
1. Introduction
Following an earthquake, various postseismic mechanisms act to relax and redistribute stress concentrations in 
the crust and upper mantle (Freed, 2005). In addition to seismic aftershocks, postseismic mechanisms include 
aseismic afterslip (Bürgmann et al., 1997; Marone et al., 1991; Shen et al., 1994), pore fluid flow or poroelastic 
rebound (Peltzer et al., 1996, 1998; Piombo et al., 2005) and deeper viscoelastic relaxation or viscous flow (Deng 
et al., 1998; Freed & Lin, 2001; F. F. Pollitz et al., 2001). These processes may generate geodetically observable 
surface deformation (e.g., with GNSS, InSAR), which can be modeled to provide insight into fault zones, crustal 
structure, and the earthquake cycle (e.g., Ingleby & Wright, 2017; Massonnet et al., 1994).

Aseismic afterslip may provide particularly valuable insight into fault zone rheology and earthquake cycle 
processes (Avouac, 2015; Bürgmann, 2018). Afterslip is transient, fault scale, aseismic shear that occurs on and 
close to the fault planes of the parent earthquake, as postseismic readjustment (Avouac, 2015; Harris, 2017), 
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range: 9%–32%). Mrel weakly correlates with Mo (CC: −0.21, attributed to a publication bias), rupture aspect 
ratio (CC: −0.31), and fault slip rate (CC: 0.26, treated as a proxy for fault maturity), indicating that these 
factors affect afterslip. Mrel does not correlate with mainshock dip, rake, or depth. Given the power-law decay 
of afterslip, we expected studies that started earlier and spanned longer timescales to capture more afterslip, but 
Mrel does not correlate with observation start time or duration. Because Mrel estimates for a single earthquake 
can vary by an order of magnitude, we propose that modeling uncertainty currently presents a challenge 
for systematic afterslip analysis. Standardizing modeling practices may improve model comparability, and 
eventually allow for predictive afterslip models that account for mainshock and fault zone factors to be 
incorporated into aftershock hazard models.

Plain Language Summary Afterslip is the gentle slipping, or sliding, of a fault over several months 
or years following an earthquake. Afterslip is not an earthquake but does release energy that may trigger 
other earthquakes, called aftershocks. Therefore, we wish to understand why some earthquakes produce much 
more afterslip than others. We compile and analyze 148 afterslip studies (following 53 earthquakes) from the 
literature and show that the amount of afterslip is mainly determined by the magnitude of the earthquake. 
However, there is considerable variation beyond this dependence which might be linked to characteristics of 
the earthquake and fault setting. We find that more afterslip tends to occur when the earthquake rupture is less 
elongated in shape, or when the causative fault has a greater long-term slip rate. However, different studies 
following the same earthquake sometimes yielded different moment estimates that we cannot explain. We 
propose that the unknowns and methodological differences in afterslip modeling currently make comparing 
events difficult; future methods should be more standardized so that afterslip can be meaningfully considered in 
hazard models following an earthquake.
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distinct from generally deeper and more distributed viscoelastic relaxation (K. Wang et  al.,  2012). Aseismic 
afterslip is also distinct from seismic aftershocks and is specifically a response to coseismic stress concentrations, 
thus is also a distinct mechanism from triggered slow slip, which is driven by stresses that have built up over 
longer timescales (Bürgmann, 2018). Afterslip is globally widespread and relatively easy to detect as the associ-
ated surface deformation is initially greater and more near-field than that caused by viscoelastic relaxation (Diao 
et al., 2014; Reilinger et al., 2000). There is also mounting evidence that afterslip may drive aftershock sequences 
(Bürgmann et al., 2002; Hsu et al., 2006; Huang et al., 2017; Peng & Zhao, 2009; Perfettini & Avouac, 2004), 
therefore it is highly desirable to better understand the phenomenon.

First order behaviors of afterslip, such as the scaling of afterslip moment with coseismic moment, are still poorly 
understood. Some existing studies have considered afterslip following multiple earthquakes but have been limited 
in scope. For example, Lange et al. (2014) compared afterslip models for three large subduction thrust events, 
whilst Hawthorne et al. (2016) and Alwahedi and Hawthorne (2019) analyzed afterslip following Mw < 5 Cali-
fornian earthquakes. Wimpenny et al. (2017) and Alwahedi and Hawthorne (2019) compiled afterslip moment 
estimates for approximately 30 global earthquakes and showed that relative afterslip moment (Mrel), defined as:

𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟 =

𝑀𝑀
𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜

𝑀𝑀𝑜𝑜

, (1)

where 𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜  is the afterslip moment and Mo is the coseismic moment, can vary by up to two orders of magnitude 
between different earthquakes. It is not clear what drives this, for example, can we explain why the similar-mag-
nitude El Mayor Cucapah and Landers earthquakes generated Mrel of 74% and 2%, respectively (Fialko, 2004; 
Rollins et al., 2015)? A global synthesis of studies is needed to better establish the average and outlying behaviors 
of afterslip and provide observational constraints for physical models.

We compile 148 aseismic afterslip studies that follow 53 Mw6.0–9.1 earthquakes from 1979 to 2018. Using a 
refined subset of 88 better-constrained kinematic afterslip models (after 46 earthquakes), we investigate whether 
afterslip and coseismic moment scale in a discernible way. We explore whether observed variability in Mrel 
depends on characteristics of the mainshock (moment, rake, dip, depth, rupture aspect), measures of local defor-
mation rate (fault slip rate, local strain rate, plate velocity), and data availability (the start date and duration of 
data collection). We discuss additional factors that are difficult to quantify and test statistically, including fault 
zone composition, earthquake history, and the influence of data availability and modeling methodology. We also 
investigate whether the occurrence of updip or downdip afterslip may be influenced by vertical rupture directiv-
ity, measured by a one-dimensional estimate. Determining what controls Mrel variation may offer new empirical 
constraints on afterslip, which could lead to improved predictive models of stress transfer for aftershock modeling 
and forecasting (Cattania et al., 2015; Mancini et al., 2020).

In Section 2, we outline the observations, kinematics, and a mechanical interpretation of afterslip and formu-
late hypotheses regarding the potential factors that Mrel might depend on, to later test. In Section 3, we explain 
our compilation and statistical methods and describe our database, which includes study and model meta-
data, and information on the mainshock and fault zone setting. This database is available online (doi:10.5281/
zenodo.6414330). We present our analysis of the database in Section 4 and discuss our findings in Section 5.

2. Background
2.1. Observations and Mechanical Interpretation

The kinematics of afterslip can be well approximated by combining a constitutive framework for shear strength (τ) 
at an interface with elastic theory (Rubin, 2008). Rate and state dependent friction describes τ and the conditions 
under which materials strengthen or weaken with an imposed velocity step (Dieterich, 1979, 1987; Ruina, 1983). 
The Dieterich-Ruina formulation gives τ as:

𝜏𝜏 = 𝜎𝜎

(

𝜇𝜇𝑜𝑜 + 𝑎𝑎 ln
𝑉𝑉

𝑉𝑉𝑜𝑜

+ 𝑏𝑏 ln
𝑉𝑉𝑜𝑜𝜃𝜃

𝐷𝐷𝑐𝑐

)

, (2)

where σ is the effective normal stress and μo is the friction coefficient when slip velocity (V) equals the reference 
velocity (Vo). The direct effect term (a ln(V/Vo)) describes an initial frictional strength increase and the evolution 
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term (b ln(Voθ/Dc)) describes a frictional strength reduction over slip distance and time, where Dc is the critical 
slip distance and θ is the state variable. a and b are empirical, dimensionless quantities weighing these terms. 
a − b expresses the velocity dependence of a material under given environmental conditions, including stress, 
temperature, slip velocity, and effects of fluids (Blanpied et al., 1991; Marone, 1998). a − b is depth-dependent 
(Blanpied et al., 1991), with distinct and strongly frictionally stable regions typically updip and downdip of the 
seismogenic zone, as shown in Figure 1a (e.g., Hillers et al., 2006; Imber et al., 2001). Rate and state dependent 
friction does not imply a microscale mechanism (Van den Ende et al., 2018), but one key interpretation of after-
slip is a brittle creep (e.g., Marone et al., 1991; Perfettini & Avouac, 2004).

In brittle creep interpretations, afterslip occurs principally in frictionally stable fault regions, where (a − b) > 0 
(Marone et al., 1991; Perfettini & Avouac, 2004). Here, seismic nucleation is prohibited and small increments of 
immediately-arrested brittle failure (Perfettini & Avouac, 2004) erode away at the stress concentrations left by an 
earthquake to produce aseismic, macroscale fault slip over time (Bürgmann, 2018; Harris, 1998). As the direct 
effect term dominates, afterslip can be approximated by a steady-state process (Marone et al., 1991; Scholz, 1998):

𝜏𝜏 = 𝜎𝜎

(

𝜇𝜇𝑜𝑜 + (𝑎𝑎 − 𝑏𝑏) ln
𝑉𝑉

𝑉𝑉𝑜𝑜

)

. (3)

Figure 1b shows an idealized schematic of coseismic rupture and afterslip on a well coupled strike slip fault. Here, 
coseismic rupture is mostly confined to the well-defined frictionally unstable seismogenic zone but may propagate 
into adjacent stable regions through dynamic weakening (Noda & Lapusta, 2013; Shaw & Wesnousky, 2008). 
Afterslip then migrates away from the rupture edges within the frictionally stable regions (Bie et al., 2014; Peng 
& Zhao, 2009), but some occurs at traditionally seismogenic depths due to rheological heterogeneity or condi-
tional stability. Afterslip has often been observed at traditionally seismogenic depths (e.g., Langbein et al., 2006; 
Reilinger et al., 2000; Riva et al., 2007), and thus is clearly not limited to distinct and strongly velocity-strength-
ening regions (Bürgmann et al., 2002; Helmstetter & Shaw, 2009). In the case of a poorly-coupled fault, such 
as the creeping section of the San Andreas (Bürgmann, 2018; Jolivet et al., 2015), isolated velocity-weakening 
rupture patches may exist within an overall more velocity strengthening fault. In another case, where fault mate-
rial is only weakly velocity-weakening or conditionally stable, where (a − b) ≈ 0 or <0, aseismic slip may occur 
if the slip velocities (Scholz, 1998) or the nucleation length scales (related to Dc; Boatwright & Cocco, 1996; 
Bürgmann, 2018; Rubin & Ampuero, 2005) required for seismic slip are not reached. In this case, the steady-state 

Figure 1. (a) A simplified frictional slip stability (a)–(b) profile with depth (modified from the study by Avouac [2015]; Bürgmann [2018]; Hillers et al. [2006]; 
Perfettini & Avouac [2007]), and (b), a schematic fault-parallel cross-section of idealized coseismic rupture and aseismic afterslip on a well-coupled strike slip fault. 
The approximate seismic-aseismic transition and brittle-viscous/ductile transitions are shown, but conditional stability is not shown for simplicity.
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approximation does not hold, and triggered slow slip events may also be common (Bürgmann, 2018; Rolandone 
et al., 2018; Taira et al., 2014; Wallace et al., 2018).

2.2. Afterslip and the Mainshock and Fault Setting

The nature of a scaling relationship between the afterslip moment and the coseismic moment is not well 
constrained. Establishing what the expected or average afterslip moment for a given earthquake should be would 
allow for more informed investigations into behavioral variation. Moment (Mo) is given by the product of shear 
modulus (G), average slip 𝐴𝐴

(

𝐷𝐷

)

 and slip area (A):

𝑀𝑀𝑜𝑜 = 𝐺𝐺𝐺𝐺𝐷𝐷𝐷 (4)

Coseismic ruptures are commonly assumed to scale self-similarly, whereby Mo, 𝐴𝐴 𝐷𝐷 and A grow in a consistent and 
scale-invariant way (e.g., Leonard, 2014; Wells & Coppersmith, 1994). Given this, and assuming that coseismic 
static stress change drives afterslip, we posit a monotonic relationship between afterslip and coseismic moments. 
Basic elastic theory predicts that the magnitude of stress change around a rupture and the area on the fault plane 
exposed to a given stress change increase with the coseismic moment (Segall, 2010). Therefore, assuming that 
shear modulus (G) remains approximately constant across seismogenic and afterslip zones, the average slip, area, 
and overall moment of afterslip should increase with the coseismic moment.

If Mrel is observed to vary, we can investigate factors that might drive this through testing the following hypothe-
ses. If a − b principally controls afterslip occurrence throughout the fault zone (e.g., Marone et al., 1991; Perfet-
tini & Avouac, 2004) and is largely controlled by temperature and depth (e.g., Blanpied et  al., 1991; Hillers 
et al., 2006; Imber et al., 2001), we hypothesize that low dip angle faults may permit more afterslip, by providing 
a greater area of unruptured fault in purely and conditionally frictionally stable regions. We also could expect 
a relationship with a rake, as this typically correlates with dip (Anderson, 1905). Again, assuming that a − b is 
depth controlled, we hypothesize that shallower earthquakes may permit more downdip, and therefore overall, 
afterslip. However, this is complicated by the fact that updip afterslip can occur and that deep ruptures might be 
required to activate deeper frictionally stable regions in the first place. Finally, Hawthorne et al. (2016) alluded to 
a potential link between rupture elongation and Mrel, thus we investigate the influence of coseismic moment and 
the aspect ratio (length to downdip width) of coseismic rupture on Mrel. We, therefore, investigate relationships 
between Mrel and mainshock moment, fault dip, rake, depth, and rupture aspect.

Rheology may vary across different fault zones. We hypothesize that mature faults might promote more after-
slip as they are suggested to contain higher proportions of velocity-strengthening materials like gouges and 
smoothed asperities (Choy & Kirby, 2004; Collettini et al., 2019; Ikari et al., 2011; Imber et al., 2008). Fluids or 
specific materials that might promote aseismic slip might also be present, such as the talc-bearing serpentinites 
in the creeping section of the San Andreas fault (Moore & Rymer, 2007) or well-connected phyllosilicate gouges 
(Niemeijer, 2018). We use measures of local deformation rate: fault slip rate (i.e., the long term rate at which a 
fault slips), local strain rate (i.e., how localized deformation is, a combination of fault zone width and slip rate), 
and plate velocity, as proxies for fault maturity and potential for abundant (a − b) >0 material, as there is evidence 
that factors such as fault slip rate are linked to maturity (e.g., Goldberg et al., 2020; Manighetti et al., 2007). We, 
therefore, investigate relationships between Mrel and fault slip rate, local strain rate, and plate velocity.

Certain additional factors that may influence Mrel cannot be easily statistically tested. For example, the size and 
shape of different coseismic ruptures can vary at the same fault patch throughout multiple earthquake cycles 
(e.g., Bakun et al., 2005; Jiang & Lapusta, 2016; Shaw & Wesnousky, 2008), which may influence subsequent 
postseismic behaviors, as indicated in some earthquake cycle simulations (e.g., Barbot et al., 2012). This implies 
that any single observed earthquake and afterslip episode may not reflect the average behavior of events at that 
fault. Additionally, the variable presence and role of conditionally stable regions across different faults may also 
drive variations in Mrel. This includes whether these regions are locked or creep interseismically, whether they can 
rupture coseismically, or whether they can fail in either or both spontaneous or triggered slow slip events (e.g., 
Scholz, 1998; Noda & Lapusta, 2013; M. Wei et al., 2013; Bürgmann, 2018). Finally, the interseismic coupling 
may be linked with Mrel through factors such as fault maturity, rheology, fluid pressure, and structural heteroge-
neity (Chaussard et al., 2015; Harris, 2017; Kaneko et al., 2010). A lack of reliable interseismic coupling estimate 
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at many host faults makes this difficult to evaluate but is desirable for the future. These factors will be discussed 
alongside the implications of our results in Section 5.2.

2.3. Methods and Limitations of Observation and Modeling

Our understanding of afterslip derives principally from geodetic observations of its surface deformation (Bürg-
mann, 2018). The broad types of data used to analyze afterslip are ground-based surveys (e.g., creep- and strain-
meters, etc.), GNSS (including GPS), InSAR, and satellite gravimetry. As these observation methods have abso-
lute detection thresholds, we expect a bias in the literature toward readily detectable afterslip episodes. This could 
manifest as an apparent dependence of Mrel on mainshock magnitude, as low Mrel following large earthquakes may 
be detectable, whereas low Mrel following smaller earthquakes may not. Additionally, the deformation signals of 
different postseismic mechanisms may be overlain and concurrent (Barbot & Fialko, 2010), making it difficult 
to distinguish their individual contributions (e.g., Biggs et al., 2009; Ryder et al., 2007). Separating the contribu-
tions of afterslip and viscoelastic relaxation becomes particularly difficult above mainshock magnitudes Mw6.5-
7, and the two processes can trade off strongly in models (e.g., Jacobs et al., 2002; Sun & Wang, 2015; Luo & 
Wang, 2021; M. Wang et al., 2021).

Afterslip moment estimates will be sensitive to the temporal window of observation. The steady-state approxima-
tion predicts afterslip velocity V at time t as:

𝑉𝑉 (𝑡𝑡) =
𝑉𝑉0

1 +
𝑡𝑡

𝐶𝐶

, (5)

where V0 is the initial velocity and C is a constant of decay. This approximation is well supported by observations, 
where the afterslip signal has a high onset amplitude (e.g., S. Wei et al., 2015; Tsang et al., 2019) and decays 
approximately with the inverse of time (e.g., Azúa et al., 2002; Ingleby & Wright, 2017; Marone, 1998; Perfettini 
& Avouac, 2004; Wennerberg & Sharp, 1997), and implies that the earliness and duration of study are crucial for 
capturing a representative afterslip signal.

Afterslip studies fall into three broad categories, each of which has different outputs and implications for this 
analysis. First, geodetic analyses are studies that typically fit decay equations to surface displacements (e.g., 
Savage & Svarc, 2009) or estimate the first-order spatial extent of afterslip (e.g., Ergintav et al., 2007), but do not 
produce a spatial distribution model of afterslip. Their conclusions regarding the spatial distribution of afterslip 
are generally qualitative and do not include a moment estimate. Kinematic slip modeling refers to studies that 
fit a spatial slip model to geodetic observations through dislocation theory (Okada, 1992; Segall, 2010). This 
may involve iterative forward modeling (e.g., Reilinger & Larsen, 1986) or explicit numerical inversion (e.g., L. 
Wang et al., 2009; Menke, 2018). Finally, dynamic slip modeling refers to studies that use a nonlinear inversion 
to constrain frictional parameters within frameworks such as the steady-state approximation. These can then 
produce a model of evolving afterslip from an initial postseismic stress field, which also satisfies geodetic obser-
vations (e.g., Johnson et al., 2009; Perfettini & Avouac, 2007). The inversion process is associated with consider-
able uncertainty arising from the validity of assumptions, inherent non-uniqueness, and regularization (Scales & 
Tenorio, 2001), discussed further in Section 5.3.

3. Data Compilation and Methods
3.1. Compilation From the Literature

We compile afterslip studies that follow Mw6.0 or greater earthquakes from 1979 onward, published until 2018 
(inclusive). We omit earthquakes before this due to poor data quality, notably excluding: the 1959 Hebgen 
Lake (Nishimura & Thatcher, 2003), the 1978 Tabas E Golshan (Copley, 2014), and the 1940 Imperial Valley 
(Reilinger, 1984) earthquakes. The inclusion of a study in our compilation is irrespective of whether additional 
postseismic mechanisms are considered, but we note when viscoelastic relaxation and pore fluid effects are 
considered or modeled.

We systematically extract information about the afterslip model(s) from each study. We identify each study's 
preferred afterslip model, proposed by the authors as the best compromise of physical sense and data fit and 
record the proposed moment, any bounds on this (from error analysis or viable alternative models), and the depth 
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extent of ‘most’ afterslip. The latter is approximate and often derived from qualitative discussions or inferred 
from figures, as digitized afterslip models are scarcely provided. We omit one-moment estimate from a study 
by Paul et al. (2007) because it considers only a proportion of the total spatial extent of afterslip and would not 
be comparable. If multiple viable models are proposed without a strong preference, we average the proposed 
moments. For magnitude-moment conversions we use Hanks and Kanamori (1979), where Mo is in N m (Nm):

�� =
(

log10 �� − 9.05
)

∕1.5. (6)

We assume that a significant deformation signal related to aftershocks has been removed (e.g., Hoffmann 
et al., 2018; Howell et al., 2017) or is negligible (e.g., Barnhart et al., 2016; Béjar-Pizarro et al., 2010). However, 
seismic afterslip and aftershocks are not treated as separate mechanisms in some studies. To consistently consider 
only aseismic afterslip, we reduce the moment estimates of Donnellan et al. (2002), Gahalaut et al. (2008), and 
Shrivastava et al. (2016) by 13%, 47%, and 10%, respectively, which they explicitly gave as the seismic propor-
tions of their afterslip moment estimates.

We record data and modeling information for each study. This includes the data type(s) used, the start and end 
time of observation (converted to an approximate number of days since mainshock), the broad modeling type, 
and many individual modeling choices, where possible (see supplementary materials or database for detail). We 
assume a start time of 1 day when one is not explicitly given, as these are generally continuous GPS studies, 
and/or we assume that longer delays between the parent earthquake and data collection would be mentioned 
explicitly. Some studies also account for early missing afterslip by extrapolation (e.g., D’Agostino et al., 2012; 
Perfettini et al., 2010) or by estimating how much afterslip is contained within the coseismic model (e.g., Hutton 
et al., 2001), and we use these estimates.

3.2. Compilation of Mainshock Data

We compile mainshock information from global earthquake catalogs. For each earthquake, we record the 
moment, magnitude, longitude, latitude, depth, dip, and rake from the preferred W-phase moment tensor (Mww) 
solution of the USGS ComCat database (U.S. Geological Survey, 2017) and from the Global Centroid Moment 
Tensor (GCMT) catalog (Dziewonski et al., 1981; Ekström et al., 2012). In this study, we do not need to distin-
guish between left and right-lateral strike slip, thus we convert the circular rake values to semi-circular values, 
with normal and thrust faulting as endmembers and strike slip in between. To deduce the correct fault plane from 
the two nodal planes of each focal mechanism, we use figures and dip and strike values given in the compiled 
literature. We obtain a hypocentral depth and an approximate coseismic slip depth extent, bounded by at least 
1 cm of slip, from coseismic slip models in the Earthquake Source Model database: SRCMOD (Mai & Thingbai-
jam, 2014). We use slip models by Hayes (2017) where possible, but otherwise choose a simple, preferably single 
fault plane model to be as systematic as possible.

In most cases, we use the USGS ComCat preferred solution's seismic moment as the ‘driving’ moment of afters-
lip. However, for the following cases where the mainshock is ambiguous to define (i.e., mainshock sequences), we 
use a summed driving moment: (a) the six Mw5.2–6.3 1994 Sefidabeh earthquakes, (b) the two Mw6.5 2000 South 
Iceland earthquakes, (c) the Mw7.1 2005 Miyagi mainshock and its Mw6.6 aftershock, after Miura et al. (2006), (d) 
the entire 2009 Karonga swarm, as given by Hamiel et al. (2012), (e) the Mw8.1 and Mw8.3 2006/7 Kuril islands 
earthquakes, and (f) the Mw5.7 and Mw6.0 1997 Umbria-Marche earthquakes. We divide each afterslip moment 
estimate by the driving moment to obtain Mrel.

3.3. Compilation of Tectonic Data

We obtain tectonic and fault setting information for each earthquake from external, global data sets. We identify 
the major fault closest to each mainshock hypocenter in the Global Earthquake Model Foundation (GEM) global 
active faults database (Styron & Pagani, 2020) and extract the net fault slip rate (i.e., long term average value in 
the direction of maximum displacement) for each earthquake from the GEM data-base. We calculate the second 
invariant of the strain rate tensor closest to the mainshock hypocenter from Kreemer et al. (2014) for continental 
events. For subduction events, the projection of the hypocenter to the surface is generally far from the fault trace 
which caused issues in selecting a representative strain rate value systematically. Instead, we obtain a value for 
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plate velocity from the GEM Strain Rate Model: GSRM 2.1 (Kreemer et al., 2014; UNAVCO, 2021) at the hypo-
central location of each earthquake, as this is more meaningful.

3.4. Statistical Tests

We investigate variations in absolute and relative afterslip moment and test for correlations between relative after-
slip moment and various factors. We compile 95 moment estimates from individual studies, but formally analyze 
a slightly reduced data set of 88 well-constrained kinematic slip model estimates that follow 46 earthquakes. This 
small reduction ensures standardization and comparability between the models we analyze.

As there are multiple moment estimates for some events, we bootstrap to fairly sample data and robustly test 
correlations. For each test, we create 2000 subsets of data, each with one randomly sampled estimate for every 
earthquake (n = 46, the number of earthquakes and data points of each subset). We calculate Spearman's rank 
correlation coefficient between each subset and the characteristic we are testing and present the median value 
and 95% range of the distribution. We use Spearman's rank to test for monotonic relationships (Dodge, 2008), as 
testing specifically for linearity (i.e., Pearson's) may miss complex, nonlinear relationships and could be dispro-
portionately affected by outliers in our data. As the bootstrapped distributions are not necessarily Gaussian, we 
use the median and 95% range rather than the mean and standard deviation, which could be less representative 
and more sensitive to outlying values. As our correlation coefficients are based on rank rather than absolute value, 
we cannot provide a data-fit or measure of an error on individual coefficients, thus our statistical measures do less 
well at reflecting the additional uncertainty in individual moment estimates, but we discuss these uncertainties 
further in Section 4.3. We interpret a result as statistically interesting if the entire 95% range does not cross the 
zero coefficient line.

We use reduced data sets with specific criteria to further probe the relationships between 𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜  and Mo, and Mrel 
and Mo. The following reduced data sets contain one estimate per earthquake and do not need bootstrapping: 
(a) the model with the longest duration for each earthquake (n = 45), (b) the largest afterslip moment estimate 
for each earthquake (n = 45), and (c) the longest duration model that also starts within 1 day of the earthquake 
(n = 32). Data set 3 is further refined as (e) removing the two outlying Mrel endmembers (n = 30), (f) including 
only subduction events (n = 17), and (g) including only earthquakes Mw7.0 or greater. The Sefidabeh study by 
Copley (2014) is an extreme outlier in terms of the start time (more than 2 years), that we omit in all of these 
reduced data sets.

4. Results
4.1. The Database

The database contains 148 studies of afterslip following 53 mainshocks (doi:10.5281/zenodo.6414330). The 
earthquakes span Mw 6.0–9.1 and comprise 32 thrust, 14 strike-slip, and 7 normal mechanisms (Figure  2a). 
Analysis of the GCMT catalog indicates that the database contains 100% of the Mw9 earthquakes that occurred 
during the study period, 32% of Mw8, 4% of Mw7, and less than 1% of Mw6 earthquakes. Smaller earthquakes are 
underrepresented in our compilation and those included may have a bias toward higher Mrel due to more readily 
detectable afterslip.

Studies vary in data practices and modeling methodologies. Overall, we categorize 18 geodetic analyses, 117 
kinematic slip models, and 13 dynamic slip models. Approximately 41% of all studies considered only afterslip 
as a viable postseismic mechanism, 32% considered afterslip and viscoelastic relaxation, 3% considered afterslip 
and pore fluid factors, and 24% considered all three mechanisms. Figure 2b shows InSAR emerging and GNSS 
becoming dominant in the 1990s, with gravity-based methods emerging more recently and ground-based surveys 
scarcely used this century.

The database contains multiple afterslip studies for some earthquakes, although not every study proposes a 
moment estimate. There are multiple studies for 32 mainshocks, as shown in Figure  2c, and six particularly 
well-studied examples: Mw7.1 1999 Hector Mine (6 studies), Mw6.0 2004 Parkfield (7), Mw7.6 1999 Izmit (9), 
Mw9.1 2011 Tohoku (9), Mw9.1 2004 Sumatra (10) and Mw7.3 1992 Landers (11). Overall, 95 studies provide 
a meaningful afterslip moment estimate as geodetic analyses generally cannot estimate moment and many 

https://doi.org/10.5281/zenodo.6414330
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kinematic and dynamic slip models do not explicitly calculate or give one. Eighty eight moment estimates come 
from kinematic slip models, whose methodologies are better constrained and thus more comparable.

The start times and durations of all studies are summarized in Figure 3, ordered by the mainshock. If afterslip 
velocities decay according to Equation 5 and this is linearly proportional to moment release rate, the cumulative 
moment release should be proportional to the logarithm of time, thus we present logarithmic time on the x-axis. 
Most studies start within a few days of the mainshock, with approximately 1 day being the soonest and 2 years 
being the latest, and typically last for several months to around 2 years, with approximately 1 day being the 

Figure 2. (a) The Global Centroid Moment Tensor focal mechanism solutions of the earthquakes in our database (red: strike slip, blue: thrust, yellow: normal, * 
indicates a mainshock sequence with the largest event shown). (b) The cumulative number of compiled studies is shown by year of mainshock and year of publication, 
and the cumulative use of data types by year of publication. (c) The frequency of studies per mainshock, with the most-represented mainshocks, annotated, 
corresponding to large steps in panel (b).
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Figure 3. Temporal observation windows for all compiled studies, where available. The line length indicates the base-10 logarithmic duration and the color gives linear 
duration. Dashed lines indicate studies without an explicitly provided start time, which we assume is 1-day as most are continuous GPS.
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shortest and 12 years being the longest. We explore the relationship between Mrel estimates and the start time and 
duration of observation in Sections 4.3 and 4.4 and discuss our findings in 5.3.

4.2. Afterslip Moment Scaling and Variation

Figure 4a gives afterslip moment estimates against the corresponding coseismic moment. For the 88 kinematic 
slip model estimates, the median Spearman's rank correlation coefficient between 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜  and Mo is 0.91 after 
bootstrapping, with the 95% range between 0.89 and 0.93 (Figure 4a). This supports the hypothesis that aseismic 
afterslip moment scales with coseismic moment. We also note that the median Pearson's correlation coefficient 
between 𝐴𝐴 log

(

𝑀𝑀
𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜

)

 and log(Mo) is 0.92 after bootstrapping, with a gradient close to one. We infer near-linear 
scaling of the afterslip moment with the coseismic moment for our mainshocks, which we discuss further in 
Section 5.1.

The 95% range of Spearman's rank correlation coefficients better reflects variation due to bootstrapping than the 
variations in individual afterslip moment estimates. We analyze the uncertainty in some individual estimates in 
Section 4.3, but further test the robustness of the 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜  /Mo correlation by examining the reduced data sets defined 
in Section 3.4. These correlation coefficients range from 0.85 to 0.93, shown in Figure 5a, which is close to that 
obtained by bootstrapping over the entire data set, further supporting a robust and strong relationship.

Relative afterslip moment (Mrel) varies over three orders of magnitude from <1% to >300% (Figure 4b). The 
median value for the 88 kinematic slip model estimates is 18% with an interquartile range of 9%–32%. Endmem-
bers include two estimates below 1%: the Mw7.2 2003 Altai earthquake (Barbot et al., 2008) and the Mw8.0 2008 
Sichuan earthquake (Shao et al., 2011), and five greater than 100%: the Mw6.0 2004 Parkfield earthquake (Bruhat 
et al., 2011; Freed, 2007; Johanson et al., 2006; Langbein et al., 2006) and the Mw6.8 2008 Methoni earthquake 
(Howell et al., 2017).

Figure 4. (a) Afterslip moment estimates against corresponding coseismic moments (𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜  vs. Mo) and (b) relative afterslip moment estimates against coseismic 
moment (Mrel vs. Mo). The color scale shows the linear temporal duration of each model. Red bars link estimates for the same earthquake from different studies. The 88 
circles denote the kinematic slip model estimates (KSMs) that are analyzed further. Relative afterslip moment estimates <1% and >100% are labeled.
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Mrel weakly and negatively correlates with the mainshock moment. The median Spearman's rank correlation coef-
ficient for Mrel and Mo is −0.21 after bootstrapping, with the 95% range from −0.32 to −0.09. This could suggest 
that larger earthquakes are prone to less Mrel, but this may be due to the publication bias, and is discussed further 
in Section 5.2. Correlation coefficients from the reduced data sets vary from −0.11 to −0.49 (see Figure 5a), 
likely because the data sets are smaller and thus less stable. The most outlying coefficient (−0.49) is from the 
smallest data set (n = 17), and removing a single outlying data point (for the Mw6.8 2008 Methoni earthquake) 
highlights this instability as the correlation coefficient falls from −0.49 to −0.38. As the overall correlation 

between Mrel and Mo is much weaker than between 𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜  and Mo, this moti-
vates the investigation of other factors to account for variability in Mrel.

4.3. Temporal Dependence and Uncertainty of Individual Mrel 
Estimates

Figure  6 shows the relationship between estimates of relative afterslip 
moment and the start time and duration of observation. The median Spear-
man's rank correlation coefficients after bootstrapping are −0.13 and 0.03, 
respectively, with 95% ranges of −0.24 to 0.00 and −0.09 to 0.16, respec-
tively (Figure 5), indicating that across the data, there is no strong relation-
ship between Mrel and observation start time and duration. This is surprising, 
given the theoretical temporal decay of afterslip: early and longer observation 
windows should result in greater afterslip moment estimates. We discuss the 
implications of this in Section 5.3.

Figure 7 shows that different afterslip moment estimates following the same 
earthquake can vary considerably. If differences in observation start time 
and duration cannot explain these differences, this would imply significant 

Figure 5. Median Spearman's rank correlation coefficients and 95% ranges for relationships tested. n = 46, with 88 data points bootstrapped over throughout, unless 
specified. (a) Absolute and relative afterslip moment against the coseismic moment. The correlation coefficients for reduced data sets are also shown, which do not 
require bootstrapping as there is only one data point per earthquake (n is given individually) and (b) relative afterslip moment against our tested metrics. The rake value 
is calculated slightly differently and is explained in Section 4.4.

Figure 6. Observation start times and durations for all 88 kinematic afterslip 
models with relative afterslip moment estimates (Mrel), are shown in color. 
Models with start times given before or on day one are shown at 1-day, models 
without an explicitly provided start time begin on day 1.
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modeling uncertainty. We analyze 10 earthquakes that have at least three afterslip moment estimates from differ-
ent kinematic slip model studies. Estimates are normalized to the largest value for each earthquake to highlight 
the relative spread. We also present an expected, theoretical case in which afterslip is fully captured following an 
idealized earthquake by studies of different durations. To calculate this, we assume that afterslip velocity (Equa-
tion 5) linearly relates to the afterslip moment release rate, thus the integral with respect to time gives moment 
release. We assume the initial rate and constant c both equal one for simplicity and normalize to one unit of 
afterslip at 2,500 days to attain this idealized case.

For four earthquakes, the relative spread in individual afterslip moment estimates can be explained by differences 
in the temporal observation window. Afterslip moment estimates for the Mw7.6 1999 Izmit and the Mw7.6 1999 
Chi-Chi earthquakes are relatively well-constrained within a factor of 2 (Figure 7), with larger estimates corre-
sponding to increased observation duration or decreased observation start time. More varied afterslip moment 
estimates follow the Mw8.2 2003 Tokachi Oki earthquake (varying by up to a factor of approximately 5) but corre-
spond with the duration of observation. Similarly, following the Mw8.0 2008 Sichuan earthquake, the smallest 
afterslip moment estimate is only 3% of the largest but corresponds to an observation duration of approximately 
two weeks compared to seven years. Both the theoretical and Sichuan case are normalized to one unit of afterslip 
at approximately 2,500 days, thus differences could be interpreted as (a) afterslip decaying faster after the Sichuan 
earthquake than the theoretical case, (b) the largest Sichuan estimate is erroneously high, (c) the two smaller 
Sichuan estimates are erroneously low, or (d) a combination.

For six earthquakes, the relative spread in individual afterslip moment estimates cannot be easily explained by 
differences in the temporal observation window. In two cases: the Mw8.0 2011 Van and the Mw8.3 2015 Illapel 
earthquakes, afterslip moment estimates are relatively well-constrained by a factor of approximately two, but 
there are four cases where the relative spread is considerably greater: the Mw6.0 2004 Parkfield, the Mw7.8 2015 
Gorkha, the Mw9.1 2011 Tohoku and Mw9.1 2004 Sumatra earthquakes. For example, following the Sumatra 
earthquake, the two longest duration studies produced afterslip moment estimates of approximately only 6% of 
the largest and 10% of the second largest (both of which happened to be among the shortest duration studies). This 

Figure 7. Afterslip moment estimates of the 10 mainshocks which have three or more kinematic slip model estimates. For each earthquake (shown across the X-axis), 
different afterslip moment estimates are shown as bars, normalised to the largest and arranged from smallest to largest (scale is given on the left Y-axis). The start 
time of the data used for each estimate is given by red circles (right Y-axis) and the duration is given by color. A theoretical case of how the afterslip moment should 
grow with time (based on an assumed steady-state, velocity-strengthening decay behavior) is also shown for comparison. Here, estimates from different durations over 
which data were analyzed are shown in ascending order, reaching 1.0 at 2,500 days. Moment estimates of the Sichuan earthquake, for example, appear to follow the 
expected trend if afterslip estimates were solely determined by duration and onset of the analyzed dataset, whereas Parkfield estimates do not follow the expected trend, 
suggesting other modeling sources of uncertainty.



Journal of Geophysical Research: Solid Earth

CHURCHILL ET AL.

10.1029/2021JB023897

13 of 24

indicates that an individual afterslip moment estimate may be more than an order of magnitude too small or too 
large (i.e., <10 to >1000%). The extreme variation following the Tohoku and Sumatra earthquakes is surprising 
as these are among the best-studied earthquakes and postseismic periods, and also suggests that uncertainty does 
not decrease with the coseismic moment. As six out of the 10 examples analyzed show spread in afterslip moment 
estimates which cannot be easily attributed to differences in observation start time or duration, we conclude that 
there is significant uncertainty associated with the modeling process.

This analysis indicates that the relative uncertainty in afterslip moment estimates can obscure the dependence we 
expect to see from either the observation start time or duration. For this reason, we do not attempt to normalize 
afterslip moment estimates for observational time window and instead consider individual afterslip moment 
estimates as given, but recognize potential for substantial uncertainty. Using the 10 analyzed earthquakes, we 
can assess the uncertainty of a typical afterslip moment estimate. The average mean and average variance of 
these 10 groups of estimates (each relative to the largest) is 0.62 and 0.1, respectively. Assuming, therefore, 
that a given afterslip moment estimate is 0.62 ± 0.1 of a full population of estimates, and that the best estimate 
solution lies somewhere in that population, the given estimate is likely within a factor of ∼two or three of the 
best estimate solution. However, in the most extreme case (as illustrated by the Mw9.1 2004 Sumatra earthquake) 
estimates could be out by an order of magnitude. The sources and implications of this uncertainty are discussed 
in Section 5.3.

4.4. Factors Contributing to Mrel Variation

We investigate potential controls on relative afterslip moment by testing the hypotheses formed in Sections 2.2 
and 2.3. Figure 5b summarizes the median Spearman's correlation coefficients between Mrel and our testable 
metrics after bootstrapping. These coefficients range from near zero to |0.39|, a weak to moderate correlation. 
The 95% ranges vary in width and reflect the full distribution of correlation coefficients from bootstrapping to 
indicate a sense of the robustness of the relationship.

Figure 8 shows Mrel against mainshock rake, fault dip, depth, and rupture aspect ratio. The correlation coefficients 
between Mrel and the vertical component of rake and dip are 0.01 and −0.12 (Figures 8a and 8b), respectively, 
with both 95% ranges crossing the zero coefficient baseline, indicating no obvious control on afterslip (GCMT 
and USGS rake and dip values were very similar). Whilst we show the actual rake value in Figure 8a, we test 
adjusted (semi-circular not circular) values whereby thrust and normal mechanisms are endmembers and strike 
slip sits in between (i.e., right and left lateral slip are treated the same in the context of our hypothesis).

Mrel correlates with rupture aspect ratio but not with mainshock depth (Figures 8c and 8d). The median Spear-
man's rank correlation coefficients are −0.04 and 0.01 for the USGS and GCMT depths, respectively, indicating 
no obvious control on Mrel. Figure 8d shows the approximate length-to-width rupture aspect ratio against Mrel 
for the 33 earthquakes for which a coseismic slip model was available. The associated median bootstrapped 
Spearman's rank correlation coefficient is a moderate −0.31 and has a 95% range entirely negative. As continen-
tal and subduction earthquake populations might behave differently in terms of aspect ratio (e.g., Ampuero & 
Mao, 2017), we also calculate the correlation coefficients for continental (−0.34) and subduction (−0.24) popu-
lations individually, but these are quite similar to one another and the overall average.

Figure 9 shows Mrel against the local strain rate, plate velocity, and fault slip rate. These have correlation coeffi-
cients of 0.09, 0.39, and 0.26, respectively. The 95% ranges for the more strongly correlated plate velocity and 
fault slip rate relationships are also entirely above zero. The moderate relationship with plate velocity is for only 
18 events on subduction interfaces, thus having less scope for interpretation as the fewer data points mean a less 
robust coefficient. However, the moderate relationship with fault slip rate is over the entire kinematic slip model 
data set of 46 earthquakes and 88 estimates, implying some robustness.

4.5. Afterslip Depth Analysis

We investigate whether the occurrence of up- or downdip afterslip may be influenced by vertical rupture direc-
tivity, using the simple, one-dimensional proxy of whether an earthquake's centroid is above or below the hypo-
center. We conduct this analysis for 31 earthquakes for which we have: approximate afterslip and coseismic depth 
extents, hypocenter depths, and centroid depths. Figure 10 shows that in at least one study for each earthquake, 
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afterslip and coseismic slip depths overlap by at least one km. We cannot comment on whether specific slip 
patches overlap, as this could be due to afterslip and coseismic slip distributions varying laterally. However, 
this at least indicates that rheological heterogeneity (i.e., deviations from simple, one-dimensional slip stability 

Figure 8. Relative afterslip moment (Mrel) against (a) mainshock fault plane rake (we test the vertical component of rake, median Spearman's rank correlation 
coefficient: 0.01), (b) mainshock fault dip (−0.12), (c) mainshock centroid depth (0.04), and (d) approximate rupture aspect ratio (−0.31). a and b show USGS preferred 
solution moment tensor values, c shows Global Centroid Moment Tensor centroid depth values, and d uses models from the Earthquake Source Model Database 
(SRCMOD, for the 33 available events only). Red lines connect different estimates from the same earthquake and color indicates the temporal duration of each study.
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models with constant depths, Figure 1) may be quite common in fault zones, especially as there is evidence of 
afterslip occurring throughout the entire coseismic slip depth range for approximately a third of the earthquakes 
in this analysis.

The relative depths of the centroid and hypocenter do not appear to influence the depth extent of afterslip. Twelve 
earthquakes have a hypocenter at least one km deeper than centroid, which we describe as net-updip propagating. 
Six of these earthquakes show some evidence of afterslip significantly above coseismic rupture depths, whilst six 
do not. Additionally, five earthquakes that cannot be described as net-updip propagating also show evidence of 
significant updip afterslip. At a threshold of five km, only five earthquakes qualify as net-updip propagating and 
only two of these show evidence of significant afterslip updip of coseismic rupture.

Figure 9. Relative afterslip moment (Mrel) against (a) local strain rate for the 28 continental-setting events (median Spearman's rank correlation coefficient: 0.09), (b) 
plate velocity for the 18 events broadly on a subduction interface (0.39) and (c) local fault slip rate for all 46 events (0.26). Red lines connect different estimates from 
the same earthquake.

Figure 10. The approximate depth extents of aseismic afterslip for the 88 kinematic slip models studies and corresponding coseismic ruptures from SRCMOD 
coseismic slip models. Moment tensor depths from the USGS preferred solution, centroid depths from the Global Centroid Moment Tensor catalog, and rupture aspect 
ratios and hypocentral depths from SRCMOD coseismic slip models are also shown but may be erroneous in some cases (e.g., default values, not relocated). Not all 
afterslip depth extents, coseismic depth extents, hypocentral depths and rupture aspect ratios were available.
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Fourteen earthquakes have a hypocenter at least 1 km shallower than the centroid (net-downdip propagating). 
Nine of these show some evidence of significant afterslip below coseismic rupture depths, but five do not. Simi-
larly, seven earthquakes that cannot be described as net-downdip propagating also show evidence of significant 
downdip afterslip. Again, at a threshold of 5 km, only five earthquakes can be described as net-downdip propagat-
ing and only two of these show evidence of significant afterslip downdip of coseismic rupture. We, therefore, find 
no evidence that rupture directivity effects afterslip depth distribution, but our analysis is only one-dimensional; 
effective slip analysis would be useful for more insight here, but digitized afterslip models are scarcely provided.

5. Discussion
5.1. Afterslip and Coseismic Moment Scaling

We find that afterslip and coseismic moment scale approximately linearly, with a gradient close to one. We 
explore what this finding might mean for the average slip and area of afterslip, through assumptions grounded in 
elastic theory and self-similar rupture scaling. Whilst Mrel is distributed with an interquartile range of 0.09–0.32, 
to form a simple argument, we assume that Mrel can be approximated by a constant and rewrite Equation 1 as:

𝑀𝑀
𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜 = 𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑀𝑀𝑜𝑜. (7)

We can substitute Equation 4 into 7 and assume that the shear modulus (G) remains approximately constant 
across the seismogenic and afterslip zones when compared to variations in A and 𝐴𝐴 𝐷𝐷 . The average slip 𝐴𝐴

(

𝐷𝐷
𝑎𝑎𝑎𝑎𝑎𝑎

)

 and 
area (A aft) of afterslip thus scale as:

𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎

𝐷𝐷
𝑎𝑎𝑎𝑎𝑎𝑎

∼ 𝐴𝐴𝐷𝐷 ∼ 𝑀𝑀𝑜𝑜. (8)

We can consider the scaling of A aft and 𝐴𝐴 𝐷𝐷
𝑎𝑎𝑎𝑎𝑎𝑎

 separately, by first considering an ‘activated area’ around a rupture 
that is primed for afterslip. For a simple circular rupture, stress change decays as the inverse of the distance cubed 
from the dislocation (Segall, 2010). Assuming that afterslip is entirely driven by coseismic static stress change, 
the distance (d aft) to the minimum activating shear stress bounding the activated area (A aft) scales with Mo as:

𝑑𝑑
𝑎𝑎𝑎𝑎𝑎𝑎 ∼ 𝑀𝑀

1∕3
𝑜𝑜 , (9)

(Marsan, 2005). Squaring the equation gives an area A aft that scales as:

𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎 ∼ 𝑀𝑀

2∕3
𝑜𝑜 , (10)

with proof given in the supplementary materials. Given Equation 8, 𝐴𝐴 𝐷𝐷
𝑎𝑎𝑎𝑎𝑎𝑎

 must therefore scale as:

𝐷𝐷
𝑎𝑎𝑎𝑎𝑎𝑎

∼ 𝑀𝑀
1∕3
𝑜𝑜 . (11)

Our empirical finding (Equation 7) also allows us to substitute 𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜  into Equations 10 and 11 in the place of Mo 
(although the constants of proportionality change):

𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎 ∼ 𝑀𝑀

𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜

2∕3
, (12)

𝐷𝐷
𝑎𝑎𝑎𝑎𝑎𝑎

∼ 𝑀𝑀
𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜

1∕3
. (13)

Equations 12 and 13 refer to afterslip area, slip, and moment, but are essentially equivalent to well established 
coseismic scaling relations (e.g., Allen & Hayes,  2017; Blaser et  al.,  2010; Hanks & Bakun,  2002; Leon-
ard, 2010, 2014; Murotani et al., 2013; Skarlatoudis et al., 2016; Somerville et al., 1999; Strasser et al., 2010; 
Wells & Coppersmith, 1994). Interestingly, Michel et al. (2019) also proposed that the area of slow slip events 
follow a relationship equivalent to Equation 12, implying that the area of afterslip and generic slow slip events 
may scale similarly.

We propose that the afterslip area and average slip approximately obey the scaling relations given by Equa-
tions 10 and 11. Afterslip moment grows by a combination of coseismic area and average slip, thus with the 
overall coseismic moment. We believe these scaling relations provide a good first order approximation of afterslip 
behavior, around which secondary factors can cause variation. Our results indicate that characteristics such as 
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rupture aspect ratio and fault slip rate (a potential proxy for fault zone maturity and composition) may influence 
Mrel and therefore cause systematic deviations from this scaling.

5.2. Mainshock and Fault Setting Factors

In this section, we discuss the potential influences of mainshock characteristics, fault setting, and the broader 
earthquake cycle on Mrel. We expect that afterslip occurrence is driven principally by how strongly and how much 
of the fault zone interface is velocity-strengthening (a − b < 0), and that a − b is largely controlled by depth.

We find no evidence to support strong relationships between Mrel and mainshock rake, dip, or depth. This indicates 
that globally, neither mechanism nor depth overwhelmingly affects the afterslip moment and that our original 
hypothesis (that shallow ruptures and low fault dip angles may allow more afterslip) is not supported. However, 
our metrics may be overly simplistic or too insensitive to serve as good proxies for mainshock geometry, as they 
do not consider rupture shape, fault roughness, or kinks. It is also possible that any relationship is obscured by 
data or modeling uncertainties, which we discuss in Section 5.3.

The rupture aspect ratio may be a second-order control on afterslip. The correlation coefficient between Mrel and 
rupture aspect ratio is moderate −0.31, with an entirely negative 95% range. Rupture aspect ratio depends on char-
acteristics such as nucleation area, local seismogenic thickness, and whether an earthquake is sufficiently large to 
interact with the edges of the seismogenic zone (Ampuero & Mao, 2017; Weng & Yang, 2017), thus is inherently 
linked to coseismic moment. This is seen in Figure 10, in which the largest rupture aspect ratios belong to larger 
continental earthquakes, which generally saturate the seismogenic zone around Mw6-7 (Hawthorne et al., 2016) 
and then elongate with increasing magnitude. Subduction interface events generally occur on much wider and 
lower dip angle faults (Anderson, 1905), thus form a separate population of rupture aspect ratios in Figure 10, but 
the overall relationship is still seen. The correlation coefficients between Mrel and rupture aspect ratio for conti-
nental- and subduction-only event populations are −0.34 and −0.24, respectively, similar to the overall value.

A relationship between rupture aspect ratio and Mrel may have more than one explanation. Hawthorne et al. (2016) 
suggested that larger, elongated ruptures may have a reduced capacity for relative afterslip compared to smaller, 
less elongated earthquakes, because of the relative size of the region surrounding the coseismic rupture that can 
undergo afterslip. Smaller and less elongate earthquakes may also generate more of their afterslip closer to the 
rheologically controlled seismic-aseismic transition, which has greater scope to vary from location to location, 
than larger, more elongate ruptures which generate more of their afterslip closer to the temperature-controlled 
brittle-ductile transition. However, this argument assumes that the seismic-aseismic transition is consistently 
above the brittle-ductile transition, which may not hold everywhere. A greater scope for relative afterslip varia-
bility in smaller earthquakes, combined with a publication bias whereby smaller earthquakes with larger Mrel are 
preferentially studied, provides one explanation for the relationship we observe but implies that it is (at least in 
part) due to the publication bias. The dependence of shear stress change on rupture stress drop (Segall, 2010) may 
provide an alternative, physical argument. For the same coseismic moment, a larger area and presumably more 
elongated rupture will have a lower stress drop, and thus a smaller average stress concentration at its edges than 
a less elongated, more compact earthquake. Assuming that afterslip occurs generally downdip, this could imply 
that less elongate ruptures are able to generate more (downdip) afterslip than more elongate ruptures. Whilst 
rupture aspect ratio is not independent of the coseismic moment, Mrel is more strongly correlated to rupture aspect 
ratio than it is to Mo, suggesting that rupture aspect ratio may provide some independent control on afterslip, 
although the specific reasoning is unclear.

Mrel correlates moderately with plate velocity and fault slip rate. Plate velocity, local strain rate, and fault slip rate 
are measures of deformation rate that we treat as proxies for fault maturity and high proportions of frictionally 
stable fault zone materials such as gouges and smoothed asperities (Choy & Kirby, 2004; Ikari et al., 2011). The 
moderate correlation between Mrel and plate velocity (0.39) is based on only 18 subduction interface earthquakes 
and is thus not particularly robust. The correlation between Mrel and strain rate for the remaining 28 continental 
events is a weak 0.09. The most significant finding is the moderate correlation between Mrel and fault slip rate 
(0.26) over the entire data set. Some geological evidence supports fault slip rate as a proxy for fault maturity (e.g., 
Goldberg et al., 2020; Manighetti et al., 2007), whilst reported slip rates may inadvertently be a good proxy of 
fault maturity, as measurements at immature faults may be systematically underestimated because the strain is 
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less localized (Dolan & Haravitch, 2014). Regardless, the reported fault slip rate may be a reasonable first order 
proxy for maturity, and a weak to moderate indicator of Mrel.

Endmember case examples can link high fault slip rates, specific geological characteristics, and high Mrel. The 
highest Mrel estimates belong to the Mw6.0 2004 Parkfield and Mw6.8 2008 Methoni earthquakes, which have 
high fault slip rates, and high strain rates and plate velocities, respectively (see Figure 9). Near Parkfield, the 
fast creeping section of the San Andreas fault (Jolivet et  al.,  2015) contains several meters of highly veloci-
ty-strengthening material gouge and talc-bearing serpentinites (Johnson et  al.,  2006; Moore & Rymer,  2007; 
Savage & Langbein, 2008) which may explain the high Mrel and, perhaps, the relatively shallow afterslip observed 
(Bruhat et al., 2011; Johanson et al., 2006). In addition to this, Johanson et al. (2006) also posited that two Mw5 
aftershocks may have served to unpin an additional, adjacent fault section and trigger enhanced afterslip which 
explains the high Mrel. High slip and strain rates might not be sufficient for abundant afterslip, however. Whilst 
our lowest Mrel earthquakes have relatively low fault slip rates (and strain rates and plate velocities), the Mw6.8 
2003 Chengkung and the Japan Trench earthquakes have the highest strain and slip rates, respectively, but more 
moderate Mrel. Better estimates of lithology, rheology, and structure that can be used to describe the a − b profile 
at a fault would be helpful to further assess this dependence.

So far, we have only considered contemporary factors, but Mrel might vary over multiple earthquake cycles at a 
given fault. Simulations of different ruptures on the same fault patch have shown penetration to variable depths 
(Jiang & Lapusta, 2016; Shaw & Wesnousky, 2008), which could theoretically affect the fault area left primed 
for afterslip in future earthquakes, assuming that frictional stability is principally controlled by depth. Postseis-
mic behaviors have even been shown to vary at the same fault patch in some of these simulations (e.g., Barbot 
et al., 2012). Furthermore, as stress conditions evolve with tectonic loading, exactly when an earthquake occurs 
could affect its afterslip. For example, regions adjacent to an ‘early’ earthquake might require less afterslip to 
catch up with the surrounding interseismic creep, than for a ‘late’ earthquake. Studies of several quasi-periodic 
earthquake cycles at Parkfield have suggested this, indicating that the 1966 earthquake possibly produced more 
afterslip than the 1934 earthquake, which was ‘early’ (Segall & Du, 1993; Segall & Harris, 1987). However, data 
for these earthquakes and afterslip events are quite poor and the entire concept of quasi-periodic seismic cycles is 
debated (Kagan et al., 2012). Interseismic coupling may be an important factor in determining Mrel. More veloci-
ty-strengthening fault surfaces surrounding rupture are likely to allow both more interseismic creep and afterslip 
and be less conducive to larger seismic ruptures, thus interseismic coupling could potentially be an indicator of 
afterslip potential, but requires reliable estimates at every fault.

In summary, Mrel does not appear to be overwhelmingly affected by earthquake mechanism, fault dip, or depth, 
but may be favored by higher fault slip rates and lower rupture aspect ratios. The uncertainty in Mrel estimates for 
the same event discussed in Section 4.3 highlights that any of these relationships may be obscured by data and 
modeling uncertainty. We discuss this further below, but perhaps stronger or additional relationships could be 
established by observing more earthquakes in the same locations over time and attempting to model the afterslip 
in a systematic way.

5.3. Data and Modeling Factors

We have identified significant uncertainty in afterslip moment estimates that must be due to data and modeling 
factors. In this section, we explore factors within the modeling methodology that might have led to (a) the lack 
of strong relationships between Mrel and the start time and duration of observation across global and individual 
earthquake scales and (b) the observed variability in afterslip moment estimates. The identification of this uncer-
tainty should lead to a more informed analysis of afterslip models and perhaps an effort to standardize afterslip 
modeling methodology to improve model comparability and help us to better understand aseismic afterslip.

Afterslip moment should tend toward an asymptotic limit with earlier and longer observation windows, but we 
did not see strong evidence for this globally. The theoretical importance of observational duration is highlighted 
in Figure 7 by the synthetic afterslip decay case and can also be seen within some individual examples (e.g., 
estimates for the Mw8.0 2008 Sichuan earthquake). The importance of an early start time is highlighted clearly in 
studies such as Jiang et al. (2021), who proposed that Mrel may have reached 34% within 24 hr of the 2004 Mw6.0 
Parkfield earthquake. There are several potential explanations for the lack of these relationships in the data. First, 
other potential dependencies such as rupture aspect ratio and fault slip rate may contribute to obscuring temporal 
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relationships in analysis across different regions. Secondly, as afterslip can decay at different rates across different 
regions (Ingleby & Wright, 2017), 3 months of observation following one earthquake might capture a greater frac-
tion of its afterslip than in 1 year following another; thus global-scale correlations between Mrel and observation 
duration may be obscured. However, if either (or both) of these arguments are true, we would still expect to see 
correlations within different estimates following the same earthquake and within similar regions. In Section 4.3, 
we show that this is often not the case and that modeling must therefore be a significant source of afterslip esti-
mate uncertainty, ranging from a typical factor of ∼two or three to over an order of magnitude.

A number of modeling choices may contribute to more variable afterslip moment estimates. A total of 47 of the 88 
kinematic afterslip models we analyze do not properly account for or reasonably consider additional postseismic 
mechanisms (i.e., they did not model viscoelastic relaxation or pore fluid effects, or indicate why this is not required), 
which could lead to erroneous afterslip moment estimates (e.g., McCormack et al., 2020; Sun & Wang, 2015). The 
implications of not considering viscoelastic relaxation could be especially significant. For example, following the 
Mw8.0 2008 Sichuan earthquake, M. Wang et al. (2021) suggested that an afterslip-only model produced an afterslip 
moment estimate several times that of a model that included viscoelasticity. Conversely, they also suggested that 
not considering afterslip in viscoelastic relaxation models can lead to incorrect inferred effective viscosities. Addi-
tional examples where the trade-off of afterslip and viscoelasticity in models may be significant include following 
the Mw7.8 2015 Gorkha earthquake (e.g., B. Zhao et al., 2017), the Mw7.9 2001 Kokoxili earthquake (e.g., D. Zhao 
et al., 2021) and the great Mw9.1 2011 Tohoku (e.g., Sun & Wang, 2015) and Mw9.1 2004 Sumatra (e.g., F. Pollitz 
et al., 2008) subduction thrust earthquakes. This may explain why uncertainty does not decrease with coseismic 
moment. When considering both mechanisms, separating their respective contributions is also a difficult problem, 
particularly in the lower crust (Jacobs et al., 2002; Luo & Wang, 2021). Modeling additional mechanisms also 
requires more complex rheological model spaces, thus additional free parameters (e.g., Bruhat et al., 2011; Muto 
et al., 2016; B. Zhao et al., 2017). The validity of different rheological spaces is an ongoing debate and an obvious 
source of uncertainty. Bedford et al. (2016) argue that the homogeneous, elastic half-space is established, acceptable 
and useful for modeling afterslip, whilst others (e.g., Hearn & Burgmann, 2005; Sun & Wang, 2015) propose that 
layered elastic and viscoelastic half-spaces are more valid and can recover more afterslip. Finally, the failure to 
remove the deformation signal due to aftershocks could lead to overestimates of the afterslip moment and distorted 
spatial models (Lange et al., 2014). Aftershocks are commonly ignored in afterslip studies due to a comparatively 
small cumulative moment (e.g., Diao et  al.,  2018). However, if particularly large aftershocks are not explicitly 
accounted for, this could amount to significant errors in afterslip moment estimates: we adjusted one estimate by 
Gahalaut et al. (2008) by 47%, but only because they explicitly stated this. We encourage researchers to reserve the 
term afterslip for a specific phenomenon outlined in Section 2, rather than generic postseimsic deformation.

Uncertainty surrounding different methodological practices remains a significant barrier to comparing afterslip 
models. More general sources include the non-uniqueness and regularization inherent to the inversion process 
(Menke, 2018; Scales & Tenorio, 2001), approximations of topography and fault geometry, and data sensitivi-
ties, resolution, and distribution (Marchandon et al., 2021). For example, InSAR may often miss early afterslip 
or struggle to detect far-field deformation resulting from deep afterslip (Marchandon et al., 2021; Wimpenny 
et al., 2017). Many of the modeling choices outlined in this section are compiled and summarized in our database 
for further investigation. A push toward the standardization of kinematic afterslip modeling methods would help 
improve the comparability of afterslip models and allow better deductions of afterslip behaviors, fault zone struc-
ture, and the relationship between afterslip and aftershock sequences. Many specific best modeling practices are 
still unclear and require further research before implementation, such as how appropriate different rheological 
models spaces are for modeling postseismic mechanisms. However, we recommend transparency and explicit 
quantification of parameters and uncertainties, the provision of digital afterslip models (if possible) for further 
analyses, and a push toward standardized data quality and temporal observation windows (i.e., an effort to start 
observation periods as early as possible and ensure a long duration), while recognizing that this is not always 
possible.

6. Conclusion
We compile a database of 148 afterslip studies after 53 earthquakes, containing detailed information on main-
shock characteristics, modeling methods, and outputs (doi:10.5281/zenodo.6414330). By analyzing a subset of 
88 well-constrained kinematic slip models, we find that: (a) coseismic moment is the principal control on the 
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ensuing afterslip moment, which scales near-linearly with a median value of 18% of the coseismic moment, (b) 
relative afterslip moment (Mrel) varies from less than 1% to over 300% of the coseismic moment, with an inter-
quartile range of 9%–32%, (c) global variation in Mrel cannot be accounted for by variation in factors such as fault 
dip, rake, and depth, (d) global variation in Mrel may be related to rupture aspect ratio and fault slip rate (which 
might be indicative of fault maturity), (e) there is an unexpected lack of strong, correlation between Mrel and the 
start time and duration of observation window on global scales, which could be obscured by other relationships 
or because afterslip decays sufficiently differently in different regions. However, as differences in start time and 
duration of observation window cannot always account for different Mrel estimates by different studies follow-
ing the same earthquake, we infer that: (f) there is significant, up to order-of-magnitude uncertainty in afterslip 
moment estimates related to the modeling process, which currently provides a barrier to systematic compari-
son. Our database and analysis help expose the current uncertainty in afterslip moment estimates and hopefully 
encourage the community to consider standardizing processes to provide increased ability to compare studies. 
Such comparisons can better constrain variability in afterslip behaviors, and deduce their controls. Understanding 
the controls on afterslip moment may allow the eventual incorporation of afterslip as a source of postseismic 
stress transfer in aftershock sequence hazard models.

Data Availability Statement
Data used in this study are accessible through U.S. Geological Survey (2017), Dziewonski et al. (1981); Ekström 
et al. (2012), Mai and Thingbaijam (2014), Styron and Pagani (2020), Kreemer et al. (2014), UNAVCO (2021), 
as indicated in text, and through the database (doi:10.5281/zenodo.6414330).
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