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A polygenic score indexing 
a DRD2‑related co‑expression 
network is associated with striatal 
dopamine function
Enrico D’Ambrosio1,2, Giulio Pergola2,3, Antonio F. Pardiñas4, Tarik Dahoun5, 
Mattia Veronese6,7, Leonardo Sportelli2, Paolo Taurisano2, Kira Griffiths1, Sameer Jauhar8, 
Maria Rogdaki1, Michael A. P. Bloomfield9, Sean Froudist‑Walsh10, Ilaria Bonoldi1, 
James T. R. Walters4, Giuseppe Blasi2, Alessandro Bertolino2* & Oliver D. Howes1,11,12*

The D2 dopamine receptor (D2R) is the primary site of the therapeutic action of antipsychotics 
and is involved in essential brain functions relevant to schizophrenia, such as attention, memory, 
motivation, and emotion processing. Moreover, the gene coding for D2R (DRD2) has been associated 
with schizophrenia at a genome‑wide level. Recent studies have shown that a polygenic co‑expression 
index (PCI) predicting the brain‑specific expression of a network of genes co‑expressed with DRD2 was 
associated with response to antipsychotics, brain function during working memory in patients with 
schizophrenia, and with the modulation of prefrontal cortex activity after pharmacological stimulation 
of D2 receptors. We aimed to investigate the relationship between the DRD2 gene network and 
in vivo striatal dopaminergic function, which is a phenotype robustly associated with psychosis 
and schizophrenia. To this aim, a sample of 92 healthy subjects underwent 18F‑DOPA PET and was 
genotyped for genetic variations indexing the co‑expression of the DRD2‑related genetic network in 
order to calculate the PCI for each subject. The PCI was significantly associated with whole striatal 
dopamine synthesis capacity (p = 0.038). Exploratory analyses on the striatal subdivisions revealed a 
numerically larger effect size of the PCI on dopamine function for the associative striatum, although 
this was not significantly different than effects in other sub‑divisions. These results are in line with a 
possible relationship between the DRD2‑related co‑expression network and schizophrenia and extend 
it by identifying a potential mechanism involving the regulation of dopamine synthesis. Future studies 
are needed to clarify the molecular mechanisms implicated in this relationship.

The D2 dopamine receptor (D2R) is a G protein-coupled receptor coded by the DRD2 gene and is involved in 
essential brain functions such as learning, memory, locomotion, attention, motivation, sleep, emotion processing, 
reproductive  behaviour1–3. The D2R is also the primary site of the therapeutic action of  antipsychotics4–7. Fur-
thermore, one of the schizophrenia-associated loci from Genome-Wide Association Studies (GWAS)8,9 includes 
the D2R coding gene (DRD2), implicating this gene in the pathophysiology of  schizophrenia10.

OPEN

1Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 
London  SE5  8AF,  UK.  2Department  of  Basic  Medical  Sciences,  Neuroscience  and  Sense Organs,  University  of 
Bari “Aldo Moro”, Bari, Italy. 3Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, 
MD,  USA.  4MRC  Centre  for  Neuropsychiatric  Genetics  and  Genomics,  Division  of  Psychological  Medicine 
and  Clinical  Neurosciences,  School  of  Medicine,  Cardiff  University,  Cardiff,  UK.  5Department of Child and 
Adolescent  Psychiatry,  Institute  of  Psychiatry,  Psychology  and  Neuroscience,  King’s  College  London,  London, 
UK. 6Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 
London, UK.  7Department  of  Information  Engineering, University  of  Padua,  Padua,  Italy.  8Centre  for Affective 
Disorders, Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 
London, UK.  9Division  of  Psychiatry, University College  London,  6th  Floor, Maple House,  149 Tottenham Court 
Road,  London W1T  7NF,  UK.  10Center  for  Neural  Science,  New York  University,  New York,  USA.  11Institute of 
Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK. 12H. Lundbeck 
A/S, Ottiliavej 9, 2500 Valby, Denmark. *email: alessandro.bertolino@uniba.it; oliver.howes@kcl.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-16442-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12610  | https://doi.org/10.1038/s41598-022-16442-6

www.nature.com/scientificreports/

Genetic variations within DRD2 have been associated with brain-related phenotypes, including working 
memory, sustained attention, variable attention control, emotion processing, dopamine binding in the striatum, 
suggesting that genetic mechanisms influence the effects of the D2R on brain  function11–17. However, it is unlikely 
that genetic variations within a single gene explain the entire physiology related to specific brain phenotypes. In 
this regard, previous investigations have elucidated that genes involved in complex traits do not work in isolation 
but operate in networks of interacting  genes18–22 acting via molecular  pathways23–25. Genetic networks can be 
investigated in detail using methods for the analysis of gene co-expression  patterns26,27. This approach is based 
on the evidence that the expression of different genes is influenced by common regulatory molecules, and that 
such gene expressions  correlate24,28–32. Co-expressed genes are often related in terms of  function33,34. A widely 
used technique to study gene co-expression is the weighted gene co-expression network analysis (WGCNA). 
WGCNA represents correlated gene expression into a graph that is designed to be scale invariant, hence reflecting 
the basic property of biological networks that include highly connected central hubs and more peripheral genes. 
Hierarchical clustering is used in WGCNA to define gene sets, called modules, that are tightly co-expressed. 
This approach has been used to identify, in post-mortem dorsolateral prefrontal cortex of healthy controls, a 
network of genes co-expressed with DRD235, including genes associated with schizophrenia identified in the 
 PGC29 and PGC3  GWAS36. A follow-up study has supported with in vitro evidence the link between some 
of these genes and identified potential co-regulators32. Interestingly, a Polygenic Co-expression Index (PCI) 
predicting the brain-specific expression of this network of co-expressed genes was associated with response to 
antipsychotics and prefrontal inefficiency during working  memory35, which has been consistently associated 
with  schizophrenia37. Moreover, healthy subjects with higher PCI showed increased activation in the prefrontal 
cortex and longer reaction times when performing a working memory  task35. Interestingly, in a recent network 
control theory  study38 the same PCI has been shown to be related to dynamical brain state transitions during 
working memory in healthy volunteers. Furthermore, this PCI has been associated with within-subject variation 
of prefrontal cortex activity following pharmacological stimulation of D2R in a double-blind crossover  design39.

While these studies focused on the frontal cortex, DRD2 has its highest expression in the  striatum40. Inter-
estingly, molecular imaging studies show evidence that presynaptic striatal dopamine dysfunction plays an 
important role in abnormal reward processing and anomalies of other aspects of cognitive  function41,42. Moreo-
ver, elevated striatal dopamine synthesis and release capacity are associated with  schizophrenia43–53, psychotic 
 symptoms54 and risk of  psychosis55,56.

Whilst the findings discussed above show that the DRD2 gene network is associated with cortical brain func-
tion relevant to cognitive phenotypes of  schizophrenia57, it remains unknown if and how the genetic underpin-
nings of cortical dopaminergic function are related to striatal dopaminergic phenotypes associated with psy-
chosis. The exploration of this relationship can be considered as particularly relevant in view of the connections 
between cortex and  striatum58. The aim of the present study is to investigate the relationship between striatal 
dopamine synthesis capacity and co-expression of the DRD2-related genetic  network35. To this aim, we analysed 
data from a cohort of healthy subjects that underwent 18F-DOPA PET and were genome-wide genotyped; we used 
the genetic variants indexing the co-expression of the DRD2-related genetic network to compute an individual 
 PCI35. We hypothesised that higher PCI, which has been previously associated with greater prefrontal BOLD 
response (see  also59) and longer reaction times during working memory  processing35, would be associated with 
higher striatal dopamine synthesis capacity—thus outlining a consistent pattern of results resembling the physi-
ological observations in patients with schizophrenia.

Methods
Participants. A total of 92 healthy subjects (demographics in Table 1) underwent 18F-DOPA PET  scans60. 
The study was conducted in accordance with the Declaration of Helsinki and Good Clinical Practice. All partici-
pants gave informed written consent. The study was approved by the Administration of Radioactive Substances 
Advisory Committee (ARSAC), the South London and Maudsley/Institute of Psychiatry NHS Trust, the London 
Bentham Research Ethics Committee, and the Hammersmith Research Ethics Committee.

Inclusion criteria were: age range 18–65 years, no history of major medical condition, good physical health. 
Exclusion criteria were: significant medical disorder or treatment, history of psychiatric illness (assessed using the 
Structured Clinical Interview for DSM-IV Axis I Disorders) including alcohol or substance abuse or dependence. 

Table 1.  Demographic characteristics of the sample.

Total

N 92

Age (yr ± SD) 29.93 ± 8.84

Gender (male/female) 52/40

PET scanner (scanner 1/scanner 2/scanner 3) 37/35/20

Ki
cer (1/min) whole striatum (mean ± SD) 0.0129 ± 0.0012

Ki
cer (1/min) associative striatum (mean ± SD) 0.0128 ± 0.0012

Ki
cer (1/min) limbic striatum (mean ± SD) 0.0130 ± 0.0014

Ki
cer (1/min) sensorimotor striatum (mean ± SD) 0.0132 ± 0.0015

PCI (mean ± SD) − 0.0085 ± 0.0986
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The dataset has been gathered from our publicly available imaging data archive (https:// mauds leybrc. nihr. ac. uk/ 
resea rch/ preci sion- psych iatry/ neuro imagi ng/ neuro imagi ng- datab ase- node/). The PET data have been previously 
 published61–65, but the integration with the PCI has not been published before.

Polygenic co‑expression index. DNA was extracted from whole blood samples or cheek swabs using 
standard  procedures66. Genome-wide genotyping was performed at Cardiff University, using HumanCore 
Exome 1.1 arrays ("Psych-chip", Illumina, San Diego, California, USA).

A PCI was calculated as previously  described35. Briefly, a DRD2 co-expression gene set, including 85 genes, 
was identified with a Weighted Genes Co-expression Network  Analysis67 using the post mortem frontal cor-
tex mRNA expression Braincloud  database68. A set of 8 SNPs (CHIT1 rs2486064, GPLD1 rs6902039, OSR1 
rs851436, POP1 rs9297283, SDK2 rs1294071, DHX33 rs1805453, BTG4 rs1121391, AGR2 rs1037791) associ-
ated with the first principal component of gene set co-expression was used to compute the PCI; a weight based 
on the co-expression profile of the gene set was assigned to each genotype of each SNP (Table S1). Geno-
typing was conducted for these SNPs. Genotype quality control for these SNPs was performed according to 
standard  parameters69. Briefly, these included an individual missingness rate < 0.98, a SNP call rate > 0.98 and a 
Hardy–Weinberg equilibrium (HWE) p value >  10−4, as computed by the PLINK v1.9  software70.

Population stratification. The Principal Components Analysis in Related samples (PC-AiR)  method71 
was used in R (GENESIS R/Bioconductor  package72) on the full set of genotypes to generate the top 10 principal 
components of the sample, which were included as covariates of no interest in all the analyses, in order to correct 
for population stratification.

PET scanning. 18F-DOPA PET scans were performed to measure dopamine synthesis capacity (indexed as 
the influx rate constant  Ki

cer)73.

Image acquisition. Images were acquired in three-dimensional mode using three different PET scan-
ners: an ECAT HR + 962 PET scanner (CTI/Siemens, Knoxville, Tennessee) and two Siemens Biograph HiRez 
XVI PET-CT scanners (Siemens Healthcare, Erlangen, Germany). After the administration of approximately 
150 MBq of 18F-DOPA, dynamic PET data were acquired over a period of 95 min as previously  described61–64,74.

Image processing. The frames were aligned using a mutual information  algorithm75. A movement-cor-
rected dynamic image was then used in the analysis. A tracer-specific (18F-DOPA)  template76 was normalised 
together with a striatal probabilistic  atlas77 to the individual PET summation images. The influx constant  (Ki

cer) 
for striatum was calculated using the cerebellum as a reference  region78. For the exploratory analyses, the stria-
tum was sub-divided into limbic, associative and sensorimotor parts on the basis of function and the topography 
of brain projections from limbic, associative and sensorimotor cortical areas to the  striatum48,77,78.

Statistical analysis. The effect of the PCI on whole striatal  Ki
cer was tested using a linear model (lm) regres-

sion in  R79 with age, gender, PET scanner and the first 10 genetic principal components as covariates of no 
interest in view of their potential effect on dopamine synthesis  capacity80,81. To facilitate the interpretation of 
the results, PCI values were standardised using the scale() function in R before being entered in the  model82. 
Injected dose of radiotracer was not considered, as it is not associated with 18F-DOPA  Ki

cer  estimates74. A signifi-
cance threshold of α < 0.05 was used. Separate exploratory analyses were conducted to test the effect of the PCI 
on associative striatum, limbic striatum and sensorimotor striatum  Ki

cer.  R79 was used for all the statistical analy-
ses. The R package  ggplot283 was used to plot the main results. To exclude the presence of outliers, the Rosner’s 
test function ("rosnerTest") of the R package  EnvStats84 was used to remove extreme observations.

Results
Demographic (± SD) and  Ki

cer values included are reported in Table 1.
The Rosner’s test did not reveal any outliers. PCI was significantly associated with whole striatal dopamine 

synthesis capacity (t value = 2.106, p = 0.038). Figure 1 illustrates a positive correlation between whole striatum 
 Ki

cer (y axis) and PCI. PET scanners, included as covariates of no interest, did not show a statistically significant 
association with dopamine synthesis capacity (t value = 1.603, p = 0.112).

The exploratory analyses in the striatal subdivisions revealed an effect of the PCI on dopamine synthesis 
capacity for the associative striatum only (t value = 2.063, p = 0.042) (Fig. 2), while there was not a significant 
correlation with limbic striatum (t value = 1.957, p = 0.054) or sensorimotor striatum (t value = 1.841, p = 0.069). 
The interaction among striatal subdivision, PCI, and  Ki

cer was not significant (p = 0.738).

Discussion
The present study shows for the first time an in vivo association between striatal dopamine synthesis capacity and 
a DRD2-related co-expression score in a cohort of healthy subjects. Specifically, high polygenic co-expression 
index, reflecting greater prefrontal co-expression of a DRD2-related genetic network, was associated with elevated 
striatal dopamine synthesis capacity. These results suggest that, besides DRD2, several genes and related products 
may be relevant to the modulation of striatal dopamine function.

Gene co-expression networks have been instrumental in identifying gene sets associated with antipsy-
chotic treatment  response30,35, phenotypes associated with  schizophrenia25,28,35,85, clinical state and risk for 
 schizophrenia31, and changes in prefrontal function after D2R  stimulation39. As reviewed previously, increased 

https://maudsleybrc.nihr.ac.uk/research/precision-psychiatry/neuroimaging/neuroimaging-database-node/
https://maudsleybrc.nihr.ac.uk/research/precision-psychiatry/neuroimaging/neuroimaging-database-node/
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dopamine synthesis capacity represents a phenotype associated with  schizophrenia47,86,87. Thus, the results of the 
present study suggest a possible relationship between the DRD2-related co-expression network identified and 
schizophrenia. Consistently, the exploratory analyses in the different striatal subdivisions suggest that the PCI 
is associated with dopamine capacity in the associative striatum, which is the striatal region showing greater 
dopaminergic dysfunction in patients with schizophrenia compared with other striatal subdivisions accord-
ing to meta-analytic  evidence88. Nevertheless, it is important to note that the analyses in the different striatal 

Figure 1.  Scatterplot illustrating the correlation between whole striatum  Ki
cer (y axis) and PCI.

Figure 2.  Scatterplot illustrating the correlation between associative striatum  Ki
cer (y axis) and PCI.
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subdivisions were only exploratory and there was no significant difference between effect sizes across striatal 
subdivisions. Additionally, the association with the associative striatum  Ki

cer would not survive correction for 
multiple comparisons. Therefore, these results should be considered as exploratory and require further evalu-
ation in a larger sample.

The hypothesis of a positive relationship between PCI and striatal dopamine synthesis capacity was based 
on a  study35 demonstrating in healthy subjects an association of this index with prefrontal inefficiency during 
working memory, another phenotype related to schizophrenia. However, it is noteworthy that previous studies 
have shown both  positive89–91 and  negative92,93 correlations between striatal dopamine synthesis capacity and 
working memory. Thus, a study investigating striatal dopamine function, working memory efficiency and PCI 
in the same sample would be necessary to elucidate the relationship between these factors.

Interestingly, fifteen genes of the DRD2 Co-Expression Network (ACR , ALDH3A1, BTN3A1, CALHM3, CES3, 
DRD2, EFCAB6, GALNT10, GATAD2A, GLI1, HIST1H1E, HIST1H3G, IL31, RBM6, SLC28A1) are located within 
schizophrenia-associated loci in the latest Psychiatric Genetic Consortium  investigation36. Notably, GATAD2A 
is among the genes resulting from the PGC3 prioritisation analysis due to its eQTL co-localisation  profile36. 
Accordingly, it is considered a plausible causal gene for  schizophrenia94. This gene codes for the protein GATA 
zinc finger domain containing 2A, a transcriptional  repressor95, which is preferentially expressed during foetal 
brain  development96. Its involvement in cell  proliferation97 indicates a key role in  development94. Furthermore, 
it has been implicated in schizophrenia through its involvement in the regulation of gene  expression98,99. Con-
sistently, it is upregulated in the hippocampus of patients with schizophrenia compared with healthy  controls94.

Moreover, it has been recently  demonstrated32 that the expression of genes of the DRD2 co-expression module 
can be regulated by NURR1, a transcription factor regulating genes involved in the dopaminergic  system100. As 
D2R is a potent NURR1  activator101,102, it has been hypothesised that antipsychotics, through the blockade of the 
D2R, can impact the expression of NURR1, which in turn can regulate the transcription of the genes included in 
the DRD2 co-expression  module32. The results of the present study—indicating a relationship between the DRD2 
co-expression network and an established phenotype linked to schizophrenia such as PET-estimated dopamine 
synthesis capacity—are consistent with the hypothesis of the involvement of the genes of this module in the 
pathophysiology of schizophrenia and mechanisms underlying the response to antipsychotics.

Notably, the approach used in the present study is data-driven and the genes within the network are not pre-
defined; thus, the mechanisms through which the proteins coded by the genes of this network interact with the 
dopaminergic pathway still need to be clarified. In fact, it needs to be understood how the DRD2 co-expression 
network influences striatal presynaptic dopamine synthesis capacity. In this context, it should be considered 
that post-synaptic D2 receptors play a role in the regulation of dopamine synthesis and release through inhibi-
tory feedback  loops103,104. It is also possible that the PCI reflects a different expression of the D2 autoreceptors, 
which regulate dopamine synthesis, although it should be noted that this score was developed analysing the 
expression of transcripts including exon 6, which is characteristic of the long isoform of D2R more often found 
post-synaptically105,106. Moreover, in view of the fact that the DRD2 co-expression gene-set indexed by the PCI 
is enriched for “negative regulation of dopamine secretion (GO:0033602)”35,39, preclinical studies are needed to 
test the hypothesis that the transcriptomic context of DRD2 influences dopamine presynaptic signalling.

Furthermore, in order to examine the potential involvement of this co-expression network in the regulation 
of expression and availability of the post-synaptic D2 receptors, it would be helpful to investigate the in vivo rela-
tionship between PCI and D2 receptor availability through studies using other PET tracers (e.g. 11C-raclopride).

The present study was conducted on healthy subjects; thus, the results were not influenced by medication 
or disease status. A key next step is thus to explore the effect of the DRD2-Polygenic Co-expression Index on 
dopamine function in disorders where involvement of the dopamine system has been demonstrated, such as 
psychosis, addiction, bipolar  disorder54,107,108.

A potential limitation of the study is the use of data from three different PET scanners. However, the scan-
ner was used as a covariate of no interest. Furthermore, we did not find a statistically significant association of 
PET scanner with  Ki

cer; consistently, our recent investigation on the effect of the scanner in a similar dataset 
acquired from three different PET tomographs (Siemens Biograph 6 Hi-Rez, Siemens Biograph 6TruePoint, 
ECAT/EXACT3D) with an injected radioactivity below 200 MBq and acquisition time of 95 min did not reveal 
significant  effects109.

Moreover, it should be considered that the DRD2 co-expression pathway, and therefore the PCI used in this 
study, was calculated by using post mortem mRNA from the frontal  cortex35,68, thus it would be interesting to 
test if the DRD2 co-expression network remains the same in the striatum and the midbrain, where the dopamine 
neuron cell bodies are located.

Furthermore, in the present study, we did not examine dopamine function in the frontal cortex, due to lower 
18F-DOPA signal reliability in frontal cortical regions when quantified without arterial blood input  function76,110. 
Therefore, a study using PET tracers more suitable for the measurement of the cortical dopamine  system59,111 
would be helpful in understanding the relationships between PCI, striatal and cortical dopamine systems.

Conclusions
The results from the present study indicate that a polygenic score indexing a DRD2-related co-expression network 
is associated with striatal dopamine function measured in vivo with 18F-DOPA imaging. Our findings suggest 
that the same genetic variants associated with prefrontal inefficiency during working memory are also associated 
with greater estimated dopamine synthesis in the striatum. In view of the hypothesised link between striatal 
hyperdopaminergia and prefrontal  hypodopaminergia59,112, it is tempting to observe that these variants originally 
found analysing the prefrontal cortex may have more widespread system-level  correlates38.
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Data availability
The PET data are available in The NeurOimaging DatabasE (NODE) repository (https:// mauds leybrc. nihr. ac. 
uk/ resea rch/ preci sion- psych iatry/ neuro imagi ng/ neuro imagi ng- datab ase- node/) upon request. The  data68 used 
for the WGCNA performed to identify the DRD2 co-expression gene  set35 are available in the database of 
Genotypes and Phenotypes (dbGaP, https:// www. ncbi. nlm. nih. gov/ gap/, Study Accession: phs000417.v2.p1) 
and Gene Expression Omnibus (GEO, https:// www. ncbi. nlm. nih. gov/ geo/, Study Accession: GSE30272). The 
weights assigned to each genotype of each SNP are available in Supplementary Table S1.
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