e., 1 s), from −10 s to + 10 s, and
then correlated with truncated fMRI time series at every voxel
to create a cross-correlation function. This cross-correlation
function was then fit to a series of Legendre polynomial functions
(until R2 > 0.95 or up to a maximum order of 10) to obtain a
smooth curve, from which the maximum correlation could be
robustly estimated.

Thus, for both tcr-fMRI and rs-fMRI datasets we derived the
maximum lag-adjusted correlation with the GS and the index

of the time lag. For both metrics the spatial correlation between
tcr-fMRI and rs-fMRI data was then calculated, and a t-test was
performed following Fisher transformation of the correlation
values. We also considered how similar the overall pattern of
functional connectivity is in the rs-fMRI data compared with tcr-
fMRI. The average signal in the 48 cortical ROIs that comprise
the Harvard-Oxford atlas was extracted for both conditions, and
then the group average correlation matrix was calculated. The
correlation matrices can be qualitatively compared for rest and
TCR conditions, but to quantitatively assess their similarity we
calculated the Spearman’s rank correlation coefficient between
corresponding connectivity values, i.e., correlating the values
in the upper triangle of the correlation matrices. The use
of Spearman’s Rank correlation does not assume a linear
relationship to assess similarity between conditions, and any
similarity could be due to dCA associated processes manifesting
in resting-state fluctuations.

RESULTS

Thigh-Cuff Release Response
Temporal changes in the fMRI GS and other physiological
parameters are shown in Figure 3, where a marked drop in
the signal following the onset of the TCR can be seen. The
MAP also shows a drop in amplitude following the TCR,
although more slowly evolving compared with the fMRI
GS. HR changes were highly variable across subjects, with
no consistent response across subjects observed, whereas

FIGURE 3 | Individual subject and group mean TCR evoked responses for (A) GS, (B) MAP, (C) HR, and (D) PET CO2. For each variable the standard deviation (SD)
of the fluctuations during the baseline peroid (concatenated across subjects) was calculated and then lines added to the graph to indicate ± 2 standard deviations.
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PETCO2 rose significantly in all subjects approximately
20 s after the TCR.

Spatiotemporal Dynamics
Figure 4 shows the group average fitted response at a series
of time steps after the TCR challenge onset. Qualitatively one
can see a clear spatiotemporal pattern, with a strong GM/WM
contrast clearly manifesting at multiple time points within the full
temporal evolution of the TCR response. In the Supplementary
Material we include an additional Supplementary Figure 2,
which shows that including PETCO2 in the model makes very
little difference to the overall spatiotemporal pattern, despite the
TCR locked rise in CO2 we observe. This also suggests that
the novel basis set is not significantly over-fitting the data. In
the Supplementary Material we also include a Supplementary
Figure 3 showing the fitted response at a series of time steps
after the TCR challenge onset for the first 5 subjects. From this
figure it can be observed that the same spatiotemporal pattern

is present on an individual subject basis, and that it evolves in a
similar manner for all subjects. However, it is also clear that there
are differences between subjects. For example, subject 2 shows
an initial widespread negative signal change across brain, in
common with the other subjects, but it stays negative for longer.

Figures 4B,C show the average raw time series and fitted
response within GM and different subsets of WM, going from
the most superficial to the deepest layers. In general, the WM
response lags behind the GM one, but it also evolves as it
propagates from superficial to deep layers. The magnitude of the
WM response increases as it propagates from the superficial to
the deep layers, and the lag with respect to GM appears to increase
slightly too. This is also supported by Figure 5C, which shows
the lag with respect to the global signal in the tcr-fMRI data also
demonstrates this depth dependence in the temporal dynamics of
the WM, and to a far greater degree than in the rs-fMRI data.

In addition to the clear GM/WM disparity, more complex
spatial patterns also emerge. Figure 6 shows that the HRFTCR is

FIGURE 4 | Spatiotemporal dynamics of the HRFTCR. (A) Percentage BOLD signal changes at multiple time points post TCR onset are shown in order to visualize
the spatiotemporal variability of the HRFTCR. (B,C) Show raw and fitted responses, respectively, different tissue masks.
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FIGURE 5 | (A) Lag-adjusted correlation with the GS images for both conditions. (B) Lag time of the maximum correlation with the GS images. (C) Average lag time
of the maximum correlation with the GS by tissue type. (D) Individual subject scatter plots of the Harvard-Oxford cortical ROI averaged lag times in Rest vs. TCR
condition. Individual subject regression lines are included.

FIGURE 6 | K-means clustering shows that there is structured spatial heterogeneity in HRFTCR.
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organized into large-scale spatial patterns, which can be derived
using k-means clustering. Simply selecting k = 2 clusters, we can
see that the response can be separated into two distinct spatial
patterns with similarly shaped, but unsynchronized, temporal
dynamics. The two clusters do not appear to be delineated along
GM/WM boundaries, but rather one cluster is more located
in the middle of brain along the anterior-posterior axis, and
so could reflect the vascular territory of the middle cerebral
arteries, or alternatively the density of vascularization. At k = 4
clusters we start to see clearer GM/WM contrast, and at k = 6
cluster we start to see both GM/WM contrast as well as signs
of cortical clustering, again perhaps partly representing specific
gross vascular territories, but potentially more complex vascular
spatial structure. It is also clear that individual clusters are
reasonably symmetrical across the two hemispheres.

Additionally, we also performed a principle component
analysis (PCA) of the group averaged tcr-fMRI data in order to
identify the spatial patterns of the temporal components that
account for most variance (Supplementary Figure 1). In contrast
with k = 2 simple clustering, the spatial pattern of the 1st
component predominantly reflects GM/WM contrast. However,
the 2nd, 3rd, and 4th components show similar spatial patterns
to the k-means clusters, with the 2nd component in particular
showing high similarity with the k = 2 cluster separation. The
2nd component appears to reflect gross vascular territories, which
reinforces our belief that they are a factor partially driving the
k-means clustering.

Comparison With Rest
Figure 5A shows the group average of lag-adjusted correlation
with the GS for both tcr-fMRI and rs-fMRI datasets, and
Figure 5B shows the group average of the lag time. For both
conditions (TCR and rest) the spatial distributions of the lag-
adjuster correlations with the GS show strong GM contrast, and
there is a high degree of similarity between conditions with
mean spatial correlation of ρ = 0.49± 0.08 (mean ± SD, p =
3.43× 10−8), which means approximately 24% shared variance
on average. The lag times show some similarity between the two
conditions, particularly with regard to overall GM/WM contrast,
but there appears to be more structured variability across the
cortex in the rest condition, and the mean of spatial correlations
ρ = 0.02± 0.02

(
mean ± SD, p = 0.0012

)
is very low, albeit

still significantly non-zero. Figure 5C shows the average lag by
tissue type, and for both conditions there is a clear difference
between GM and WM. For the TCR condition this lag also
appears to be get progressively longer as a function of a WM
depth relative to the cortical surface. Figure 5D is a scatter
plot showing the relationship of Harvard-Oxford cortical ROI
average lag times between the TCR and rest conditions for
different subjects. It is clear from these plots and the individual
subject lines of best fit that there is no strong linear relationship,
and the group average correlation coefficient is not significantly
different from zero.

Correlation matrices generated from resting-state data,
following some parcellation of the brain into presumed
neuroanatomically distinct regions, are often used to visualize
functional connectivity, which is hypothesized to reflect the

macroscopic functional organization of the brain as reflected in
the synchronized activity of remote brain regions. The tcr-fMRI
data are averaged across multiple repeats of the TCR challenge,
which removes neutrally driven BOLD fluctuations that are not
temporally locked to the TCR challenge. Thus, the tcr-fMRI
data are expected to contain only variance related to the dCA
response, which is fundamentally vascular in nature. Despite this,
we still see a large degree of similarity between the rest and TCR
correlation matrices, as shown in Figures 7A,B shows a scatter
plot of the individual “functional connections,” i.e., correlation
between two distinct cortical ROIs, which we can see are strongly
positively correlated between the two conditions (Spearman’s
rank ρ = 0.76, p < 10−8).

DISCUSSION

General Findings
The aim of this study was to assess the potential of MRI
to resolve spatial heterogeneity in dCA, and thus go beyond
existing studies that essentially considered only the temporal
features. Using a TCR challenge to evoke transient blood pressure
changes, we have demonstrated that dCA is associated with
distinct spatiotemporal dynamics in a young healthy group of
subjects, which we can measure using BOLD fMRI. Consistent
with previous fMRI studies we observed a significant drop in the
signal following the onset of the TCR (Saeed et al., 2011; Horsfield
et al., 2013; Panerai et al., 2016), and as with previous reports we
also observed a delayed slow rise in PETCO2 beginning ∼20 s
post-stimulus (Panerai et al., 2015). As this PETCO2 increase
is not associated with any significant change in breathing, it
has been suggested that it is due to recirculation of oxygen-
depleted and CO2-enriched blood trapped in the legs during the
occlusion (Panerai et al., 2015). Previous studies have reported
increases in HR following TCR that are consistent across subjects
(Deegan et al., 2010; Panerai et al., 2015), although without
reporting individual subject responses, whereas others have
reported a more heterogeneous outcome, albeit in an exercise
context (Hildebrandt et al., 1979). As seen in Figure 3C we
saw elevated in HR changes in 3 out of 10 subjects, whereas
the remainder showed little evidence of an effect. One subject
showed a rise and fall in HR prior to TCR, locked instead
to the onset of scanning, perhaps as physiological response
related to anticipation/anxiety preceding the TCR. Simultaneous
continuous blood pressure measurement is a significant challenge
in the MR environment, and to our knowledge the Caretaker
system is the only commercially available solution at present. We
found a significant drop in the Caretaker derived MAP recording
following TCR, however it evolves more slowly and lags behind
the fMRI signal drop. This is consistent with what we have found
previously in endogenous fluctuations (Whittaker et al., 2019b),
and likely reflects the fact that the Caretaker blood pressure
measure, which is based on analysis of the pulse wave in the
thumb, is more sensitive to peripheral vascular changes.

In order to extract spatial dynamics, we employed a voxel-wise
fitting procedure using a novel basis set, which allows for a variety
of complex response shapes to be characterized in a parsimonious
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FIGURE 7 | (A) Group average Harvard-Oxford cortical ROI correlation matrices for Rest and TCR conditions. The order of the ROIs in the matrices is not particularly
important in this physiological context, but can found by referring to the Harvard-Oxford Cortical Atlas. (B) Scatter plot of group average Harvard-Oxford cortical ROI
correlations between the Rest and TCR condition. Each point represents a correlation between two cortical ROIs for each condition.

fashion, thus avoiding over-fitting. By adopting this approach,
we have shown that the HRFTCR exhibits significant regional
variability, both with respect to the shape of the curves and
its temporal evolution, which determines the relative timing
of peaks and troughs. Our results suggest that TCR challenge
fMRI is a promising approach for assessing the spatiotemporal
features of dCA. The sensitivity of TCD is limited to the major
intracranial arteries, which effectively precludes any but the most
global of spatial heterogeneities in dCA from being resolved,
whereas the high spatial resolution of MRI permits a very
fine-grained spatial analysis. Attempts to delineate significant
differences in dCA across major vascular territories in healthy

individuals have yielded mixed results, but generally suggest any
observable differences are small (Rosengarten and Kaps, 2002;
Sorond et al., 2005; Reehal et al., 2021). Differences between
vascular territories could be more efficiently evaluated with fMRI,
as the whole-brain (and thus all vascular territories) can be
imaged within in a single scan, in contrast with TCD in which
arteries must be individually targeted. However the vascular
territories of the major intracranial arteries divide the brain
quite neatly, whereas the patterns of clusters we observe appear
more complex. Furthermore, the spatial variability in the HRFTCR
across 48 cortical clusters shares a significant amount of variance
with coherence of resting-state fluctuations. This suggests that
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variability due to the structure of the arterial vasculature
originates at finer scale than large intracranial arteries, which
supports the notion that fMRI will allow more local vascular
determinants of dCA to be assessed.

Although we have previously reported an association between
endogenous MAP and fMRI signal fluctuations (Whittaker et al.,
2019b), which we suggested likely reflects dCA, the relative
merits relying on endogenous fluctuations compared with using
a physiological challenge to induce MAP changes is debatable
(Simpson and Claassen, 2018; Tzeng and Panerai, 2018). In
addition to larger signal changes and increased ecological validity
that comes with using a physiological challenge, there is the added
benefit that fluctuations not due to dCA can be averaged out.
This is more important for fMRI than TCD, as the resting-state
fMRI signal is known to contain variance from a wide variety of
sources. The more pronounced delineation of the lag structure
across layers of WM that we observed in the TCR condition
compared with the rest (Figure 5C) is perhaps a testament to
this fact. The more purely vascular nature of the tcr-fMRI data
in comparison with the rs-fMRI data may mean that the lag
structure we observe more closely reflects the passage of blood
through the vasculature, as has been observed in response to a
CO2 stimulus (Bhogal, 2021). Thus, whilst using rs-fMRI data to
infer cerebrovascular pathology may be suitable in severe cases
such as Stroke (Lv et al., 2013), it may not be appropriate to
discern more subtle pathological effects or individual variability
within healthy subjects.

Temporal Dynamics in White Matter
Of particular note is the marked difference in temporal dynamics
between the TCR response in GM and WM, which is perhaps
to be expected, given the structure of the arterial vasculature.
Horsfield et al. (2013) attempted to map some of the spatial
variability of the TCR response in fMRI using a two parameter
model that accounts for the initial signal drop and subsequent
recovery. In agreement with their results, we also found that
the magnitude of the signal drop was lower in WM compared
with GM. However, they also reported that the rate of recovery
parameter in their model implied a quicker return to baseline
in WM. Although we can’t compare directly, our results do
not support this finding, as we observe what appears to be
more slowly evolving dynamics in WM that lag behind the GM
response. However, the GM/WM disparity we observe in the
TCR response is consistent with a growing literature that reports
significant temporal differences in the lag-adjusted correlation
between peripheral measures of vascular tone and fMRI signals
in the brain (van Houdt et al., 2010; Tong et al., 2013, 2017;
Özbay et al., 2018; Chen et al., 2020; Kassinopoulos and Mitsis,
2021). These delayed response patterns in WM, with respect to
GM, have been hypothesized to stem from an effect of differential
transit times following upstream arterial tone changes, that are
related to the specific morphology of WM (Tong et al., 2017;
Özbay et al., 2018).

Functional magnetic resonance imaging offers a way to
delineate dCA in GM and WM that is simply not possible with
TCD, which provides further advantages for its use. Alterations
in WM perfusion are associated with numerous pathologies, such

as Multiple sclerosis (MS) (De Keyser et al., 2008) and cerebral
small vessels disease (CSVD) (Arba et al., 2017). Thus, given that
we observe distinctly different temporal dynamics in WM dCA in
comparison to GM in our healthy sample, TCR challenge fMRI
would appear to present a promising potential diagnostic route.

Relationship With Resting-State
A topic that has recently attracted interest is the presence of
low frequency oscillations in resting-state signals, which are of a
presumed systemic physiological origin (Özbay et al., 2018, 2019;
Tong et al., 2019; Whittaker et al., 2019b), and for which temporal
dynamics show structured spatial variation. The GS in resting-
state, which combines multiple sources of variance (Liu et al.,
2017), is also sensitive to any sufficiently global flow phenomena
in the brain, such as those related to systemic physiological
processes. The lag time in lag-adjusted correlations with the GS
in resting-state also show structured spatial variance (Amemiya
et al., 2016, 2020; Tong et al., 2017, 2019), which is correlated with
bolus delivery time in dynamic contrast susceptibility images (Lv
et al., 2013; Amemiya et al., 2014; Christen et al., 2015; Tong
et al., 2017) and is sensitive to stroke induced haemodynamic
changes (Lv et al., 2013; Amemiya et al., 2014). This suggests
the time lag information has a predominantly vascular origin,
and so reflects the passage of blood through the vascular system
(Tong et al., 2019). We found that time lag information was only
very weakly correlated between TCR and rest conditions, whereas
the pattern of the magnitude of the GS correlation itself was
highly correlated.

As the magnitude of the global signal correlation (Figure 5A)
has strong GM contrast, it implies that the magnitude of
fluctuations primarily reflects local deoxygenated blood volume
in both TCR and rest conditions. Conversely, as evidence
in Figure 5D, there is no significant correlation between
the spatial distribution of the lag times in the TCR and
rest conditions. We suggest that this differential lag structure
between the two conditions could reflect a difference in the
dominant vascular scale (i.e., arterial size) mediating the local
hemodynamics, i.e., the TCR response involves the action of
larger arteries whose downstream flow response will largely
reflect transit time differences related to the morphological
difference between GM and WM.

We also observed that functional connectivity matrices were
remarkably similar in rest and TCR conditions, despite the
fact that we only expect to see neuronal BOLD fluctuations in
the rest case. This result is in agreement with previous studies
that suggest purely physiological fluctuations show functional
network like structure (Bright et al., 2020; Chen et al., 2020).
In this study, the averaging together of multiple TCR scans
ensures that only task locked neural changes are present, and the
majority of signal variance should be related to the predominantly
vascular dCA process. It is likely that TCR locked neural activity
associated with sensory perception will be present, along with
neural responses associated with autonomic regulation evoked
by the TCR stimulus. However, as the relevant neural circuits are
relatively localized to subcortical regions of the brain, specifically
the hypothalamus (Manuel et al., 2020), one would not expect
this to account for the large similarity between whole-brain
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correlation matrices that we observe. Thus, it would appear that
a significant proportion of the spatial variance in resting-state
correlations and the GS is attributable to something intrinsic to
the cerebral vasculature.

Physiological Interpretation
In this study, we chose to characterize dCA from BOLD fMRI
signal changes, which under these experimental conditions
we assume are driven purely by CBF changes. However, in
reality BOLD signal dynamics reflect the complex interplay
of multiple haemodynamic processes (Buxton, 2013) and the
state of numerous physiological parameters, such as haematocrit
(Levin et al., 2001), basal CBF (Whittaker et al., 2016) and
cerebrovascular reactivity (CVR) (Bandettini and Wong, 1997).
The complex and non-quantitative nature of the BOLD signal
makes interpreting the signal changes non-trivial. Furthermore,
a well-known confound with BOLD contrast is its sensitivity to
large draining veins downstream from the capillary bed (Turner,
2002), which obfuscates precise localization of flow changes and
thus potentially limits its clinical impact. Arterial Spin Labeling
(ASL) is an alternative technique that can directly measure and
quantify CBF (Fantini et al., 2016), which has been used to
study steady-state changes in CBF associated with static CA
(Bokkers et al., 2010; van Dalen et al., 2021). ASL can also be
used as an fMRI technique to measure dynamic changes in CBF,
and it has the distinct advantage of offering a quantitative and
direct measure, which in theory is more precisely localized to
the capillary bed (Aguirre et al., 2005). However, in practice it
suffers from low SNR and lower temporal resolution compared
with BOLD, which would likely present a challenge for a dCA
application such as in this study. Nevertheless, future research
could potentially benefit from using ASL fMRI in order to
validate the presumed CBF origin of the BOLD signal changes
we have observed.

Limitations
A main limitation of MRI based dCA research is the
availability of appropriate non-invasive continuous blood
pressure measurement (Panerai et al., 2016). Although the
Caretaker system now exists, its accuracy and reliability
compared to the more established Finapres system, which
is preferred by the TCD community, remains unknown. In
our experience, and as reported by others [MPhil thesis
(Hawezi, 2015)], the Caretaker is very sensitive to subject
motion and external vibrations, which is further exacerbated
by the long connecting tube that connects the pneumatic cuff
from the patient in the magnet room with the electronic
equipment in the control room. We observed the expected
decrease in Caretaker measured MAP, but as in a previous
study (Whittaker et al., 2019b) we observed that they lagged
behind the TCR evoked fMRI signal changes. For this reason,
which automatically precludes methods for quantifying dCA
that assume temporal precedence of MAP, we chose not to
define any index of autoregulation, but rather have simply
reported on the spatiotemporal dynamics and demonstrated
the feasibility of voxel-wise analyses. The temporal information
present in the BOLD TCR response and the spatial distribution

of relative BOLD signal changes will likely be informative in
clinical populations, but future research may still focus on how
best to integrate blood pressure information to get a more
quantitative metric of dCA.

CONCLUSION

In this study, we have demonstrated that whole-brain BOLD
fMRI has enough sensitivity to measure the voxel-wise HRFTCR
associated with dCA in a group of healthy young subjects; the
group average displaying a distinctive spatiotemporal pattern.
In contrast with earlier TCR challenge fMRI studies, the recent
wider adoption of both parallel imaging and SMS techniques
allow whole-brain coverage with reasonable temporal and spatial
resolutions. This makes voxel-wise mapping of dCA and the
whole-brain characterization of spatiotemporal dynamics more
viable. Furthermore, our finding of a significant structure in
spatiotemporal variability in this subject group demonstrate the
importance of considering spatial variability in estimates of dCA.
Future research should focus on furthering our understanding
of the dCA phenomenon in the context of fMRI with an aim to
develop clinically useful methods.
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