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Abstract 

Background: Anal cancer is a rare cancer with rising incidence. Despite the relatively good outcomes conferred by 
state‑of‑the‑art chemoradiotherapy, further improving disease control and reducing toxicity has proven challenging. 
Developing and validating prognostic models using routinely collected data may provide new insights for treat‑
ment development and selection. However, due to the rarity of the cancer, it can be difficult to obtain sufficient data, 
especially from single centres, to develop and validate robust models. Moreover, multi‑centre model development is 
hampered by ethical barriers and data protection regulations that often limit accessibility to patient data. Distributed 
(or federated) learning allows models to be developed using data from multiple centres without any individual‑level 
patient data leaving the originating centre, therefore preserving patient data privacy. This work builds on the proof‑of‑
concept three‑centre atomCAT1 study and describes the protocol for the multi‑centre atomCAT2 study, which aims 
to develop and validate robust prognostic models for three clinically important outcomes in anal cancer following 
chemoradiotherapy.

Methods: This is a retrospective multi‑centre cohort study, investigating overall survival, locoregional control and 
freedom from distant metastasis after primary chemoradiotherapy for anal squamous cell carcinoma. Patient data 
will be extracted and organised at each participating radiotherapy centre (n = 18). Candidate prognostic factors have 
been identified through literature review and expert opinion. Summary statistics will be calculated and exchanged 
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Background
Anal cancer is a rare disease encompassing only approxi-
mately 0.3% of all cancer cases across the world [1, 2], but 
with a gradually increasing incidence [3]. A combination 
of radiotherapy and chemotherapy has been established 
as the standard treatment for localised disease for the 
last three decades [4–6]. This treatment confers relatively 
good outcomes, with 75% overall survival rates reported 
at 5 years [7–10]. Despite this, it has proven challenging 
to determine the optimal therapeutic radiotherapy dose 
and to further improve disease control [11–13].

A study by Shakir et al. [14], which analysed data from 
385 patients with anal cancer treated in five UK cen-
tres with conformal radiotherapy techniques, reported 
that the site of primary disease was the most common 
site of relapse (83.4% of cases). In addition, the major-
ity of patients experienced locoregional failure prior to 
getting metastatic disease. This emphasises the need to 
establish an effective treatment for locoregional control 
with an optimal radiotherapy dose. Even though ongoing 
prospective clinical trials [13] are focusing on this issue, 
clinical data acquired through standard practice can also 
be analysed for the development and validation of prog-
nostic models, to further inform clinical practice [15, 16].

Prognostic and predictive models have been proposed 
in cancer research for more than 20 years [17] and have 
a wide range of potential applications, including predic-
tion of cancer susceptibility [18, 19], recurrence risk [20, 
21] and survival [22–24]. In particular, prognostic mod-
els can be used as decision support tools in the clinic, 
assisting clinicians in making informed decisions about 
patient management following a diagnosis [25]. However, 
developing robust prognostic models for anal cancer is 
particularly challenging. Due to the rarity of the cancer, it 
can be difficult to obtain sufficient data for robust model 
training and validation. In addition, ethical barriers and 
data protection regulations often limit the ability to share 
data between centres and thus render multi-centre model 
development unfeasible [26]. A novel data analysis meth-
odology called distributed learning (DL) [27] has paved 

the way towards model development between institu-
tions and across international borders.

Distributed learning, also sometimes referred to as fed-
erated learning, is a privacy-preserving approach that 
facilitates the development of robust statistical mod-
els using data distributed over multiple sites [28]. The 
main premise of this approach is that no individual-level 
patient data leaves the originating centre; only non-iden-
tifiable aggregated statistics (model coefficients and fit 
errors) are exchanged between institutions and a central 
server. Consequently, adopting this methodology mini-
mises privacy issues related to patient data sharing since 
it does not breach data privacy barriers. DL algorithms 
operate in an iterative process where the local dataset in 
each centre is used to calculate local model coefficients 
and fit errors. These are sent to the central server, where 
a single globally-convergent model is determined by min-
imising the total error [29]. This methodology is applica-
ble for the development of models with a relatively small 
number of patients [27], but has also been proven to be 
upscalable to more than 20,000 patients [30].

A DL approach may be ideally suited for prognostic 
modelling in rare cancers such as anal cancer. It could 
facilitate acquisition of sufficient patient data from mul-
tiple international centres with the aim of developing 
robust generalisable models, while working around many 
of the barriers associated with physical data sharing. The 
feasibility of this approach in anal cancer has previously 
been demonstrated in the atomCAT1 proof-of-concept 
study [31]. Using data from three international radio-
therapy centres, a Cox proportional hazards model for 
overall survival was trained and validated in a distributed 
fashion. The study analysed one of the largest available 
cohorts of patients with anal cancer treated with con-
formal radiotherapy and carried out robust multi-centre 
validation of outcome predictors. However, the analysis 
was limited to a single outcome only (overall survival), 
whereas other clinically important outcomes such as 
locoregional control and freedom from distant metastasis 
were not taken into consideration.

between centres prior to modelling. The primary analysis will involve developing and validating Cox proportional 
hazards models across centres for each outcome through distributed learning. Outcomes at specific timepoints of 
interest and factor effect estimates will be reported, allowing for outcome prediction for future patients.

Discussion: The atomCAT2 study will analyse one of the largest available cross‑institutional cohorts of patients with 
anal cancer treated with chemoradiotherapy. The analysis aims to provide information on current international clinical 
practice outcomes and may aid the personalisation and design of future anal cancer clinical trials through contribut‑
ing to a better understanding of patient risk stratification.

Keywords: Anal cancer, Squamous cell carcinoma, Chemoradiotherapy, Distributed learning, Federated learning, 
outcome modelling, Overall survival, Locoregional control, Freedom from distant metastasis
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The atomCAT2 (Anal cancer Treatment Outcome 
Modelling with Computer Aided Theragnostics) 
study aims to develop prediction models for anal can-
cer outcomes after chemoradiotherapy through dis-
tributed learning. To achieve this, a consortium of 18 
international cancer treatment centres based in the 
UK, Europe, Australia and Canada has been formed. 
A cohort of more than 1000 patients will be analysed 
to develop and validate models for overall survival, 
locoregional control and distant metastasis, as well as 
to identify key prognostic factors and their effect size. 
This will provide unique insights and may aid the per-
sonalisation of treatment according to each patient’s 
unique characteristics.

Methods
Study design and patient population
This is a retrospective multi-centre cohort study, inves-
tigating outcomes after primary (chemo) radiotherapy 
for anal squamous cell carcinoma (ASCC). The inclu-
sion and exclusion criteria are summarised in Table 1. 
Patient data will be extracted and organised within the 
informatics infrastructure at 18 participating radiother-
apy centres, where subjects have consented to treat-
ment with chemoradiotherapy. Routine and standard 
of care data will be used, and no prospective data col-
lection will be explicitly carried out for the purpose of 
this study. Using a pragmatic approach, centres will be 
encouraged to include data for all patients treated in 
their centre fulfilling the inclusion criteria (Table  1). 
However, pre-existing patient cohorts, representing 
a subset of available patient cases, will be accepted. 
Future expansion to more participating centres interna-
tionally is planned.

Patients have been treated according to each par-
ticipating centre’s protocol, which may include radio-
therapy only or varying chemoradiotherapy regimens. 
Centres will be asked to briefly outline their main 

treatment and follow-up protocols as part of study 
participation.

Outcome definitions
Three outcomes will be explored: overall survival, locore-
gional control and freedom from distant metastasis. 
These were identified as key outcome research measures 
in anal cancer by the CORMAC initiative [32].

Overall survival
Overall survival will be calculated in days from the first 
fraction of radiotherapy to either event or censoring, 
whichever happens first. An event is defined as death 
from any cause at any point during follow-up. Patients 
will be censored at the last clinical follow-up date if alive.

Locoregional control
Time to locoregional control will be calculated in days 
from the first fraction of radiotherapy to either event or 
censoring, whichever happens first. An event is defined 
as any of the following as a first event: (1) Abdominop-
erineal resection to control locoregional disease at any 
point during follow-up. This will always take precedence 
in terms of date for locoregional recurrence. (2) Locore-
gional disease progression, during treatment or in follow-
up (irrespective of whether complete or partial response 
have been initially achieved), not managed by surgery. 
This will preferably be confirmed with biopsy, in which 
case the date of biopsy will count, but will alternatively 
be based on imaging and clinical examination only (date 
of imaging will be used). (3) Lack of complete response 
(non-clearance of disease) at 26 weeks (6 months) from 
first fraction of radiotherapy, as defined by clinical exami-
nation, imaging and/or biopsy [33]. In case of uncertainty 
or where limited information is available, the date where 
treatment failure or locoregional recurrence is first noted 
in the patient records will be used.

Patients will be censored at death, at last clinical fol-
low-up, if undergoing abdominoperineal resection for 

Table 1 Participant inclusion and exclusion criteria

3D-CRT  Three-dimensional conformal radiation therapy, IMRT Intensity-modulated radiation therapy, VMAT Volumetric modulated arc therapy

Inclusion criteria
•Radical intent external beam radiotherapy treatment for primary anal squamous cell carcinoma, with or without concomitant chemotherapy

•Radiotherapy delivered using modern radiotherapy techniques (3D‑CRT, IMRT or VMAT)

Exclusion criteria
•Palliative treatment

•Prior pelvic radiotherapy

•Brachytherapy (either primary or as boost treatment)
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non-disease related reasons (e.g. due to treatment com-
plications), or in case of distant metastases.

The site of failure (primary tumour versus pelvic/ini-
tially involved nodes) will be noted to allow for separate 
analysis of local and locoregional failure. Failures in pel-
vic lymph nodes (inguinal, perirectal, internal iliac or 
external iliac nodes) or in lymph nodes which were part 
of the original treatment volumes (which may be the 
case, e.g. for common iliac or para-aortic lymph nodes) 
will be defined as locoregional failures.

Freedom from distant metastasis
Freedom from distant metastasis will be calculated in 
days from the start of radiotherapy to either event or cen-
soring, whichever happens first. An event is defined as 
distant disease recurrence (previously untreated lymph 
node metastasis outside the pelvis, or other metastatic 
sites such as lung, liver, bone) as a first event. This may be 
confirmed with biopsy, in which case the date of biopsy 
will count as the date of recurrence, or alternatively 
based on imaging (date of imaging will be used). In case 
of any uncertainty or where limited information is avail-
able, the date where distant progression is first noted in 
the patient records will be used. Site(s) of failure will be 
noted. Patients will be censored at local recurrence, at 
death, or at last clinical follow-up.

Identification of relevant prognostic factors
Already-established prognostic factors for the outcomes 
in question have been identified through a systematic 
review of the literature [34]. Studies published after 2000 
which reported on disease-related outcomes and exam-
ined prognostic factors in multivariable analysis for 
overall survival, locoregional control, and freedom from 
distant metastasis were reviewed. In these studies, at 
least 70% of patients were treated with conformal radi-
otherapy techniques (3D-defined targets on computed 
tomography (CT), beams conformed to targets, e.g. using 
multi-leaf collimators (MLCs), 3D dose calculation and 
optimisation of dose distributions). This approach iden-
tified the initial list of relevant data to be collected; this 
was subsequently reviewed by three senior clinical oncol-
ogists with expertise in anal cancer treatment, and addi-
tional factors were added.

Data collection and completeness
Relevant patient data will be identified and extracted 
from existing research and clinical databases. Data 
extraction from databases will be carried out in an auto-
mated fashion where possible, with additional man-
ual review if needed. Each participating centre will be 
responsible for ensuring good data quality by spot check-
ing all extracted data to identify any outliers and to make 

sure the coding system used is correct, according to the 
data dictionary provided. Data items are classified as 
either “essential” or “optional”. For “essential” data items, 
centres will aim for at most 10% missing data for any 
given data item across their study cohort. If more than 
10% of data is missing for an individual data item, impu-
tation techniques will be implemented according to the 
framework set out below (see “Missing Data” section). 
For “optional” data items, missing data will be accepted. 
Each centre will contribute data from a minimum of 40 
patients to ensure a representative sample and achieve 
a reasonable balance of patient heterogeneity, as well 
as limit reporting of subgroups with one or only a few 
patients. See Additional file 1 for full definition and cod-
ing of data items.

Missing data
For outcome data, complete case analysis will be used for 
each of the three outcomes. That is, if data is missing for 
a specific outcome for a patient, that patient will not con-
tribute to the corresponding analysis. For potential prog-
nostic factors, a mixed approach will be used: if more 
than 90% of patients per centre have complete data for all 
factors for a given analysis, then complete case analysis 
will be used as the primary analysis for that centre. If not, 
missing value imputation [35] will be used according to 
the framework set out below before any models are fit-
ted, and complete case analysis will be performed as a 
robustness check. Missing data imputation has only been 
sparsely explored in the context of distributed learning 
and there is only limited precedence to guide best prac-
tise [36, 37]. Initially, we will implement the missing data 
imputation framework described below, but this may be 
adapted based on our ability to implement more robust 
techniques in a distributed setting.

Where data for potential prognostic factors is miss-
ing for a small number of patients in individual centres 
(> 10% but ≤ 50%), local data imputation techniques will 
be employed. Missing data will be imputed using only 
the local dataset, and prior to any distributed model 
optimisation. The k-nearest neighbour (KNN) algo-
rithm [38, 39] will be used to carry out the imputation 
[40]. Using this algorithm, each missing value will be 
replaced by a value that is as close as possible to the true 
value, obtained from related cases in the whole dataset. 
This technique aims to preserve the original structure of 
the dataset and avoids distorting the distribution of the 
imputed data item. To implement KNN, an appropriate 
value of k will be first determined through exploration of 
the data in each centre, using the square root of the sam-
ple size as a starting point [38, 41]. All available essential 
data items, as well as outcome data [42], will be included 
in the imputation model.
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Where data for potential prognostic factors is system-
atically missing in specific centres (> 50% data missing 
for any specific item), the general assumption will be that 
imputation based on the local centre data will be unre-
liable. In this case, consortium-wide regression will be 
implemented to impute the missing data items.

As an initial plan, a regression model will first be 
trained using data from all centres apart from the cen-
tre where the data item is missing. This model will then 
be run in the centre where the data is missing to impute 
the missing values. If two or more centres are missing 
the same data item, this approach will not be techni-
cally feasible due to limitations of the DL infrastructure 
that will be used. In this case, for continuous data items, 
the mean from each centre (apart from the centres with 
missing data) will be used to calculate the global “median 
of means” value for that data item. This value will be 
assigned to all patients in the centres where the data item 
is missing. For categorical data items, the frequency of 
each category across the global cohort for the data item 
that is missing will be calculated (excluding centres with 
the missing data item). Categories will then be assigned 
to each patient at random in centres where the data item 
is missing, ensuring the local frequency distribution is 
the same as the global frequency distribution.

In parallel to the main consortium analysis, an inde-
pendent exploratory study will be carried out to evalu-
ate the feasibility of various imputation techniques in the 
context of distributed learning. Once feasible and robust 
techniques have been identified, we will look at imple-
menting these to improve on the missing data imputation 
framework described above.

Sample size
The atomCAT1 proof-of-concept study [31] demon-
strated the ability to combine data from three centres for 
281 patients. A Cox regression model for overall survival 
was fitted to the global dataset, taking five baseline fac-
tors into account. Its performance was evaluated using 
Harrell’s concordance index (c-index). The internal-exter-
nal validation approach returned a c-index of 0.70, which 
is considered as “good” model performance.

The “pmsampsize” [43] package in R was used to esti-
mate the minimum sample size required for the atom-
CAT2 models. The parameters required to carry out 
this calculation include R2 (calculated from the c-index), 
number of candidate predictor parameters, shrinkage 
(level of reduction of the estimated predictor effect esti-
mates to address overfitting), overall event rate in the 
population, mean follow-up time anticipated for individ-
uals in the model development dataset and timepoint of 
interest for prediction.

Table 2 illustrates how many patients will be needed to 
fit a Cox proportional hazards model for overall survival 
in atomCAT2, aiming for similar performance to the 
model developed in the atomCAT1 study, with varying 
number of parameters. These estimates assume an event 
rate of 16% at 36 months, with a median follow-up of 46 
months, a c-index of 0.70 (corresponding to R2

CSapp of 
0.0676) and a shrinkage value of 0.90. Sample size esti-
mates in this setting are very robust to variations in event 
rate, and are thus also valid for models for locoregional 
control and freedom from distant metastases (with an 
event rate of 25% and 15% at 5 years, respectively [7]).

The number of prognostic factors which will be 
included in the final models will be based on the total 
number of patients available across the consortium. The 
analysis plan will be finalised when the total number of 
available patients are confirmed. Currently, we aim to 
include data from at least 1000 patients, which would 
allow for eight parameters to be estimated per model. 
The number of prognostic factors included in the model 
could be the same or different to the number of param-
eters depending on the number of categories for the 
categorical factors and the parameterisation of the con-
tinuous factors.

Statistical analysis
Descriptive data analysis
Summary statistics will be shared with the central study 
team in order to explore cohort differences prior to 
modelling. Categorical variables will be summarised as 
proportions to the total number of patients per centre, 
expressed as percentages. Summary statistics will be cal-
culated for numerical variables (mean, standard devia-
tion, range, variance).

Summary statistics for the global cohort will be 
reported. Categorical variables will be summarised as 

Table 2 Estimated minimum sample size for a range of 
parameters, for the overall survival model (also valid for the 
locoregional control and freedom from distant metastasis 
models)

Parameters included in the model Minimum 
sample 
size

5 641

6 769

7 897

8 1025

9 1153

10 1283

11 1409
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proportions to the total number of patients in the global 
cohort, expressed as percentages. For numerical vari-
ables, random effect meta-analysis will be used (using the 
“meta” package in R), with inverse variance weighting for 
pooling, reporting the overall mean and 95% confidence 
intervals (calculated from overall standard deviations). 
The range will be reported as the lowest and highest val-
ues across the global cohort, calculated from the range 
from each centre.

Estimated 3-year survival/freedom from recurrence 
rates will be calculated by each centre individually, using 
the Kaplan-Meier estimator (using the “survival” package 
in R). The median potential follow-up time will be calcu-
lated based on the inverse Kaplan-Meier estimator for 
each outcome for each centre separately.

Model specification
The prognostic factors that will be included in each of 
the three primary models are specified in Table 3. The 
factors are listed in the order that they will be priori-
tised for analysis based directly on the findings from 
the systematic review and expert opinion. The factors 
are ordered according to the total number of times 
found to be prognostic in multivariable analysis. Addi-
tional factors were added by senior clinical oncologists. 
Factors found to be prognostic in univariable analysis 
but not in multivariable analysis may be included in 
the secondary models. The number of factors included 
in each model will depend on the final sample size for 
each outcome, as detailed above. For each factor, the 
primary parameterisation used (e.g. categorisation for 
categorical variables) is listed, with alternatives to be 
explored in secondary analyses. The parameterisation 

of all variables for the primary and secondary models 
was determined after a detailed discussion with clinical 
oncologists and represents the relationship they expect 
to see from clinical experience, as well as the expected 
data distribution. See Additional file  2 for secondary 
model specification.

Cox model development and reporting
The primary analysis will involve the development 
and internal validation (type 2b validation according 
to TRIPOD [44]) of Cox proportional hazards models 
using distributed learning [45] across all participating 
centres, separately for each outcome (overall survival, 
locoregional control, and freedom from distant metas-
tasis). The primary model to be developed for each out-
come is detailed above. Secondary analyses (Additional 
file  2) will be used to explore the robustness of the 
results to the choices made for the primary model. As 
an additional assessment of model robustness, another 
secondary analysis will be conducted. In this analysis, 
the specified models (Table  3) will be trained only on 
datasets comprising of more than 20 events, as a way of 
testing whether the number of events per centre affects 
the behaviour of the models.

The factor effects from each model will be reported 
in the form of hazard ratios (HRs) along with 95% con-
fidence intervals (CIs). The ‘baseline’ outcome rate at 
specific timepoints of interest (e.g. 2 years, 3 years and 
5 years) will be calculated. Combining the baseline out-
come rate with the factor effect estimates (HRs) will 
allow for outcome prediction for a future patient, ren-
dering the model useable for future prediction.

Table 3 Specification of the primary models for overall survival, locoregional control and freedom from distant metastasis

N stage nodal stage, T stage tumour stage, GTV Gross tumour volume, EQD2 Equivalent dose in 2 Gy fractions (α/β = 10 Gy), SCC Squamous cell carcinoma, 3D-CRT  
Three-dimensional conformal radiation therapy, IMRT Intensity-modulated radiation therapy, VMAT Volumetric modulated arc therapy

Prognostic factors to be included in the primary models

Overall survival model Locoregional control model Freedom from distant metastasis model

1 N stage: N0 vs N+ Sex: female vs male N stage: N0 vs N+
2 T stage: T1–2 vs T3–4 N stage: N0 vs N+ T stage: T1–2 vs T3–4

3 Sex: female vs Male T stage: T1–2 vs T3–4 Sex: female vs male

4 Age: modelled as a continuous, linear factor Age: modelled as a continuous, linear factor Age: modelled as a continuous, linear factor

5 Primary tumour GTV  (cm3): modelled as a 
continuous, log‑transformed factor

Primary tumour GTV  (cm3): modelled as a 
continuous, log‑transformed factor

Primary tumour GTV  (cm3): modelled as a con‑
tinuous, log‑transformed factor

6 Primary tumour dose (EQD2): modelled as a 
continuous, linear factor

Primary tumour dose (EQD2): modelled as a 
continuous, linear factor

Primary tumour dose (EQD2): modelled as a 
continuous, linear factor

7 Histology: SCC vs basaloid SCC Histology: SCC vs basaloid SCC Histology: SCC vs basaloid SCC

8 Chemotherapy regimen: [no chemotherapy] 
vs [mitomycin C‑based regimen] vs [cisplatin‑
based regimen]

Chemotherapy regimen: [no chemotherapy] 
vs [mitomycin C‑based regimen] vs [icsplatin‑
based regimen];

Chemotherapy regimen: [no chemotherapy] vs 
[mitomycin C‑based regimen] vs [cisplatin‑based 
regimen];

9 RT technique: [3D‑CRT] vs [IMRT] vs [VMAT] RT technique: 3D‑CRT vs IMRT vs VMAT RT technique: 3D‑CRT vs IMRT vs VMAT
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Evaluation and visualisation of model performance
Model performance will be initially assessed using Har-
rell’s concordance index (c-index) [46] on a per-centre 
basis, with a weighted average c-index (and standard 
deviation) also reported. A more robust estimate for 
out-of-sample performance will be obtained using a 
closed-loop internal-external “leave-one-centre-out” 
cross-validation method [47], where the model will be 
optimised using data from all but one sites and then vali-
dated on the last site. This will be repeated to cover the 
possible combinations, resulting in different c-indices 
which provide an estimate of the over-optimism of the 
global model. The weighted average and interquartile 
range (IQR) of these c-index values will be reported. The 
factor effects from each of these validation models will be 
aggregated and the summary effects will be reported in 
the form of HR range for each factor across all models.

The calibration of the global model (performance check 
for the prediction aspect of the model) will be assessed 
by constructing calibration curves and quantifying the 
calibration slope [48, 49], on a local (per-centre) level. 
Calibration curves will use three groups per centre (low/
medium/high risk, based on their predicted outcomes), 
and will compare average predicted outcome within each 
group with the observed outcome at 3 years, using the 
Kaplan-Meier estimator. This is the initial plan for evalu-
ation of the model calibration, and the final plan may be 
altered depending on the size of each centre’s cohort, as 
well as the number of events per centre.

The model development and validation procedure and 
results will be reported in accordance with the TRIPOD 
statement and checklist [50]. This protocol has also been 
checked against the relevant parts of the TRIPOD check-
list for prediction model development and validation (see 
Supplementary Material).

Distributed learning infrastructure
The infrastructure that will be used for this study is very 
similar to the infrastructure implemented in atomCAT1 
[31]. The Distributed Cox algorithm developed by Lu 
et al. [45] was adapted to the Vantage6 v2.1 infrastructure 
as R scripts (v.3.6.2). The source code will be made openly 
accessible on GitHub. Scripts for computing model coef-
ficients and leave-one-centre-out model validation will 
be packaged as application “containers” (via Docker) and 
will be locally executed in each centre. All other scripts 
that will be used for the data analysis will be uploaded in 
a GitLab repository, which will be made public at the end 
of the project.

Organisation and policies
The atomCAT2 study will be conducted as part of a 
wider atomCAT consortium. Details of consortium 

engagement and project management will be described 
in detail in a collaborative research agreement, which will 
be signed by all participating centres.

Medical Data Works BV (MDW, https:// medic aldat 
aworks. nl/) implements a privacy preserving distributed 
infrastructure that investigators in atomCAT2 will use. 
Therefore, an Infrastructure User Agreement will be 
signed as a contractual agreement between each centre 
and MDW. MDW will not be considered as a “processor” 
of clinical data according to the definition in the EU Gen-
eral Data Protection Regulation but is solely the provider 
of the information technology infrastructure and the 
central server. As the infrastructure provider, MDW will 
enforce the legal use of algorithms and data stations, and 
this agreement shall define the terms and conditions for 
the use of the infrastructure.

Discussion
This paper describes the protocol and statistical analysis 
plan for the international multi-centre atomCAT2 study. 
The study will aim to develop and validate robust prog-
nostic models for three clinically important outcomes in 
anal cancer after treatment with conformal radiotherapy. 
Key prognostic factors for each outcome will also be 
identified and validated.

Only patients treated with conformal radiotherapy 
techniques (e.g. 3D-conformal, intensity-modulated 
radiation therapy (IMRT) and volumetric modulated 
arc therapy (VMAT)), will be included in the cohort for 
analysis as these techniques have been proven to reduce 
the dose delivered to normal tissues, minimising toxic-
ity and reducing overall treatment duration and the need 
for treatment breaks [51–54]. Therefore, by limiting our 
cohort to patients treated with conformal radiotherapy, 
we ensure that the prognostic models developed will be 
informative to current clinical practice. These models will 
include a range of established prognostic factors, identi-
fied through a comprehensive review of the literature and 
confirmed by three experts from three different centres. 
A range of additional less-established prognostic factors 
will also be tested in secondary models, to quantify their 
effect size and assess their eligibility as clinically relevant 
predictors of outcome.

Most of the literature which reports on outcomes and 
prognostic factors in anal cancer after conformal radio-
therapy are retrospective studies which include small 
cohorts from a single centre. The results from the prog-
nostic models developed in these studies may therefore 
suffer from small sample size bias and might not be 
generalisable [55] across centres and countries. To our 
knowledge, only three previous studies have analysed 
more than 200 patients with conformal radiotherapy 
[14, 31, 56], only one of which was multi-national and 

https://medicaldataworks.nl/
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conducted multi-centre validation of outcome predic-
tors. The cohorts that will be included in atomCAT2 will 
not only be significantly larger in size, but also more het-
erogeneous, since treatment dose and delivery schedules 
vary between radiotherapy centres, especially across dif-
ferent countries.

The analysis will be limited to retrospective data that 
is readily available in clinical and radiotherapy plan-
ning databases in a large number of centres. Therefore, 
some factors that could potentially be prognostic, such 
as HPV status and baseline performance status, may not 
be included in the primary models as they are not rou-
tinely collected in all centres. Since atomCAT2 is a non-
prospective multi-centre analysis, it is expected that 
some data will vary between centres, including tumour 
staging, GTV definitions and outcome definitions. Steps 
have been taken to take the variation into consideration 
and minimise it as much as possible, including providing 
pre-specified definitions for all three outcomes and ask-
ing centres to indicate the staging version and GTV defi-
nition used. Despite this, some variation is unavoidable, 
which may affect the results. Additionally, it is expected 
that some essential data will be missing in a number of 
centres.

The methods for handling missing data have been 
specified in the protocol, however, these are substantially 
limited to what can currently be implemented in the DL 
setting without having to share individual-level patient 
data between centres. The field of missing data imputa-
tion in the context of DL is still in its infancy and does 
not currently have established standards. So far, only few 
studies have been conducted with the aim of developing 
or evaluating imputation techniques that can be imple-
mented in a DL setting [36, 37]. Our initial imputation 
plan for data missing for a small number of patients in 
individual centres proposes the implementation of the 
KNN algorithm, which is a single imputation approach. 
In this case, one unique value will be imputed for each 
patient with missing data, resulting in a single complete 
dataset [57, 58]. This will likely produce relatively unbi-
ased estimates, especially if only a small proportion of the 
data is missing [57, 59]. However, it is worth noting that 
these approaches fail to take into account the uncertainty 
of the missing values [60], which often results in underes-
timation of the variability and standard errors that are too 
small [61]. If data for a single data item is missing in the 
majority of patients in an individual centre, we also pro-
pose single imputation (using the data from the remain-
ing centres), but assigning the same value to all missing 
data from the centre in question (also referred to as sin-
gle value imputation). We recognise that this approach 
may introduce significant bias, leading to a change in the 
distribution shape and a significant decrease in standard 

deviation of the data item being imputed [62]. Using 
more advanced approaches to impute missing data, such 
as multiple imputation by chained equations (MICE) 
[63], would be ideal but cannot be applied through the 
DL infrastructure at this point. Further methodological 
research is needed to incorporate robust data imputation 
techniques to a privacy-preserving setting in order to 
tackle the problem of missing data, which is particularly 
common in medical datasets.

Future research beyond atomCAT2 will include incor-
poration of imaging and radiomics data to the models 
to increase their complexity and the potential insights 
gained. A number of studies have reported various imag-
ing-related prognostic factors in anal cancer [64–66], 
which might prove to be clinically relevant. Moreover, 
strong efforts from the research community are being 
put into increasing the utility of DL in medical research 
by adapting different statistical methods and models to 
the existing infrastructure. In the future, it may be pos-
sible to develop competing risk models [67] in a distrib-
uted fashion, allowing multiple outcomes to be analysed 
in combination. Additionally, other algorithms such as 
random survival forests [68], may be implemented in DL 
to carry out the analysis instead of Cox regression. Ran-
dom survival forests allow for a larger number of factors 
to be considered and factor selection is embedded within 
the methodology, which may in turn improve learning 
performance. This will be particularly useful in cases 
where many factors need to be considered. Alternative 
approaches to DL could also be considered for prognostic 
model development without having to share individual-
level patient data between centres. For example, a multi-
variate meta-analysis approach [69–71] could be adopted, 
where summary statistics and regression coefficients 
from different prognostic models can be combined into a 
new prediction model. However, there are various issues 
with this approach, which may have a negative impact on 
the performance of the resulting prediction model, such 
as inconsistent covariate adjustment across models and 
high levels of model heterogeneity [72]. One significant 
advantage of the distributed learning approach over a 
meta-analysis approach is that a distributed Cox regres-
sion model generates the same model outputs as a cen-
tralised Cox regression model trained with the same data 
[45]. It has also been proven that distributed and central-
ised Cox regression models are equivalent from a math-
ematical perspective. This might not be true in all cases 
where meta-analysis approaches to prognostic model 
development are employed.

In conclusion, the atomCAT2 models will be devel-
oped using one of the largest cohorts of patients with 
anal cancer treated with conformal radiotherapy tech-
niques ever analysed and will be validated across centres 
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and countries. The models will allow for the prediction of 
outcomes in individual patients, which will inform cur-
rent clinical practice and may subsequently aid with the 
personalisation of anal cancer treatment. The results of 
the atomCAT2 study may guide patient risk stratification, 
which may in turn facilitate the design of future prospec-
tive clinical trials in anal cancer.
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