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Abstract
Electrical equipment maintenance is of vital importance to management companies. Efficient maintenance can
significantly reduce business costs and avoid safety accidents caused by catastrophic equipment failures. In the
current context, predictive maintenance (PdM) is becoming increasingly popular based on machine learning
approaches, while its research on electrical equipment such as low-voltage contactors is in its infancy. The failure
modes are mainly fusion welding and explosion, and a few are unable to switch on. In this study, a data-driven
approach is proposed to predict the remaining useful life (RUL) of the low-voltage contactor. Firstly, the three-phase
alternating voltage and current records the life of electrical equipment by tracking the number of times it has been
operated. Secondly, the failure-relevant features are extracted by using the time domain, frequency domain, and
wavelet methods. Then, a CNN-LSTM network is designed and used to train an electrical equipment RUL prediction
model based on the extracted features. An experimental study based on ten datasets collected from low-voltage AC
contactors reveals that the proposed method shows merits in comparison with the prevailing deep learning
algorithms in terms of MAE and RMSE.
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1 Introduction
Equipment maintenance is vital if it is directly related to
the lifespan of the equipment [1]. Nowadays, maintenance
has been widely applied in different industries such as
aircraft, smart manufacturing, assist robots, etc. A large
number of equipment-related data are collected, stored,
and combined with statistical methods and professional
knowledge to maintain the equipment to help the enter-
prise make decisions [2, 3]. If equipment can be repaired
in advance through appropriate methods, it can bring cer-
tain benefits [4, 5]. Therefore, improving the accuracy of
prediction can further reduce the damage and enhance the
tangible benefits to the companies [6].

*Correspondence: LiuY81@Cardiff.ac.uk
1Department of Mechanical Engineering, School of Engineering, Cardiff
University, Cardiff CF24 3AA, UK

Recently, data-driven methods have been widely re-
searched in PdM [7]. Among these researches, the atten-
tion to remaining useful life (RUL) prediction is continu-
ously increasing [8]. Traditionally, RUL prediction reveals
the degradation of equipment through the analysis of his-
torical data. It studies the degradation trend through sta-
tistical methods and establishes the degradation curve and
confidence interval. However, this method has some lim-
itations. Due to the large sample size, it takes a long time
to research the degradation trend manually. It may also
record some key degradation information incorrectly, re-
sulting in the low accuracy of the model. Machine learning
as a prevailing tool has been widely investigated in differ-
ent fields such as fault diagnosis [9], defect visual recogni-
tion [10], etc. At the same time, using machine learning to
predict RUL also has different degrees of applications in
industry, such as the application of bearings and turbine
engines [11, 12]. By collecting the vibration signal of the
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bearing, the model of health and sub-health is established
and early warning is given to help companies’ decision-
making and maintain in advance [13, 14]. However, elec-
trical equipment such as the low-voltage contactor is still
needed to study. Due to a large number of components
of electronic products and many influencing factors, the
amount of monitoring that needs to be collected is also
more than that of bearings, therefore, it is difficult to anal-
yse, and in principle, the electrical equipment, such as the
arc phase angle in the opening and closing process, has
great randomness, which makes it difficult to analyse the
degradation trend, and it is difficult to ensure the accu-
racy of the RUL model by using machine learning tech-
nique. Hence, it is worthwhile to explore deep learning
techniques, such as convolutional neural network (CNN),
and long short-term memory neural network (LSTM), to
automatically learn the life degradation trend of electrical
equipment and achieve better maintenance management.
In addition, as the electrical equipment is accompanied
by a large amount of data collection, the deep learning
model needs to introduce some hidden layers, such as the
TimeDistributed layer, to help reduce the data dimension
and improve the model performance. On the other hand,
due to the certain fluctuation of the waveform from arc
starting to arc extinguishing from the data collected from
several groups of different electrical equipment, the sliding
window is used to smooth the relevant data and improve
the accuracy of the model. The main contributions of the
paper are: 1) The interval of feature extraction has a sig-
nificant impact on the accuracy of the model. To improve
the accuracy of the model, the data feature extraction is
carried out for the arcing interval and closing interval;
2) Compared with the traditional mechanical equipment,
the sample data of electrical equipment is more different,
so a larger training set is needed to train the data to obtain
the generalized model; 3) Due to the large amount of data
collected by electrical equipment, machine learning is usu-
ally difficult to meet the requirements of fitting, so choos-
ing to introduce the CNN-LSTM model can have higher
accuracy in predicting the RUL of electrical equipment.
The rest of the paper is organized as follows: the machine
learning application, sliding window, and deep learning in
RUL are reviewed in Sect. 2, Sect. 3 introduces the CNN-
LSTM network, an experimental study is demonstrated in
Sect. 4 and its results are demonstrated in Sect. 5. Finally,
Sect. 6 discusses the results, and Sect. 7 concludes.

2 Literature review
There are many case studies for predicting the RUL of
electrical equipment, including statistical models and ma-
chine learning models. In the statistical model, the tradi-
tional mechanism features, time domain, and frequency
domain are widely used in predictive maintenance [15].
Meanwhile, with the rise of artificial intelligence, an in-
creasing number of researchers have explored machine

learning and deep learning to help companies maintain in
advance the study of the RUL of electrical equipment [16].

2.1 Statistical approaches for predictive maintenance
Statistics is used to extract the mechanical feature of elec-
trical equipment, including arcing time, arcing energy, arc-
ing power, arcing power, etc. Electrical equipment can be
identified mainly through the fluctuation of characteristic
waveforms or meaningful intervals, such as arcing inter-
vals and closing times. The feature interval of arcing in-
terval and closing time is extracted, so the continuous arc-
ing energy value on the equipment can be understood. In
recent research, the arcing capacity has a positive influ-
ence on the RUL, the value of arcing energy is calculated
through the continuous opening and closing when the re-
leased arcing energy is higher, and there is a trend of accel-
erated degradation of the RUL of the equipment at some
time [17].

Time-domain and frequency-domain are the main sta-
tistical feature extraction methods of digital manufactur-
ing technology, because they can analyse the results in a
variety of ways and from different angles, and can directly
reflect the relationship and influence of features, for exam-
ple, sine wave as a functional form in the frequency domain
has its special place. If sine waves are used, some problems
related to the electrical areas of interconnects may become
easier to understand and solve. On the other hand, wavelet
analysis is essential for statistical extraction. The main ad-
vantage of wavelet analysis is that the signal can be anal-
ysed locally in any time or space domain. Wavelet analysis
can discover the information of structural characteristics
hidden in the data that cannot be recognized by other sig-
nal analysis methods, and these characteristics are partic-
ularly important for the identification of mechanical faults
and material damage [18]. At present, there is no theoreti-
cal standard for selecting the wavelet basis function. There
are 15 commonly used wavelet functions, including Haar,
Daubechies, Morlet, Meryer, Symlet, Coiflet, Biorthogonal
wavelet, etc. [14]. Due to there are many wavelet functions
that can be selected and the purposes of wavelet trans-
form are different, there is no general standard at present.
According to practical application experience, the Mor-
let wavelet can be applied to a wide range of applications,
including signal representation and classification, image
recognition, and feature extraction; the Mexican wavelet
is used for system recognition; the Spline wavelet is used
for material flaw detection; and the Shannon orthogonal
basis for solving differential equations. Hence, choosing
wavelet analysis to extract the characteristics of current
and voltage of electrical equipment can effectively discover
the trend of life degradation. At present, the residual life
prediction based on the statistical method needs to study
the trend of equipment life degradation manually, which
takes time and may not achieve high accuracy.
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Figure 1 The demonstration of the sliding window

Another type of statistical approach is a sliding win-
dow, the collected data waveform fluctuates continuously
in some intervals, selecting the sliding window algorithm
can smooth the curve and improve the accuracy of the
model. The sliding window can smooth the data curve by
setting the window size and the mathematical function in
the window. As illustrated in Fig. 1, assuming that the win-
dow is set to 4, each calculation will slide from left to right
to form a new window, and the window setting function
calculation results can effectively reflect the characteris-
tics of the raw data.

2.2 Machine learning for predictive maintenance
Machine learning methods are currently one of the most
effective methods in the research of PdM applications [19].
Machine learning is a part of artificial intelligence and is
widely used in data analysis, data mining, and predictive
analysis. With the development of technology, deep learn-
ing has become an increasingly important part of data
mining and predictive analysis research [20].

A recurrent neural network (RNN) is popular for pro-
cessing time-series data. Malhi et al. [21] proposed a
method based on competitive learning to predict long-
term machine health status. An LSTM network is an RNN,
which is an improved RNN and also a deep learning model
that can solve the problem of long-term memory that RNN
cannot solve. For instance, by installing different sensors
to collect signals, the health index data fusion technol-
ogy based on the health index (HI) helps to understand
the degradation process of the unit and predict its RUL.
Although it is currently a hot research topic, the resume
of degenerate models may be limited by making restric-
tive assumptions, such as fusing multi-sensor linear or
kernel-based function model signals, or by preselecting
basis functions. This assumption is generally invalid in in-
dustrial production. In practice, it may not be possible to

accurately describe the degradation process of the com-
plex relationship between multiple sensor signals and basic
signals. By combining multiple sensor signals, a deep neu-
ral network (DNN) and LSTM models can better charac-
terize degradation [22]. RUL prediction is also widely used
in many intelligent systems. Establishing a deep LSTM-
GAN model results in better model performance. Further-
more, the LSTM network can reduce gradient disappear-
ance and mode collapse in the confrontation network, pre-
vent the mode collapse of the generative adversarial net-
work (GAN), and realize self-detection of abnormal data
[23, 24]. In addition, a new model, called LSTM and statis-
tical process analysis network (SPAN), is used to predict
the residual of key components of the aero-engine bear-
ing transmission system. To predict the multistage per-
formance degradation of aero-engine bearings, it com-
bines the advantages of LSTM. An algorithm based on
this model is proposed. Through time and statistics, the
characteristics of bearing vibration signals are extracted
and divided into multiple stages. Then, multi-level signals
are input into LSS for prediction. NASA and FEMTO-
ST Research Institute have verified the effectiveness of
this method. It has been demonstrated that the proposed
method is feasible and has a higher prediction accuracy
than recurrent neural network (RNN) and support vector
regression (SVR) [25]. Based on the historical maintenance
data and GIS data, Chen et al. [26] proposed a merged-
LSTM network for the RUL prediction of the automobile.
The RUL can be predicted from the service times of open-
ing and closing switches collected by electrical equipment.
Learning the hidden mode of these data through the LSTM
network can improve the performance of the model and
predict the RUL of the equipment [27].

On the other hand, a CNN is another classical deep
learning model, it is found that their unique network struc-
ture can effectively reduce the complexity of a feedback
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neural network, and then proposed a CNN. Now, CNN
has become one of the research hotspots in many scien-
tific fields, especially in the field of pattern classification.
Because the network avoids the complex pre-processing
of images and can directly input the original images, it has
been more widely used. In essence, CNN is a multi-layer
structure constructed by imitating the processing process
of cellular visual information. CNN has many similarities
with the ordinary neural network. They all imitate the
structure of human nerves and are composed of neurons
with learnable weights and bias constants. Each neuron
can receive the input signal and output the score of each
classification after calculation. However, the input of CNN
is generally image. Convolution network successfully re-
duces the dimension of image recognition problem with a
large amount of data through a series of methods, so that
it can be trained finally [12]. In actual industrial scenar-
ios, as one of the most significant functional components,
the running performance of rolling bearings in the rota-
tion process directly affects the equipment’s reliability and
safety. A robust structure based on a convolutional neural
network (CNN) is proposed for the condition monitoring
of rolling bearings because of the harsh and unpredictable
working conditions. The normalised CNN model is pro-
posed, which is derived from complete life cycle data and
contains different state information and the training model
is directly used for online monitoring of other rolling bear-
ings [28]. A new intelligent residual algorithm called the
deep learning-based useful life (RUL) prediction method
is proposed by experiments on a popular rolling bearing
data set prepared on the PRONOSTIA platform. The time-
frequency domain information is explored, and the con-
volution neural network is used to realize multi-scale fea-
ture extraction. To prove its effectiveness, it is compared
with traditional methods to prove its superiority. Gener-
ally speaking, RUL prediction has achieved high accuracy,
and the proposed method is feasible and has broad indus-
trial application prospects [29]. A deep separable convolu-
tional network (DSCN) mechanical prediction for RUL. In
the proposed digital signal processing network, the moni-
toring data collected by different sensors are directly used
as the input of the prediction network. Then, based on
separable convolution, compression and excitation opera-
tions, separable convolution building blocks with residual
connections are constructed. Through stacking multiple
separable convolution blocks, the high-level representa-
tion of the input data is automatically learned, and the RUL
is estimated [30]. As compared with the prevailing deep
time series models, when using CNN to predict RUL, the
input data cannot be converted well into time series data
due to the influence of the industrial environment. Com-
pared with some deep learning time series models, the
training speed and model accuracy cannot be well guar-
anteed [31].

3 Method: the CNN-LSTM network
A deep learning-based approach called CNN-LSTM neu-
ral network is proposed to establish the RUL prediction
model based on collected data from electrical equipment.
The approach consists of three stages. Firstly, by installing
sensors and industrial computers, and then collecting data
sets and pre-processing the data, it is necessary to extract
the features of the data, including time domain, frequency
domain, and wavelet packet. According to the research on
the mechanical rationality of the equipment, the normal
operation of the equipment has the start, end time of arc-
ing, and opening and closing time. Therefore, the charac-
teristics of the arcing section and the closing time are ex-
tracted. Because there are certain sudden changes in the
arcing end voltage of different equipment, the time win-
dow function is set to extract various sudden changes, be-
cause there is a certain fluctuation in the local part of the
data waveform, the sliding window algorithm is selected to
smooth the curve. The detail of the sliding window is in-
troduced in Sect. 3.1. Secondly, it is found from the data
collected in the working environment that the difference
in data is greatly affected by the industrial environment.
Classify equipment in the same batch to improve the RUL
model’s prediction accuracy, and to classify and predict
equipment in different environments. Finally, after classi-
fying the equipment data of different batches according to
different environments, select different data sets of each
batch as the test set, and use the CNN-LSTM model to
verify the robustness of the model and the differences be-
tween equipment, the flow chart of the proposed method
is shown in Fig. 2.

3.1 Sliding window for predictive maintenance
To reduce the mutation rate of time series data, this
method introduces the sliding window algorithm. Its pur-
pose is to use the window function to smooth the data
curve and filter the local abnormal points, to improve
the accuracy of the model. In the sliding window strat-
egy, the data sets with the different total life of electri-
cal equipment are extracted by feature extraction, and
the two-dimensional matrix containing R is used to se-
lect the appropriate window length for the features. Slide
back through m instances. In addition, according to the
research, the RUL of the equipment may have a certain
relationship with cumulative wear [32]. Using the sliding
window algorithm to set the window function is more ad-
vantageous and conveys more information than the single
time point.

3.2 LSTM network
The most significant difference between the LSTM net-
work and the RNN is that the hidden layer of the RNN
has only one state h, while the hidden layer of the LSTM
network has an extra long-term memory cell (denoted as
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Figure 2 The flow chart of the proposed method

Figure 3 The schematic diagram of an LSTM cell

c) to store the long-term state [33]. Moreover, in order to
control the long-term state c, the LSTM network designs
three gates: the input gate, the forget gate, and the output
gate. The schematic diagram of an LSTM cell is shown in
Fig. 3. The three gates that control the state of each long-
term memory cell are a fully connected layer. The input is
a vector, and the output is a real vector between 0 and 1. It
can be expressed as:

g(x) = a(Wx + b), (1)

where a is the Sigmoid activation function.
ct is the state of the long-term memory cell, which can

control the transfer of information to the next moment; ht

represents working memory or short-term memory [33].
The three yellow circles in Fig. 2 represent the forget gate,
input gate, and output gate, respectively. Regarding the
feed-forward process of the LSTM network, firstly, the
long-term memory cell ct–1 discards some information
through the forgetting gate f t . f t is controlled by the exter-
nal input xt at the current moment, the output ht–1 at the
last moment, and the long-term memory state ct–1 at the
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last moment. Then the information ĉt at the current mo-
ment is calculated from xt and ht–1. Secondly, through the
input gate it control, the part of the new information ĉt at
the current moment is entered into the long-term memory
cell to generate a new long-term memory ct . Among them,
it is controlled by xt , ht–1 and ct–1. Finally, activate the
long-term memory cell ct , which is controlled by the out-
put gate ot , and select some relevant information from the
accumulated memory ct to generate the memory ht to be
paid attention to at the current moment. Part of the mem-
ory is output to the next LSTM cell. The output gate ot is
controlled by xt , ht–1 and the long-term memory cell ct .

In the collected data, not only can the next RUL be pre-
dicted based on the current data, but can help improve the
ability of decision-making [34].

3.3 CNN-LSTM network
Long-short-term memory network is the type of deep
learning model which is well-known for processing the
time series data, Convolutional neural network also is a
popular deep learning model which can handle the 2D
matrix data set. This experiment proposed a merge neu-
ral network called the CNN-LSTM network model to im-
prove the accuracy of the model. The CNN-LSTM archi-
tecture involves using CNN layers for feature extraction on
input data combined with LSTM to support sequence pre-
diction. It needs to define a 2D convolutional network as
comprised of Conv2D and MaxPooling2D layers ordered
into a stack of the required depth. The Conv2D will in-
terpret the matrix and the polling layers will consolidate
or abstract the interpretation. However, the CNN model
above is only capable of handling a single matrix and it may
not handle the time series data set, a proposed method
is that it need define the CNN model first, then add it
to the LSTM model by wrapping the entire sequence of
CNN layers in a TimeDistributed layer. For the collected
data on electrical equipment. It needs to read an R × R
pixel matrix, with one channel. Conv2D will read the ma-
trix in the M × M and output a new M × M matrix inter-
pretation. MaxPoolig2D merges the interpretations into
N × N blocks, reducing the output to r × r bins. The flat-
ten layer will convert an r × r map into a K element vec-
tor for other layers to process. Secondly, it needs to add a
TimeDistributed layer, which can wrap each layer in the
CNN model in a TimeDistributed layer when adding it
to the main model. Thirdly, the LSTM layer needs to be
added, there are three gates, which are the forgotten gate,
the input gate, and the output gate, used to control mem-
ory in each cell. When the input ai is input into the LSTM,
the LSTM will process the input ai , which is divided into
important information and unimportant information. The
unimportant information is forgotten, multiplied by the
activation function bω , and set different hidden layers to
the output bi . This process depends on three factors, in-
cluding a forgotten gate, input gate and output gate. In a

CNN-LSTM network, the parameters may depend on dif-
ferent environments because different parameters such as
material, and the environment may change, to some ex-
tent, and the results may also be different.

4 Experimental setup
The historical data are collected from different batches
of equipment through experimental simulation of differ-
ent real industrial environments. An accurate prediction
model of RUL can offer insights into companies’ decision-
making.

Firstly, it is worthwhile to introduce the background of
collected data, which is collected in a sensor base on elec-
trical equipment. The diagram is shown in Fig. 4. The
equipment is an AC contactor, which is mainly composed
of four parts, including main contact, arc extinguishing de-
vice, anti-remanence air gap and auxiliary contact. It is an
electrical appliance used to connect and disconnect AC
and DC main circuits and high-capacity control circuits
from a long distance and frequently. According to the ex-
periment of AC contact, the collected failure modes are
mainly fusion welding and explosion, and a few are unable
to switch on. Its main control object is the motor, and it can
control other power loads, such as electric heating, lighting
lamp, electric welding machine, capacitor bank, etc. The
equipment continuously records the opening and closing
operation and records the data of the three-phase current
and three-phase voltage of each switch opening and clos-
ing of each batch of different equipment.

Secondly, data pre-processing is the main step. The col-
lected data includes the extraction of data mechanical fea-
tures, time-domain features, frequency domain features,
and wavelet packet features. The data pre-processing is in-
troduced in Sect. 4.2. Finally, the metric used to reveal per-
formance and different results need to be compared, there
are two main verification methods in this experiment. The
first method is to randomly take one piece of equipment
from the same batch of data as the test set, and the rest
as the training set. The other way is that the data from
the same batch is the training set, and the data from other
batches are the test set.

4.1 Data
This data includes the data of three-phase current and
voltage collected by the sensor in the experiment, which
is opened and closed by simulating the real environment
used each time, and the data of current and voltage in the
process are recorded. Each opening and closing is an oper-
ation, which includes the arc starting time, arc extinguish-
ing time, and closing time of the equipment. There are
about 6000-8000 points of continuous waveform data in
each operation data set, and the operation times are con-
tinuously recorded until the equipment fails. The value of
current and voltage is within plus or minus 350. Through
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Figure 4 The diagram of the AC contactor

data research, it is concluded that the start of arcing takes
a certain time. Therefore, if it is found that ti consecutive
points are less than the threshold before the end of arcing,
it is judged as the start time of arcing. When tj consecutive
points are less than the threshold after the end of arcing, it
is considered the end time of arcing. The closing judgment
principle is the same, and the interval value is judged by
setting the threshold value. Because the data is really from
the data collected in the industrial environment, some data
quality may have some problems and some noise may af-
fect the feature extraction. Therefore, the noise data is re-
placed before and after according to the machine rational
analysis. On the other hand, because the RUL needs to be
predicted, the cumulative number of operations per time is
increased, which means that when the last failure occurs,
the RUL is 1, and when the equipment is operated for the
first time, it is the overall service life of the equipment, to
establish the output of the RUL of the equipment as train-
ing. The input features are shown in Table 1.

4.2 Model setup
In the modelling stage, there are four machine learning al-
gorithms including the LSTM network, DCNN, SVM, and
CNN-LSTM network. All the above models will train the
RUL of the equipment based on the data extracted from
the raw data by using the time domain, frequency domain,
and wavelet packet. For the LSTM network, several fac-
tors need to be considered, such as the type of layer, the
number of layers, and the number of nodes. According to
the research, more layers of in-depth learning have a pos-
itive impact on the training results, but this may have a

Table 1 The original feature relevant to RUL

Numeric feature Note

IA Phase A current of electrical equipment
IB Phase B current of electrical equipment
IC Phase C current of electrical equipment
UAB The difference between point A and point B
UBC The difference between point B and point C
UAC The difference between point A and point C
UA Phase A voltage of electrical equipment
UB Phase B voltage of electrical equipment
UC Phase C voltage of electrical equipment

large burden on the computer, so it is necessary to bal-
ance the computational power of the calculation and the
accuracy requirements of the model [35]. Therefore, the
LSTM is mainly set as three layers: input layer, hidden
layer, and output layer. In order to have a certain adjust-
ment space for the model, the fully collected layers are
set as the hidden layer, and the Dropout is set to prevent
over-fitting. The optimizer selects RMSprop. To make the
LSTM positive training data, the learning rate is set as
0.001, and the batch size is set as 100, which means that
there are 100 batch data for model training each time. For
the CNN network, it needs to reshape the data format,
which is N × M×1 as the first layer, next, in hidden lay-
ers, the Conv2D, the MaxPooling, and activation function
needs to be set. the MaxPooling is set 2 × 1, which helps
to reduce the time of the model and prevent over-fitting,
the optimizer also selects RMSprop, the output layer of the
dense set as 1 to predict the results. The model call the
CNN-LSTM network, which is combined the CNN model
and LSTM model, in order to verify that the accuracy of
the merged model can be improved compared with that
of a single deep learning model, the structure of the CNN
and LSTM network is the same as that of the previous
structure, but the output layer of CNN is deleted and layer
TimeDistributed is added between the structure of CNN
and LSTM. It can be wrapping the entire sequence of CNN
layers, and as an input layer for the LSTM model, the struc-
ture of the CNN-LSTM model is shown in Fig. 5. In this
study, three scenarios were introduced. In scenario 1, the
collected data are extracted from the arcing interval and
closing interval and then modelled based on the popular
machine learning and deep learning models. In scenario 2,
for the interval of feature extraction, one is to extract the
arc interval and closing interval, and the other is to extract
all the data sets, but the parameters and algorithm of the
model remain unchanged. In scenario 3, select the same
model algorithm, but change the parameters of machine
learning, the number of layers, and the activation function
of deep learning. In scenario 4, select the same percent-
age as the training set and the rest as the test set, with the
percentage of 20%, 40% and 80%.
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Figure 5 the structure of CNN-LSTM

4.3 Performance evaluation
The parameter m has a great impact on the experimental
results. Based on the RUL prediction, mean absolute error
(MAE) and root mean squared error (RMSE) are selected
to evaluate the performance of algorithms. The RMSE can
be expressed mathematically as:

RMSE(X, h) =

√
√
√
√

1
m

m
∑

i=1

(

h
(

xi
)

– yi
)2. (2)

The h(xi) is the observed value and the yi is the predicted
value, the RMSE is 0 if the prediction value equals the ac-
tual value, and the MAE can be expressed mathematically
as:

MAE(X, h) =
1
m

m
∑

i=1

∣
∣h

(

xi) – yi∣∣. (3)

5 Experimental results
5.1 Scenario1: prevailing machine learning algorithms VS

deep learning algorithms
In this scenario, the traditional machine learning model
will be compared with the deep learning model. The se-
lected models are the data set after feature extraction
based on arc burning interval and closing interval. The fea-
ture extraction includes time domain, frequency domain,
and wavelet packet. An SVM model is mainly optimized
by a hyper-parametric algorithm, and the results are ob-
tained. CNN selects regression functions to predict equip-
ment life through the input layer, hidden layer, and out-
put layer. all the tests were conducted on the Intel(R) Core
(TM)i5-10210U CPU @1.60 Hz 2.11 GHz. The test set and
training set are divided by selecting the equipment data of
the same batch of experiments, extracting 30% batch as
the test set and the rest as the training set. The results
show that the RMSE of the SVM model and CNN model

are 88.7 and 64,1 respectively, and the values of MAE are
65.4 and 56.4 respectively, the values of RMSE and MAE
of LSTM are 58.1 and 53.0 respectively. It can be found
that LSTM, as a classical time series model, improves the
accuracy of RMSE by 33.5% and MAE by 19.0% compared
with the traditional machine learning model SVM. Com-
pared with CNN RMSE decreased by 11% and MAE de-
creased by 6%. However, this experiment introduces a new
model CNN-LSTM to explore the promotion effect of the
merged model on the deep learning model. The results
show that the RMSE of the CNN-LSTM model is 54.7 and
the MAE value is 51.8, the RMSE value decreased by 14.7%
in the CNN model, MAE decreased by 8.1%. Compared
with LSTM, RMSE and MAE decreased by 6.2% and 2.3%
respectively. Therefore, the merge neural network CNN-
LSTM model performs better in several models. The mod-
elling results are shown in Fig. 6.

5.2 Scenario2: different intervals are used for feature
extraction

In this scenario, it compares the prediction results of arc
firing interval and closing interval extracted according to
the mechanical principle and the results of feature extrac-
tion of all data sets. The algorithm model still selects SVM,
LSTM, CNN, and CNN-LSTM. The results show that the
values of RMSE and MAE of SVM are 107.7 and 81.2 re-
spectively, the values of RMSE and MAE of LSTM are 71.5
and 59.3 respectively, and the error values of CNN are 81.7
and 69.4 respectively, the value of RMSE of CNN-LSTM is
65.5, and the value of MAE is 58.1. From the overall re-
sults, the model results of arcing interval and closing in-
terval based on domain knowledge extraction are higher
than those of whole interval extraction. The modelling re-
sults are shown in Fig. 7.



Fu and Liu Autonomous Intelligent Systems            (2022) 2:16 Page 9 of 12

Figure 6 The modelling results of different algorithms based on feature extraction

Figure 7 The modelling results of different feature extraction intervals

5.3 Scenario 3: different layers of deep learning models
and machine learning parameters

In this scenario. The machine learning model uses grid
search to optimize the parameters c and gamma of SVM
and obtains the best parameters c and gamma. For the
deep learning model, increase the number of hidden layers
and increase the activation function, keep the optimizer
unchanged, and add a full connection layer in the output
layer. The results show that SVM has a certain improve-
ment, the RMSE and MAE are 83.2 and 63.1 respectively,
but the improvement of the results of the deep learning
model is not obvious. The modelling results are shown in
Fig. 8.

5.4 Scenario 4: different data sets are selected as the
training set

In this scenario. Since the usable life lengths of different
equipment experiments are different, the same percentage
is selected for the experiment, mainly 20%, 40%, and 80%
of the data sets are selected as the training sets for training.
Due to the need to study the impact of the data sets on the
model accuracy, the feature extraction interval of the data
and the model parameters are consistent with scenario 1.
The results show that with the increase of the data set, the
model accuracy will also increase. On the contrary, when
40% and 20% of the data set are selected as the training set,
the model results will decline to vary degrees. The mod-
elling results are shown in Table 2.
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Figure 8 The modelling results of different parameters based on feature extraction

Table 2 the impact of different training sets on the performance
of different models

Different percentages of training sets Models RMSE MAE

20% training set based on feature extraction SVM 153.8 130.1
CNN 147.1 127.1
LSTM 145.4 125.1
CNN-LSTM 144.3 124.7
SVM 143.8 127.1

40% training set based on feature extraction CNN 127.7 121.1
LSTM 125.4 119.1
CNN-LSTM 120.4 117.4
SVM 89.1 67.4

80% training set based on feature extraction CNN 63.4 57.1
LSTM 57.4 53.1
CNN-LSTM 54.1 50.9

6 Discussion
PdM has been widely studied to improve the ability of com-
panies to optimize problems. Residual life prediction is one
of the hot research topics. For example, electrical compa-
nies predict the residual life of electrical equipment, collect
current and voltage data by installing sensors and study the
loss of equipment through the use process, by introducing
the current novel machine learning model and deep learn-
ing to help improve the accuracy of prediction. Therefore,
this research mainly proves that the merge deep learning
model can further improve the accuracy of the RUL and
bring tangible benefits to companies.

6.1 Results discussion
Through the analysis of the three parts, the following two
conclusions can be drawn. The accuracy of the feature ex-
traction model through the study of the mechanism fea-
tures of Feature Engineering, arcing interval, and closing
interval, has been improved to varying degrees than that

of the feature extraction of the full data set, which shows
that the prediction of RUL by professional knowledge can
help to improve the accuracy to a certain extent. On the
other hand, the accuracy of the model can also be im-
proved by increasing the number of layers and parame-
ters of the model. Machine learning is mainly optimized
by increasing the number of layers and changing the pa-
rameters and the accuracy of the model is affected by the
amount of data. In this experiment, a new method CNN-
LSTM network is introduced. The results show that RMSE
can improve the accuracy by 5.7% compared with the high-
est model accuracy, and MAE can improve the accuracy
by 2.1%. Therefore, it can bring new insights to the predic-
tion of RUL. Hence, according to these experiment results,
there are three key findings in our study. Firstly, as a re-
search hot-spot in the current industrial field, deep learn-
ing is more accurate than most machine learning mod-
els in terms of model accuracy, but the structural com-
plexity of the deep learning model is higher than machine
learning, at the same time, deep learning needs to rely on
higher computer configuration, which may have higher in-
vestment costs for some projects, By introducing a merged
model CNN-LSTM, this experiment can better reflect the
model of deep learning, which will be the focus of RUL pre-
diction in the future industry. Secondly, the accuracy of the
model obtained by extracting the feature of arcing interval
and closing interval is higher than that of all intervals. A
professional’s knowledge is therefore crucial to developing
a model using machine learning and deep learning. Study-
ing the working characteristics of the equipment can help
to improve the accuracy of the model. Finally, because the
experimental data comes from the data collected by sen-
sors in the real industrial environment, there is a large gap
in the total life of equipment in different batches.
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6.2 Future works
In this experiment, the accuracy of CNN-LSTM’s model
after feature extraction is mainly verified. For the previous
data set, due to the large difference in the service life of dif-
ferent batches of equipment and the large gap in the usable
range of service life, the current sample has certain limita-
tions, and it may be necessary to increase the sample size to
continue the research. For the accuracy of the model, be-
cause the model is completed under certain configuration
restrictions, The computer configuration may have a cer-
tain impact on the structure of the model. If the number of
layers of the model is increased or the training time is in-
creased again, it may be improved to some extent. There-
fore, in the later stage, it may be necessary to further collect
the data set and improve the structure of the deep learning
model if the configuration allows, to improve the accuracy
of the model.

7 Conclusions
PdM is essential to various industries such as aircraft, au-
tomobiles, and railways. RUL prediction can provide tan-
gible benefits to the industry in terms of maintenance plan-
ning. In this paper, the main focus is on the modelling
and prediction of electrical equipment’s RUL. This study
covers the statistical techniques (time domain, frequency
domain, wavelet packet) in PdM, the prevailing machine
learning application in PdM, and the deep learning ap-
plication in PdM. The main contribution of this study is
to propose an electrical equipment remaining useful life
prediction approach based on the CNN-LSTM model. In
the data pre-processing stage, noise elimination, outlier
removal, and average value replacement of the original
data are implemented. Then the key features are extracted,
before it is smoothed by a sliding window to increase
the amount of information in the data. Subsequently, the
benchmarking machine learning models are selected to es-
tablish the model by using different parameters, and the
evaluation metrics of RMSE and MAE are selected. Ac-
cording to the model results, it can be seen that the indus-
trial environment has a great impact on the life prediction
of products, resulting in some negative performance re-
sults when the model predicts different batches. Therefore,
the dimension of monitoring quantity plays a vital role in
equipment life prediction based on data. In light of the dif-
ferent material characteristics and levels of equipment use,
there are large differences in equipment prediction, which
will be investigated further.
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