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Polygenic resilience scores capture protective genetic effects
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Polygenic risk scores (PRSs) can boost risk prediction in late-onset Alzheimer’s disease (LOAD) beyond apolipoprotein E (APOE) but
have not been leveraged to identify genetic resilience factors. Here, we sought to identify resilience-conferring common genetic
variants in (1) unaffected individuals having high PRSs for LOAD, and (2) unaffected APOE-ε4 carriers also having high PRSs for
LOAD. We used genome-wide association study (GWAS) to contrast “resilient” unaffected individuals at the highest genetic risk for
LOAD with LOAD cases at comparable risk. From GWAS results, we constructed polygenic resilience scores to aggregate the
addictive contributions of risk-orthogonal common variants that promote resilience to LOAD. Replication of resilience scores was
undertaken in eight independent studies. We successfully replicated two polygenic resilience scores that reduce genetic risk
penetrance for LOAD. We also showed that polygenic resilience scores positively correlate with polygenic risk scores in unaffected
individuals, perhaps aiding in staving off disease. Our findings align with the hypothesis that a combination of risk-independent
common variants mediates resilience to LOAD by moderating genetic disease risk.
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INTRODUCTION
Alzheimer’s disease (AD) is the leading cause of dementia [1]. AD
exists as two genetically distinct forms: early-onset AD, which is
caused by autosomal dominant mutations in one of several genes
(PSEN1, PSEN2, APP, SORL1) and typically has an onset of
symptoms between the ages of 40 and 60 years [2], and the
more common late-onset AD (LOAD), which is sporadic, polygenic,

and typically has an onset of symptoms in the mid-60s [3].
Elevated risk of LOAD is associated with a host of lifestyle factors
and medical conditions, such as a high-fat diet, heavy drinking
and smoking, cardiovascular disease, type-2 diabetes, and
traumatic brain injury [4]. More importantly, the heritability of
LOAD from twin studies was estimated at 58–79% [5], and its
estimates from single-nucleotide polymorphisms (SNPs) range
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from 13 to 33% [6–9]. The goal of this study is to determine
whether genes also play a role in resilience to LOAD. We used an
innovative approach first introduced and applied in schizophrenia
as a general framework for resilience research [10], focusing on
individuals at the highest levels of genetic risk.
To date, genome-wide association studies (GWASs) have

discovered close to 50 genome-wide significant loci (P < 5e-08)
associated with LOAD risk [9, 11–20]. The ε4 allele of apolipopro-
tein E (APOE) is the polymorphism with the strongest effect on
LOAD susceptibility [21]. Beyond APOE-ε4, there may be thou-
sands of additional genetic polymorphisms that make small
individual contributions to the overall risk for LOAD [22–25]. A
polygenic risk score (PRS) [26] can be derived by summing the
weighted effect of SNPs to identify a single genetic risk variable
that reflects one’s relative susceptibility to LOAD. Recent LOAD
PRSs capture most of the SNP heritability for LOAD [9, 24, 27].
Extensive research shows that PRSs boost the accuracy of LOAD
diagnosis beyond the performance of APOE [22–25], and capture
LOAD phenotypic variability not explained by APOE status [28, 29].
Revealing the genetic architecture of LOAD is vital for under-

standing its etiology and identifying molecular targets for
innovative therapeutic interventions. Yet, knowledge of risk
factors might be fruitfully complemented by an understanding
of resilience-associated or -promoting mechanisms as well. As
such, some AD research has shifted focus from symptomatic cases
to healthy aging individuals or asymptomatic individuals at
elevated risk [30]. This was motivated by the premise that high-
risk asymptomatic individuals, yet unaffected, may provide clues
that protect them against AD. Here, we employ the term
“resilience” to indicate individuals who show better than expected
outcomes in the face of high genetic risk for disease [30–35].
Increasing evidence suggests that several factors—including

education, literacy, physical activity, and mental activity—can
moderate the risk for LOAD [31, 32, 36], and it is estimated that
one-third to 40% of dementia cases might be preventable [36, 37].
These moderation effects may be explained by reverse causation
[38], but genetic influences—which are not subject to reverse
causation—also underlie these factors. Educational attainment
[39, 40] and, particularly, general cognitive ability [40, 41] are
heritable. Thus, some of these factors may also confer resilience-
enhancing genetic effects. Notably, some genetic variants, such as
APOE-ε2 [42] and the APP A673T variant [43], have been identified
as protective for LOAD. However, the biological mechanisms that
drive the protective effects remain largely unknown. Importantly,
we consider such protective effects to be fundamentally different
from the “resilience” effects we sought in our study, in that
protective factors are generally operative across the full range of
risk, whereas resilience factors are only operative in those at the
highest risk for disease. Very little work has been aimed at
identifying additional genetic resilience factors that potentially
moderate the genetic risk established by the cumulative effects of
risk-associated alleles and their corresponding protective alleles.
Genetic resilience against risk for LOAD has been investigated
through diverse approaches based on varying conceptualizations
and measurements used to identify individuals at high risk. As
aggregation of beta-amyloid plaques and tau tangles in the brain
are two of the neuropathological hallmarks of LOAD [44], a
principal focus of resilience has been on asymptomatic individuals
who have cognition levels that are better than predicted based on
these pathologies [45–47]. Other studies have leveraged known
genetic risk factors to study resilience. For example, in APOE-ε4
carriers, over a dozen SNPs have been reported to potentially
facilitate resilience, such as rs10553596 in CASP7 [48] and the
rs4934 nonsynonymous variant in SERPINA3 [49, 50]. However, a
substantial part of the genetic risk for LOAD is neglected without
incorporating the effects of genes other than APOE. Thus, although
composite genetic risk indices (such as the PRS) are growing in
popularity and utility, they have not been employed in the service

of identifying genetic resilience for LOAD. Now, with very large
numbers of LOAD samples and a more comprehensive profile of
the genetic factors that confer LOAD risk, we are entering a period
in which it is possible to study the interplay of genetic risk factors
and genetic modifiers that reduce their penetrance.
Here, we posit the existence of common genetic variants, which

have not been identified by GWAS as associated with AD as either
risk or protective factors, that can help older adults remain LOAD-
free despite a high genetic risk burden. We hypothesize that there
exist resilience-associated variants that lower LOAD susceptibility
in a manner that is statistically independent of the effects of risk-
associated alleles (or their alternative protective alleles). We tested
this hypothesis by capitalizing on the most comprehensive known
PRS for LOAD [18] and APOE allelic status to develop two designs
identifying unaffected individuals with the highest genetic like-
lihood of developing LOAD. Design 1 defined “resilient” individuals
as normal controls with the highest PRSs for LOAD. Design 2
defined “resilient” individuals as normal controls with at least one
APOE-ε4 allele and the highest LOAD PRSs (excluding the APOE
region). We aimed to discover residual common genetic variants
that confer resilience to unaffected individuals in the highest
genetic risk tiers for LOAD. We then leveraged this profile of
resilience-promoting genetic variants to build a polygenic resi-
lience score for LOAD. We hypothesized that polygenic resilience
scores would account for significant variation in affection status for
LOAD among individuals with high genetic risk, and would show a
significant positive correlation with PRSs in unaffected controls.

METHODS
Research design
Our workflow is shown in Fig. 1. In stage 1, a recent GWAS meta-analysis
for LOAD [18] was leveraged for identifying risk variants and polygenic risk
scoring. In stage 2, we compared two analytic designs to identify high-risk
“resilient” normal controls and “risk-matched” LOAD cases. In stage 3, a
resilience GWAS was conducted for each design using the identified high-
risk individuals. Then the polygenic resilience score weights were derived
from resilience GWAS meta-analysis summary statistics. Finally, polygenic
resilience scores were replicated in independent external studies for
evaluating the performance in distinguishing high-risk “resilient” normal
controls from “risk-matched” LOAD cases. The parameters of each analysis
step are summarized in Supplementary Table 3.

Samples and genotypes
We acquired the largest available collection of genome-wide SNP data for
clinically diagnosed or autopsy-confirmed LOAD to ensure adequate
power. Table 1 shows the number of normal controls, LOAD cases, high-
risk “resilient” normal controls, and “risk-matched” LOAD cases in each
study. Summary statistics of age-at-onset (AAO) for LOAD cases and age-
at-last-examination (AAE) for normal controls are presented in Supple-
mentary Table 1. In design 1 and design 2, the mean AAE of high-risk
“resilient” normal controls and the mean AAO of “risk-matched” LOAD
cases ranged from 70.3 to 80.9, and there were no significant age
differences between groups. A common lower bound for AAO of LOAD is
65; however, the age cutoff has no specific biological significance [3], and
many genetic studies of LOAD have included cases with AAO as low as 60
(and the same AAE for unaffected comparison subjects). Therefore, we
included participants in our analysis having AAO/AAE ≥ 60 years old. The
full name and accessibility of each study can be found in Supplementary
Table 2. All 26 studies in the discovery stage came from the stage-1 AD
GWAS meta-analysis of Kunkle et al. [18]. The eight studies in the
replication stage are fully independent of the discovery studies. Full
descriptions of the discovery and replication samples were published
previously [9, 17, 18, 51, 52]. Genotypes for all studies were imputed using
the Haplotype Reference Consortium (HRC) r1.1 2016 reference panel [53].
Detailed quality control (QC) steps for samples and genotypes are
described in Supplementary Methods.

Identifying individuals at high genetic risk
In design 1, a PRS was used to select individuals with high genetic risk. At
the time of deploying our analyses, the Kunkle et al., 2019 study [18] was

J. Hou et al.

2

Translational Psychiatry          (2022) 12:296 



the largest publicly available GWAS using clinically diagnosed or autopsy-
confirmed AD cases and CN controls, as opposed to proxy AD cases and
controls that might lead to inaccurate risk estimation [27]. Therefore, we
consider that this study will give the most accurate measure of AD risk and
derived the PRS weights from its stage-1 AD GWAS meta-analysis summary
statistics [18]. See Supplementary Methods for further details. The variance
in AD explained by PRS maximizes at a P-value threshold of 0.5 in
participants from GERAD (Genetic and Environmental Risk for Alzheimer’s
disease) [23] and 22 locally available ADGC (Alzheimer’s Disease Genetics
Consortium) studies (Supplementary Fig. 4). We, therefore, adopted this
threshold to ensure that our risk measure captures as much of the genetic
risk for AD as possible. This very conservative threshold will thus ensure
that potential risk SNPs with even very small effect sizes will not be
advanced for consideration as resilience SNPs. However, if studies other
than Kunkle et al. 2019 were used to estimate genetic risk for AD, it may be
the case that smaller P-value thresholds may be optimal (e.g., 5e−08, 1e−05,
0.1) [9, 22, 54, 55]. Within each study, LOAD cases and normal controls

were ranked based on their PRSs. Note that as the true prevalence of
resilience to AD in the population is unknown, we adopted the same high-
risk percentile cutoff that proved effective in our original workflow [10],
and classified the 10% of controls with the highest PRSs as “resilient”. The
LOAD cases whose risk scores were between the 90th percentile and the
maximum PRS in controls were retained as risk-matched LOAD cases for
comparison.
In design 2, we restricted the analysis to APOE-ε4 carriers. APOE and its

flanking region (chr19: 44,400 kb–46,500 kb) [23] were removed from the
PRS. As this analysis was restricted to fewer individuals due to the APOE-
ε4 stratification, we chose a more lenient high-PRS cutoff (80th
percentile) for identifying “resilient” individuals to retain more partici-
pants and preserve power. In this design, “resilient” normal controls were
identified as those with at least one APOE-ε4 allele, and a risk score
ranked at ≥80th percentile. Risk-matched LOAD cases were defined as
APOE-ε4 carriers whose PRSs fell within the high-PRS range of “resilient”
normal controls.

Fig. 1 An illustration of the workflow of deriving polygenic resilience scores for late-onset Alzheimer’s disease (LOAD) for design 1 and
design 2. Stage 1: Using prior LOAD genome-wide association study (GWAS) results to calculate polygenic risk scores (PRSs). Stage 2:
Identifying resilient individuals. In stage 2, we deployed two analysis designs differing in the definition of “resilient” individuals. In design 1,
normal controls with LOAD PRSs ≥90th percentile were defined as “resilient” participants. In design 2, within the subset of normal controls
who had at least one apolipoprotein E (APOE)-ε4 allele, a threshold of ≥80th percentile of PRSs (excluding SNPs in the APOE region) was used
to define high-risk controls as “resilient”. Stage 3: Resilience GWAS and replication of polygenic resilience scores. GWAS was performed using
“resilient” individuals and risk-matched affected cases from each of the two designs. For each design, polygenic resilience scores were derived
and evaluated in external replication datasets. LD linkage disequilibrium, OR odds ratio, SNPs single-nucleotide polymorphisms.
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Derivation, replication, and statistical analysis of polygenic
resilience scores
GWASs of resilience were performed using logistic regression with Plink
(version 1.9) [56]. Selected principal components, AAO/AAE, and sex were
used as covariates. A GWAS meta-analysis was conducted in METAL [57]
software using an inverse-variance random-effect model with genomic
control. In accord with the pipeline described by Hess et al. [10], SNPs
known to be associated with LOAD risk were excluded from the resilience-
scoring algorithm; these were defined as those SNPs that showed an
association with AD risk (P < 0.5) from the GWAS meta-analysis summary
statistics [18], and variants that were in linkage disequilibrium (LD) (r2 ≥ 0.2
in a 1-Mb window) with those risk variants with associations of P < 0.5. This
pruning step of excluding risk variants from consideration as resilience loci
serves as a conservative measure to avoid re-discovering risk variants for
resilience scoring. For both resilience designs, the polygenic resilience
score weights were generated from the marginal SNPs of resilience GWAS
meta-analysis summary statistics following the same series of QC steps (see
Supplementary Methods).
Polygenic resilience scores were derived for 10 P-value thresholds, in a

manner similar to the PRS algorithm, by summing up the weighted
effective allele counts of SNPs [26]. Logistic regression was used to assess
the likelihood of “resilient” group inclusion based on harboring a higher
polygenic resilience score. Selected principal components, AAO/AAE and
sex were used as covariates. For each polygenic resilience score, we meta-
analyzed the natural logarithm of the odds ratio (OR) of being a high-risk
“resilient” normal control versus a risk-matched LOAD case using a
random-effects inverse-variance model using the R package metafor, and
pooled variance explained in resilience across independent replication
studies. All tests were two-tailed unless specified otherwise. See
Supplementary Methods for further details.

RESULTS
Resilience GWAS
Design 1 produced 2263 high-risk “resilient” normal controls and
11,309 risk-matched LOAD cases for the resilience GWAS meta-
analysis. As expected, the sample size retained in design 2 was
smaller, totalling 988 high-risk “resilient” normal controls and 6541
risk-matched LOAD cases (Table 1). Because our analytic
approaches used only subsets of all available LOAD case–control
GWAS data, we neither had nor anticipated having sufficient
power to detect individual SNPs with genome-wide significant
association with resilience (Supplementary Fig. 3). Instead, our
focus was on deriving and evaluating polygenic resilience scores.
As a necessary step to generate SNP-weights for summation in
those scores, we performed individual-SNP association tests and
briefly reported the results in Supplementary Results.

Replication and evaluation of polygenic resilience scores
After removing risk-associated SNPs (P < 0.5) and SNPs in LD with
those risk-associated SNPs (r2 ≥ 0.2), clumping the remaining
marginal SNPs, and applying QC steps, a profile of 18,723 SNPs
was included in the resilience score for design 1, and 18,122 SNPs
in design 2. Resilience scores for all 10 P-value thresholds were
significantly associated with “resilient” group inclusion (“resilient”
normal controls versus risk-matched LOAD cases) when tested in
locally downloaded discovery datasets. Results of the association
between “resilient” group inclusion and polygenic resilience
scores from the replication datasets were meta-analyzed, yielding
1056 high-risk “resilient” normal controls and 381 risk-matched
LOAD cases in design 1, and 583 high-risk “resilient” normal
controls and 331 risk-matched LOAD cases in design 2 (Table 1).
In design 1, the meta-analysis found significant replication of

the association between “resilient” group inclusion and polygenic
resilience scores at two P-value thresholds (P < 0.1, P < 0.2)
(Fig. 2A). The most significant association was found for the
polygenic resilience score containing all independent marginal
SNPs with resilience GWAS P < 0.1 (OR= 1.24, 95% confidence
interval [CI]= 1.05–1.47, P= 0.010). Resilience scores for the 0.1 P-
value threshold explained an average of 1.3% (standard deviation
[58]= 5.3%) of the variance in “resilient” group inclusion or 1.2%Ta
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(SD= 4.3%) (Fig. 2B) of the variance on the liability scale, i.e., SNP
heritability of resilience. No significant (P < 0.05) replication of the
association between “resilient” group inclusion and polygenic
resilience scores was observed for any of the 10 polygenic
resilience scores in design 2.
Note that the association between “resilient” group inclusion

and polygenic resilience scores (P < 0.1, P < 0.2 of design 1) was
not significant after multiple-testing correction for 10 P-value
thresholds using the false discovery rate (FDR) or Bonferroni
method. However, considering polygenic resilience scores were
derived by aggregating SNPs within a series of escalating P-value

thresholds, they were nested models and not independent.
Therefore, a typical FDR or Bonferroni correction under the
assumption of independence would be overly conservative.

Interaction of risk and resilience effects
In the full samples from three locally downloaded replication
studies (Alzheimer Disease Centers Wave 7 [ADC7], AddNeuroMed,
and Alzheimer’s Disease Neuroimaging Initiative stage GO/2/3
[ADNI-GO/2/3]; normal controls, n= 1321; LOAD cases, n= 943)
(Table 1 and Supplementary Table 1), we tested for correlations
between PRSs and polygenic resilience scores. As hypothesized,

Fig. 2 The performance of polygenic resilience scores in capturing resilience variability in independent replication studies. In design 1,
normal controls with late-onset Alzheimer’s disease (LOAD) polygenic risk scores (PRSs) ≥90th percentile were defined as “resilient”
participants. In design 2, a threshold of ≥80th percentile of PRSs (excluding SNPs in the apolipoprotein E [APOE] region) was used to define
high-risk controls as “resilient” within the normal controls who have at least one APOE-ε4 allele. A, B design 1 (high-risk normal controls,
n= 1,056; risk-matched LOAD cases, n= 381). C, D Design 2 (high-risk normal controls, n= 583; risk-matched LOAD cases, n= 331). The odds
ratio (OR) and variance explained by polygenic resilience scores reflect meta-analytic results from independent replication samples.
Nagelkerke’s pseudo-R2 values on the liability scale are weighted average using the weights from the meta-analysis of ORs. The dot-plots (A, C)
show corresponding ORs for resilience scores across 10 P-value thresholds, wherein OR > 1.0 indicates higher resilience scores are associated
with a higher likelihood of being a high-risk normal control (“resilient” individual) than being a risk-matched LOAD case. Error bars represent
the 95% confidence intervals (CI) around each OR, which are the exponent of the 95% CI of β coefficients. The barplots (B, D) show the
amount of variance in resilience (i.e., “resilient” high-risk normal controls versus risk-matched LOAD cases) on the liability scale that is
explained by resilience scores. Asterisks (*) indicate P values <0.05 for ORs >1.0.

J. Hou et al.

6

Translational Psychiatry          (2022) 12:296 



the standardized polygenic resilience scores of the optimal P < 0.1
threshold in design 1 exhibited a significant positive correlation
with PRSs in normal controls (Pearson’s r= 0.102, 95%
CI= 0.048–0.155, degree of freedom [df]=1319, P= 2.1e-04),
and no significant correlation was observed in LOAD cases
(Pearson’s r= 0.022, 95% CI=−0.042–0.085, df= 941, P= 0.51)
(Fig. 3). As expected, the correlation coefficient between polygenic
risk scores and polygenic resilience scores in normal controls was
significantly larger than the one in LOAD cases (P= 0.03, one-
tailed test).

DISCUSSION
We applied a validated analytic framework to detect common
variants that, when combined into a polygenic resilience score, are
associated with lower LOAD risk penetrance among older
individuals with relatively high genetic risk of disease. We found
reliable evidence to reinforce the notion that unaffected
individuals with higher genetic risk loads may be protected from
complex diseases, such as LOAD, by the collective effects of risk-
independent common variants that reduce the penetrance of
one’s overall genetic risk burden. Identifying genetic factors that
moderate risk penetrance may prove valuable for explaining the
missing heritability and etiologic heterogeneity of LOAD, which in
turn could shed light on pathophysiological mechanisms and
eventually lead to better interventions and preventive treatments.

Risk-countering effects of polygenic resilience scores
Individuals with higher polygenic resilience scores (P < 0.1 and
P < 0.2 thresholds of design 1) had higher odds of being a
“resilient” high-risk normal control than a risk-matched LOAD case.
Polygenic resilience scores (design 1) significantly increased with
higher PRSs in normal controls, but not in LOAD cases. Taken
together, these results support the hypothesis that polygenic
resilience scores capture risk-countering polygenic effects against
the penetrance of high polygenic risk for LOAD, and that normal
controls with higher PRSs are protected from LOAD by harboring
correspondingly higher polygenic resilience scores. Although no
polygenic resilience scores in design 2 demonstrated significant risk-
buffering effects, we cannot rule out the possibility that common
variants might reduce risk penetrance in normal controls with
enriched risk from both APOE and PRSs. In fact, among APOE-ε4
carriers, higher resilience scores in design 1 at the P < 0.1 threshold
(OR= 1.64, 95% CI= 1.08–2.50, P= 0.021) and the P < 0.2 threshold
(OR= 1.98, 95% CI= 1.24–3.15, P= 3.9e-03) were associated with
higher odds of being a “resilient” high-PRS normal control than a
risk-matched LOAD case. Among “resilient” high-PRS controls, higher
resilience scores in design 1 (P < 0.2 threshold) were significantly
associated with increased odds of carrying at least one APOE-ε4
allele (OR= 1.57, 95% CI= 1.07–2.29, P= 0.021). A similar trend was
observed when the P < 0.1 threshold was used, although this was
not significant (OR= 1.30, 95% CI= 0.90–1.89, P= 0.16) (Supple-
mentary Results). We, therefore, conclude that polygenic resilience
scores may moderate the risk effects of the LOAD PRS generally, and
the APOE-ε4 allele specifically. However, these analyses were carried
out in relatively small studies (ADC7, AddNeuroMed, and ADNI-GO/
2/3), and need to be repeated in larger, more powerful, replication
samples.

Interplay of polygenic effects and APOE
In design 2, we hypothesized that a two-stage selection of
individuals (with both higher PRSs and one or more APOE-ε4 alleles)
would enrich for individuals with the absolute highest genetic risk
for LOAD [59, 60]; yet, there was a substantial reduction in the
performance of design 2 in contrast to design 1. The lack of
significant replication of association with resilience in design 2 simply
might be due to lower statistical power in both the resilience score
development and replication stages, considering the total sample
size of design 2 is approximately half that of design 1. Alternatively,
resilience-promoting variants may be found among APOE-ε4 carriers
through broader exploration of the model-parameter space (e.g.,
PRS threshold in particular), separate evaluation of APOE-ε4
homozygotes and various heterozygote combinations, and more
accurate modeling of the genetic architecture of resilience (see
limitations below). An important question future studies should
address is to what extent common variants may influence the
penetrance of genetic risk in larger samples of APOE-ε4 carriers, or
whether the prevalence of risk-modifying common variants differs
between APOE-ε4 carriers and noncarriers.
On the other hand, multiple studies [22–25, 28, 54, 61–63] have

revealed that PRSs capture independent risk effects beyond APOE
alone, while few studies have explored the risk-predictive
performance of PRSs stratified by APOE status. Higher PRSs were
found to be associated with increased susceptibility for LOAD in
APOE-ε4 noncarriers [25, 29, 59]. Furthermore, the risk effects of
PRS deciles across APOE status could be dependent on the ages of
participants [29, 59, 62, 64]. Further mining of the complex
relationship between the risk effects of PRSs and APOE is outside
the scope of the current study; however, further investigations on
the penetrance of high PRSs among APOE-ε4 carriers and
noncarriers seem warranted.

Strengths and limitations
Our approach has identified candidate resilience loci that may
ultimately serve as targets for the promotion of resilience. We

Fig. 3 The correlation of standardized polygenic risk scores
(PRSs) and polygenic resilience scores (design 1) in normal
controls and late-onset Alzheimer’s disease (LOAD) cases. The
analyses were performed in three independent replication studies
not used in the resilience score derivation steps (i.e., ADC7,
AddNeuroMed, and ADNI-GO/2/3; normal controls, n= 1321; LOAD
cases, n= 943). The optimal P-value threshold for polygenic risk-
scoring was 0.5, and the optimal P-value threshold for polygenic
resilience scoring was 0.1 (see Fig. 2). The blue round dots indicate
normal controls, and the orange circles indicate LOAD cases. The
blue and orange lines represent the best fit for correlations between
PRSs and resilience scores in normal controls and in LOAD cases,
respectively. The blue and orange annotation text shows the
Pearson correlation coefficient (r) and the P-value between PRSs and
resilience scores in normal controls and LOAD cases, respectively. In
this analysis, we excluded ultra-high-risk LOAD cases whose PRSs are
higher than the maximum of all normal controls, and ultra-low-risk
normal controls whose PRSs are lower than the minimum of all
LOAD cases.
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examined the performance of two polygenic resilience scores:
design 1 selected participants with the highest polygenic risk
regardless of APOE-ε4 status, while design 2 restricted analyses to
APOE-ε4 carriers. To our knowledge, this is the first study to
identify a polygenic resilience score for genetic LOAD risk,
comprising thousands of risk-independent common variants that
partially offset the genetic risk conferred by a relatively high PRS.
An important distinction of the current study relative to prior work
on genetic resilience to LOAD is that we accounted not only for
the risk from APOE but also the aggregate effect of thousands of
additional risk variants throughout the genome via the LOAD PRS.
A conservative variant-filtering strategy was applied, which

resulted in the removal of common variants associated with LOAD
risk variants (risk association P < 0.5) and those in liberal LD
(r2 > 0.2) with LOAD risk variants. A strength of this approach is
that we ensured the polygenic resilience scores derived in the
current study are independent of the risk scores so that the SNPs
comprising the polygenic resilience score are not sub-threshold
risk SNPs. Our design of defining “resilient” groups from the same
risk background instead of contrasting high-risk normal controls
with low-risk LOAD cases also helped avoid re-discovering variants
merely associated with risk. In addition, the resilience alleles of
these risk-residual SNPs are not simply protective alleles defined in
a risk framework, where each biallelic locus is defined by both a
risk allele and a corresponding and opposing protective allele.
Thus, this strategy helps identify resilience effects that are
conditioned on net risk effects, owing to the combination of risk
and protective alleles summed in polygenic risk scores. Yet,
although our approach is conservative, it is limited in the
identification of a better-performing resilience score because
most of the genome has been discarded from the analysis.
Biologically, it is plausible that variants nearby risk loci, such as
those in the same LD block or in the same gene with risk SNPs,
could exert modifying functions [65]. Our conservative strategy,
discarding all SNPs with any semblance of risk association, and
those in liberal LD threshold with such SNPs, consequently leads
to lower power in uncovering variants with potentially higher
biological functionality. This notion is borne out in the fact that no
significant gene-ontology pathways were enriched by resilience-
related common variants identified in this study (results not
shown). With larger samples, resilience-conferring SNPs may be
investigated using a stricter LD threshold (e.g., r2 > 0.1) to further
restrain the “hitchhiking” of risk variants. More importantly,
Mendelian randomization, conditional association testing, or
simulation analysis may be better suited to evaluate the
hypothesis that resilience signals are more likely to co-localize
with risk loci or genes. In addition, filtering variants by LD with risk
SNPs results in a low LD structure among the remaining SNPs as
demonstrated previously [10], which diminishes our capacity to
examine the genetic correlation of resilience to LOAD with other
risk- or resilience-related phenotypes (e.g., via LD score regres-
sion). A high priority should be placed on the design of new
methods that can detect resilience-associated SNPs that may
reside in regions of strong LD with risk variants.
Resilience was defined by discrete groups in our analysis, which

truncated effective sample sizes to the upper tail of the risk
distribution. Choosing a lower percentile cutoff would increase the
sample size available for the resilience analysis, while potentially
diminishing the signal of resilience genes. In the future, when
larger samples are available, higher risk thresholds may be applied
and subgroups at more extreme risk could be leveraged to
increase power. It is an important task for future studies to
investigate which of these factors (i.e., sample size, signal: noise)
would have the greater effect on power, and to better understand
the prevalence of resilience to AD in the population. Theoretically,
resilience may be a continuous measure; thus, our resilience
approach might also be improved by leveraging all study samples
and modeling the continuity of resilience using either linear or

non-linear analysis. Despite the restricted sample sizes in the
current study, two resilience scores in design 1 were sufficiently
robust to replicate significantly in fully independent studies.
Further replication would be key to testing the validity of these
resilience scores. It is expected that the strength of our results (in
terms of variance explained and the significance of associations)
will only increase with the addition of more samples.
Several studies [9, 22, 54, 55] indicated that polygenic risk

scores of P-value thresholds less than 0.5 (i.e., 5e−08, 1e−05, 0.1)
might show better performance in predicting LOAD risk. There-
fore, it may be valuable to compare the performance of resilience
scores developed from risk scores at other p-value thresholds. In
addition, it is likely that a subgroup of “resilient” normal controls
identified in this work will eventually develop LOAD, but with later
onset. Thus, all resilient participants demonstrate resilience
against high levels of genetic risk for LOAD, but only those who
never develop LOAD are additionally resistant against the disease
itself. Lastly, the participants in our analysis were of European
ancestry, so the degree of generalization of our results to non-
European populations is presently unknown.

Future directions
Two analysis designs were deployed in the current study to select
individuals with a high genetic risk burden from both PRSs and
APOE, and other methods could be devised to expand the
capabilities of our resilience approach in LOAD. It has been
suggested, for example, that using a PRS with the APOE region
removed and adding APOE alleles as a covariate may boost the
performance of LOAD risk prediction [66], compared with
incorporating APOE alleles as weighted SNPs in PRSs. In addition,
it could be important to include the number of APOE-ε4 or ε2
alleles as covariates in resilience analysis models to better reflect
the relative risk levels among individuals. In our study, we consider
it important to utilize the most comprehensive risk profile of LOAD
to identify resilient individuals, i.e., normal controls with the highest
genetic risk from all sources. Future studies may be interested in
examining the resilience effects that moderate a portion of the
LOAD risk. For example, resilience to the risk effects of APOE-ε4
alone can be studied by defining all APOE-ε4 carrying (or
homozygotic) normal controls as resilient. To examine whether
the resilience scores remain predictive if the APOE region is
excluded from the PRS, the resilience to residual polygenic risk
effects excluding APOE can be investigated in normal controls
without APOE-ε4, who land in the top percentiles of PRSs (excluding
the APOE region). Previous studies [42, 67] demonstrated that
women carrying APOE-ε4 alleles were at greater risk of developing
AD than men with the same APOE-ε4 dosages, especially between
the ages of 65 and 75. When larger sample sizes are available,
limiting our analysis to females in design 2 may further enrich for
high-risk individuals and increase resilience signals.
Potentially, polygenic resilience scores from the current study

could be applied to other resilience-related questions. For
example, it would be instrumental in discovering the extent to
which polygenic resilience score is associated with other
phenotypes that have been associated with resilience to LOAD
risk (e.g., education, general cognitive ability in early life, and other
indices of cognitive reserve, brain reserve, or brain maintenance)
[31, 32, 68–72]. In follow-up studies, it might be illuminating to
investigate whether these resilience-promoting genetic factors
show protective effects for cognitive impairment or LOAD-related
pathophysiological changes.

CONCLUSION
We found evidence to support the hypothesis that thousands of
risk-independent common variants underlie resilience among
unaffected individuals with higher genetic risk for LOAD. We
conclude that common variants not in LD with known LOAD risk
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variants exert a protective effect on LOAD risk. Our findings
provide a significant and novel contribution to the existing
understanding of genetic resilience to LOAD risk. This novel
approach highlights a window of opportunity for identifying risk-
modifying biological mechanisms and potential pathways for
intervention in populations at the highest risk for LOAD.
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