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This research describes the development and application of a 3-player game theoretic model between two
queueing systems and a service that distributes individuals to them. The resultant model is used to ex-
plore dynamics between all players. The first aspect of this work is the development of a queueing system
with two consecutive waiting spaces where the strategic managerial behaviour corresponds to how indi-

Keywords: viduals use these waiting spaces. Two modelling techniques are deployed: discrete event simulation and
OR In health services Markov chains. The state probabilities of the Markov chain system are used to extract the performance
Game theory measures of the queueing model (e.g. mean time in each waiting room, mean number of individuals in
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each room, etc.). A 3-player game theoretic model is subsequently proposed between the two queueing
systems and the service that distributes individuals to them. In particular this can be viewed as a 2-player
normal-form game where the utilities are determined by a third player with its own strategies and objec-
tives. A backwards induction technique is used to get the utilities of the normal-form game between the
two queueing systems. This particular system has many applications, including those in healthcare where
it captures the emergent behaviour between the Emergency Medical Service (EMS) and the Emergency

Department (ED). The impact of time-target measures on patient well-being is explored in this paper.
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1. Introduction

Emergency departments (EDs) are under increasing pressure to
meet patient waiting time targets and satisfy regulations (Halliwell,
2021). It is widely reported (e.g. Knapper, 2021; Lemmer, 2021;
Mahase, 2020) that ED congestion severely impacts not only pa-
tients in the ED but also Emergency Medical Services (EMS). A ma-
jor concern for ambulances is that they are held waiting parked
outside the ED to offload (dispatch) their patient when the ED is
particularly busy (Clarey, Allen, Brace-McDonnell & Cooke, 2014).
Since the patient waiting time in ED is measured from the time
they enter the ED itself, there is no incentive, should the patient
be stable in the ambulance, to offload them from EMS to ED ser-
vices. As a result, ambulance blocking not only impacts on patients
waiting for ED service, but has a major knock-on effect to delaying
the ability of ambulances to respond to new EMS calls, thus plac-
ing lives at risk (Day, 2021).
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There are numerous news articles that focus on the complexity
that arises when ambulances stay blocked outside of the hospital
for a long amount of time (Aitken, 2021; Crouch, 2021). Some news
reports comment on the long idle time of ambulances when they
are not in use (Thomas, 2021) and there are several reports of ex-
amples where this became an issue for new patients (McAdams,
2021) and paramedics (Clarke, 2021).

This paper aims to describe the EMS-ED interface using a game
theoretic model informed by an underlying queueing model. The
model describes the situation where an ambulance service would
have to distribute its patients between two EDs. The two EDs can
be thought of as two queueing systems and the EMS as a distribu-
tor that distributes patients to them, aiming to minimise some per-
formance measure. The patients that are distributed by the EMS ar-
rive at the hospital via an ambulance and are then either offloaded
at the ED or stay blocked outside in the ambulance. Whether or
not the ambulance and its patient stay blocked is determined by
the threshold that the given ED chooses to play. A high thresh-
old indicates that the ED accepts ambulance patients even if it is
relatively full, while a low threshold means that the ED blocks am-
bulances more frequently.

In the United Kingdom, the National Heath Services (NHS) sets
some regulations on ED performance. One of these regulations is
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that 95% of patients that arrive at the ED should be admitted,
transferred or discharged within four hours. This is where gaming
behaviour might be observed between the EDs and the EMS. An
assumption of this work is that some managerial decision making
is involved in choosing when to start blocking ambulances. This is
similar to Deo and Gurvich (2011).

The major contributions of this paper are:

e A queueing model with two consecutive waiting spaces
where one would serve as a parking space for the ambu-
lances.

e Analytic performance measure formulas for the queueing
model.

o A 3-player game theoretic model between the EMS and two
EDs.

o Numerical experiments showing emergent behaviour of
gaming between EDs and the EMS.

Specifically, our focus is on the construction of a 3-player game
theoretic model between two queueing systems and a service that
distributes individuals to them. The resultant model is then used
to explore the emergent dynamics between the three players. This
study explores two new concepts: getting performance measures
for a new queueing theoretic model with a parking space and a
service centre, and using a learning algorithm to model the emer-
gence of behaviour. The developed theoretical model is illustrated
through the application to a healthcare system of two EDs and the
EMS, exploring the inefficiencies that emerge and ways to apply
some incentive mechanisms to improve them. The EDs are mod-
elled as two queueing systems each with a tandem buffer and a
service centre. The performance measures are then used as the
utilities of the game. The novelty of the queueing model here is a
contribution not only the game theoretic literature but also to the
queueing theoretic literature. To the authors knowledge, no such
model of a tandem queueing model with a pair of parameters for
the buffer has been previously considered.

This paper consists of two main sections. Section 3 presents a
novel queueing model for a hospital with two types of patients and
two waiting zones. A detailed description of how to acquire the
performance measure formulas of such queueing system is given.
Section 4 gives an overview of the game theoretic model and sev-
eral theoretic results pertaining to the performance measures of
this model which are used to build the utilities of the game.

2. Literature review

A number of papers have been published that touch upon the
use of queueing models together with game theoretic concepts.
In Chen and Wan (2003) the authors study a simultaneous price
competition between two firms that are modelled as two distinct
queueing systems with a fixed capacity and a combined arrival
rate. They calculate the Nash equilibrium both for identical and
heterogeneous firms and show that for the former a pure Nash
equilibrium always exist and for the latter a unique equilibrium ex-
ists where only one firm operates. The authors have also extended
their model in Chen and Wan (2005) by allowing the players
(firms) to choose capacities. A main result from this paper was that
when both firms operate independently as a monopoly, the equi-
libria are socially optimal, but this is not the case when the firms
operate together. Another extension of Chen and Wan (2003) was
introduced in Cheng, Demirkan and Koehler (2003) where a long-
run version of the competition was considered that also had ca-
pacity as a decision variable. An additional paper that focuses on
competition is (Fan, Kumar & Whinston, 2009) where the authors
created a competition between two sellers where seller 1 supplies
a product instantly and seller 2 is modelled as a make-to-order
M/M/1 queue. The game that is played requires the two sellers to
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make a choice on the price of the product and then seller 2 to
set a capacity that guarantees a maximum expected delay. In our
work, while giving some consideration to equilibrium behaviour,
similar to the work of Chen and Wan (2003, 2005), emergent be-
haviour is more precisely addressed by considering learning al-
gorithms like asymmetric replicator dynamics (Fudenberg, Drew,
Levine & Levine, 1998).

In the above models, the players are attempting to increase
their share of individuals choosing to queue. In public healthcare
type settings, this is not necessarily the case. Rational usage of
public services will not necessarily lead to a socially optimal out-
come. Rather, the overall service needs to be considered as players
aim to minimise their experienced congestion. In Sadat, Abouee-
Mehrizi and Carter (2015) a healthcare application was studied
where patients could choose between two hospitals, where a util-
ity function is derived that is based on patients’ perceived quality
of life. In Knight and Harper (2013) the authors place the individ-
uals’ choices between different public services within the formu-
lation of routing games and measure inefficiencies using a concept
known as the price of anarchy (PoA) (Koutsoupias & Papadimitriou,
1999). They show that the price of anarchy increases with worth
of service and that is low for systems with insufficient capaci-
ties. In Chen, Zhang and Chen (2020) a two-tier healthcare system
with a capacity constrained is studied where patients can choose
between two systems to receive their service. The first system is
labelled as the free system (public government-funded hospital)
which offers service without seeking any profit and the second
one is the toll system (private hospital) that aims to maximise its
own profit. The authors, also compare the two-tier system with its
one-tier equivalent, where only the free system exists. In Knight,
Komenda and Griffiths (2017) a normal form game is built that is
informed by a two-dimensional Markov chain in order to model
interactions between critical care units. In Wang, Wang, Zhang
and Wang (2021) a queueing-game-theoretical model is introduced
where there are two types of service providers; a high quality
high-congested hospital and a low quality low-congested hospital.
The authors study a two-stage Stackelberg game where the gov-
ernment is the leader and the arriving patients are the followers.
In Deo and Gurvich (2011) the authors study the network effect
of ambulance diversion by proposing a non-cooperative game be-
tween two EDs that are modelled as a queueing network. Each ED’s
objective is to minimise its own waiting time and chooses a diver-
sion threshold based on the patients it has. In equilibrium both
EDs choose to divert ambulances in order to avoid getting arrivals
from the other ED. In this paper this concept is extended by allow-
ing the ambulance service to decide how to distribute its patients
among the two EDs. The players of the game are both the hospi-
tals and the customers of the hospitals, as opposed to the previous
models which are one or the other. Thus, the novelty of our work
is combining both these aspects.

Another specific part of our research, as described later in the
paper, is the construction of a queueing system with a tandem
buffer and a single service centre. There are several examples from
literature that touch upon queueing models with tandem queues.
In D’Auria and Kanta (2015) the authors explore threshold joining
strategies in a Markov model that has two tandem queues. Another
example is the one described in Burnetas (2013) where they inves-
tigated a network of multiple tandem queues where customers de-
cide which queue to attend before joining. Similarly, in Basar and
Srikant (2002) the authors examine a network of N tandem M/M/1
queues and with multi-type customers. The customers in this pa-
per react to a price p by picking demand rates that maximise util-
ity. In Veltman and Hassin (2005) a profit maximisation problem is
studied that has two servers; an M/M/1 queue and a parking ser-
vice providing complementary service while the customer is in the
first service. The providers gain a reward when customers com-
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Fig. 1. A diagrammatic representation of the queueing model. The threshold T only
applies to type 2 individuals. If the number of individuals in the hospital is T, only
individuals of type 1 are accepted (at a rate A;) and individuals of type 2 (arriving
at a rate A,) are blocked in the parking space.

plete both services and no reward when they finish one of them.
One of the main conclusions of this study is that by increasing the
general demand both providers lower their prices to compensate
for the increase in wait. The problem was later extended by Sun, Li,
Tian and Zhang (2009) where they considered arrivals of batches
that can share the parking service. Finally, (Afeche, 2007) exam-
ines a tandem network of two M/M/1 queues that are ran by two
different profit-maximising service providers. The network receives
three types of customers; those requiring both services, customers
requiring the first service and customers requiring the second ser-
vice. The authors showed that optimal prices also maximise so-
cial utility and that removing two types of customers that don’t
need both services leads to higher profit and lower demand rate.
In our work, the concepts described in Basar and Srikant (2002);
Burnetas (2013); D’Auria and Kanta (2015) are extended by intro-
ducing a threshold parameter that determines when individuals
can progress from one queue to the other.

3. A queueing model for the ED-EMS interface

In this section, a more in-depth explanation of the queueing
model shown in Fig. 1 will be given. This is a queueing model that
consists of two waiting zones: the parking space and the hospital
waiting space.

The model consists of two types of individuals; type 1 and type
2. Type 2 individuals are patients arriving in ambulances who can
be blocked (usually patients that are deemed not to be critical)
and type 1 individuals are individuals arriving from other sources
(e.g walk-in patients, urgent patients from either walk-ins or am-
bulances). Type 1 individuals arrive instantly at the hospital’s wait-
ing space and wait to receive their service. Type 2 individuals ar-
rive at the parking space and wait there until they are allowed to
move into the hospital. They are allowed to proceed only when the
number of patients in the hospital is less than the pre-determined
threshold T. When the number of individuals is equal to or exceeds
this threshold, all type 2 patients that arrive will stay blocked in
the parking space until the number of patients in the hospital falls
below T. This is shown diagrammatically in Fig. 1. The parameters
of the described queueing model are:

o A;: The arrival rate of individuals of type i € {1, 2}

o /i: The service rate for individuals receiving service

e C: The number of servers (either healthcare professionals or
available beds in the ED)

o T: The threshold at which type 2 individuals are blocked

Under the assumption that all rates (arrival and service)
are Markovian the queueing system corresponds to a Markov
chain (Kemeny & Snell, 1976). The states of the Markov chain are
denoted by (u, v) where:

e u is the number of individuals blocked in the parking space
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« v is the number of individuals waiting or being served in the
hospital

We denote the state space of the Markov chain as S=S(T)
which can be written as the disjoint union (1).
S(T) = S$1(T) US,(T) where:
$i(T) ={(0.v) eNg | v < T}

$2(T) = {(u,v) eNg | v =T} (1)

The generator matrix Q of the Markov chain consists of the
rates between the numerous states of the model. Every entry
Qj = Q(ui,v,-),(uj,vj) represents the rate from state i = (u;, v;) to state
j= (uj,v)) for all (u;,v;), (uj,v;) €S. The entries of Q can be cal-
culated using the state-mapping function described in (2):

A, if (Ui, U,') - (Uj,vj) = (O, —l) and Vi<t
M, if (u;,v;) — (uj,v;)=(0,-1) and v; > t
)\.2, if (Ul‘, Ul') — (u]',i/j) = (—l, 0)
Uik, if (u;,v;) — (uj,v;) =(0,1) and v; <C or
(ui, Ui) — (Llj, Uj) = (1, 0) and vi=T<C
Qj= Cu, if (u;,v;) — (uj,v;) =(0,1) and v; > C or
(u,-, Ui) - (Llj, Uj) = (1, 0) and vi=T>C
Q
- g ij ifi=j
j=1
0, otherwise

(2)

Note that A here denotes the overall arrival rate in the model
by both types of individuals (i.e. A = Aq + A;). A visualisation of
how the transition rates relate to the states of the model can be
seen in the general Markov chain model shown in Fig. 2.

In order to consider this model numerically an adjustment
needs to be made. The problem defined above assumes no upper
boundary to the number of patients that can wait in the hospital
or to the ones that are blocked in the parking space. Therefore, a
different state space S is constructed where S < S and there is a
maximum allowed number of patients N that can be in the hospi-
tal and a maximum allowed number of ambulances M that can be
blocked in the parking space:

S={v)eS|u<Mv<N} (3)

The generator matrix Q defined in (2) can be used to get the
probability vector m. The vector m is commonly used to study
stochastic systems and it’s main purpose is to keep track of the
probability of being at any given state of the system. mr; is the
steady state probability of being in state (u;,v;) € § which is the
ith state of S for some ordering of S. The term steady state refers
to the instance of the vector w where the probabilities of being at
any state become stable over time. Thus, by considering the steady

state vector 7t the relationship between it and Q is given by:
dm

a ~ Q=0

Using vector st there are numerous performance measures of
the model that can be calculated. The following equations utilise
7 to get performance measures for the average number of patients
at the different nodes of the queueing model:

o Average number of patients in the entire system:

||

L= mui+v)
i1

o Average number of patients in the hospital:

7|

Ly = vai
i=1
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Fig. 2. General case of the Markov chain model.

o Average number of patients/ambulances in the parking The mean waiting time of type 2 individuals:
space: .
p i z(u,u)es}f’ & x (min(v+1,T) = C) x 7 (u, v)
7 X
W(z) _ min(v,T)>C 5
LA = Zmui Z(u,v) ES’E‘Z) 7T(Ll, U) ( )
i=1
The overall mean waiting time:
Consequently, there are some additional performance measures By APy
. . W=—31 _whh,y_ "2  w® (6)
of interest that are not as stralghtfor.vs‘/ard .to ca}culate. Such per- T AP+ AP Py + APy
formance measures are the mean waiting time in the system (for ? ! 2 !
both type 1 and type 2 individuals), the mean time blocked in the Here Sﬁ‘]) and Sf) are the set of accepting states for type 1 and

parking space (only valid for type 2 individuals) and the propor- type 2 individuals. These are the set of states that the model is
tion of individuals in the hospital whose waiting time falls within able to accept a specific type of individuals.
a predefined time target (for both types).

P get ( ypes) SO = {(w.v)eS|v<N) )

3.1. Waiting time
s _ {uv)eSlu<M}, ifT<N g

Waiting time is the amount of time that patients wait in the AT {(u,v) €S| v <N}, otherwise (8)
hospital’s waiting space before they can receive their service. For a
given set of parameters there are three different performance mea-
sures around the mean waiting time that can be calculated. The

mean waiting time of type 1 individuals:

Y esy g X @ =CH+1) x 7 (u.v) Po= Y m@v) Py= Y muwv) 9)
w® = v=C (4) W) es () es?
Z(u nesh T (u,v)
’ A

Eq. 6 makes use of the proportion of type 1 and type 2 individ-
uals that are not lost to the system. These probabilities are given
by P and Py where:
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Fig. 3. Comparison of mean waiting time between values obtained from the Markov chain formula, values obtained from the truncated simulation and values obtained from

the untruncated simulation.

Appendix B gives more details on the recursive formula that
Egs. (4), (5) and (6) originate from.

Fig. 3 shows a comparison between the calculated mean
waiting time using Markov chains and the simulated waiting
time using discrete event simulation over a range of values of
Ao (details of the discrete event simulation model are given in
appendix Appendix A). The figure is used to demonstrate the
accuracy of the waiting time formula of the constructed queueing
model as well as the effect of truncating the model. The simulation
was run 100 times and the recorded mean waiting time at each
iteration is used to populate the violin plots. In detail, Fig. 3 shows
the calculated mean waiting time using the Markov chain, using a
truncated simulation and using a simulation with infinite capacity
(without the artificial parameters N and M). Each plot corresponds
to different values of N and M and is run over different values of
MAo. The untruncated simulation values are the same at all three

0,

c(u,v) +b(u—-1,v),
c(u,v) +b(u,v-1),
b(u,v) =

graphs since the effect of truncation does not apply to it. The wait-
ing times generated by the truncated simulation match the ones
generated by the Markov chains model. Note that this comparison
includes both type 1 and type 2 individuals. A separate compar-
ison of only type 1 and only type 2 individuals can be found in
appendix Appendix E.

3.2. Blocking time

Blocking time is the amount of time that type 2 patients wait in
the parking space before they are allowed to proceed into the hos-
pital. Unlike the waiting time, the blocking time is only calculated
for type 2 individuals. That is because type 1 individuals cannot be
blocked. Thus, one only needs to consider the pathway of type 2
individuals to get the mean blocking time of the system. The mean
blocking time can by calculated using:

1240

c(u,v) + ps(u,v)b(u — 1,v) + po(u, v)b(u, v+ 1),

c(u,v) + ps(u, v)b(u,v—1) + pa(u, v)b(u, v+ 1),

Xunes® Twy b(A2 (U, 1))

B— (10)

2 (uwes® )

Here Sf) is the set of accepting states of type 2 individuals (de-
fined in Eq. (8)) and A;(u,v) for i € {1,2} is the state that the sys-
tem would go to when the system is at state (u,v) and an individ-
ual of type i arrives.

A(u,v) = U, v+1) (11)
(u,v+1), ifv<T
AZ(”’U):{(uH,v), ifv>T (12)

The term b(u,v) is the mean time that an individual will be
blocked for, when the individual arrives in the system at state
(u, v). For all the states of the system b(u, v) is given by:
if (u,v)¢S,
ifv=N=T
ifv=N #T
if u > 0 and

v=T
otherwise

(13)

Note that S, is defined as the set of states where individuals
can be blocked and is given by:

S,={(u,v)eS|u>0} (14)

Additionally, c(u, v) is the mean sojourn time for each state and
ps and p, are the probabilities that the next event to occur will be
a service completion or an arrival of a type 1 individual:

——L__ ifv=N
c(u, 1)) _ mln(U,f)M ) (15)
TGO otherwise
_ min(v,O)u _ M
P = or PV = S rmneon
(16)
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The system of equations produced by (13) can be solved by con-
sidering the linear system Zx = y. Assuming i and j represent states
(u;, v), (uj,vj) € Sp then Z;; is given by:

pe, ifj=i+1andv;#N
ps, ifj=i—-landv;#Nuv;#T

s orj=i—N+Tanduy;>2, v;=T

Zi=\1, ifj—i—1landv,=N (17)
-1, ifi=j
0, otherwise

Eq. (18) shows this.

-1  pqg 0 0 0 0 0 0 0
ps -1  pa 0 O 0 0 0 0
0 ps -1 0 0 0 0 0 0

Z=10 0 0 1 -1 0 0 0 0
Ds 0 0 0 0 -1 ps O 0
0 0 © 0 0 ps -1 pg 0
0 0 0 ... 0 0 0 0 o ... 1

Additional details on the blocking time formula (10) can be
found in appendix Appendix C.

Fig. 4 illustrates a comparison between the formulas that
arise from the Markov chain model and the equivalent values of
the blocking time extracted from discrete event simulation (ap-
pendix Appendix A). The blocking time is calculated using both
methods for a range of values of A,. The figure is used to demon-
strate the accuracy of the blocking time formula of the constructed
queueing model as well as the effect of truncating the model. The
simulation was run 100 times and the recorded mean blocking
time at each iteration is used to populate the violin plots. Similar
to Fig. 3, these plots shows a comparison between the calculated
mean blocking time using Markov chain, using a truncated simu-
lation and using a simulation without the artificial parameters N
and M. The blocking times generated by the truncated simulation
match the ones generated by the Markov chains model. Note that
this comparison includes only type 2 individuals since type 1 indi-
viduals cannot be blocked.
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3.3. Proportion of individuals within target

Another performance measure that is taken into consideration
is the proportion of individuals whose time in the hospital (wait-
ing and service time) is within a specified time target t. Similar to
Section 3.1, three formulas are needed for this performance mea-
sure.

The proportion of type 1 individuals within a time target:

(1)
Zumest PXu < OTuw

PXD <) = (19)
2 (uwyest Tuw
0 b(1,T) —c(1,T)
0 b(1,T+1) —c(1,T+1)
0 b(1,T +2) —c(1,T+2)
0 |.x=] b(LN) |.y=] -c(1,N) (18)
0 b(2,T) —c(2,T)
0 b2, T+1) —c(2,T+1)
-1 b(M, N) —c(M,N)
The proportion of type 2 individuals within a time target:
> @ P(X(z) <)y
P(X(Z) - t) _ (u,v)es, Az (u,v) (20)

Z:(u,v)es/g2> Ty

The terms A;(u,v) and Ay (u,v) are defined by Eqs. 11 and
12 in Section 3.2. The overall proportion individuals within a time
target (where P,_/l and PL; are defined in (9)):

Aoy
)"ZPL’Z + }‘1PL;

)\.1 PL;

—_— P(X@ <t
AaPy + APy ( )

PX <t) = PXD <) +

(21)

Here P(X((J)v)) and P(X(f)v)) are defined as the proportion of in-

dividuals within the time target t when starting from state (u, v).
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Truncation effect on proportion within target
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Fig. 5. Comparison of mean proportion of individuals within target time between values obtained from the Markov chain formula, values obtained from the truncated

simulation and values obtained from the untruncated simulation.

These expression can be calculated by:

10 et (o), ifC=1
and v > 1
1) _ ; W, (ca ke R
PXumy <0 =31— (o= sk, % ifC> 1
and v > C
1—e K, ifv<C
(22)
where 7= (v —C 1), A = (Cu, ) and g = 0,19 = 1.
1— MDD Le-nt(ue)i, if C=1
and v, T > 1
1 — (pC)min(@.1)—C il ifC>1
PX®), <t) = (e )rk wkl(_kff[,kz,,';fﬂkt ~ (23)
x5 N (7 IT(Esp Tt and v, T > C
1—e Mt ifv<C
orT <C

where 7= (min(v,T) —=C, 1), X = (Cu, ) and rg = 0,19 = 1.
The function W ; used in Eqs. (22) and (23) is defined as:

(D' (I=1)! [l _ 1 ] k=1
"pk,l(t) — k21 t! t+a ) |°
_W’ k =2
)"

Please refer to Appendix D for a more in-depth explanation of
the origins of equations (19) - (23).

Fig. 5 shows a comparison of the mean proportion of individ-
uals within target when using Markov chains and discrete event
simulation (appendix Appendix A). The figure is used to demon-
strate the accuracy of the formula for the proportion of individuals
within time of the constructed queueing model as well as the ef-
fect that truncating the model has on the formula. The simulation
was run 100 times and the recorded proportions at each iteration
is used to populate the violin plots. Similar to Figs. 3 and 4, these
plots shows a comparison between the calculated mean proportion
of individuals within time using Markov chain, using a truncated
simulation and using a simulation without the artificial parame-
ters N and M. The proportions generated by the truncated simula-
tion match the ones generated by the Markov chains model. Note
that this comparison includes both type 1 and type 2 individuals.
A separate comparison of only type 1 and only type 2 individuals
can be found in appendix Appendix E.
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3.4. Truncation effect timings

The choice of the artificial parameters N and M is an important
decision of the model. In the untruncated simulation these val-
ues are not needed. This is not possible when obtaining the steady
state probabilities of the finite state Markov chain. Table 1 shows
the relative timings of the different approaches used to get the per-
formance measures.

4. Strategic manipulation of the ED-EMS interface

The problem studied is a 3-player normal form game. The play-
ers are:

« the decision makers of two Emergency Departments (EDs)
o the Emergency Medical Services (EMS) that distribute indi-
viduals in ambulances to the EDs

This is a standard normal form game (Maschler, Solan & Zamir,
2013), in that each player in this game has their own objectives
which they aim to optimise. More specifically, the EDs’ objective is
captured by an upper bound of the time that a fixed proportion of
individuals spend in the system, while the EMS aims to minimise
the time that its ambulances are blocked. This can be generalised
for any such system where instead of EDs there are some queue-
ing systems and instead of the EMS there is some distributor that
allocates individuals to the queueing systems.

The parameters of the model correspond to the following pa-
rameters of the ED and the EMS:

Ay: The rate of patients (who can be blocked) that the EMS
receives and distributes to EDs

Aq;: The arrival rate of other patients to ED i € {A, B}

wi: The service rate of patients at ED i e {A, B}

C;: The number of available resources (healthcare profession-
als) in the ED i € {A, B}

T;: The action that ED i € {A, B} chooses to play which cor-
responds to the threshold at which they do not accept EMS
patients.

N;: The total patient capacity of the ED i e {A, B}

M;: The total parking capacity of the ED i € {A, B}

t: The time target for both EDs

o € [0, 1] : Weighted average of blocking time and lost indi-
viduals (Eq. 25)
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Table 1

Relative timings of the simulation and Markov chain model.
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Simulation timings

Markov chain timings

Value of Single 100 Waiting time Blocking time Proportion within
Nand M trial trials formula formula time formula
10 1 144.3 0.015 0.014 0.014
30 1 1434 3.731 3.828 3.649
50 1 139.8 31.57 38.39 31.98
00 1 142.1 N/A N/A N/A
)\A
1
[
T'A
1
pAA2
2 )\ B
1
|
T’
1
PBA2

Fig. 6. A diagrammatic representation of the game theoretic model. Patients arrive at the EMS at a rate of A, and then a proportion of them are distributed to hospitals A
(pa) and the remaining proportion to hospital B (pg) so that ps + pg = 1. The corresponding arrival rates of type 2 patients to hospitals A and B are thus given by: psA, and

peha.

D \
Fig. 7. Imperfect information Extensive Form Game between the distributor and the
2 queueing systems.

The strategies of the two EDs are the range of thresholds that
they can choose from and their utilities are the proportions of indi-
viduals whose time in the system is within a predetermined target
time. The EMS has to decide how to distribute its patients among
the two EDs so that the weighted combination of the ambulance
blocking time and the percentage of lost ambulances is minimised.
This can be illustrated by Fig. 6. The interaction between the two
EDs is a normal form game that is then used to inform the deci-
sion of the EMS. Note that the formulated game here assumes that
prior to making a choice the EMS knows the strategies that each
ED is playing (Fig. 7). This corresponds to reacting to experienced
delays.

The queueing systems of the hospitals are designed in such a
way where they can accept two types of individuals (Section 3).
Each hospital may then choose to block type 2 individuals when
the hospital reaches a certain capacity. The strategy sets for each
hospital is the set {T e N|1 <T < N} where N € {N4, Ng} are the
total capacities of hospitals A and B. We denote the chosen actions
from the strategy set as Ty, Tz and call these thresholds.

Both hospitals follow a queueing model with two waiting
spaces for individuals. The first waiting space (i.e. the waiting
space of the hospital) is where the patients queue right before re-
ceiving their service and has a queue capacity of N — C, where N is
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the total capacity of the hospital and C is the number of healthcare
professionals able to see them. The second waiting space (i.e. the
parking space for ambulances) is where ambulances, that are sent
from the EMS distributor, stay until their patients are allowed to
enter the hospital. The parking space has a capacity of M and no
servers. This is shown diagrammatically in Fig. 1.

Note here that both types of individuals can become lost to the
system. An individual allocated from the ambulance service be-
comes lost to the system whenever an arrival occurs and the park-
ing space is at full capacity (M ambulances already parked). Simi-
larly, type 1 individuals get lost whenever they arrive at the wait-
ing space of the hospital and it is at full capacity (N — C individuals
already waiting).

Following this queueing model, the two queueing systems’
choice of strategy will then rely solely on satisfying their own ob-
jective. The objective function is defined as:
arg max —(P-PW; < t))2 icAB (24)
where W is the waiting time of a potential individual, t is the time
target and P is the percentage of individuals need to be within that
target. In other words, their aim is to find the threshold that min-
imises the difference between the probability P(W; <t) and the
percentage goal (or maximise its negation).

The third player, the ambulance service, has their own choices
to make and their own goals to satisfy. The strategy set of the third
player is the proportion 0 < p4 <1 of individuals to send to hos-
pital A. Similarly the proportion of individuals to send to hospital
B is given by pg = 1 — p,. In addition, the ambulance service aims
to minimise any potential blockages that may occur, given the pair
of thresholds chosen by the two hospitals. Thus, its objective is to
minimise the blocked time of the individuals (B4 and Bg) that they
send to hospitals A and B. Apart from the time being blocked, an
additional aspect that may affect the decision of the distributor is
the proportion of lost individuals L, and Lg. Eq. 25 can be used
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to capture a mixture between the two objectives L; and B; where
ie{A, B}:

(pa.pg) st. aLa(pa) + (1 —a)Ba(pa)
= alg(pp) + (1 — a)Bp(ps) (25)

Here, « represents the “importance” of each objective, where a
high o indicates a higher weight on the proportion of lost indi-
viduals and a smaller « a higher weight on the time blocked. The
choice of ps and pp rely solely on Eq. 25. Note that the current
system is modelled using unobservable queues which is not nec-
essarily an unrealistic approach (Shone, Knight & Williams, 2013).
Another approach would be to allow the ambulance service to ob-
serve the state of each hospital before deciding which one to join
for a given individual. There are several other factors that can af-
fect the routing of the patients that are outside the scope of this
paper. For example the distance from each hospital or even the pri-
ority level of each patient may be a significant factor that affects
the ambulance service’s decision.

Using either Eq. (25) or (24) gives an imperfect information ex-
tensive form game. An imperfect information game is defined as
an extensive form game where some of the information about the
game state is hidden for at least one of the players (Berwanger
& Doyen, 2008). In this study the state of the problem that is
hidden is the threshold that each hospital ED chooses to play.
In other words, each hospital chooses to play a strategy without
knowing the other hospital’s strategy. The ambulance service then,
fully aware of the chosen threshold strategies, distributes individu-
als among the two systems in order to minimise the time that its
ambulances will be blocked. Fig. 7 illustrates this.

Hospital H, decides on a threshold, then the hospital Hp
chooses its own threshold, without knowing the strategy of Hg,
and finally the ambulance service makes its choice. Note here that
the dotted line represents the fact that Hg is unaware of the state
of the game when making its own decisions.

From Eq. 24 the utilities of the hospitals can be formulated. The
2-player normal form game between the two hospitals is defined
by:

« Players: Hospitals Hy and Hp

o Strategy spaces: Ty = {1,2,...,Na}, T = {1, 2, ..., Np}
« Utilities:
Up,=1- (13 - P(W; < t))2 where i < {A, B} (26)

Consequently, the payoff matrices of the game can be populated
by these utilities:

ug, us

o
U2 1 UZ 2 U2 N,
I il
UIQA,l USA,Z UIGAYNB
Ulzl U{;Z U{;NE
U3, U;, Uy n,
B= ) (27)
Ui Ui,z UR\ e

Based on the choice of strategy of these two hospitals, the am-
bulance service will then make their own choice of the proportion
of individuals to send to each system.

4.1. Building the game

The problem defined in this section describes a normal-form
game between the decision makers of two hospitals and a third
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player, the ambulance service, that decides how to distribute indi-
viduals to the two systems. The strategy space of the two hospi-
tals is defined as the possible values that the threshold parameter
can take T; € [1, N;]. Then, the ambulance service has to decide on
the proportion of individuals to send to each hospital ps and pg,
where py, pg €[0,1] and ps + pgp = 1. In practice this would cor-
respond to a learned behaviour through experience of waiting at
each hospital. Fig. 7 shows a diagrammatic representation of the
game to be played and the decisions to be made. As described
in Section 4, hospital A decides on a strategy and at the same
time, hospital B chooses its own threshold but unaware of the first
hospital’s choice. Finally, the ambulance service makes its choice
based on the strategies that the hospitals chose to play.

The utilities to each player can be represented by 3 matrices:
the two payoff matrices of the normal form game and the rout-
ing matrix. The payoff matrices and their utilities are defined by
Egs. (26) and (27).

The routing matrix holds the values (p,, pg) which are the pro-
portion of ambulance patients to send to queueing systems A and
B. Each pair (p,, pg) can be calculated using Eq. (25) and is essen-
tially a best response to the actions of the hospitals. Thus, using
Eq. (25) for all possible sets of thresholds, we can get the full rout-
ing matrix R (Eq. 28) that consists of the proportions to send to
hospital A (ps) and to hospital B (pg).

(pq\,l’ ptl}.l) (p'?z pllg,z)
(p/g,l’ pg,]) (pgz pg,z)

(pq‘.NE’ p?,Nﬂ)
(p/Z‘.NB’ Pg,NB)

(pﬁ’ml’ pl[iVAJ) (p/;]A»Z’ p%sz) (p?VA-NB’ p%A,NB)

(28)
Note that since pf‘j + p?j =1 the routing matrix needs only to

store one of the two values; either pf‘j or p?j. Thus, the routing
matrix R can be simplified to:

PMi o P PN
Py Pho A

R= (29)
p/;‘\lA,l p?v,,.z p?ilA,NB

The game can thus be partitioned into a normal form game be-
tween the two hospitals and then finding the ambulance service’s
best strategy.

Now consider Fig. 7 and the flow of the game that was de-
scribed (i.e. Hy, Hg — D). Due to the fact that the payoff matrices A
and B depend on the routing matrix R the entries of the matrices
are calculated in a backwards way (D — Hga, Hg). This is done using
backwards induction. For each action choice of the hospitals, first
solve the game from the ambulance’s point of view. This in effect
results in a 2-player normal form game representing the hospital’s
point of view. Thus, for every pair of strategies Ty, Tg, the values of
pa and pp that satisfy Eq. (25) are found numerically using Brent’s
bisection algorithm (Brent, 1973). Each pair (p4, pg) corresponds to
the best response of the ambulance service to the two hospitals’
played strategies. Finally, using the routing matrix, Eq. (26) can
also be used to populate the payoff matrices of the hospitals since
we now know the arrival rate of each hospital.

Having calculated the payoff matrices A and B, several algo-
rithms can be used to measure some form of the emergent be-
haviour. One possibility would be to compute the Nash equilibrium
which is the point of the game were both players have no incen-
tive to deviate from their played strategies (Kreps, 1989). In other
words their chosen strategies are a best response to each other.
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Computation of Nash equilibria can be done in a relatively effi-
cient way using the Lemke Howson algorithm (Lemke & Howson,
1964). Lemke-Howson uses best response polytopes to get one of
the Nash equilibrium of the game. Other algorithms exists that will
compute all Nash equilibria but for large games the computational
complexity becomes problematic. All game theoretic calculations
were done in Python using the Nashpy library (The Nashpy project
developers, 2021).

Another approach to measuring emergent behaviour is to con-
sider the emergence itself and not only stable end points. Indeed,
some Nash equilibria might not arise naturally. Thus in order to
analyse the strategies played by the two hospitals, the learning al-
gorithm asymmetric replicator dynamics is used (Accinelli & Car-
rera, 2011). The two hospitals are modelled as two separate popu-
lations where each individual in the population is assigned a strat-
egy. As the game progresses the proportion of each player playing
each strategy changes based on their previous interactions. The fit-
ness of each strategy is defined as:

fe=Ay. fy=x"B (30)

Here, x ¢ R™*1 and y € R™! correspond to the proportion of in-
dividuals that play each strategy in each population. Similarly, the
average fitness of each strategy is given by:

Ox = foT, ¢y = fyy (31)

The rate of change of strategy i of both types of individuals is
captured by:

dx

Ei = Xi((fx)i - ¢X)7 for all i (32)
%i ZYi((fy)i - ¢y), for all i (33)

In addition to asymmetric replicator dynamics, the learning al-
gorithms fictitious play and stochastic fictitious play (Fudenberg
et al., 1998) were used.

4.2. Results

This subsection aims to analyse how the gaming framework can
affect the performance measures of the two hospitals and how to
escape certain inefficient situations.

The most commonly used method for analysing normal form
games is the Nash equilibrium described in Section 4.1. Consider
the following game:

')\,]AZ]
s Mg =2
‘CA=2
'NA:1O
‘MA=6
‘)»1322
./J,BIZ.S
'CB=2
'NBZ]O
‘MB=6
')»2:2
e R=2
e a =05

The set of possible actions to choose from for player 1 and
player 2 is the set of thresholds that the EDs can choose from:

Ta € [1,N4]. Tp e [1,Ng] (34)

For this example, the only Nash equilibrium of the game is
achieved when both players choose a threshold of T, = 10, Tz = 10.
This means that the two players’ best response to each other is to
only block ambulances when they are full.
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Nash equilibria is a theoretical measure which can be inconsis-
tent with intuitive notions about what should be the outcome of
a game (Myerson, 1978). Therefore it might not be the best way
to describe human behaviour. Since the work of Maynard Smith
(Smith, 1986), evolutionary game theory gives the tools for the
emergence of stable behaviour. One such model that allows for
asymmetric payoffs, as is the case above, is replicator dynamics de-
scribed in section (4.1). Stable outcomes of this algorithm will cor-
respond to a subset of Nash equilibria but more importantly, will
give a model of emergent behaviour.

The use of a learning algorithm allows to investigate, not only
the outcome of the game, but also how that outcome is reached.
Consider Fig. 8. By running asymmetric replicator dynamics on the
system the behaviour that emerges can be observed. It can be seen
that for this particular set of parameters the strategies of the two
hospitals converge over time. Both hospital 1 (row player) and hos-
pital 2 (column player) seem to be playing the same strategy sqg
which indicates that thresholds T, = 10 and Tz = 10 are played.
What is more important in this example is how the two hospi-
tals reached these decisions which also highlights the importance
of using a learning algorithm. Hospital 2 is able to reach the deci-
sion in a short amount of time while hospital 1 takes longer and
goes through numerous strategies to get there.

In order to analyse how efficient the strategies played at every
iteration are, the concept of the price of anarchy is used. Price of
anarchy (PoA) is a measure that is used to quantify the efficiency
of a behaviour (Roughgarden, 2005). In other words the price of
anarchy is the worst-case equilibria measure and it is defined as:

maXseg F(s)

PoA = minges F(s)

(35)

Here, S is the set of all sets of strategies (sa, Sg), E is the set of
all possible sets of equilibria and F is the cost function to measure
the efficiency for.

To study the efficiency of the strategies being played, a new
concept is introduced that considers the ratio between each hos-
pital’s best achievable blocking time and the one that is be-
ing played. This new concept is defined as the compartmen-
talised price of anarchy of the players of the game and is defined
as PoA;(5), where ie {A,B} to distinguish among the two play-
ers/hospitals where § is the strategy that is being played by player
i. The compartmentalised price of anarchy aims to measure ineffi-
ciencies in the model. The PoA for the blocking time of player i for
strategy § is given by:

B;(3)

PoA;(§) = ——2
i) Mmins, B;(s)

(36)

For this particular scenario, two busy queueing systems will be
used with a high traffic intensity (p > 1). Consider a game with
two smaller (lower N;, M;) and busier (higher A, and A;) hospitals
with the following set of parameters:

.)"1/\:4'5
s Ua=2
'CA=3

o Ty € [1,N4]
'NA:6
’MAZS
')\.]B=6

e up=3
OCB=2
'TBE[LNB]
.NB:7
'MB=4
0)\.2:107
e R=2

e =09
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Fig. 8. Asymmetric replicator dynamics run.
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Fig. 9. The strategies played when running asymmetric replicator dynamics along with the compartmentalised price of anarchy of the blocking time at each iteration of the

learning algorithm.
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Fig. 10. The strategies played when running asymmetric replicator dynamics along with the compartmentalised price of anarchy of the blocking time at each iteration of
the learning algorithm. After a number of iterations the arrival rate of ambulance patients is significantly increased to flood the system completely A, = 24.

Initial scenario: Using Eq. (36) and asymmetric replicator dy-
namics, the emergent behaviour can be measured and the com-
partmentalised price of anarchy at every iteration for both players.
Fig. 9 shows the strategies that are being played and the values
of PoAs(s) and PoAg(s) for all iterations of the learning algorithm
until it reaches an evolutionary stable pair of strategies.

The learning algorithm reaches a stable pair of strategies where
Ty =5 and Tz = 6. Thereafter, the price of anarchy for both players
stabilises and barely increases.

Increasing A,: Fig. 10 shows a similar run of the algorithm but
when the strategies begin to stabilise, an increase in the arrival
rate of ambulances occurs (i.e. A, = 24).

By increasing A, there is no change as to how players behave
(T4 =5, Tg = 6), but the efficiency of the system does change. There
is a decline in the price of anarchy of the blocking time which at
first glance indicates that upon flooding the system it becomes the
loss in efficiency due to rational individual behaviour decreases.
This is non-sensical however. What it really shows is that the steep
increase in A, leaves the system unable to cope regardless of the
decisions made.
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Increasing number of servers C4 and Cg: Fig. 11 shows a run
of asymmetric replicator dynamics with a change in the number of
servers of the hospitals. The number of servers are increased from
CAZB,CBIZ to CA:4,CB:3.

In this case, both the behaviour as well as the price of anar-
chy change. The players change their strategies from Ty =5, T3 = 6
to Ty =6,Tg = 7 and the PoA of the blocking time goes down. By
adding more resources to the models they are able to increase
their efficiency. Although this is a good way to escape such inef-
ficiencies, it might not always be cost efficient.

Incentivising players: From Figs. 10 and 11 it is observed that
we can change some parameters of the model to make it more
efficient. The approach used on Fig. 12 is slightly different than the
previous cases. Once the played strategies in asymmetric replicator
dynamics strategies converge, the payoff matrices of the two are
scaled in such a way so that the utilities of the selected strategy
are penalised. This corresponds to a precise policy change where
more societally beneficial behaviours are incentivised.

Matrices A and B represent the original payoff matrices while
matrices A and B represent the incentivised payoff matrices. It can
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Fig. 11. The strategies played when running asymmetric replicator dynamics along with the compartmentalised price of anarchy of the blocking time at each iteration of
the learning algorithm. After a number of iterations the number of servers for both systems are increased by one.

be observed that matrix A is a scaled version of matrix A only
on the row that is most frequently played and similarly matrix
B of matrix B only on the column that is most frequently played
(matrix A: row 5, matrix B: column 6, see Fig. 12). Note that for
the presentation of data, an affine transformation has been ap-
plied to obtain the values of the payoff matrices (A;j = 10000(a;; —
0.999) and B;; = 10000(b;; — 0.999) where q;; and b;; are the raw
utilities). The results are not affected by this scaling.
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54989 54977 54960 54924 54844 54654 53875
A 6.8232 6.8192 6.8150 6.8065 6.7871 6.7334  6.4906
~19.0298  9.0244 9.0187 9.0078 8.9827 8.9082  8.5145
6.9996 69994 69992 69987 6.9972 69893  6.8571
L8.7740  8.8006  8.8249 8.8660 8.9438 9.1295 9.7157
r1.7127 25822 46186 6.8497 89418 69999  8.2148
1.7127  2.5477 45634 68047 89150 6.9996  8.3358
o 1.7127 24528 43784 6.6441 88278 6.9965 8.5306
T 117127 24141 42867 65470 8.7656  6.9919  8.6745
1.7127 23415 4.0998 6.3265 8.6058 6.9716  8.9634
L1.7127  2.1269 3.4930 54885 7.8353 6.7076  9.7322

Fig. 12 shows that players start playing strategies T, =5 and
Tg = 6 and mid-run of the learning algorithm a penalty is applied
to these strategies on the payoff matrix. By incentivising the play-
ers in such a way the players change their strategies to Ty =6
and Tz =7, and thus ambulance patients are accepted in the ED
more often. Hence, the PoA for both EDs is decreased, meaning
that the whole system is more efficient in terms of the blocking

time.

1248



M. Panayides, V. Knight and P. Harper

Hospital A

S1

Incentives

1.0 A

o o o
> o Y
! ! !

Probability

o
[N)
L

0.0

T T T T T

40 60 80
Timepoints
Hospital A - PoA

100

0 T T T T T
0 20 40 60 80

100

European Journal of Operational Research 305 (2023) 1236-1258

Hospital B
Incentives
1.0
0.8
— 5
S2
E 0.6 1 - S3
] —_— S
? — s
& 0.4 >
— Sp
S7
0.2
0.0 A
0 20 40 60 80 100
Timepoints
Hospital B - POA
5 -
4 <
3 -
2 -
l <
0 T T T T T T
0 20 40 60 80 100

Fig. 12. The strategies played when running asymmetric replicator dynamics along with the compartmentalised price of anarchy of the blocking time at each iteration of
the learning algorithm. After a number of iterations the most dominant strategy is being penalised.
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Fig. 13. A diagrammatic representation of the queueing model example.

5. Conclusion

The motivation behind this study has been that emergency de-
partments are under a lot of pressure to treat patients. This is, in
practice, often centrally controlled through a mechanism of some
sort of performance measure target. This paper shows how this
can negatively impact the pathway of both the ambulance patients
and the ambulance service itself. Due to some managerial decision
making that takes place at the ED, ambulances stay blocked out-
side of the ED at the hospital’s parking zone in an attempt to sat-
isfy these regulations. The main contributions of this paper are:
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* A queueing model with 2 consecutive waiting spaces where
one would serve as a parking space for the ambulances;

e Analytic performance measure formulas for the queueing
model;

e A 3-player game theoretic model between the EMS and two
EDs;

e Numerical experiments showing emergent behaviour of
gaming between EDs and the EMS.

Although our research is motivated by the particular EMS-ED
example, our developed modelling framework and behavioural in-
sights has application to similar systems across a range of sectors
and settings. The queueing model can be applied to any setting
where individuals may be blocked on a separate queue. An exam-
ple of such setting can be any type of delivery service where cus-
tomers can purchase goods either online or in-person. At busier
times, the person delivering the product may be blocked outside
the store in an attempt to improve the waiting times for walk-in
customers.

This study explores a generic 3-player game theoretic model
between the decision makers of two queueing systems and a ser-
vice that distributes individuals to these two systems (Section 4).
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It also describes the construction of the underlying queueing the-
oretic model that has a tandem buffer and a single service centre
(Section 3). Furthermore, the formulas for the performance mea-
sures of the queueing model are also derived (sections 3.1, 3.2, 3.3).
This novel queueing model is the first contribution of the paper.
The game theoretic model is then applied to a healthcare scenario
by looking at the interface between the EDs and the EMS. The in-
efficiencies that emerge from the perspective of the EMS were ex-
plored along with ways to apply some incentive mechanisms to
improve them. The key findings from this paper that were ob-
served when playing the game between two EDs and the EMS are:

« Inefficiencies can be learned and emerge naturally;
o Targeted incentivisation of behaviours can help escape inef-
ficiencies.

The former relates to the results of asymmetric replicator dy-
namics that showed that inefficient scenarios can arise by playing
the game, while the latter implies that the learned inefficiencies
can be escaped by carefully applying certain incentives to the play-
ers. This applied game theoretic model is the second main contri-
bution of this paper.

The model presented here assumes the presence of only two
players that can receive individuals. However, in a realistic health-
care scenario an ambulance may have to decide among multiple
EDs. An immediate extension of this work would be to consider
a multiplayer system that could represent a group of hospitals in
a concentrated area. Additionally, the game theoretic model that
was created uses a discrete strategy space for the EDs (something
that is also present in various related literature (Deo & Gurvich,
2011; Knight et al., 2017)). The single threshold parameter that is
used for the ED’s decision may not be the best way to describe
the model. In reality ED managers might adopt far more complex
parameters for their decision making process. Moreover this work
assumes that the EMS and EDs act in a selfish and rational way by
only aiming to satisfy their own objectives. In some settings, coop-
eration may be observed and would therefore require an adapted
modelling approach. Another extension would be to explore the
behaviour of the ED staff via an agent-based simulation model.
This in turn can be used to model emergent behaviour based on
assumptions of individual behavioural traits of ED staff. Finally, fu-
ture work could touch upon the derivation of a closed form for-
mula for the steady state probability vector of the queueing model
(Section 3) to allow for faster computations of .
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Appendix A. Discrete event simulation

For the purposes of this study, a discrete event simulation (DES)
model was constructed to support the Markov chain version de-
scribed in Section 3. The queueing model was built in python using
the Ciw library (The Ciw library developers, 2020).

The constructed model simulates a queueing system with two
waiting spaces and two types of individuals. The expected be-
haviour of the nodes in Ciw have been modified such that individ-
uals moving from waiting zone 2 into waiting zone 1 get blocked
if there are more than T individuals in waiting zone 1.

The same performance measures described in Sections 3.1,
3.2 and 3.3 can also be calculated using the DES model. The simu-
lation can be ran a number of times to eliminate stochasticity and
the outcomes of the two methods can be directly comparable.
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Al. Tutorial: Building the DES model

The DES model is constructed in a generic way that so that it
can be used for any queueing system with two waiting spaces and
two types of individuals. For instance, consider a queueing system
with the following parameters, as described in Section 3:

. ;k] = 2
L] A,z =

e U=

e C=6

e T=10
e N=20
e M=10

This model will be studied by using

ambulance_game (Panayides, 2021). Install the created li-
brary in your python environment, by running the following
command in the command line:

$ python -m pip install ambulance_game

Having installed the package, the following code can be used to
simulate the queueing system defined earlier and get all the data
records for a single run.

>>> import ambulance_game as abg
>>> Simulation = abg.simulation.simulate_model(

lambda_1=3,

lambda_2=2,

mu=1,

num_of_servers=6,

threshold=10,

system_capacity=20,

buffer_capacity=10,

seed_num=0,

)

>>> all_records = Simulation.get_all_records ()
>>> all_records [3]
Record (id_number=1, customer_class=0, node=2, arrival_date=0.4728763843239206
waiting_time=0.0, service_start_date=0.4728763843239206,
.5457131455415929, service_end_date=1.0185895298655134, time_blocked=0.0,
exit_date=1.0185895298655134, queue_size_at_arrival=0,

queue_size_at_departure=4)

The above block code outputs the fourth individual record from
the simulation object. The simulation object can be used to view
every event that occurred in the simulation The data records can
then be used to get overall performance measures about the con-
structed queueing model. The overall waiting time that individuals
wait in waiting zone 1 can be acquired by running:

service_time=0

destination=-1,

>>> import numpy as np

>>> mean_wait = np.mean(

[record.waiting_time for record in all_records if record.node == 2]
)
mean_wait
0.3608431242229529

This value is the average waiting time of all the customers in
the system for a single run. By nature, discrete event simulation
can output different results for different runs of the same set of
parameters. This stochasticity can be reduced by running the simu-
lation multiple times and then getting the mean waiting time from
all the runs.

>>>

>>> all_simulations = abg.simulation.get_multiple_runs_results(
lambda_1=3,
lambda_2=2,
mu=1,
num_of_servers=6,
threshold=10,
system_capacity=20,
buffer_capacity=10,
seed_num=0,
num_of_trials=10,
)
>>> mean_wait = np.mean(
[np.mean(w.waiting_times) for w in all_simulations
)
>>> mean_wait
0.3566390561071839
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A2. How-to guide

A2.1. How to install:
The package can be installed by either running:

$ python -m pip install ambulance_game jn the command
line or via the instructions provided in the GitHub repository.

A2.2. How to simulate the model:
The required arguments that need to be passed to the
simulate_model () function are the following:

lambda_1 (A1): The arrival rate of class 1 individuals.
lambda_2 (A;): The arrival rate of class 2 individuals.

e mu (u): The service rate of the servers.

« num_of_servers (C): The number of servers in the system.
threshold (T): The threshold that indicates when to start
blocking class 2 individuals.

To get the simulation object with all the data records, the fol-
lowing code can be used:

>>> import ambulance_game as abg
>>> Simulation = abg.simulation.simulate_model (

lambda_1=3,

lambda_2=2,

mu=1,

num_of_servers=6,

threshold=10,

seed_num=0,

)

>>> Simulation.get_all_records () [4]
Record (id_number=2, customer_class=0, node=2, arrival_date=0.5727571550618586,
waiting_time=0.0, service_start_date=0.5727571550618586, service_time=0
.7159547497671506, service_end_date=1.2887119048290092, time_blocked=0.0
exit_date=1.2887119048290092, destination=-1, queue_size_at_arrival=1

queue_size_at_departure=3

Additional arguments that can be passed to the function are:

o system_capacity (N): The maximum number of individuals in
waiting zone 1.

o buffer_capacity M: The maximum number of individuals in
waiting zone 2.

o seed_num: The seed number for the random number gener-
ator.

o runtime: How long to run the simulation for.

A2.3. How to get the performance measures for a single run:

From a single run of the simulation the data records can be
used to get the average for certain performance measures. The fol-
lowing code can be used to get the mean waiting time, blocking
time, service time and the proportion of individuals within target.

>>> records = Simulation.get_all_records ()
>>> mean_wait = np.mean(
[w.waiting_time for w in records]
)
>>> mean_wait
0.23845862661827116

>>> mean_block = np.mean(
[b.time_blocked for b in records]
)
>>> mean_block
0.08501727452006658

>>> mean_service = np.mean(
. [s.service_time for s in records]
)
>>> mean_service
0.7102610863960119

>>> target = 1

>>> proportion_within_target = np.mean(

. [w.wvaiting_time <= target for w in records]
- )

>>> proportion_within_target

0.9387470071827614

1251

European Journal of Operational Research 305 (2023) 1236-1258

A2.4. How to get the average performance measures:

To reduce the effects of stochasticity in the simulation, the sim-
ulation can be run numerous times and get the average perfor-
mance measures out of all the runs.

>>> import numpy as np
>>> import ambulance_game as abg
>>> all_simulations = abg.simulation.get_multiple_runs_results(
lambda_1=3,
lambda_2=2,
mu=1,
num_of_servers=6,
threshold=10,
system_capacity=20,
buffer_capacity=10,
seed_num=0,
runtime=2000,
num_of_trials=10,
target=1,
)
>>> mean_wait = np.mean([
np.mean(w.waiting_times) for w in all_simulations
1
>>> mean_wait
0.35585979549204577

>>> mean_service = np.mean([
np.mean(s.service_times) for s in all_simulations
1
>>> mean_service
1.002184850213415

>>> mean_block = np.mean ([
np.mean(b.blocking_times) for b in all_simulations
1
>>> mean_block
0.3976966024549059

>>> np.mean([p.proportion_within_target for p in all_simulations])
0.45785790578122043

A2.5. How to get the steady state probabilities vector m:
To get the steady state probabilities of the model based on the
simulation the following code can be used:

>>> import numpy as np
>>> import ambulance_game as abg
>>> simulation_object = abg.simulation.simulate_model(
lambda_1=1,
lambda_2=2,
mu=2,
num_of_servers=2,
threshold=3,
system_capacity=4,
buffer_capacity=2,
seed_num=0,
runtime=2000,
)
>>> probs = abg.simulation.get_simulated_state_probabilities(
simulation_object=simulation_object,
)
>>> np.round(probs, decimals=3)
array ([[0.166, 0.266, 0.192, 0.147, 0.025],

[ nan, nan, nan, 0.094, 0.024],
[ nan, nan, nan, 0.058, 0.0271])
>>> total = np.nansum(probs)

>>> np.round(total, decimals=5)
1.0

Similarly to get the average steady state probabilities over mul-
tiple runs, one can use:

>>> import numpy as np
>>> import ambulance_game as abg
>>> probs = abg.simulation.get_average_simulated_state_probabilities(
lambda_1=1,
lambda_2=2,
mu=2,
num_of_servers=2,
threshold=3,
system_capacity=4,
buffer_capacity=2,
seed_num=0,
runtime=2000,
num_of_trials=10,
)
>>> np.round (probs, decimals=3)
array ([[0.18 , 0.267, 0.197, 0.144, 0.024],

[ nan, nan, nan, 0.085, 0.022],
[ nan, nan, nan, 0.054, 0.026]1)
>>> total = np.nansum(probs)

>>> np.round(total, decimals=5)
1.0
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A2.6. How to get the optimal distribution of class 2 individuals
among 2 queueing models:

In the scenario where there are two queueing models and a ser-
vice that distributes individuals to the models, (i.e. the scenario de-
scribed in this paper) the simulation can be used to decide what
proportion of individuals to send to each the model. Note that the
output of the function shows the value of p;, the proportion of
class 2 individuals to be sent to queueing model 1.

>>> import ambulance_game as abg
>>> abg.simulation.calculate_class_2_individuals_best_response (
lambda_2=4,
lambda_1_1=1,
lambda_1_2=1,
mu_1=4,
mu_2=3,
num_of _servers_1=2,
num_of _servers_2=2,
threshold_1=3,
threshold_2=3,
system_capacity_1=3,
system_capacity_2=3,
buffer_capacity_1=2,
buffer_capacity_2=2,
seed_num_1=0,
seed_num_2=0,
num_of _trials=3,
warm_up_time=100,
. runtime=1000,

)

0.6343260586929469

A3. Reference

The primary tool that was used in the construction of the dis-
crete event simulation model was the python library ciw. See
Ciw's documentation for a more detailed explanation of how it
works and what are its capabilities (The Ciw library developers,
2020).

Find below a detailed list of the functions that were created for
the simulation model:

e build_model: Builds a ciw object that represents a model of
a queueing network with two waiting spaces.
build_custom_node: Build a custom node to replace the
default ciw.Node. Inherits from the original ciw.Node class and
replaces two methods.

simulate_model: Simulate the model by using the custom
node and returning the simulation object
extract_times_from_records: Get the required times
(waiting, service, blocking) out of ciw’s records where all in-
dividuals are treated the same way
extract_times_from_individuals: Extract waiting
times and service times for all individuals and proceed to ex-
tract blocking times for only class 2 individuals
get_list_of_results: Modify the outputs so that they are re-
turned in a list format where it is sometimes easier to be used
by other functions.

get_multiple_runs_results: Get the waiting times, service times
and blocking times for multiple runs of the simulation
extract_total_individuals_and_the_ones_with
in_target_for_both_classes: Extract the total num-
ber of individuals that pass through the model and the total
number of individuals that exit the model within the given
target.
get_mean_proportion_of_individuals_within_
target_for_multiple_runs: Get the average proportion
of individuals within target by running the simulation multiple
times

get_simulated_state_probabilities: Calculates
the vector m in a dictionary format or an array format
get_average_simulated_state_probabilities:
This function runs get_simulated_state_probabilities for multi-
ple iterations to eliminate any stochasticity from the results
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o get_mean_blocking_difference_between_two_sy
stems: Given a predefined proportion of class’s 2 arrival rate
calculate the mean difference between blocking times of two
systems with a given set of parameters

e calculate_class_2_individuals_best_response
Obtains the optimal distribution of class 2 individuals such
that the blocking times in the two systems are identical and
thus minimised

A4. Explanation

Based on Ciw’s functionality the simulation model stores all
data records in a Record object. For every event that takes place
a record is created with all the relevant information. For this spe-
cific library, the records that are stored, along with the range of
values that they can take are as follows:

e id_number < R.
customer_class =0

node ={0,1,2, -1}
arrival_date ¢ R+
waiting_time ¢ R™
service_start_date ¢ Rt
service_time € R™
service_end_time < Rt
time_blocked < R+
exit_date ¢ R™
destination = {1, 2, -1}
queue_size_at_arrival € N
queue_size_at_departure ¢ N

Appendix B. Mean waiting time

The recursive formula described here is the origin of the closed-
form formula described in Section 3.1.

To calculate the mean waiting time one must first identify the
set of states (u,v) where a wait will occur. For this particular
Markov chain, this points to all states that satisfy v > C i.e. all
states where the number of individuals in the service centre ex-
ceed the number of servers. The set of such states is defined as
waiting states and can be denoted as a subset of all the states,
where:

Sw={Wwv)eS|v>C} (37)

Additionally, there are certain states in the model where ar-
rivals cannot occur. A type 1 individual cannot arrive whenever the
model is at any state (u,N) for all u where N is the system ca-
pacity. Equivalently, a type 2 individual cannot arrive in the model
when the model is at any state (M, v) for all v > T. Therefore the
set of all such states that an arrival may occur are defined as ac-
cepting states and are denoted as:

S\ ={,v) eS| v <N}

|

Moreover, another element that needs to be considered is the
expected waiting time In order to do so a variation of the Markov
model has to be considered where when the individual arrives at
any of the states of the model no more arrivals can occur after
that.

Thus, one may acquire the desired time by calculating the in-
verse of the sum of the out-flow rate of that state. Since arrivals
are ignored though the only way to exit the state will only be via

(7 revisited)

{(u,v) eS|u<M}
{(u,v) eS| v <N}

if T<N
otherwise

(2) _

. (8 revisited)
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a service. In essence this notion can be expressed as:

0,
M) = ;

min(v,CO)u’

ifu>0andv=T

38

otherwise (38)
Now, like in the type 1 individuals case, the sojourn time is

needed. For type 2 individuals whenever individuals are at any row

apart from the first one they automatically get a wait time of 0

since they are essentially blocked.

0, ifu>0

(2) _
c“(u,v) = { 1 .
RO otherwise

(39)

Note that whenever any type 1 individual is at a state (u,v)
where u >0 and v=T (i.e. all states (1,T),(2,T)...,(M,T)) the
sojourn time is set to 0. This is done to capture the trip thorough
the Markov chain from the perspective of individuals. Meaning that
they will visit all states of the threshold column but only the one
in the first row will return a non-zero sojourn time. Thus, the ex-
pected waiting time of type 1 and type 2 individuals when upon
arriving at state (u,v) can be given by the following recursive for-
mulas:

0, if (u,v) ¢Sw
whwv)=3cDwv)+wOu—-1,v), ifu>0andv=T
D, v) +wh(u,v-1), otherwise
(40)
0, if (u,v) ¢ Sw
wO ) ={c@wv)+w@u-1,v), ifu>0andv=T
@, v) +w®u,v-1), otherwise
(41)
0,

b(u,v) =

Finally, the mean waiting time can be calculated by summing
over all expected waiting times of accepting states multiplied by
the probability of being at that state and dividing by the probabil-
ity of being in any accepting state. Note here that 4; is defined in
Section 3.2 by Egs. 11 and 12.

et W (A1 (W 0) 7

w® —
2 wwyestd Tww)

(42)

Z(u.v)esjf) w@ (Az(u, v))n(u,v)

w® —
2 (uwyes? )

(43)

Appendix C. Mean blocking time
The set of states where individuals can be blocked is defined
as:

Sp={(w,v)eS|u=>0} (14 revisited)

c(u,v) +b(u-1,v),
c(u,v) +b(u,v-1),
c(u,v) + ps(u, v)b(u —1,v) + pa(u, v)b(u, v+ 1),

c(u,v) + ps(u,v)b(u,v—1) + p(u, v)b(u,v+1),
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The mean sojourn time for each state is given by the inverse
of the out-flow of that state (Stewart, 2019). However, whenever
a type 2 individual arrives at the system, no subsequent arrival
of another type 2 individual can affect its pathway or total time
in the system. Therefore, looking at the mean time in the system
from the perspective of an individual of the second type, all such
type 2 arrivals need to be ignored. Note here that this is not the
case for individuals of the first type. Whenever a type 2 individual
is blocked and a type 1 individual arrives the type 2 individuals
will stay blocked for some additional amount of time. Thus, the
mean time that a type 2 individual spends at each state is given
by:

ifv=N

15 revisited
otherwise ( )

__ 1
c(u,v) = {m‘“('*?”’
A+min(w,C)u’

In Eq. (15), both service completions and type 1 arrivals are
considered. Thus, from a blocked individual’s perspective whenever
the system moves from one state (u,v) to another state it can ei-
ther:

 be because of a service being completed: we will denote the
probability of this happening by ps(u, v).

 be because of an arrival of an individual of type 1: denoting
such probability by pq(u, v).

The probabilities are given by:

_ min(v,O)pu ..
ps(u,v) = T min@, O’ (16 revisited)
A
pa(u,v) = !

A1+ min(v,C)u

Having defined c(u,v) and S, a formula for the blocking time
that is expected to occur at each state can be given by:

if (u,v) ¢S,
ifv=N=T
ifv=N#T

if u> 0 and
v=T

otherwise

(13 revisited)

A direct approach will be used to solve this equation here. By
enumerating all equations of (13) for all states (u, v) that belong in
Sp a system of linear equations arises where the unknown variables
are all the b(u, v) terms. Note here that these equations correspond
to all blocking states as defined in (14). Equations that correspond
to non-blocking states have a value of 0 as defined in (13) The gen-
eral form of the equation in terms of C, T, N and M is given by:

b1, T) = c(1,T)+pb(1,T+1) (44)
b1, T+1) = c(1,T+1)+pb(1,T)+psb(1,T+1) (45)
b1, T+2) = c(A,T+2)+psb(1,T+1)+ psb(1,T +3)
(46)
b(1,N) = c(1,N)+b(1,N-1) (47)
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b2, T) = c2,T)+psb(1,T)+ pab(2, T+ 1) (48)
b2, T+1) = c@,T+1)+pb2,T)+pb2,T+2) (49)
b(M-=1,N) = c¢(M,N-1)+b(M,N—1) (50)
b(M,T) = ¢(T,N)+psb(T —1,N)+ psb(T,N+1) (51)
b(M,N) = ¢(M,N)+b(M,N-1) (52)

The equivalent matrix notation of the
Egs. (44) - (52) is given by Zx =y, where:

linear system of

-1 po 0O ... 0 O 0 0o 0 ... 0 O
ps -1 p. ... 0 0 0 0 0 .. 0 0
0 p -1 .. 0 0 0 0 0 .. 0 0
,_]0 0 0 1 -1 0 0 0 0 0
B 0 0 0 -1 p O 0 0
0 0 0 0 0 p -1 pg 0 0
0 0 0 0 0 0 0 0 1 -1
b(1,T) —c(1,T)
b(1,T+1) —c(1.T+1)
b(1,T+2) —c(1,T+2)
_ | p(.N) N )] ..
= pon 7= —en (18 revisited)
b2, T+1) —c(2.T+1)
b(M, N) —c(M, N)

The elements of the matrix Z can be acquired using Z;; defined
in Eq. (17) where i and j are states (u;, v;), (uj, vj) € Sp (14).

pPa, if j=i+1and v; #N
ps, ifj=i—-landv;#Nuv;#T
or j=i—N+Tand u; >2,v;,=T
1, ifj=i—-1andv;=N
-1, ifi=j

(17 revisited)

0, otherwise

Thus, having calculated the mean blocking time for all blocking
states b(u, v), they can be combined together in a formula. Using
the arriving states A, defined in Section 3.2 by Eq. 12 the resultant
formula for the mean blocking time is given by:

_ Z(u,v)eSA ”(u,u) b(-AZ (u, U))

B
2 wyes, T

(10 revisited)

To illustrate how the described formula works consider a
Markov model where C=2,T =2, N =4, M = 2 (Fig. 14). The equa-
tions that correspond to such a model are shown in (53)-(58) and
their equivalent matrix notation form is shown in (59).

b(1,2) =c(1.2) + pab(1,3) (53)

b(1,3) =c(1,3) + psb(1,2) + pab(1,4) (54)
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Fig. 14. Example of Markov chain withC=2,T=2,N=4,M = 2.

b(1.4) = c(1.4) + b(1.3) (55)
b(2,2) = ¢(2,2) + psb(1, 2) + pab(2, 3) (56)
b(2,3) = ¢(2,3) + psh(2, 2) + pab(1, 4) (57)
b(2.4) = c(2.4) + b(2.3) (58)
1 po 0 0 0 0
ps —1  pqg 0 0 0
oo 1 3 0 0 o
- Ds 0 0 -1 DPa 0 ’
0 0 0 p -1 pa
0o 0 0 0 1 -1
b(1.2) —c(1.2)
b(1.3) _¢(1.3)
b(1. 4) —c(1.4)
x=1p2 2 Y= —c22) (59)
b2, 3) _c(2.3)
b(2. 4) —c(2.4)

Appendix D. Mean proportion of individuals within target

In order to consider such measure though one would need to
obtain the distribution of time in the system for all individuals.
The complexity of such task is caused by the fact that different
individuals arrive at different states of the Markov model. Consider
the case when an arrival occurs when the model is at a specific
state.

Time distribution at specific state (1 server): Consider the
Markov model of Fig. 15 with one server and a threshold of
two individuals. Assume that an individual of the first type arrives
when the model is at state (0, 3), thus forcing the model to move
to state (0,4). The distribution of the time needed for the speci-
fied individual to exit the system from state (0, 4) is given by the
sum of exponentially distributed random variables with the same
parameter . The sum of such random variables forms an Erlang
distribution which is defined by the number of random variables
that are added and their exponential parameter. Note here that
these random variables represent the individual’s pathway from
the perspective of the individual. Thus, X; represents the time
that it takes to move from the ith position of the queue to the
(i — 1)t position (i.e. for someone in front of them to finish their
service) and X; is the time it takes to move from having a service
to exiting the system.

(0.4) = X3 ~Exp(n)
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Fig. 16. Example Markov model C=2,T=2,N=4, M = 2.

0.3)= X3 ~Exp(p)
(0,2) = X; ~Exp(u)
(0,1) = Xo~ Exp(n)
S =X3 4+ Xo+X; + Xo = Erlang(4, u) (60)
Thus, the waiting and service time of an individual in the model
of Fig. 15 can be captured by an erlang distributed random vari-
able. The general CDF of the erlang distribution Erlang(k, u) is
given by:
k-1

PS<t)=1-)"

i=0

T ) (61)

Unfortunately, the erlang distribution can only be used for the
sum of identically distributed random variables from the exponen-
tial distribution. Therefore, this approach cannot be used when one
of the random variables has a different parameter than the others.
In fact the only case where it can be used is only when the num-
ber of servers are C =1, or when an individual arrives and goes
straight to service (i.e. when there is no other individual waiting
and there is an empty server).

Time distribution at a state (multiple servers):

Fig. 16 represents the same Markov model as Fig. 15 with the
only exception that there are 2 servers here. By applying the same
logic, assuming that an individual arrives at state (0, 4), the sum
of the following random variables arises.

(0,4) > X, ~Exp(u)

0,3) = X; ~Exp(2u)

(0,2) = Xo~ Exp(n) (62)
Since these exponentially distributed random variables do not

share the same parameter, an erlang distribution cannot be used.

In fact, the problem can now be viewed either as the sum of ex-
ponentially distributed random variables with different parameters
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Mean waiting time of type 1 individuals using Markov chain and simulation

—— Markov chain
Simulation

0.6

0.5 1

0.4

Waiting time

0.3 4

0.2

0.1+

A

Fig. 17. Comparison of mean waiting time for type 1 individuals between values
obtained from the Markov chain formulas and values obtained from simulation.

Mean waiting time of type 2 individuals using Markov chain and simulation

—— Markov chain
Simulation

0.50 4

0.45

0.40 4

0.35 1

0.30 A

Waiting time

0.25 1

0.20 1

0.15

0.10 -

T

4
Az

Fig. 18. Comparison of mean waiting time for type 2 individuals between values
obtained from the Markov chain formulas and values obtained from simulation.

Proportion of type 1 individuals within target

—— Markov chain
0.6 Simulation
0.5 A
C
k]
=]
S 0.4
o
o
o
0.3 A
0.2 A

4
Az

Fig. 19. Comparison of proportion within target time for type 1 individuals be-
tween values obtained from the Markov chain formulas and values obtained from
simulation.
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or as the sum of erlang distributed random variables. The sum of
erlang distributed random variables is said to follow the hypoex-
ponential distribution. The hypoexponential distribution is defined
with two vectors of size equal to the number of Erlang random
variables (Akkouchi, 2008, Khaled, Kadri & Kadry, 2013). The vec-
tor 7 contains all the k-values of the erlang distributions and X is
a vector of the distinct parameters as illustrated in Eq. (63).

Erlang(ky, A1)
Erlang(ky, A3)
: Hypo| (ki,ka, ... kn), (A1, A2, ... An) (63)
Erlang(ky, An) k 2
Equivalently, for this particular example:
Xo ~ Exp(2p) o
X ~ Exp(2j1) X1+ X, =S1 ~Erlang(2,211) S 1S,
Xo ~ Exp(p) = Xo =S, ~ Erlang(1, )
=H ~Hypo((2,1), 2u, 1)) (64)

Therefore, the CDF of this distribution can be used to get the
probability of the time in spent in the system being less than a
given target. The general CDF of the hypoexponential distribution
Hypo(7, %), is given by the following expression (Favaro & Walker,
2010):

P(H<t)=1- (]‘[A”)

-1

LI

2.2

k=1 1=1

W (=)t le et
re—DIA= 1)1
ati-1

)\.020,7’0:1 (65)

The computation of the derivative makes equation (65) com-
putationally expensive. In Legros and Jouini (2015) an alternative
linear version of that CDF is explored via matrix analysis, and is
given by the following formula:

where W () =—

I
( l—[ ()xj+t)7rj
Jj=0.j#k

and

n k-1

ks
F) =1-3"3 (- 1)“(")( )Z e*“l’[( MX)
k=1 1=0 j=1s=1 =1 s
ks a;-1 km
As Am
) )
S<@y <w<0_q<]J s = )Lal m=s+1 Am = )\al
Xaﬁl < A )kn j-1 < A )kr ks—1 (()\Si}m] )x)4
n=a; )hn - }haz r=a;-1 }Lr - )haj ¢=0 q!
for x>0 (66)
Specific CDF of hypoexponential distribution: Eqs. (65) and

(66) refers to the general CDF of the hypoexponential distribu-
tion where the size of the vector parameters can be of any size
(Favaro & Walker, 2010). In the Markov chain models described
in Figs. 15 and 16 the parameter vectors of the hypoexponential
distribution are of size two, and in fact, for any possible version
of the investigated Markov chain model the vectors can only be
of size two. This is true since for any dimensions of this Markov
chain model there will always be at most two distinct exponential
parameters; the parameter for finishing a service (u) and the
parameter for moving forward in the queue (Cw). For the case of
C =1 the hypoexponential distribution will not be used as this is
equivalent to an erlang distribution. Therefore, by fixing the sizes
of 7 and X to 2, the following specific expression for the CDF of
the hypoexponential distribution arises, where the derivative is

removed:

P(H<t)_1—<l_[kr’

j=1

L

2.2

k=1 I=

Wy (=)t e Mt
re—DIA= 1)1
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-k}

1-
k=2

=D'a-1n!
Ao
1

1
(t+22)!

where W () = {
AT
)\,0 =0,rp=1 (67)

Note here that the only difference between Eqs. (65) and (67) is
the ¥ function. The next part proves that the expression for ¥ can
be simplified for the cases of k =1, 2. Eq. (68) shows the expres-

l

sion to be proved.
< l_[ (A; +t)’f)
J=0.jk

§l-1
o1
SUTRGT FRE,
- k=2
Proof of Eq. (68): This section aims to show that there exists
a simplified version of Eq. (65) that is specific to the proposed
Markov model. Function W is defined using the parameter t and
the variables k and [. Given the Markov model, the range of values
that k and I can take can be bounded. First, from the range of the
double summation in Eq. (65), it can be seen that k=1,2,...,| 7.
Now, | 7| represents the size of the parameter vectors that, for the
Markov model, will always be 2. That is because, for all the ex-
ponentially distributed random variables that are added together
to form the new distribution, there only two distinct parameters,
thus forming two erlang distributions. Therefore:

k=1,2

By observing Eq. (65) once more, the range of values that [
takes are [ =1,2, ..., 1., where ry is subject to the individual’'s po-
sition in the queue and r, = 1. In essence, the hypoexponential dis-
tribution will be used with these bounds:

k=1=1=1,2,...,n4

k=2=1=1 (69)
Thus the left hand side of Eq. (68) needs only to be defined

for these bounds. The specific hypoexponential distribution inves-

tigated here is of the form Hypo((ry,1)(A1,X2)). Note the initial

conditions Ag = 0,79 = 1 defined in Eq. (65) also hold here. Thus
the proof is split into two parts, for k=1 and k = 2.

e k=21=1

and

Wi () = -

1
(t+A2)!

t!

(68)

t(t+r1)1

R .
LS = = | [ Gy+07"
J=0.j#2
—(Go+D x A +0))
(T x +0)™)
B 1
E(E+Ap)n
O
o k= 1
LHS = — e 1( [T %+0° n)
J=0,j#1
— g (Go 0 Ga k)
3! 1
T ot 1<t(t+/\z)>
In essence, it is only needed to show that:
73’*1 ( 1 )_(—l)’(l—l)! 1 1
at!-1 t(t+)\.2) a )\.2 t! (t-l—)\.z)l



M. Panayides, V. Knight and P. Harper

Proof by Induction:
1. Base case (I =1):

91-1 1 1
LHS = —5¢= (t(t +kz)) T+ A)
~D'A-DIr1 1

RHs = = = - )

. t+Ay—t

T At A)

B 1

Tt +A2)
LHS = RHS

2. Assume true for | = x:

_aatx:l (t(tlh)) - Fl)x)(»zi - [tlx G +1>»2)X]

3. Prove true for | = x + 1. Need to show that:

%(Mti\ﬁ) - H): = [txlﬂ - W]

a1 1
tHS = ar[atxl (t(t+kz))]

[ x-11 1 1
ot A2 (FX— (f+)»2)">

_ DY -1t ((—X) (=x) )

A 1 (t+ Ap)*
:(—1)"(x—1)!(—x)<1 1 )
Ao (4 Ap)X
(=) /1 1
T n (rm‘(ruz)x)

= RHS

Proportion within target for both types of individuals: Given the
two CDFs of the Erlang and Hypoexponential distributions a new
function has to be defined to decide which one to use among the
two. Based on the state of the model, there can be three scenarios
when an individual arrives.

1. There is a free server and the individual does not have to
wait

Xy ~ Erlang(1, )

2. The individual arrives at a queue at the nt" position and the
model has C > 1 servers

Xy ~Hypo((n, 1), (Ci, )

3. The individual arrives at a queue at the n" position and the
model has C =1 servers

Xy ~ Erlang(n+1, )

Note here that for the first case Erlang(1, i) is equivalent to
Exp(u). Consider XD to be the distribution of type 1 individuals

(u,v)

European Journal of Operational Research 305 (2023) 1236-1258

and X(f)v) the distribution of type 2 individuals, when arriving at

state (u’, v) of the model.

Erlang(v, n), ifC=1landv>1
X ~ {Hypo([v - C 1], [Cu, u]), ifC>1andv>C  (70)
Erlang(1, u), ifv<C
Erlang(min(v,T), i), ifC=1and v,T > 1
x{j)u) ~ { Hypo([min(v, T) —= C, 1], [Cit. p]), ifC>1and v, T > C (71)

Erlang(1, ), ifv<CorT<C

Thus, the CDF of the random variables X((J)U) and X(f)y) can be
calculated using Egs. (61) and (67):
1- Y0y remrt(ue)i, ifC=1
and v > 1
) _ W, (a ke Mt
PXuwy <O =11-uoy-cu il vk, % ifC>1
where 7= (v—C, 1) and X = (Cu, jt) and v > C
1—e M, ifv<C

(19 revisited)

1_ Z;zig(v,T)fl %e—ﬂf(ut)i’ ifc=1
and v, T > 1
1 — (uC)min@w.N-Cpy ifC>1
M o We(htkle s
P2, <1) = X it Tl vy and v.T>C
' where 7= (min(v,T) —C, 1)
x=(Cu. )
1—e M, ifv<C
orT<C

(20 revisited)

In addition, the set of accepting states for type 1 (S/(;)) and type

2 (S/gz)) individuals defined in (7) and (8) are also needed here.
Note here that, S denotes the set of all states of the Markov chain
model.

S\ ={w,v)eS|v<N}

5@ _ {{(u,v)65|u<M},
A T M{uv)eS|v<N},

if T<N
otherwise

The following formula uses the state probability vector 7 to get
the weighted average of the probability below target of all states
in the Markov model.

1)
Zuwesy Py < OTuw

PXM <) = (72)
2 (uvyest T
> @ P(X(z) <U)TTyuy
P(X® <) = ZWWS T AWy u 73)

Z(u,v)es/g2> Tuv

Note that A;(u,v) and A, (u,v) are defined in Section 3.2 by
Egs. (11) and (12).

Overall proportion within target: The overall proportion of indi-
viduals for both types of individuals is given by the equivalent for-
mula of Eq. (6). The following formula uses the probability of lost
individuals from both types to get the weighted sum of the two
probabilities.

Po= Y ww), Py= Y 7@

(u.v) S (u.v) eSP
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Proportion of type 2 individuals within target

—— Markov chain
Simulation
0.6
0.5 A
C
k]
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s
& 0.4
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0.2 1 T T T T T
2 3 4 5 6
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Fig. 20. Comparison of proportion within target time for type 2 individuals be-
tween values obtained from the Markov chain formulas and values obtained from
simulation.

POX < 1) = —ME px - gy
APy + Py
APy
2L px@ <) (21 revisited)

+— 2
)\.2PL/2 + A.]PL;

Appendix E. Type 1 and type 2 performance measure
comparisons using simulation and Markov chains
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