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This research describes the development and application of a 3-player game theoretic model between two 

queueing systems and a service that distributes individuals to them. The resultant model is used to ex- 

plore dynamics between all players. The first aspect of this work is the development of a queueing system 

with two consecutive waiting spaces where the strategic managerial behaviour corresponds to how indi- 

viduals use these waiting spaces. Two modelling techniques are deployed: discrete event simulation and 

Markov chains. The state probabilities of the Markov chain system are used to extract the performance 

measures of the queueing model (e.g. mean time in each waiting room, mean number of individuals in 

each room, etc.). A 3-player game theoretic model is subsequently proposed between the two queueing 

systems and the service that distributes individuals to them. In particular this can be viewed as a 2-player 

normal-form game where the utilities are determined by a third player with its own strategies and objec- 

tives. A backwards induction technique is used to get the utilities of the normal-form game between the 

two queueing systems. This particular system has many applications, including those in healthcare where 

it captures the emergent behaviour between the Emergency Medical Service (EMS) and the Emergency 

Department (ED). The impact of time-target measures on patient well-being is explored in this paper. 

© 2022 The Authors. Published by Elsevier B.V. 
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. Introduction 

Emergency departments (EDs) are under increasing pressure to 

eet patient waiting time targets and satisfy regulations ( Halliwell, 

021 ). It is widely reported (e.g. Knapper, 2021 ; Lemmer, 2021 ; 

ahase, 2020 ) that ED congestion severely impacts not only pa- 

ients in the ED but also Emergency Medical Services (EMS). A ma- 

or concern for ambulances is that they are held waiting parked 

utside the ED to offload (dispatch) their patient when the ED is 

articularly busy ( Clarey, Allen, Brace-McDonnell & Cooke, 2014 ). 

ince the patient waiting time in ED is measured from the time 

hey enter the ED itself, there is no incentive, should the patient 

e stable in the ambulance, to offload them from EMS to ED ser- 

ices. As a result, ambulance blocking not only impacts on patients 

aiting for ED service, but has a major knock-on effect to delaying 

he ability of ambulances to respond to new EMS calls, thus plac- 

ng lives at risk ( Day, 2021 ). 
� This document is the result of the research project funded by The Healthcare 

mprovement Studies (THIS) institute. 
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There are numerous news articles that focus on the complexity 

hat arises when ambulances stay blocked outside of the hospital 

or a long amount of time ( Aitken, 2021 ; Crouch, 2021 ). Some news

eports comment on the long idle time of ambulances when they 

re not in use ( Thomas, 2021 ) and there are several reports of ex-

mples where this became an issue for new patients ( McAdams, 

021 ) and paramedics ( Clarke, 2021 ). 

This paper aims to describe the EMS-ED interface using a game 

heoretic model informed by an underlying queueing model. The 

odel describes the situation where an ambulance service would 

ave to distribute its patients between two EDs. The two EDs can 

e thought of as two queueing systems and the EMS as a distribu- 

or that distributes patients to them, aiming to minimise some per- 

ormance measure. The patients that are distributed by the EMS ar- 

ive at the hospital via an ambulance and are then either offloaded 

t the ED or stay blocked outside in the ambulance. Whether or 

ot the ambulance and its patient stay blocked is determined by 

he threshold that the given ED chooses to play. A high thresh- 

ld indicates that the ED accepts ambulance patients even if it is 

elatively full, while a low threshold means that the ED blocks am- 

ulances more frequently. 

In the United Kingdom, the National Heath Services (NHS) sets 

ome regulations on ED performance. One of these regulations is 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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hat 95% of patients that arrive at the ED should be admitted, 

ransferred or discharged within four hours. This is where gaming 

ehaviour might be observed between the EDs and the EMS. An 

ssumption of this work is that some managerial decision making 

s involved in choosing when to start blocking ambulances. This is 

imilar to Deo and Gurvich (2011) . 

The major contributions of this paper are: 

• A queueing model with two consecutive waiting spaces 

where one would serve as a parking space for the ambu- 

lances. 
• Analytic performance measure formulas for the queueing 

model. 
• A 3-player game theoretic model between the EMS and two 

EDs. 
• Numerical experiments showing emergent behaviour of 

gaming between EDs and the EMS. 

Specifically, our focus is on the construction of a 3-player game 

heoretic model between two queueing systems and a service that 

istributes individuals to them. The resultant model is then used 

o explore the emergent dynamics between the three players. This 

tudy explores two new concepts: getting performance measures 

or a new queueing theoretic model with a parking space and a 

ervice centre, and using a learning algorithm to model the emer- 

ence of behaviour. The developed theoretical model is illustrated 

hrough the application to a healthcare system of two EDs and the 

MS, exploring the inefficiencies that emerge and ways to apply 

ome incentive mechanisms to improve them. The EDs are mod- 

lled as two queueing systems each with a tandem buffer and a 

ervice centre. The performance measures are then used as the 

tilities of the game. The novelty of the queueing model here is a 

ontribution not only the game theoretic literature but also to the 

ueueing theoretic literature. To the authors knowledge, no such 

odel of a tandem queueing model with a pair of parameters for 

he buffer has been previously considered. 

This paper consists of two main sections. Section 3 presents a 

ovel queueing model for a hospital with two types of patients and 

wo waiting zones. A detailed description of how to acquire the 

erformance measure formulas of such queueing system is given. 

ection 4 gives an overview of the game theoretic model and sev- 

ral theoretic results pertaining to the performance measures of 

his model which are used to build the utilities of the game. 

. Literature review 

A number of papers have been published that touch upon the 

se of queueing models together with game theoretic concepts. 

n Chen and Wan (2003) the authors study a simultaneous price 

ompetition between two firms that are modelled as two distinct 

ueueing systems with a fixed capacity and a combined arrival 

ate. They calculate the Nash equilibrium both for identical and 

eterogeneous firms and show that for the former a pure Nash 

quilibrium always exist and for the latter a unique equilibrium ex- 

sts where only one firm operates. The authors have also extended 

heir model in Chen and Wan (2005) by allowing the players 

firms) to choose capacities. A main result from this paper was that 

hen both firms operate independently as a monopoly, the equi- 

ibria are socially optimal, but this is not the case when the firms 

perate together. Another extension of Chen and Wan (2003) was 

ntroduced in Cheng, Demirkan and Koehler (2003) where a long- 

un version of the competition was considered that also had ca- 

acity as a decision variable. An additional paper that focuses on 

ompetition is ( Fan, Kumar & Whinston, 2009 ) where the authors 

reated a competition between two sellers where seller 1 supplies 

 product instantly and seller 2 is modelled as a make-to-order 

/M/1 queue. The game that is played requires the two sellers to 
1237
ake a choice on the price of the product and then seller 2 to 

et a capacity that guarantees a maximum expected delay. In our 

ork, while giving some consideration to equilibrium behaviour, 

imilar to the work of Chen and Wan (20 03, 20 05) , emergent be-

aviour is more precisely addressed by considering learning al- 

orithms like asymmetric replicator dynamics ( Fudenberg, Drew, 

evine & Levine, 1998 ). 

In the above models, the players are attempting to increase 

heir share of individuals choosing to queue. In public healthcare 

ype settings, this is not necessarily the case. Rational usage of 

ublic services will not necessarily lead to a socially optimal out- 

ome. Rather, the overall service needs to be considered as players 

im to minimise their experienced congestion. In Sadat, Abouee- 

ehrizi and Carter (2015) a healthcare application was studied 

here patients could choose between two hospitals, where a util- 

ty function is derived that is based on patients’ perceived quality 

f life. In Knight and Harper (2013) the authors place the individ- 

als’ choices between different public services within the formu- 

ation of routing games and measure inefficiencies using a concept 

nown as the price of anarchy (PoA) ( Koutsoupias & Papadimitriou, 

999 ). They show that the price of anarchy increases with worth 

f service and that is low for systems with insufficient capaci- 

ies. In Chen, Zhang and Chen (2020) a two-tier healthcare system 

ith a capacity constrained is studied where patients can choose 

etween two systems to receive their service. The first system is 

abelled as the free system (public government-funded hospital) 

hich offers service without seeking any profit and the second 

ne is the toll system (private hospital) that aims to maximise its 

wn profit. The authors, also compare the two-tier system with its 

ne-tier equivalent, where only the free system exists. In Knight, 

omenda and Griffiths (2017) a normal form game is built that is 

nformed by a two-dimensional Markov chain in order to model 

nteractions between critical care units. In Wang, Wang, Zhang 

nd Wang (2021) a queueing-game-theoretical model is introduced 

here there are two types of service providers; a high quality 

igh-congested hospital and a low quality low-congested hospital. 

he authors study a two-stage Stackelberg game where the gov- 

rnment is the leader and the arriving patients are the followers . 

n Deo and Gurvich (2011) the authors study the network effect 

f ambulance diversion by proposing a non-cooperative game be- 

ween two EDs that are modelled as a queueing network. Each ED’s 

bjective is to minimise its own waiting time and chooses a diver- 

ion threshold based on the patients it has. In equilibrium both 

Ds choose to divert ambulances in order to avoid getting arrivals 

rom the other ED. In this paper this concept is extended by allow- 

ng the ambulance service to decide how to distribute its patients 

mong the two EDs. The players of the game are both the hospi- 

als and the customers of the hospitals, as opposed to the previous 

odels which are one or the other. Thus, the novelty of our work 

s combining both these aspects. 

Another specific part of our research, as described later in the 

aper, is the construction of a queueing system with a tandem 

uffer and a single service centre. There are several examples from 

iterature that touch upon queueing models with tandem queues. 

n D’Auria and Kanta (2015) the authors explore threshold joining 

trategies in a Markov model that has two tandem queues. Another 

xample is the one described in Burnetas (2013) where they inves- 

igated a network of multiple tandem queues where customers de- 

ide which queue to attend before joining. Similarly, in Ba ̧s ar and 

rikant (2002) the authors examine a network of N tandem M/M/1 

ueues and with multi-type customers. The customers in this pa- 

er react to a price p by picking demand rates that maximise util- 

ty. In Veltman and Hassin (2005) a profit maximisation problem is 

tudied that has two servers; an M/M/1 queue and a parking ser- 

ice providing complementary service while the customer is in the 

rst service. The providers gain a reward when customers com- 
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Fig. 1. A diagrammatic representation of the queueing model. The threshold T only 

applies to type 2 individuals. If the number of individuals in the hospital is T , only 

individuals of type 1 are accepted (at a rate λ1 ) and individuals of type 2 (arriving 

at a rate λ2 ) are blocked in the parking space. 
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lete both services and no reward when they finish one of them. 

ne of the main conclusions of this study is that by increasing the 

eneral demand both providers lower their prices to compensate 

or the increase in wait. The problem was later extended by Sun, Li, 

ian and Zhang (2009) where they considered arrivals of batches 

hat can share the parking service. Finally, ( Afeche, 2007 ) exam- 

nes a tandem network of two M/M/1 queues that are ran by two 

ifferent profit-maximising service providers. The network receives 

hree types of customers; those requiring both services, customers 

equiring the first service and customers requiring the second ser- 

ice. The authors showed that optimal prices also maximise so- 

ial utility and that removing two types of customers that don’t 

eed both services leads to higher profit and lower demand rate. 

n our work, the concepts described in Ba ̧s ar and Srikant (2002) ; 

urnetas (2013) ; D’Auria and Kanta (2015) are extended by intro- 

ucing a threshold parameter that determines when individuals 

an progress from one queue to the other. 

. A queueing model for the ED-EMS interface 

In this section, a more in-depth explanation of the queueing 

odel shown in Fig. 1 will be given. This is a queueing model that

onsists of two waiting zones: the parking space and the hospital 

aiting space. 

The model consists of two types of individuals; type 1 and type 

. Type 2 individuals are patients arriving in ambulances who can 

e blocked (usually patients that are deemed not to be critical) 

nd type 1 individuals are individuals arriving from other sources 

e.g walk-in patients, urgent patients from either walk-ins or am- 

ulances). Type 1 individuals arrive instantly at the hospital’s wait- 

ng space and wait to receive their service. Type 2 individuals ar- 

ive at the parking space and wait there until they are allowed to 

ove into the hospital. They are allowed to proceed only when the 

umber of patients in the hospital is less than the pre-determined 

hreshold T . When the number of individuals is equal to or exceeds 

his threshold, all type 2 patients that arrive will stay blocked in 

he parking space until the number of patients in the hospital falls 

elow T . This is shown diagrammatically in Fig. 1 . The parameters 

f the described queueing model are: 

• λi : The arrival rate of individuals of type i ∈ { 1 , 2 } 
• μ: The service rate for individuals receiving service 
• C: The number of servers (either healthcare professionals or 

available beds in the ED) 
• T : The threshold at which type 2 individuals are blocked 

Under the assumption that all rates (arrival and service) 

re Markovian the queueing system corresponds to a Markov 

hain ( Kemeny & Snell, 1976 ). The states of the Markov chain are

enoted by (u, v ) where: 

• u is the number of individuals blocked in the parking space 
1238 
• v is the number of individuals waiting or being served in the 

hospital 

We denote the state space of the Markov chain as S = S(T )

hich can be written as the disjoint union (1) . 

S(T ) = S 1 (T ) ∪ S 2 (T ) where: 

 1 (T ) = 

{
(0 , v ) ∈ N 

2 
0 | v < T 

}
 2 (T ) = 

{
(u, v ) ∈ N 

2 
0 | v ≥ T 

}
(1) 

The generator matrix Q of the Markov chain consists of the 

ates between the numerous states of the model. Every entry 

 i j = Q (u i , v i ) , (u j , v j ) represents the rate from state i = (u i , v i ) to state

j = (u j , v j ) for all (u i , v i ) , (u j , v j ) ∈ S. The entries of Q can be cal-

ulated using the state-mapping function described in (2) : 

 i j = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

�, if (u i , v i ) − (u j , v j ) = (0 , −1) and v i < t 
λ1 , if (u i , v i ) − (u j , v j ) = (0 , −1) and v i ≥ t 
λ2 , if (u i , v i ) − (u j , v j ) = (−1 , 0) 
v i μ, if (u i , v i ) − (u j , v j ) = (0 , 1) and v i ≤ C or 

(u i , v i ) − (u j , v j ) = (1 , 0) and v i = T ≤ C 
Cμ, if (u i , v i ) − (u j , v j ) = (0 , 1) and v i > C or 

(u i , v i ) − (u j , v j ) = (1 , 0) and v i = T > C 

−
| Q| ∑ 

j=1 

Q i j if i = j 

0 , otherwise 

(2) 

Note that � here denotes the overall arrival rate in the model 

y both types of individuals (i.e. � = λ1 + λ2 ). A visualisation of 

ow the transition rates relate to the states of the model can be 

een in the general Markov chain model shown in Fig. 2 . 

In order to consider this model numerically an adjustment 

eeds to be made. The problem defined above assumes no upper 

oundary to the number of patients that can wait in the hospital 

r to the ones that are blocked in the parking space. Therefore, a 

ifferent state space ˜ S is constructed where ˜ S ⊆ S and there is a 

aximum allowed number of patients N that can be in the hospi- 

al and a maximum allowed number of ambulances M that can be 

locked in the parking space: 

˜ 
 = { (u, v ) ∈ S | u ≤ M, v ≤ N } (3) 

The generator matrix Q defined in (2) can be used to get the 

robability vector π . The vector π is commonly used to study 

tochastic systems and it’s main purpose is to keep track of the 

robability of being at any given state of the system. πi is the 

teady state probability of being in state (u i , v i ) ∈ 

˜ S which is the

 

th state of ˜ S for some ordering of ˜ S . The term steady state refers 

o the instance of the vector π where the probabilities of being at 

ny state become stable over time. Thus, by considering the steady 

tate vector π the relationship between it and Q is given by: 

dπ

dt 
= πQ = 0 

Using vector π there are numerous performance measures of 

he model that can be calculated. The following equations utilise 

to get performance measures for the average number of patients 

t the different nodes of the queueing model: 

• Average number of patients in the entire system: 

L = 

| π | ∑ 

i =1 

πi (u i + v i ) 

• Average number of patients in the hospital: 

L H = 

| π | ∑ 

i =1 

πi v i 
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Fig. 2. General case of the Markov chain model. 
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• Average number of patients/ambulances in the parking 

space: 

L A = 

| π | ∑ 

i =1 

πi u i 

Consequently, there are some additional performance measures 

f interest that are not as straightforward to calculate. Such per- 

ormance measures are the mean waiting time in the system (for 

oth type 1 and type 2 individuals), the mean time blocked in the 

arking space (only valid for type 2 individuals) and the propor- 

ion of individuals in the hospital whose waiting time falls within 

 predefined time target (for both types). 

.1. Waiting time 

Waiting time is the amount of time that patients wait in the 

ospital’s waiting space before they can receive their service. For a 

iven set of parameters there are three different performance mea- 

ures around the mean waiting time that can be calculated. The 

ean waiting time of type 1 individuals: 

 

(1) = 

∑ 

(u, v )∈ S (1) 
A 

v ≥C 

1 
Cμ × (v − C + 1) × π(u, v ) 

∑ 

(u, v )∈ S (1) π(u, v ) 
(4) 
A 

1239 
The mean waiting time of type 2 individuals: 

 

(2) = 

∑ 

(u, v )∈ S (2) 
A 

min (v ,T ) ≥C 

1 
Cμ × ( min (v + 1 , T ) − C) × π(u, v ) 

∑ 

(u, v )∈ S (2) 
A 

π(u, v ) 
(5) 

The overall mean waiting time: 

 = 

λ1 P L ′ 
1 

λ2 P L ′ 
2 
+ λ1 P L ′ 

1 

W 

(1) + 

λ2 P L ′ 
2 

λ2 P L ′ 
2 
+ λ1 P L ′ 

1 

W 

(2) (6) 

Here S (1) 
A 

and S (2) 
A 

are the set of accepting states for type 1 and

ype 2 individuals. These are the set of states that the model is 

ble to accept a specific type of individuals. 

 

(1) 
A 

= { (u, v ) ∈ S | v < N} (7) 

 

(2) 
A 

= 

{{ (u, v ) ∈ S | u < M} , if T ≤ N 

{ (u, v ) ∈ S | v < N} , otherwise 
(8) 

Eq. 6 makes use of the proportion of type 1 and type 2 individ- 

als that are not lost to the system. These probabilities are given 

y P L ′ 
1 

and P L ′ 
2 

where: 

 L ′ 
1 

= 

∑ 

(u, v )∈ S (1) 
A 

π(u, v ) P L ′ 
2 

= 

∑ 

(u, v )∈ S (2) 
A 

π(u, v ) (9) 
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Fig. 3. Comparison of mean waiting time between values obtained from the Markov chain formula, values obtained from the truncated simulation and values obtained from 

the untruncated simulation. 
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Appendix B gives more details on the recursive formula that 

qs. (4) , (5) and (6) originate from. 

Fig. 3 shows a comparison between the calculated mean 

aiting time using Markov chains and the simulated waiting 

ime using discrete event simulation over a range of values of 

2 (details of the discrete event simulation model are given in 

ppendix Appendix A ). The figure is used to demonstrate the 

ccuracy of the waiting time formula of the constructed queueing 

odel as well as the effect of truncating the model. The simulation 

as run 100 times and the recorded mean waiting time at each 

teration is used to populate the violin plots. In detail, Fig. 3 shows 

he calculated mean waiting time using the Markov chain, using a 

runcated simulation and using a simulation with infinite capacity 

without the artificial parameters N and M). Each plot corresponds 

o different values of N and M and is run over different values of 

2 . The untruncated simulation values are the same at all three 

raphs since the effect of truncation does not apply to it. The wait- 

ng times generated by the truncated simulation match the ones 

enerated by the Markov chains model. Note that this comparison 

ncludes both type 1 and type 2 individuals. A separate compar- 

son of only type 1 and only type 2 individuals can be found in

ppendix Appendix E . 

.2. Blocking time 

Blocking time is the amount of time that type 2 patients wait in 

he parking space before they are allowed to proceed into the hos- 

ital. Unlike the waiting time, the blocking time is only calculated 

or type 2 individuals. That is because type 1 individuals cannot be 

locked. Thus, one only needs to consider the pathway of type 2 

ndividuals to get the mean blocking time of the system. The mean 

locking time can by calculated using: 

b(u, v ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 , 

c(u, v ) + b(u − 1 , v
c(u, v ) + b(u, v − 1

c(u, v ) + p s (u, v ) b

c(u, v ) + p s (u, v ) b
1240 
 = 

∑ 

(u, v ) ∈ S (2) 
A 

π(u, v ) b(A 2 (u, v )) ∑ 

(u, v ) ∈ S (2) 
A 

π(u, v ) 
(10) 

Here S (2) 
A 

is the set of accepting states of type 2 individuals (de- 

ned in Eq. (8) ) and A i (u, v ) for i ∈ { 1 , 2 } is the state that the sys-

em would go to when the system is at state (u, v ) and an individ-

al of type i arrives. 

 1 (u, v ) = (u, v + 1) (11) 

 2 (u, v ) = 

{
(u, v + 1) , if v < T 

(u + 1 , v ) , if v ≥ T 
(12) 

The term b(u, v ) is the mean time that an individual will be 

locked for, when the individual arrives in the system at state 

u, v ) . For all the states of the system b(u, v ) is given by: 

if (u, v ) / ∈ S b 

if v = N = T 

if v = N 	 = T 

1 , v ) + p a (u, v ) b(u, v + 1) , if u > 0 and 

v = T 

 − 1) + p a (u, v ) b(u, v + 1) , otherwise 

(13) 

Note that S b is defined as the set of states where individuals 

an be blocked and is given by: 

 b = { (u, v ) ∈ S | u > 0 } (14)

Additionally, c(u, v ) is the mean sojourn time for each state and 

p s and p a are the probabilities that the next event to occur will be 

 service completion or an arrival of a type 1 individual: 

(u, v ) = 

{ 

1 
min (v ,C) μ, if v = N 

1 
λ1 + min (v ,C) μ

, otherwise 
(15) 

p s (u, v ) = 

min (v , C) μ

λ1 + min (v , C) μ
, p a (u, v ) = 

λ1 

λ1 + min (v , C) μ

(16) 
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Fig. 4. Comparison of mean blocking time between values obtained from the Markov chain formula, values obtained from the truncated simulation and values obtained 

from the untruncated simulation. 
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The system of equations produced by (13) can be solved by con- 

idering the linear system Zx = y . Assuming i and j represent states 

u i , v i ) , (u j , v j ) ∈ S b then Z i j is given by: 

 i j = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

p a , if j = i + 1 and v i 	 = N 

p s , if j = i − 1 and v i 	 = N, v i 	 = T 
or j = i − N + T and u i ≥ 2 , v i = T 

1 , if j = i − 1 and v i = N 

−1 , if i = j 
0 , otherwise 

(17) 

Eq. (18) shows this. 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−1 p a 0 . . . 0 0 0 0 0 . . . 0 

p s −1 p a . . . 0 0 0 0 0 . . . 0 

0 p s −1 . . . 0 0 0 0 0 . . . 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
0 0 0 . . . 1 −1 0 0 0 . . . 0 

p s 0 0 . . . 0 0 −1 p a 0 . . . 0 

0 0 0 . . . 0 0 p s −1 p a . . . 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
0 0 0 . . . 0 0 0 0 0 . . . 1 

Additional details on the blocking time formula (10) can be 

ound in appendix Appendix C . 

Fig. 4 illustrates a comparison between the formulas that 

rise from the Markov chain model and the equivalent values of 

he blocking time extracted from discrete event simulation (ap- 

endix Appendix A ). The blocking time is calculated using both 

ethods for a range of values of λ2 . The figure is used to demon-

trate the accuracy of the blocking time formula of the constructed 

ueueing model as well as the effect of truncating the model. The 

imulation was run 100 times and the recorded mean blocking 

ime at each iteration is used to populate the violin plots. Similar 

o Fig. 3 , these plots shows a comparison between the calculated 

ean blocking time using Markov chain, using a truncated simu- 

ation and using a simulation without the artificial parameters N

nd M. The blocking times generated by the truncated simulation 

atch the ones generated by the Markov chains model. Note that 

his comparison includes only type 2 individuals since type 1 indi- 

iduals cannot be blocked. 
1241 
 

 

 

 

 

 

 

 

 

 

 

 

1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, x = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

b(1 , T ) 
b(1 , T + 1) 
b(1 , T + 2) 

. . . 
b(1 , N) 
b(2 , T ) 

b(2 , T + 1) 
. . . 

b(M, N) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, y = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−c(1 , T ) 
−c(1 , T + 1) 
−c(1 , T + 2) 

. . . 
−c(1 , N) 
−c(2 , T ) 

−c(2 , T + 1) 
. . . 

−c(M, N) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(18) 

.3. Proportion of individuals within target 

Another performance measure that is taken into consideration 

s the proportion of individuals whose time in the hospital (wait- 

ng and service time) is within a specified time target t . Similar to 

ection 3.1 , three formulas are needed for this performance mea- 

ure. 

The proportion of type 1 individuals within a time target: 

 (X 

(1) < t) = 

∑ 

(u, v ) ∈ S (1) 
A 

P (X 

(1) 
A 1 (u, v ) < t) πu, v ∑ 

(u, v ) ∈ S (1) 
A 

πu, v 
(19) 

The proportion of type 2 individuals within a time target: 

 (X 

(2) < t) = 

∑ 

(u, v ) ∈ S (2) 
A 

P (X 

(2) 
A 2 (u, v ) < t) πu, v ∑ 

(u, v ) ∈ S (2) 
A 

πu, v 
(20) 

The terms A 1 (u, v ) and A 2 (u, v ) are defined by Eqs. 11 and

2 in Section 3.2 . The overall proportion individuals within a time 

arget (where P L ′ 
1 

and P L ′ 
1 

are defined in (9) ): 

 (X < t) = 

λ1 P L ′ 
1 

λ2 P L ′ 
2 
+ λ1 P L ′ 

1 

P (X 

(1) < t) + 

λ2 P L ′ 
2 

λ2 P L ′ 
2 
+ λ1 P L ′ 

1 

P (X 

(2) < t) 

(21) 

Here P (X (1) 
(u, v ) ) and P (X (2) 

(u, v ) ) are defined as the proportion of in-

ividuals within the time target t when starting from state (u, v ) . 
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Fig. 5. Comparison of mean proportion of individuals within target time between values obtained from the Markov chain formula, values obtained from the truncated 

simulation and values obtained from the untruncated simulation. 
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viduals ( Eq. 25 ) 
hese expression can be calculated by: 

(X (1) 
(u, v ) < t) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

1 − ∑ v −1 
i =0 

1 
i ! 

e −μt (μt) i , if C = 1 

and v > 1 

1 − (μC) v −C μ
∑ | � r | 

k =1 

∑ r k 
l=1 

�k,l (−λk ) t 
r k −l 

e 
−λk t 

(r k −l)!(l−1)! 
, if C > 1 

and v > C 

1 − e −μt , if v ≤ C 

(22) 

here � r = (v − C, 1) , � λ = (Cμ, μ) and λ0 = 0 , r 0 = 1. 

 (X 

(2) 
(u, v ) < t) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 − ∑ min (v ,T ) −1 
i =0 

1 
i ! 

e −μt (μt) i , if C = 1 

and v , T > 1 

1 − (μC) min (v ,T ) −C μ
∑ | � r | 

k =1 
if C > 1 

×∑ r k 
l=1 

�k,l (−λk ) t 
r k −l e −λk t 

(r k −l)!(l−1)! 
, and v , T > C 

1 − e −μt , if v ≤ C 
or T ≤ C 

(23) 

here � r = ( min (v , T ) − C, 1) , � λ = (Cμ, μ) and λ0 = 0 , r 0 = 1 . 

The function �k,l used in Eqs. (22) and (23) is defined as: 

k,l (t) = 

{ 

(−1) l (l−1)! 
λ2 

[ 
1 
t l 

− 1 
(t+ λ2 ) l 

] 
, k = 1 

− 1 
t (t + λ1 ) 

r 1 
, k = 2 

Please refer to Appendix D for a more in-depth explanation of 

he origins of equations (19) - (23) . 

Fig. 5 shows a comparison of the mean proportion of individ- 

als within target when using Markov chains and discrete event 

imulation (appendix Appendix A ). The figure is used to demon- 

trate the accuracy of the formula for the proportion of individuals 

ithin time of the constructed queueing model as well as the ef- 

ect that truncating the model has on the formula. The simulation 

as run 100 times and the recorded proportions at each iteration 

s used to populate the violin plots. Similar to Figs. 3 and 4 , these

lots shows a comparison between the calculated mean proportion 

f individuals within time using Markov chain, using a truncated 

imulation and using a simulation without the artificial parame- 

ers N and M. The proportions generated by the truncated simula- 

ion match the ones generated by the Markov chains model. Note 

hat this comparison includes both type 1 and type 2 individuals. 

 separate comparison of only type 1 and only type 2 individuals 

an be found in appendix Appendix E . 
1242 
.4. Truncation effect timings 

The choice of the artificial parameters N and M is an important 

ecision of the model. In the untruncated simulation these val- 

es are not needed. This is not possible when obtaining the steady 

tate probabilities of the finite state Markov chain. Table 1 shows 

he relative timings of the different approaches used to get the per- 

ormance measures. 

. Strategic manipulation of the ED-EMS interface 

The problem studied is a 3-player normal form game. The play- 

rs are: 

• the decision makers of two Emergency Departments (EDs) 
• the Emergency Medical Services (EMS) that distribute indi- 

viduals in ambulances to the EDs 

This is a standard normal form game ( Maschler, Solan & Zamir, 

013 ), in that each player in this game has their own objectives 

hich they aim to optimise. More specifically, the EDs’ objective is 

aptured by an upper bound of the time that a fixed proportion of 

ndividuals spend in the system, while the EMS aims to minimise 

he time that its ambulances are blocked. This can be generalised 

or any such system where instead of EDs there are some queue- 

ng systems and instead of the EMS there is some distributor that 

llocates individuals to the queueing systems. 

The parameters of the model correspond to the following pa- 

ameters of the ED and the EMS: 

• λ2 : The rate of patients (who can be blocked) that the EMS 

receives and distributes to EDs 
• λ1 i 

: The arrival rate of other patients to ED i ∈ { A, B } 
• μi : The service rate of patients at ED i ∈ { A, B } 
• C i : The number of available resources (healthcare profession- 

als) in the ED i ∈ { A, B } 
• T i : The action that ED i ∈ { A, B } chooses to play which cor-

responds to the threshold at which they do not accept EMS 

patients. 
• N i : The total patient capacity of the ED i ∈ { A, B } 
• M i : The total parking capacity of the ED i ∈ { A, B } 
• t: The time target for both EDs 
• α ∈ [0 , 1] : Weighted average of blocking time and lost indi- 
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Table 1 

Relative timings of the simulation and Markov chain model. 

Simulation timings Markov chain timings 

Value of Single 100 Waiting time Blocking time Proportion within 

N and M trial trials formula formula time formula 

10 1 144.3 0.015 0.014 0.014 

30 1 143.4 3.731 3.828 3.649 

50 1 139.8 31.57 38.39 31.98 

∞ 1 142.1 N/A N/A N/A 

Fig. 6. A diagrammatic representation of the game theoretic model. Patients arrive at the EMS at a rate of λ2 and then a proportion of them are distributed to hospitals A 

( p A ) and the remaining proportion to hospital B ( p B ) so that p A + p B = 1 . The corresponding arrival rates of type 2 patients to hospitals A and B are thus given by: p A λ2 and 

p B λ2 . 

Fig. 7. Imperfect information Extensive Form Game between the distributor and the 

2 queueing systems. 
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The strategies of the two EDs are the range of thresholds that 

hey can choose from and their utilities are the proportions of indi- 

iduals whose time in the system is within a predetermined target 

ime. The EMS has to decide how to distribute its patients among 

he two EDs so that the weighted combination of the ambulance 

locking time and the percentage of lost ambulances is minimised. 

his can be illustrated by Fig. 6 . The interaction between the two 

Ds is a normal form game that is then used to inform the deci- 

ion of the EMS. Note that the formulated game here assumes that 

rior to making a choice the EMS knows the strategies that each 

D is playing ( Fig. 7 ). This corresponds to reacting to experienced 

elays. 

The queueing systems of the hospitals are designed in such a 

ay where they can accept two types of individuals ( Section 3 ). 

ach hospital may then choose to block type 2 individuals when 

he hospital reaches a certain capacity. The strategy sets for each 

ospital is the set { T ∈ N | 1 ≤ T ≤ N} where N ∈ { N A , N B } are the

otal capacities of hospitals A and B . We denote the chosen actions 

rom the strategy set as T A , T B and call these threshold s. 

Both hospitals follow a queueing model with two waiting 

paces for individuals. The first waiting space (i.e. the waiting 

pace of the hospital) is where the patients queue right before re- 

eiving their service and has a queue capacity of N − C, where N is 
1243 
he total capacity of the hospital and C is the number of healthcare 

rofessionals able to see them. The second waiting space (i.e. the 

arking space for ambulances) is where ambulances, that are sent 

rom the EMS distributor, stay until their patients are allowed to 

nter the hospital. The parking space has a capacity of M and no 

ervers. This is shown diagrammatically in Fig. 1 . 

Note here that both types of individuals can become lost to the 

ystem. An individual allocated from the ambulance service be- 

omes lost to the system whenever an arrival occurs and the park- 

ng space is at full capacity ( M ambulances already parked). Simi- 

arly, type 1 individuals get lost whenever they arrive at the wait- 

ng space of the hospital and it is at full capacity ( N − C individuals

lready waiting). 

Following this queueing model, the two queueing systems’ 

hoice of strategy will then rely solely on satisfying their own ob- 

ective. The objective function is defined as: 

rg max 
T i 

−
(

ˆ P − P (W i < t) 
)2 

i ∈ A, B (24) 

here W is the waiting time of a potential individual, t is the time 

arget and 

ˆ P is the percentage of individuals need to be within that 

arget. In other words, their aim is to find the threshold that min- 

mises the difference between the probability P (W i < t) and the 

ercentage goal (or maximise its negation). 

The third player, the ambulance service, has their own choices 

o make and their own goals to satisfy. The strategy set of the third 

layer is the proportion 0 ≤ p A ≤ 1 of individuals to send to hos- 

ital A. Similarly the proportion of individuals to send to hospital 

 is given by p B = 1 − p A . In addition, the ambulance service aims

o minimise any potential blockages that may occur, given the pair 

f thresholds chosen by the two hospitals. Thus, its objective is to 

inimise the blocked time of the individuals ( B A and B B ) that they 

end to hospitals A and B . Apart from the time being blocked, an

dditional aspect that may affect the decision of the distributor is 

he proportion of lost individuals L and L . Eq. 25 can be used
A B 
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o capture a mixture between the two objectives L i and B i where 

 ∈ { A, B } : 
(p A , p B ) s.t. αL A (p A ) + (1 − α) B A (p A ) 

= αL B (p B ) + (1 − α) B B (p B ) (25) 

Here, α represents the “importance” of each objective, where a 

igh α indicates a higher weight on the proportion of lost indi- 

iduals and a smaller α a higher weight on the time blocked. The 

hoice of p A and p B rely solely on Eq. 25 . Note that the current

ystem is modelled using unobservable queues which is not nec- 

ssarily an unrealistic approach ( Shone, Knight & Williams, 2013 ). 

nother approach would be to allow the ambulance service to ob- 

erve the state of each hospital before deciding which one to join 

or a given individual. There are several other factors that can af- 

ect the routing of the patients that are outside the scope of this 

aper. For example the distance from each hospital or even the pri- 

rity level of each patient may be a significant factor that affects 

he ambulance service’s decision. 

Using either Eq. (25) or (24) gives an imperfect information ex- 

ensive form game. An imperfect information game is defined as 

n extensive form game where some of the information about the 

ame state is hidden for at least one of the players ( Berwanger 

 Doyen, 2008 ). In this study the state of the problem that is

idden is the threshold that each hospital ED chooses to play. 

n other words, each hospital chooses to play a strategy without 

nowing the other hospital’s strategy. The ambulance service then, 

ully aware of the chosen threshold strategies, distributes individu- 

ls among the two systems in order to minimise the time that its 

mbulances will be blocked. Fig. 7 illustrates this. 

Hospital H A decides on a threshold, then the hospital H B 

hooses its own threshold, without knowing the strategy of H A , 

nd finally the ambulance service makes its choice. Note here that 

he dotted line represents the fact that H B is unaware of the state 

f the game when making its own decisions. 

From Eq. 24 the utilities of the hospitals can be formulated. The 

-player normal form game between the two hospitals is defined 

y: 

• Players : Hospitals H A and H B 

• Strategy spaces : T A = { 1 , 2 , . . . , N A } , T B = { 1 , 2 , . . . , N B } 
• Utilities : 

U 

i 
T A ,T B 

= 1 −
(

ˆ P − P (W i < t) 
)2 

where i ∈ { A, B } (26) 

Consequently, the payoff matrices of the game can be populated 

y these utilities: 

 = 

⎛ 

⎜ ⎜ ⎝ 

U 

A 
1 , 1 U 

A 
1 , 2 . . . U 

A 
1 ,N B 

U 

A 
2 , 1 U 

A 
2 , 2 . . . U 

A 
2 ,N B 

. . . 
. . . 

. . . 
. . . 

U 

A 
N A , 1 

U 

A 
N A , 2 

. . . U 

A 
N A ,N B 

⎞ 

⎟ ⎟ ⎠ 

, 

 = 

⎛ 

⎜ ⎜ ⎝ 

U 

B 
1 , 1 U 

B 
1 , 2 . . . U 

B 
1 ,N B 

U 

B 
2 , 1 U 

B 
2 , 2 . . . U 

B 
2 ,N B 

. . . 
. . . 

. . . 
. . . 

U 

B 
N A , 1 

U 

B 
N A , 2 

. . . U 

B 
N A ,N B 

⎞ 

⎟ ⎟ ⎠ 

(27) 

Based on the choice of strategy of these two hospitals, the am- 

ulance service will then make their own choice of the proportion 

f individuals to send to each system. 

.1. Building the game 

The problem defined in this section describes a normal-form 

ame between the decision makers of two hospitals and a third 
1244 
layer, the ambulance service, that decides how to distribute indi- 

iduals to the two systems. The strategy space of the two hospi- 

als is defined as the possible values that the threshold parameter 

an take T i ∈ [1 , N i ] . Then, the ambulance service has to decide on

he proportion of individuals to send to each hospital p A and p B , 

here p A , p B ∈ [0 , 1] and p A + p B = 1 . In practice this would cor-

espond to a learned behaviour through experience of waiting at 

ach hospital. Fig. 7 shows a diagrammatic representation of the 

ame to be played and the decisions to be made. As described 

n Section 4 , hospital A decides on a strategy and at the same 

ime, hospital B chooses its own threshold but unaware of the first 

ospital’s choice. Finally, the ambulance service makes its choice 

ased on the strategies that the hospitals chose to play. 

The utilities to each player can be represented by 3 matrices: 

he two payoff matrices of the normal form game and the rout- 

ng matrix. The payoff matrices and their utilities are defined by 

qs. (26) and (27) . 

The routing matrix holds the values (p A , p B ) which are the pro-

ortion of ambulance patients to send to queueing systems A and 

 . Each pair (p A , p B ) can be calculated using Eq. (25) and is essen-

ially a best response to the actions of the hospitals. Thus, using 

q. (25) for all possible sets of thresholds, we can get the full rout- 

ng matrix R ( Eq. 28 ) that consists of the proportions to send to

ospital A ( p A ) and to hospital B ( p B ). 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

(
p A 1 , 1 , p 

B 
1 , 1 

) (
p A 1 , 2 , p 

B 
1 , 2 

)
. . . 

(
p A 1 ,N B 

, p B 1 ,N B 

)(
p A 2 , 1 , p 

B 
2 , 1 

) (
p A 2 , 2 , p 

B 
2 , 2 

)
. . . 

(
p A 2 ,N B 

, p B 2 ,N B 

)
. . . 

. . . 
. . . 

. . . (
p A N A , 1 

, p B N A , 1 

) (
p A N A , 2 

, p B N A , 2 

)
. . . 

(
p A N A ,N B 

, p B N A ,N B 

)

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

(28) 

Note that since p A 
i, j 

+ p B 
i, j 

= 1 the routing matrix needs only to 

tore one of the two values; either p A 
i, j 

or p B 
i, j 

. Thus, the routing 

atrix R can be simplified to: 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

p A 1 , 1 p A 1 , 2 . . . p A 1 ,N B 

p A 2 , 1 p A 2 , 2 . . . p A 2 ,N B 

. . . 
. . . 

. . . 
. . . 

p A N A , 1 
p A N A , 2 

. . . p A N A ,N B 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

(29) 

The game can thus be partitioned into a normal form game be- 

ween the two hospitals and then finding the ambulance service’s 

est strategy. 

Now consider Fig. 7 and the flow of the game that was de- 

cribed (i.e. H A , H B → D ). Due to the fact that the payoff matrices A

nd B depend on the routing matrix R the entries of the matrices 

re calculated in a backwards way ( D → H A , H B ). This is done using

ackwards induction. For each action choice of the hospitals, first 

olve the game from the ambulance’s point of view. This in effect 

esults in a 2-player normal form game representing the hospital’s 

oint of view. Thus, for every pair of strategies T A , T B , the values of

p A and p B that satisfy Eq. (25) are found numerically using Brent’s 

isection algorithm ( Brent, 1973 ). Each pair (p A , p B ) corresponds to 

he best response of the ambulance service to the two hospitals’ 

layed strategies. Finally, using the routing matrix, Eq. (26) can 

lso be used to populate the payoff matrices of the hospitals since 

e now know the arrival rate of each hospital. 

Having calculated the payoff matrices A and B , several algo- 

ithms can be used to measure some form of the emergent be- 

aviour. One possibility would be to compute the Nash equilibrium 

hich is the point of the game were both players have no incen- 

ive to deviate from their played strategies ( Kreps, 1989 ). In other 

ords their chosen strategies are a best response to each other. 
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α = 0.9 
omputation of Nash equilibria can be done in a relatively effi- 

ient way using the Lemke Howson algorithm ( Lemke & Howson, 

964 ). Lemke-Howson uses best response polytopes to get one of 

he Nash equilibrium of the game. Other algorithms exists that will 

ompute all Nash equilibria but for large games the computational 

omplexity becomes problematic. All game theoretic calculations 

ere done in Python using the Nashpy library ( The Nashpy project 

evelopers, 2021 ). 

Another approach to measuring emergent behaviour is to con- 

ider the emergence itself and not only stable end points. Indeed, 

ome Nash equilibria might not arise naturally. Thus in order to 

nalyse the strategies played by the two hospitals, the learning al- 

orithm asymmetric replicator dynamics is used ( Accinelli & Car- 

era, 2011 ). The two hospitals are modelled as two separate popu- 

ations where each individual in the population is assigned a strat- 

gy. As the game progresses the proportion of each player playing 

ach strategy changes based on their previous interactions. The fit- 

ess of each strategy is defined as: 

f x = Ay, f y = x T B (30) 

Here, x ∈ R 

m ×1 and y ∈ R 

n ×1 correspond to the proportion of in-

ividuals that play each strategy in each population. Similarly, the 

verage fitness of each strategy is given by: 

x = f x x 
T , φy = f y y (31) 

The rate of change of strategy i of both types of individuals is 

aptured by: 

dx 

dt i 
= x i (( f x ) i − φx ) , for all i (32) 

dy 

dt i 
= y i (( f y ) i − φy ) , for all i (33) 

In addition to asymmetric replicator dynamics, the learning al- 

orithms fictitious play and stochastic fictitious play ( Fudenberg 

t al., 1998 ) were used. 

.2. Results 

This subsection aims to analyse how the gaming framework can 

ffect the performance measures of the two hospitals and how to 

scape certain inefficient situations. 

The most commonly used method for analysing normal form 

ames is the Nash equilibrium described in Section 4.1 . Consider 

he following game: 

• λ1 A 
= 1 

• μA = 2 
• C A = 2 
• N A = 10 
• M A = 6 
• λ1 B 

= 2 
• μB = 2.5 
• C B = 2 
• N B = 10 
• M B = 6 
• λ2 = 2 
• R = 2 
• α = 0.5 

The set of possible actions to choose from for player 1 and 

layer 2 is the set of thresholds that the EDs can choose from: 

 A ∈ [1 , N A ] , T B ∈ [1 , N B ] (34)

For this example, the only Nash equilibrium of the game is 

chieved when both players choose a threshold of T A = 10 , T B = 10 .

his means that the two players’ best response to each other is to 

nly block ambulances when they are full. 
1245 
Nash equilibria is a theoretical measure which can be inconsis- 

ent with intuitive notions about what should be the outcome of 

 game ( Myerson, 1978 ). Therefore it might not be the best way

o describe human behaviour. Since the work of Maynard Smith 

 Smith, 1986 ), evolutionary game theory gives the tools for the 

mergence of stable behaviour. One such model that allows for 

symmetric payoffs, as is the case above, is replicator dynamics de- 

cribed in section (4.1) . Stable outcomes of this algorithm will cor- 

espond to a subset of Nash equilibria but more importantly, will 

ive a model of emergent behaviour. 

The use of a learning algorithm allows to investigate, not only 

he outcome of the game, but also how that outcome is reached. 

onsider Fig. 8 . By running asymmetric replicator dynamics on the 

ystem the behaviour that emerges can be observed. It can be seen 

hat for this particular set of parameters the strategies of the two 

ospitals converge over time. Both hospital 1 (row player) and hos- 

ital 2 (column player) seem to be playing the same strategy s 10 

hich indicates that thresholds T A = 10 and T B = 10 are played. 

hat is more important in this example is how the two hospi- 

als reached these decisions which also highlights the importance 

f using a learning algorithm. Hospital 2 is able to reach the deci- 

ion in a short amount of time while hospital 1 takes longer and 

oes through numerous strategies to get there. 

In order to analyse how efficient the strategies played at every 

teration are, the concept of the price of anarchy is used. Price of 

narchy (PoA) is a measure that is used to quantify the efficiency 

f a behaviour ( Roughgarden, 2005 ). In other words the price of 

narchy is the worst-case equilibria measure and it is defined as: 

oA = 

max s ∈ E F (s ) 

min s ∈ S F (s ) 
(35) 

Here, S is the set of all sets of strategies (s A , s B ) , E is the set of

ll possible sets of equilibria and F is the cost function to measure 

he efficiency for. 

To study the efficiency of the strategies being played, a new 

oncept is introduced that considers the ratio between each hos- 

ital’s best achievable blocking time and the one that is be- 

ng played. This new concept is defined as the compartmen- 

alised price of anarchy of the players of the game and is defined 

s PoA i ( ̃ s ) , where i ∈ { A, B } to distinguish among the two play-

rs/hospitals where ˜ s is the strategy that is being played by player 

 . The compartmentalised price of anarchy aims to measure ineffi- 

iencies in the model. The PoA for the blocking time of player i for

trategy ˜ s is given by: 

 oA i ( ̃  s ) = 

B i ( ̃  s ) 

min s ∈ S i B i (s ) 
(36) 

For this particular scenario, two busy queueing systems will be 

sed with a high traffic intensity ( ρ > 1 ). Consider a game with

wo smaller (lower N i , M i ) and busier (higher λ1 i 
and λ2 ) hospitals 

ith the following set of parameters: 

• λ1 A 
= 4.5 

• μA = 2 
• C A = 3 
• T A ∈ [1 , N A ] 
• N A = 6 
• M A = 5 
• λ1 B 

= 6 
• μB = 3 
• C B = 2 
• T B ∈ [1 , N B ] 
• N B = 7 
• M B = 4 
• λ2 = 10.7 
• R = 2 
•
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Fig. 8. Asymmetric replicator dynamics run. 

Fig. 9. The strategies played when running asymmetric replicator dynamics along with the compartmentalised price of anarchy of the blocking time at each iteration of the 

learning algorithm. 

1246 
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Fig. 10. The strategies played when running asymmetric replicator dynamics along with the compartmentalised price of anarchy of the blocking time at each iteration of 

the learning algorithm. After a number of iterations the arrival rate of ambulance patients is significantly increased to flood the system completely λ2 = 24 . 
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Initial scenario: Using Eq. (36) and asymmetric replicator dy- 

amics, the emergent behaviour can be measured and the com- 

artmentalised price of anarchy at every iteration for both players. 

ig. 9 shows the strategies that are being played and the values 

f PoA A (s ) and PoA B (s ) for all iterations of the learning algorithm

ntil it reaches an evolutionary stable pair of strategies. 

The learning algorithm reaches a stable pair of strategies where 

 A = 5 and T B = 6 . Thereafter, the price of anarchy for both players

tabilises and barely increases. 

Increasing λ2 : Fig. 10 shows a similar run of the algorithm but 

hen the strategies begin to stabilise, an increase in the arrival 

ate of ambulances occurs (i.e. λ2 = 24 ). 

By increasing λ2 there is no change as to how players behave 

 T A = 5 , T B = 6 ), but the efficiency of the system does change. There

s a decline in the price of anarchy of the blocking time which at 

rst glance indicates that upon flooding the system it becomes the 

oss in efficiency due to rational individual behaviour decreases. 

his is non-sensical however. What it really shows is that the steep 

ncrease in λ2 leaves the system unable to cope regardless of the 
ecisions made. m

1247 
Increasing number of servers C A and C B : Fig. 11 shows a run 

f asymmetric replicator dynamics with a change in the number of 

ervers of the hospitals. The number of servers are increased from 

 A = 3 , C B = 2 to C A = 4 , C B = 3 . 

In this case, both the behaviour as well as the price of anar- 

hy change. The players change their strategies from T A = 5 , T B = 6

o T A = 6 , T B = 7 and the PoA of the blocking time goes down. By

dding more resources to the models they are able to increase 

heir efficiency. Although this is a good way to escape such inef- 

ciencies, it might not always be cost efficient. 

Incentivising players: From Figs. 10 and 11 it is observed that 

e can change some parameters of the model to make it more 

fficient. The approach used on Fig. 12 is slightly different than the 

revious cases. Once the played strategies in asymmetric replicator 

ynamics strategies converge, the payoff matrices of the two are 

caled in such a way so that the utilities of the selected strategy 

re penalised. This corresponds to a precise policy change where 

ore societally beneficial behaviours are incentivised. 

Matrices A and B represent the original payoff matrices while 

atrices ˜ A and 

˜ B represent the incentivised payoff matrices. It can 



M. Panayides, V. Knight and P. Harper European Journal of Operational Research 305 (2023) 1236–1258 

Fig. 11. The strategies played when running asymmetric replicator dynamics along with the compartmentalised price of anarchy of the blocking time at each iteration of 

the learning algorithm. After a number of iterations the number of servers for both systems are increased by one. 
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e observed that matrix ˜ A is a scaled version of matrix A only 

n the row that is most frequently played and similarly matrix 
˜ 
 of matrix B only on the column that is most frequently played 

matrix A : row 5, matrix B : column 6, see Fig. 12 ). Note that for

he presentation of data, an affine transformation has been ap- 

lied to obtain the values of the payoff matrices ( A i j = 10 0 0 0(a i j −
 . 999) and B i j = 10 0 0 0(b i j − 0 . 999) where a i j and b i j are the raw

tilities). The results are not affected by this scaling. 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

5 . 0518 5 . 0518 5 . 0518 5 . 0518 5 . 0518 5 . 0518 5 . 0518 

5 . 4989 5 . 4977 5 . 4960 5 . 4924 5 . 4844 5 . 4654 5 . 3875 

6 . 8232 6 . 8192 6 . 8150 6 . 8065 6 . 7871 6 . 7334 6 . 4906 

9 . 0298 9 . 0244 9 . 0187 9 . 0078 8 . 9827 8 . 9082 8 . 5145 

9 . 9996 9 . 9994 9 . 9992 9 . 9987 9 . 9972 9 . 9893 9 . 8571 

8 . 7740 8 . 8006 8 . 8249 8 . 8660 8 . 9438 9 . 1295 9 . 7157 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 . 7127 2 . 5822 4 . 6186 6 . 8497 8 . 9418 9 . 9999 8 . 2148 

1 . 7127 2 . 5477 4 . 5634 6 . 8047 8 . 9150 9 . 9996 8 . 3358 

1 . 7127 2 . 4528 4 . 3784 6 . 6441 8 . 8278 9 . 9965 8 . 5306 

1 . 7127 2 . 4141 4 . 2867 6 . 5470 8 . 7656 9 . 9919 8 . 6745 

1 . 7127 2 . 3415 4 . 0998 6 . 3265 8 . 6058 9 . 9716 8 . 9634 

1 . 7127 2 . 1269 3 . 4930 5 . 4885 7 . 8353 9 . 7075 9 . 7322 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 
1248 
˜ 
 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

5 . 0518 5 . 0518 5 . 0518 5 . 0518 5 . 0518 5 . 0518 5 . 0518 

5 . 4989 5 . 4977 5 . 4960 5 . 4924 5 . 4844 5 . 4654 5 . 3875 

6 . 8232 6 . 8192 6 . 8150 6 . 8065 6 . 7871 6 . 7334 6 . 4906 

9 . 0298 9 . 0244 9 . 0187 9 . 0078 8 . 9827 8 . 9082 8 . 5145 

6 . 9996 6 . 9994 6 . 9992 6 . 9987 6 . 9972 6 . 9893 6 . 8571 

8 . 7740 8 . 8006 8 . 8249 8 . 8660 8 . 9438 9 . 1295 9 . 7157 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

˜ 
 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 . 7127 2 . 5822 4 . 6186 6 . 8497 8 . 9418 6 . 9999 8 . 2148 

1 . 7127 2 . 5477 4 . 5634 6 . 8047 8 . 9150 6 . 9996 8 . 3358 

1 . 7127 2 . 4528 4 . 3784 6 . 6441 8 . 8278 6 . 9965 8 . 5306 

1 . 7127 2 . 4141 4 . 2867 6 . 5470 8 . 7656 6 . 9919 8 . 6745 

1 . 7127 2 . 3415 4 . 0998 6 . 3265 8 . 6058 6 . 9716 8 . 9634 

1 . 7127 2 . 1269 3 . 4930 5 . 4885 7 . 8353 6 . 7076 9 . 7322 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

Fig. 12 shows that players start playing strategies T A = 5 and 

 B = 6 and mid-run of the learning algorithm a penalty is applied 

o these strategies on the payoff matrix. By incentivising the play- 

rs in such a way the players change their strategies to T A = 6

nd T B = 7 , and thus ambulance patients are accepted in the ED 

ore often. Hence, the PoA for both EDs is decreased, meaning 

hat the whole system is more efficient in terms of the blocking 

ime. 
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Fig. 12. The strategies played when running asymmetric replicator dynamics along with the compartmentalised price of anarchy of the blocking time at each iteration of 

the learning algorithm. After a number of iterations the most dominant strategy is being penalised. 

Fig. 13. A diagrammatic representation of the queueing model example. 
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. Conclusion 

The motivation behind this study has been that emergency de- 

artments are under a lot of pressure to treat patients. This is, in 

ractice, often centrally controlled through a mechanism of some 

ort of performance measure target. This paper shows how this 

an negatively impact the pathway of both the ambulance patients 

nd the ambulance service itself. Due to some managerial decision 

aking that takes place at the ED, ambulances stay blocked out- 

ide of the ED at the hospital’s parking zone in an attempt to sat- 

sfy these regulations. The main contributions of this paper are: 
1249 
• A queueing model with 2 consecutive waiting spaces where 

one would serve as a parking space for the ambulances; 
• Analytic performance measure formulas for the queueing 

model; 
• A 3-player game theoretic model between the EMS and two 

EDs; 
• Numerical experiments showing emergent behaviour of 

gaming between EDs and the EMS. 

Although our research is motivated by the particular EMS-ED 

xample, our developed modelling framework and behavioural in- 

ights has application to similar systems across a range of sectors 

nd settings. The queueing model can be applied to any setting 

here individuals may be blocked on a separate queue. An exam- 

le of such setting can be any type of delivery service where cus- 

omers can purchase goods either online or in-person. At busier 

imes, the person delivering the product may be blocked outside 

he store in an attempt to improve the waiting times for walk-in 

ustomers. 

This study explores a generic 3-player game theoretic model 

etween the decision makers of two queueing systems and a ser- 

ice that distributes individuals to these two systems ( Section 4 ). 
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t also describes the construction of the underlying queueing the- 

retic model that has a tandem buffer and a single service centre 

 Section 3 ). Furthermore, the formulas for the performance mea- 

ures of the queueing model are also derived ( sections 3.1, 3.2, 3.3 ).

his novel queueing model is the first contribution of the paper. 

he game theoretic model is then applied to a healthcare scenario 

y looking at the interface between the EDs and the EMS. The in- 

fficiencies that emerge from the perspective of the EMS were ex- 

lored along with ways to apply some incentive mechanisms to 

mprove them. The key findings from this paper that were ob- 

erved when playing the game between two EDs and the EMS are: 

• Inefficiencies can be learned and emerge naturally; 
• Targeted incentivisation of behaviours can help escape inef- 

ficiencies. 

The former relates to the results of asymmetric replicator dy- 

amics that showed that inefficient scenarios can arise by playing 

he game, while the latter implies that the learned inefficiencies 

an be escaped by carefully applying certain incentives to the play- 

rs. This applied game theoretic model is the second main contri- 

ution of this paper. 

The model presented here assumes the presence of only two 

layers that can receive individuals. However, in a realistic health- 

are scenario an ambulance may have to decide among multiple 

Ds. An immediate extension of this work would be to consider 

 multiplayer system that could represent a group of hospitals in 

 concentrated area. Additionally, the game theoretic model that 

as created uses a discrete strategy space for the EDs (something 

hat is also present in various related literature ( Deo & Gurvich, 

011 ; Knight et al., 2017 )). The single threshold parameter that is 

sed for the ED’s decision may not be the best way to describe 

he model. In reality ED managers might adopt far more complex 

arameters for their decision making process. Moreover this work 

ssumes that the EMS and EDs act in a selfish and rational way by 

nly aiming to satisfy their own objectives. In some settings, coop- 

ration may be observed and would therefore require an adapted 

odelling approach. Another extension would be to explore the 

ehaviour of the ED staff via an agent-based simulation model. 

his in turn can be used to model emergent behaviour based on 

ssumptions of individual behavioural traits of ED staff. Finally, fu- 

ure work could touch upon the derivation of a closed form for- 

ula for the steady state probability vector of the queueing model 

 Section 3 ) to allow for faster computations of π . 
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ppendix A. Discrete event simulation 

For the purposes of this study, a discrete event simulation (DES) 

odel was constructed to support the Markov chain version de- 

cribed in Section 3 . The queueing model was built in python using 

he Ciw library ( The Ciw library developers, 2020 ). 

The constructed model simulates a queueing system with two 

aiting spaces and two types of individuals. The expected be- 

aviour of the nodes in Ciw have been modified such that individ- 

als moving from waiting zone 2 into waiting zone 1 get blocked 

f there are more than T individuals in waiting zone 1. 

The same performance measures described in Sections 3.1, 

.2 and 3.3 can also be calculated using the DES model. The simu- 

ation can be ran a number of times to eliminate stochasticity and 

he outcomes of the two methods can be directly comparable. 
1250 
1. Tutorial: Building the DES model 

The DES model is constructed in a generic way that so that it 

an be used for any queueing system with two waiting spaces and 

wo types of individuals. For instance, consider a queueing system 

ith the following parameters, as described in Section 3 : 

• λ1 = 2 
• λ2 = 3 
• μ = 1 
• C = 6 
• T = 10 
• N = 20 
• M = 10 

This model will be studied by using 

mbulance_game ( Panayides, 2021 ). Install the created li- 

rary in your python environment, by running the following 

ommand in the command line: 

Having installed the package, the following code can be used to 

imulate the queueing system defined earlier and get all the data 

ecords for a single run. 

The above block code outputs the fourth individual record from 

he simulation object. The simulation object can be used to view 

very event that occurred in the simulation The data records can 

hen be used to get overall performance measures about the con- 

tructed queueing model. The overall waiting time that individuals 

ait in waiting zone 1 can be acquired by running: 

This value is the average waiting time of all the customers in 

he system for a single run. By nature, discrete event simulation 

an output different results for different runs of the same set of 

arameters. This stochasticity can be reduced by running the simu- 

ation multiple times and then getting the mean waiting time from 

ll the runs. 
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2. How-to guide 

2.1. How to install: 

The package can be installed by either running: 

in the command 

ine or via the instructions provided in the GitHub repository. 

2.2. How to simulate the model: 

The required arguments that need to be passed to the 

imulate_model() function are the following: 

• lambda_1 ( λ1 ): The arrival rate of class 1 individuals. 
• lambda_2 ( λ2 ): The arrival rate of class 2 individuals. 
• mu ( μ): The service rate of the servers. 
• num_of_servers ( C): The number of servers in the system. 
• threshold ( T ): The threshold that indicates when to start 

blocking class 2 individuals. 

To get the simulation object with all the data records, the fol- 

owing code can be used: 

Additional arguments that can be passed to the function are: 

• system_capacity ( N): The maximum number of individuals in 

waiting zone 1. 
• buffer_capacity M: The maximum number of individuals in 

waiting zone 2. 
• seed_num : The seed number for the random number gener- 

ator. 
• runtime : How long to run the simulation for. 

2.3. How to get the performance measures for a single run: 

From a single run of the simulation the data records can be 

sed to get the average for certain performance measures. The fol- 

owing code can be used to get the mean waiting time, blocking 

ime, service time and the proportion of individuals within target. 
1251 
2.4. How to get the average performance measures: 

To reduce the effects of stochasticity in the simulation, the sim- 

lation can be run numerous times and get the average perfor- 

ance measures out of all the runs. 

2.5. How to get the steady state probabilities vector π : 

To get the steady state probabilities of the model based on the 

imulation the following code can be used: 

Similarly to get the average steady state probabilities over mul- 

iple runs, one can use: 
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2.6. How to get the optimal distribution of class 2 individuals 

mong 2 queueing models: 

In the scenario where there are two queueing models and a ser- 

ice that distributes individuals to the models, (i.e. the scenario de- 

cribed in this paper) the simulation can be used to decide what 

roportion of individuals to send to each the model. Note that the 

utput of the function shows the value of p 1 , the proportion of 

lass 2 individuals to be sent to queueing model 1. 

3. Reference 

The primary tool that was used in the construction of the dis- 

rete event simulation model was the python library ciw . See 

iw’s documentation for a more detailed explanation of how it 

orks and what are its capabilities ( The Ciw library developers, 

020 ). 

Find below a detailed list of the functions that were created for 

he simulation model: 

• build_model : Builds a ciw object that represents a model of 

a queueing network with two waiting spaces. 
• build_custom_node : Build a custom node to replace the 

default ciw.Node. Inherits from the original ciw.Node class and 

replaces two methods. 
• simulate_model : Simulate the model by using the custom 

node and returning the simulation object 
• extract_times_from_records : Get the required times 

(waiting, service, blocking) out of ciw’s records where all in- 

dividuals are treated the same way 
• extract_times_from_individuals : Extract waiting 

times and service times for all individuals and proceed to ex- 

tract blocking times for only class 2 individuals 
• get_list_of_results: Modify the outputs so that they are re- 

turned in a list format where it is sometimes easier to be used 

by other functions. 
• get_multiple_runs_results: Get the waiting times, service times 

and blocking times for multiple runs of the simulation 
• extract_total_individuals_and_the_ones_with 
in_target_for_both_classes : Extract the total num- 

ber of individuals that pass through the model and the total 

number of individuals that exit the model within the given 

target. 
• get_mean_proportion_of_individuals_within_ 
target_for_multiple_runs : Get the average proportion 

of individuals within target by running the simulation multiple 

times 
• get_simulated_state_probabilities : Calculates 

the vector π in a dictionary format or an array format 
• get_average_simulated_state_probabilities : 

This function runs get_simulated_state_probabilities for multi- 

ple iterations to eliminate any stochasticity from the results 
1252 
• get_mean_blocking_difference_between_two_sy 
stems : Given a predefined proportion of class’s 2 arrival rate 

calculate the mean difference between blocking times of two 

systems with a given set of parameters 
• calculate_class_2_individuals_best_response 

Obtains the optimal distribution of class 2 individuals such 

that the blocking times in the two systems are identical and 

thus minimised 

4. Explanation 

Based on Ciw’s functionality the simulation model stores all 

ata records in a Record object. For every event that takes place 

 record is created with all the relevant information. For this spe- 

ific library, the records that are stored, along with the range of 

alues that they can take are as follows: 

• id_number ∈ R . 
• customer_class = 0 
• node = { 0 , 1 , 2 , −1 } 
• arrival_date ∈ R + 
• waiting_time ∈ R + 
• service_start_date ∈ R + 
• service_time ∈ R + 
• service_end_time ∈ R + 
• time_blocked ∈ R + 
• exit_date ∈ R + 
• destination = { 1 , 2 , −1 } 
• queue_size_at_arrival ∈ N
• queue_size_at_departure ∈ N

ppendix B. Mean waiting time 

The recursive formula described here is the origin of the closed- 

orm formula described in Section 3.1 . 

To calculate the mean waiting time one must first identify the 

et of states (u, v ) where a wait will occur. For this particular

arkov chain, this points to all states that satisfy v > C i.e. all 

tates where the number of individuals in the service centre ex- 

eed the number of servers. The set of such states is defined as 

aiting states and can be denoted as a subset of all the states, 

here: 

 w 

= { (u, v ) ∈ S | v > C} (37) 

Additionally, there are certain states in the model where ar- 

ivals cannot occur. A type 1 individual cannot arrive whenever the 

odel is at any state (u, N) for all u where N is the system ca-

acity. Equivalently, a type 2 individual cannot arrive in the model 

hen the model is at any state (M, v ) for all v ≥ T . Therefore the

et of all such states that an arrival may occur are defined as ac- 

epting states and are denoted as: 

 

(1) 
A 

= { (u, v ) ∈ S | v < N} (7 revisited) 

 

(2) 
A 

= 

{{ (u, v ) ∈ S | u < M} if T ≤ N 

{ (u, v ) ∈ S | v < N} otherwise 
(8 revisited) 

Moreover, another element that needs to be considered is the 

xpected waiting time In order to do so a variation of the Markov 

odel has to be considered where when the individual arrives at 

ny of the states of the model no more arrivals can occur after 

hat. 

Thus, one may acquire the desired time by calculating the in- 

erse of the sum of the out-flow rate of that state. Since arrivals 

re ignored though the only way to exit the state will only be via 
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 service. In essence this notion can be expressed as: 

 

(1) (u, v ) = 

{
0 , if u > 0 and v = T 

1 
min (v ,C) μ, otherwise 

(38) 

Now, like in the type 1 individuals case, the sojourn time is 

eeded. For type 2 individuals whenever individuals are at any row 

part from the first one they automatically get a wait time of 0 

ince they are essentially blocked. 

 

(2) (u, v ) = 

{
0 , if u > 0 

1 
min (v ,C) μ, otherwise 

(39) 

Note that whenever any type 1 individual is at a state (u, v )
here u > 0 and v = T (i.e. all states (1 , T ) , (2 , T ) . . . , (M, T ) ) the

ojourn time is set to 0. This is done to capture the trip thorough 

he Markov chain from the perspective of individuals. Meaning that 

hey will visit all states of the threshold column but only the one 

n the first row will return a non-zero sojourn time. Thus, the ex- 

ected waiting time of type 1 and type 2 individuals when upon 

rriving at state (u, v ) can be given by the following recursive for-

ulas: 

 

(1) (u, v ) = 

⎧ ⎨ 

⎩ 

0 , if (u, v ) / ∈ S w 

c (1) (u, v ) + w 

(1) (u − 1 , v ) , if u > 0 and v = T 

c (1) (u, v ) + w 

(1) (u, v − 1) , otherwise 

(40) 

 

(2) (u, v ) = 

⎧ ⎨ 

⎩ 

0 , if (u, v ) / ∈ S w 

c (2) (u, v ) + w 

(2) (u − 1 , v ) , if u > 0 and v = T 

c (2) (u, v ) + w 

(2) (u, v − 1) , otherwise 

(41) 

Finally, the mean waiting time can be calculated by summing 

ver all expected waiting times of accepting states multiplied by 

he probability of being at that state and dividing by the probabil- 

ty of being in any accepting state. Note here that A i is defined in

ection 3.2 by Eqs. 11 and 12 . 

 

(1) = 

∑ 

(u, v ) ∈ S (1) 
A 

w 

(1) (A 1 (u, v )) π(u, v ) ∑ 

(u, v ) ∈ S (1) 
A 

π(u, v ) 
(42) 

 

(2) = 

∑ 

(u, v ) ∈ S (2) 
A 

w 

(2) (A 2 (u, v )) π(u, v ) ∑ 

(u, v ) ∈ S (2) 
A 

π(u, v ) 
(43) 

ppendix C. Mean blocking time 

The set of states where individuals can be blocked is defined 

s: 

 b = { (u, v ) ∈ S | u > 0 } (14 revisited)

b(u, v ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 , 

c(u, v ) + b(u − 1 , v
c(u, v ) + b(u, v − 1

c(u, v ) + p s (u, v ) b

c(u, v ) + p s (u, v ) b
1253 
The mean sojourn time for each state is given by the inverse 

f the out-flow of that state ( Stewart, 2019 ). However, whenever 

 type 2 individual arrives at the system, no subsequent arrival 

f another type 2 individual can affect its pathway or total time 

n the system. Therefore, looking at the mean time in the system 

rom the perspective of an individual of the second type, all such 

ype 2 arrivals need to be ignored. Note here that this is not the 

ase for individuals of the first type. Whenever a type 2 individual 

s blocked and a type 1 individual arrives the type 2 individuals 

ill stay blocked for some additional amount of time. Thus, the 

ean time that a type 2 individual spends at each state is given 

y: 

(u, v ) = 

{
1 

min (v ,C) μ, if v = N 

1 
λ1 + min (v ,C) μ

, otherwise 
(15 revisited) 

In Eq. (15) , both service completions and type 1 arrivals are 

onsidered. Thus, from a blocked individual’s perspective whenever 

he system moves from one state (u, v ) to another state it can ei-

her: 

• be because of a service being completed: we will denote the 

probability of this happening by p s (u, v ) . 
• be because of an arrival of an individual of type 1: denoting 

such probability by p a (u, v ) . 

The probabilities are given by: 

p s (u, v ) = 

min (v , C) μ

λ1 + min (v , C) μ
, (16 revisited) 

p a (u, v ) = 

λ1 

λ1 + min (v , C) μ

Having defined c(u, v ) and S b a formula for the blocking time 

hat is expected to occur at each state can be given by: 

if (u, v ) / ∈ S b 

if v = N = T 

if v = N 	 = T 

1 , v ) + p a (u, v ) b(u, v + 1) , if u > 0 and 

v = T 

 − 1) + p a (u, v ) b(u, v + 1) , otherwise 

(13 revisited) 

A direct approach will be used to solve this equation here. By 

numerating all equations of (13) for all states (u, v ) that belong in

 b a system of linear equations arises where the unknown variables 

re all the b(u, v ) terms. Note here that these equations correspond 

o all blocking states as defined in (14) . Equations that correspond 

o non-blocking states have a value of 0 as defined in (13) The gen-

ral form of the equation in terms of C, T , N and M is given by: 

(1 , T ) = c(1 , T ) + p a b(1 , T + 1) (44) 

(1 , T + 1) = c(1 , T + 1) + p s b(1 , T ) + p a b(1 , T + 1) (45) 

(1 , T + 2) = c(1 , T + 2) + p s b(1 , T + 1) + p a b(1 , T + 3) 
(46) 

. . . 

(1 , N) = c(1 , N) + b(1 , N − 1) (47) 



M. Panayides, V. Knight and P. Harper European Journal of Operational Research 305 (2023) 1236–1258 

b

b

b

b

b

E

Z  

 

i

Z

s  

t

f

B

M  

t  

t

b

b

Fig. 14. Example of Markov chain with C = 2 , T = 2 , N = 4 , M = 2 . 
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(2 , T ) = c(2 , T ) + p s b(1 , T ) + p a b(2 , T + 1) (48) 

(2 , T + 1) = c(2 , T + 1) + p s b(2 , T ) + p a b(2 , T + 2) (49) 

. . . 

(M − 1 , N) = c(M, N − 1) + b(M, N − 1) (50) 

(M, T ) = c(T , N) + p s b(T − 1 , N) + p a b(T , N + 1) (51) 

. . . 

(M, N) = c(M, N) + b(M, N − 1) (52) 

The equivalent matrix notation of the linear system of 

qs. (44) - (52) is given by Zx = y , where: 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−1 p a 0 . . . 0 0 0 0 0 . . . 0 0 

p s −1 p a . . . 0 0 0 0 0 . . . 0 0 

0 p s −1 . . . 0 0 0 0 0 . . . 0 0 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. . . 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. . . 

. 

. 

. 
. 
. 
. 

0 0 0 . . . 1 −1 0 0 0 . . . 0 0 

p s 0 0 . . . 0 0 −1 p a 0 . . . 0 0 

0 0 0 . . . 0 0 p s −1 p a . . . 0 0 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. . . 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. . . 

. 

. 

. 
. 
. 
. 

0 0 0 . . . 0 0 0 0 0 . . . 1 −1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

,

x = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

b(1 , T ) 

b(1 , T + 1) 

b(1 , T + 2) 

. 

. 

. 

b(1 , N) 

b(2 , T ) 

b(2 , T + 1) 

. 

. 

. 

b(M, N) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, y = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−c(1 , T ) 

−c(1 , T + 1) 

−c(1 , T + 2) 

. 

. 

. 

−c(1 , N) 

−c(2 , T ) 

−c(2 , T + 1) 

. 

. 

. 

−c(M, N) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(18 revisited)

The elements of the matrix Z can be acquired using Z i j defined 

n Eq. (17) where i and j are states (u i , v i ) , (u j , v j ) ∈ S b (14) . 

 i j = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

p a , if j = i + 1 and v i 	 = N 

p s , if j = i − 1 and v i 	 = N, v i 	 = T 

or j = i − N + T and u i ≥ 2 , v i = T 

1 , if j = i − 1 and v i = N 

−1 , if i = j 

0 , otherwise 

(17 revisited) 

Thus, having calculated the mean blocking time for all blocking 

tates b(u, v ) , they can be combined together in a formula. Using

he arriving states A 2 defined in Section 3.2 by Eq. 12 the resultant 

ormula for the mean blocking time is given by: 

 = 

∑ 

(u, v ) ∈ S A π(u, v ) b(A 2 (u, v )) ∑ 

(u, v ) ∈ S A π(u, v ) 
(10 revisited) 

To illustrate how the described formula works consider a 

arkov model where C = 2 , T = 2 , N = 4 , M = 2 ( Fig. 14 ). The equa-

ions that correspond to such a model are shown in (53) - (58) and

heir equivalent matrix notation form is shown in (59) . 

(1 , 2) = c(1 , 2) + p a b(1 , 3) (53) 

(1 , 3) = c(1 , 3) + p s b(1 , 2) + p a b(1 , 4) (54) 
1254 
(1 , 4) = c(1 , 4) + b(1 , 3) (55) 

(2 , 2) = c(2 , 2) + p s b(1 , 2) + p a b(2 , 3) (56) 

(2 , 3) = c(2 , 3) + p s b(2 , 2) + p a b(1 , 4) (57) 

(2 , 4) = c(2 , 4) + b(2 , 3) (58) 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

−1 p a 0 0 0 0 

p s −1 p a 0 0 0 

0 1 −1 0 0 0 

p s 0 0 −1 p a 0 

0 0 0 p s −1 p a 
0 0 0 0 1 −1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, 

x = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

b(1 , 2) 
b(1 , 3) 
b(1 , 4) 
b(2 , 2) 
b(2 , 3) 
b(2 , 4) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, y = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

−c(1 , 2) 
−c(1 , 3) 
−c(1 , 4) 
−c(2 , 2) 
−c(2 , 3) 
−c(2 , 4) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

(59) 

ppendix D. Mean proportion of individuals within target 

In order to consider such measure though one would need to 

btain the distribution of time in the system for all individuals. 

he complexity of such task is caused by the fact that different 

ndividuals arrive at different states of the Markov model. Consider 

he case when an arrival occurs when the model is at a specific 

tate. 

Time distribution at specific state (1 server): Consider the 

arkov model of Fig. 15 with one server and a threshold of 

wo individuals. Assume that an individual of the first type arrives 

hen the model is at state (0 , 3) , thus forcing the model to move

o state (0 , 4) . The distribution of the time needed for the speci-

ed individual to exit the system from state (0 , 4) is given by the

um of exponentially distributed random variables with the same 

arameter μ. The sum of such random variables forms an Erlang 

istribution which is defined by the number of random variables 

hat are added and their exponential parameter. Note here that 

hese random variables represent the individual’s pathway from 

he perspective of the individual. Thus, X i represents the time 

hat it takes to move from the i th position of the queue to the 

i − 1) th position (i.e. for someone in front of them to finish their 

ervice) and X 0 is the time it takes to move from having a service 

o exiting the system. 

(0 , 4) ⇒ X 3 ∼ Exp(μ) 
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Fig. 15. Example Markov model C = 1 , T = 2 , N = 4 , M = 2 . 

Fig. 16. Example Markov model C = 2 , T = 2 , N = 4 , M = 2 . 
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Fig. 17. Comparison of mean waiting time for type 1 individuals between values 

obtained from the Markov chain formulas and values obtained from simulation. 

Fig. 18. Comparison of mean waiting time for type 2 individuals between values 

obtained from the Markov chain formulas and values obtained from simulation. 

Fig. 19. Comparison of proportion within target time for type 1 individuals be- 

tween values obtained from the Markov chain formulas and values obtained from 

simulation. 
(0 , 3) ⇒ X 2 ∼ Exp(μ) 

(0 , 2) ⇒ X 1 ∼ Exp(μ) 

(0 , 1) ⇒ X 0 ∼ Exp(μ) 

 = X 3 + X 2 + X 1 + X 0 = Erlang(4 , μ) (60) 

Thus, the waiting and service time of an individual in the model 

f Fig. 15 can be captured by an erlang distributed random vari- 

ble. The general CDF of the erlang distribution Erlang(k, μ) is 

iven by: 

 (S < t) = 1 −
k −1 ∑ 

i =0 

1 

i ! 
e −μt (μt) i (61) 

Unfortunately, the erlang distribution can only be used for the 

um of identically distributed random variables from the exponen- 

ial distribution. Therefore, this approach cannot be used when one 

f the random variables has a different parameter than the others. 

n fact the only case where it can be used is only when the num-

er of servers are C = 1 , or when an individual arrives and goes

traight to service (i.e. when there is no other individual waiting 

nd there is an empty server). 

Time distribution at a state (multiple servers): 

Fig. 16 represents the same Markov model as Fig. 15 with the 

nly exception that there are 2 servers here. By applying the same 

ogic, assuming that an individual arrives at state (0 , 4) , the sum

f the following random variables arises. 

0 , 4) ⇒ X 2 ∼ Exp(2 μ) 

0 , 3) ⇒ X 1 ∼ Exp(2 μ) 

0 , 2) ⇒ X 0 ∼ Exp(μ) (62) 

Since these exponentially distributed random variables do not 

hare the same parameter, an erlang distribution cannot be used. 

n fact, the problem can now be viewed either as the sum of ex- 

onentially distributed random variables with different parameters 
1255 
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r as the sum of erlang distributed random variables. The sum of 

rlang distributed random variables is said to follow the hypoex- 

onential distribution. The hypoexponential distribution is defined 

ith two vectors of size equal to the number of Erlang random 

ariables ( Akkouchi, 2008 , Khaled, Kadri & Kadry, 2013 ). The vec- 

or � r contains all the k -values of the erlang distributions and 

�
 λ is 

 vector of the distinct parameters as illustrated in Eq. (63) . 

Erlang(k 1 , λ1 ) 
Erlang(k 2 , λ2 ) 

. . . 
Erlang(k n , λn ) 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

Hypo 

⎛ 

⎝ (k 1 , k 2 , . . . k n ) ︸ ︷︷ ︸ 
�
 k 

, (λ1 , λ2 , . . . λn ) ︸ ︷︷ ︸ 
�
 λ

⎞ 

⎠ (63) 

Equivalently, for this particular example: 

X 2 ∼ Exp(2 μ) 
X 1 ∼ Exp(2 μ) 

}
X 1 + X 2 = S 1 ∼ Erlang(2 , 2 μ) 

X 0 ∼ Exp(μ) ⇒ X 0 = S 2 ∼ Erlang(1 , μ) 

⎫ ⎬ 

⎭ 

S 1 + S 2 

= H ∼ Hypo((2 , 1) , (2 μ, μ)) (64) 

Therefore, the CDF of this distribution can be used to get the 

robability of the time in spent in the system being less than a 

iven target. The general CDF of the hypoexponential distribution 

ypo( � r , � λ) , is given by the following expression ( Favaro & Walker,

010 ): 

 (H < t) = 1 −
( | � r | ∏ 

j=1 

λ
r j 
j 

) | � r | ∑ 

k =1 

r k ∑ 

l=1 

�k,l (−λk ) t 
r k −l e −λk t 

(r k − l)!(l − 1)! 

here �k,l (t) = − ∂ l−1 

∂t l−1 

( | � r | ∏ 

j =0 , j 	 = k 
(λ j + t) −r j 

) 

nd λ0 = 0 , r 0 = 1 (65) 

The computation of the derivative makes equation (65) com- 

utationally expensive. In Legros and Jouini (2015) an alternative 

inear version of that CDF is explored via matrix analysis, and is 

iven by the following formula: 

 (x ) = 1 −
n ∑ 

k =1 

k −1 ∑ 

l=0 

(−1) k −1 

(
n 

k 

)(
k − 1 

l 

)
n ∑ 

j=1 

j−1 ∑ 

s =1 

e −xλs 

s −1 ∏ 

l=1 

(
λl 

λl − λs 

)k s 

×
∑ 

s<a 1 < ···<a l−1 < j 

(
λs 

λs − λa 1 

)k s a 1 −1 ∏ 

m = s +1 

(
λm 

λm − λa 1 

)k m 

×
a 2 −1 ∏ 

n = a 1 

(
λn 

λn − λa 2 

)k n 

· · ·
j−1 ∏ 

r= a l −1 

(
λr 

λr − λa j 

)k r k s −1 ∑ 

q =0 

((λs − λa 1 
) x ) q 

q ! 
, 

for x ≥ 0 (66) 

Specific CDF of hypoexponential distribution: Eqs. (65) and 

66) refers to the general CDF of the hypoexponential distribu- 

ion where the size of the vector parameters can be of any size 

 Favaro & Walker, 2010 ). In the Markov chain models described 

n Figs. 15 and 16 the parameter vectors of the hypoexponential 

istribution are of size two, and in fact, for any possible version 

f the investigated Markov chain model the vectors can only be 

f size two. This is true since for any dimensions of this Markov 

hain model there will always be at most two distinct exponential 

arameters; the parameter for finishing a service ( μ) and the 

arameter for moving forward in the queue ( Cμ). For the case of 

 = 1 the hypoexponential distribution will not be used as this is 

quivalent to an erlang distribution. Therefore, by fixing the sizes 

f � r and 

�
 λ to 2, the following specific expression for the CDF of 

he hypoexponential distribution arises, where the derivative is 

emoved: 

 (H < t) = 1 −
( | � r | ∏ 

j=1 

λ
r j 
j 

) | � r | ∑ 

k =1 

r k ∑ 

l=1 

�k,l (−λk ) t 
r k −l e −λk t 

(r k − l)!(l − 1)! 
1256 
here �k,l (t) = 

{ 

(−1) l (l−1)! 
λ2 

[ 
1 
t l 

− 1 
(t+ λ2 ) l 

] 
, k = 1 

− 1 
t (t + λ1 ) 

r 1 
, k = 2 

nd λ0 = 0 , r 0 = 1 (67) 

Note here that the only difference between Eqs. (65) and (67) is 

he � function. The next part proves that the expression for � can 

e simplified for the cases of k = 1 , 2 . Eq. (68) shows the expres-

ion to be proved. 

(k,l) (t) = − ∂ l−1 

∂t l−1 

( | � r | ∏ 

j =0 , j 	 = k 
(λ j + t) −r j 

) 

= 

{ 

(−1) l (l−1)! 
λ2 

[ 
1 
t l 

− 1 
(t+ λ2 ) l 

] 
, k = 1 

− 1 
t (t + λ1 ) 

r 1 
, k = 2 

(68) 

Proof of Eq. (68) : This section aims to show that there exists 

 simplified version of Eq. (65) that is specific to the proposed 

arkov model. Function � is defined using the parameter t and 

he variables k and l. Given the Markov model, the range of values 

hat k and l can take can be bounded. First, from the range of the 

ouble summation in Eq. (65) , it can be seen that k = 1 , 2 , . . . , | � r | .
ow, | � r | represents the size of the parameter vectors that, for the 

arkov model, will always be 2. That is because, for all the ex- 

onentially distributed random variables that are added together 

o form the new distribution, there only two distinct parameters, 

hus forming two erlang distributions. Therefore: 

 = 1 , 2 

By observing Eq. (65) once more, the range of values that l

akes are l = 1 , 2 , . . . , r k , where r 1 is subject to the individual’s po-

ition in the queue and r 2 = 1 . In essence, the hypoexponential dis- 

ribution will be used with these bounds: 

 = 1 ⇒ l = 1 , 2 , . . . , r 1 

 = 2 ⇒ l = 1 (69) 

Thus the left hand side of Eq. (68) needs only to be defined 

or these bounds. The specific hypoexponential distribution inves- 

igated here is of the form Hypo((r 1 , 1)(λ1 , λ2 )) . Note the initial

onditions λ0 = 0 , r 0 = 1 defined in Eq. (65) also hold here. Thus

he proof is split into two parts, for k = 1 and k = 2 . 

• k = 2 , l = 1 

LHS = − ∂ 1 −1 

∂t 1 −1 

( 

2 ∏ 

j =0 , j 	 =2 

(λ j + t) −r j 

) 

= −
(
(λ0 + t) −r 0 × (λ1 + t) −r 1 

)
= −

(
t −1 × (λ1 + t) −r 1 

)
= − 1 

t(t + λ1 ) r 1 

�

• k = 1 , l = 1 , . . . , r 1 

LHS = − ∂ l−1 

∂t l−1 

( 

2 ∏ 

j =0 , j 	 =1 

(λ j + t) −r j 

) 

= − ∂ l−1 

∂t l−1 

(
(λo + t) −r 0 × (λ2 + t) −r 2 

)
= − ∂ l−1 

∂t l−1 

(
1 

t(t + λ2 ) 

)
In essence, it is only needed to show that: 

− ∂ l−1 

∂t l−1 

(
1 

t(t + λ2 ) 

)
= 

(−1) l (l − 1)! 

λ2 

[
1 

t l 
− 1 

(t + λ2 ) l 

]
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Proof by Induction: 

1. Base case ( l = 1 ): 

LHS = − ∂ 1 −1 

∂t 1 −1 

(
1 

t(t + λ2 ) 

)
= − 1 

t(t + λ2 ) 

RHS = 

(−1) 1 (1 − 1)! 

λ2 

[ 
1 

t 1 
− 1 

(t + λ2 ) 1 

] 
= − t + λ2 − t 

λ2 t(t + λ2 ) 

= − 1 

t(t + λ2 ) 

LHS = RHS 

2. Assume true for l = x : 

− ∂ x −1 

∂t x −1 

(
1 

t(t + λ2 ) 

)
= 

(−1) x (x − 1)! 

λ2 

[ 
1 

t x 
− 1 

(t + λ2 ) x 

] 
3. Prove true for l = x + 1 . Need to show that: 

∂ x 

∂t x 

( −1 

t(t + λ2 ) 

)
= 

(−1) x +1 (x )! 

λ2 

[ 
1 

t x +1 
− 1 

(t + λ2 ) x +1 

] 

LHS = 

∂ 

∂t 

[
∂ x −1 

∂t x −1 

( −1 

t(t + λ2 ) 

)]

= 

∂ 

∂t 

[
(−1) x (x − 1)! 

λ2 

(
1 

t x 
− 1 

(t + λ2 ) x 

)]

= 

(−1) x (x − 1)! 

λ2 

(
(−x ) 

t x +1 
− (−x ) 

(t + λ2 ) x 

)
= 

(−1) x (x − 1)!(−x ) 

λ2 

(
1 

t x +1 
− 1 

(t + λ2 ) x 

)
= 

(−1) x +1 (x )! 

λ2 

(
1 

t x +1 
− 1 

(t + λ2 ) x 

)
= RHS 

�

Proportion within target for both types of individuals: Given the 

wo CDFs of the Erlang and Hypoexponential distributions a new 

unction has to be defined to decide which one to use among the 

wo. Based on the state of the model, there can be three scenarios 

hen an individual arrives. 

1. There is a free server and the individual does not have to 

wait 

X (u, v ) ∼ Erlang(1 , μ) 

2. The individual arrives at a queue at the n th position and the 

model has C > 1 servers 

X (u, v ) ∼ Hypo((n, 1) , (Cμ, μ)) 

3. The individual arrives at a queue at the n th position and the 

model has C = 1 servers 

X (u, v ) ∼ Erlang(n + 1 , μ) 

Note here that for the first case Erlang(1 , μ) is equivalent to 

xp(μ) . Consider X (1) 
(u, v ) to be the distribution of type 1 individuals 
1257 
nd X (2) 
(u, v ) the distribution of type 2 individuals, when arriving at 

tate (u, v ) of the model. 

 

(1) 
(u, v ) ∼

{ 

Erlang (v , μ) , if C = 1 and v > 1 

Hypo ( [ v − C, 1 ] , [ Cμ, μ] ) , if C > 1 and v > C 
Erlang (1 , μ) , if v ≤ C 

(70) 

 

(2) 
(u, v ) ∼

⎧ ⎪ ⎨ 

⎪ ⎩ 

Erlang ( min (v , T ) , μ) , if C = 1 and v , T > 1 

Hypo ( [ min (v , T ) − C, 1 ] , [ Cμ, μ] ) , if C > 1 and v , T > C 

Erlang (1 , μ) , if v ≤ C or T ≤ C 

(71) 

Thus, the CDF of the random variables X (1) 
(u, v ) and X (2) 

(u, v ) can be 

alculated using Eqs. (61) and (67) : 

(X (1) 
(u, v ) < t) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 − ∑ v −1 
i =0 

1 
i ! 

e −μt (μt) i , if C = 1 

and v > 1 

1 − (μC) v −C μ
∑ | � r | 

k =1 

∑ r k 
l=1 

�k,l (−λk ) t 
r k −l 

e 
−λk t 

(r k −l)!(l−1)! 
, if C > 1 

where � r = (v − C, 1) and � λ = (Cμ, μ) and v > C 

1 − e −μt , if v ≤ C 

(19 revisited) 

 (X 

(2) 
(u, v ) < t) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 − ∑ min (v ,T ) −1 
i =0 

1 
i ! 

e −μt (μt) i , if C = 1 

and v , T > 1 

1 − (μC) min (v ,T ) −C μ if C > 1 

×∑ | � r | 
k =1 

∑ r k 
l=1 

�k,l (−λk ) t 
r k −l e −λk t 

(r k −l)!(l−1)! 
, and v , T > C 

where � r = ( min (v , T ) − C, 1) 

�
 λ = ( Cμ, μ) 

1 − e −μt , if v ≤ C 

or T ≤ C 

(20 revisited) 

In addition, the set of accepting states for type 1 ( S (1) 
A 

) and type

 ( S (2) 
A 

) individuals defined in (7) and (8) are also needed here.

ote here that, S denotes the set of all states of the Markov chain 

odel. 

 

(1) 
A 

= { (u, v ) ∈ S | v < N} 
 

(2) 
A 

= 

{{ (u, v ) ∈ S | u < M} , if T ≤ N 

{ (u, v ) ∈ S | v < N} , otherwise 

The following formula uses the state probability vector π to get 

he weighted average of the probability below target of all states 

n the Markov model. 

 (X 

(1) < t) = 

∑ 

(u, v ) ∈ S (1) 
A 

P (X 

(1) 
A 1 (u, v ) < t) πu, v ∑ 

(u, v ) ∈ S (1) 
A 

πu, v 
(72) 

 (X 

(2) < t) = 

∑ 

(u, v ) ∈ S (2) 
A 

P (X 

(2) 
A 2 (u, v ) < t) πu, v ∑ 

(u, v ) ∈ S (2) 
A 

πu, v 
(73) 

Note that A 1 (u, v ) and A 2 (u, v ) are defined in Section 3.2 by

qs. (11) and (12) . 

Overall proportion within target: The overall proportion of indi- 

iduals for both types of individuals is given by the equivalent for- 

ula of Eq. (6) . The following formula uses the probability of lost 

ndividuals from both types to get the weighted sum of the two 

robabilities. 

 L ′ 
1 

= 

∑ 

(u, v )∈ S (1) 
A 

π(u, v ) , P L ′ 
2 

= 

∑ 

(u, v )∈ S (2) 
A 

π(u, v ) 
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Fig. 20. Comparison of proportion within target time for type 2 individuals be- 

tween values obtained from the Markov chain formulas and values obtained from 

simulation. 
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 (X < t) = 

λ1 P L ′ 
1 

λ2 P L ′ 
2 
+ λ1 P L ′ 

1 

P (X 

(1) < t) 

+ 

λ2 P L ′ 
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λ2 P L ′ 
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+ λ1 P L ′ 
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P (X 

(2) < t) (21 revisited) 

ppendix E. Type 1 and type 2 performance measure 

omparisons using simulation and Markov chains 
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